
RT-Bench: an Extensible Benchmark Framework for the
Analysis and Management of Real-Time Applications

Mattia Nicolella
Boston University, USA

mnico@bu.edu

Shahin Roozkhosh
Boston University, USA

shahin@bu.edu

Denis Hoornaert
TU München, Germany

denis.hoornaert@tum.de

Andrea Bastoni
TU München, Germany

andrea.bastoni@tum.de

Renato Mancuso
Boston University, USA

rmancuso@bu.edu

ABSTRACT

Benchmarking is crucial for testing and validating any system,

including—and perhaps especially—real-time systems. Typical real-

time applications adhere to well-understood abstractions: they ex-

hibit a periodic behavior, operate on a well-defined working set,

and strive for stable response time, avoiding non-predicable factors

such as page faults. Unfortunately, available benchmark suites fail

to reflect key characteristics of real-time applications. Practitioners

and researchers must resort to either benchmark heavily approxi-

mated real-time environments or re-engineer available benchmarks

to add—if possible—the sought-after features. Additionally, the mea-

suring and logging capabilities provided by most benchmark suites

are not tailored “out-of-the-box” to real-time environments, and

changing basic parameters such as the scheduling policy often

becomes a tiring and error-prone exercise.

In this paper, we present RT-bench, an open-source framework

adding standard real-time features to virtually any existing bench-

mark. Furthermore, RT-bench provides an easy-to-use, unified

command-line interface to customize key aspects of the real-time

execution of a set of benchmarks. Our framework is guided by four

main criteria: 1) cohesive interface, 2) support for periodic appli-

cation behavior and deadline semantics, 3) controllable memory

footprint, and 4) extensibility and portability. We have integrated

within the framework applications from the widely used SD-VBS

and IsolBench suites. We showcase a set of use-cases that are rep-

resentative of typical real-time system evaluation scenarios, and

that can be easily conducted via RT-Bench.

CCS CONCEPTS

• Computer systems organization → Real-time systems; •

General and reference→ Measurement; Performance.

KEYWORDS

framework,interference,open-source,extensible,portable,benchmark

suite,real-time,profiling,periodic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RTNS ’22, June 7–8, 2022, Paris, France

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9650-9/22/06. . . $15.00
https://doi.org/10.1145/3534879.3534888

ACM Reference Format:

Mattia Nicolella, Shahin Roozkhosh, Denis Hoornaert, Andrea Bastoni,

and Renato Mancuso. 2022. RT-Bench: an Extensible Benchmark Framework

for the Analysis and Management of Real-Time Applications. In Proceedings

of the 30th International Conference on Real-Time Networks and Systems

(RTNS ’22), June 7–8, 2022, Paris, France. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3534879.3534888

1 INTRODUCTION

In light of the current ever-growing dependence on automated con-

trol systems and their increasing complexity, with numerous com-

ponents consolidated on a chip, safety and determinism certification

challenges grow exponentially. At the early stages of development,

simulation tools are essential to inspect new designs. However,

simulation of the entire system works under the assumption that

the employed models accurately represent the actual behavior of

the hardware. Unfortunately, complex modern hardware often de-

viates from textbook models in unpredictable ways as they only

reveal partial information on the actual state of the system [35].

Real-time researchers are therefore forced to analyze the system’s

deployment on the final physical platforms. Benchmark suites are,

therefore, frequently used to bridge the gap between simulated and

real behavior and empirically assess the ability to deliver real-time

performance.

In response to the challenges outlined above, the real-time com-

munity has adapted to use miscellaneous sets of techniques to

test various system components both before and after integration.

The latter is often more demanding as it requires to reason about

the interplay between concurrent software components. To that

end, numerous benchmarks have been used to test a multitude of

characteristics. Unfortunately, however, the lack of standardized

benchmarks and general consensus in the testing environment has

led to severe fragmentation in testing methodology and poor com-

parability of results. To make things worse, specific base-platform

dependencies and ordeals in porting benchmarks to run on specific

hardware are often overlooked challenges that can adversely affect

the ability to adopt a given set of benchmarks.

When looking at a real-time platform, metrics such as responsive-

ness, predictability, and the impact of parallelism are of immediate

interest. It is also customary to analyze real-time systems under typ-

ical load as well as under stress. Therefore, a good practice is to use

a mixture of both synthetic and realistic benchmarks to construct

an informed assessment of how the system reacts to different work-

load configurations. Despite the abundance of benchmarks of both

RTNS ’22, June 7–8, 2022, Paris, France Ma�ia Nicolella, Shahin Roozkhosh, Denis Hoornaert, Andrea Bastoni, and Renato Mancuso

types, there is a lack of out-of-the-box applicability to real-time

systems.

This paper aims to propose a standard framework, namely RT-

Bench, that offers several features designed to meet the needs of

researchers and practitioners who are interested in studying the

real-time behavior of their systems. Beyond providing an initial

set of well-known and publicly available benchmarks1 that have

been adapted to RT-Bench, our goal is to allow the integration of

additional applications with as few adaptations as possible in a

modular and extensible fashion that emphasizes the importance

of good documentation and code reuse. We identify three main

categories of functional features: (1) unified launch, control, and

reporting interface; (2) adherence to real-time abstractions; (3) cross-

platform portability; and (4) automated analysis use-cases.

Unified Interface: RT-Bench provides system designers with the

direct ability to control key parameters of benchmark deployment,

such as workload composition, scheduling policy and priorities,

pinning of applications to CPUs, and enforcement of memory allo-

cation limits, to name a few. At the same time, the framework pro-

vides a uniform performance reporting infrastructure that already

includes real-time oriented metrics such as job arrival time, dead-

line, response time, and usage of system resources via performance

counters. Lastly, RT-Bench includes a set of automated analysis

use-cases aimed at producing key complex metrics in the platform

of reference, such as observed WCET, the impact of contention-

induced temporal interference, and input-dependent working set

size (WSS).

Real-time Abstractions: RT-Bench proposes an infrastructure to

transform any monolithic benchmark into a recurrent one with

the goal of adhering to the real-time periodic task model. In do-

ing so, it also offers a generic methodology to factor-out typical

initialization and tear-down overheads in the acquired measure-

ments. At the same time, real-time applications are often assumed

to be deadline-constrained. For this purpose, RT-Bench implements

deadline detection and enforcement semantics via job skipping.

Moreover, real-time applications are assumed to have well-behaved

memory allocation patterns and statically known WSS. RT-Bench

offers a generic technique to enforce such semantics even when

the original benchmarks make use of dynamic memory allocation

(e.g., via malloc and free) and without requiring code refactoring.

Cross-platform Portability: RT-Bench only uses APIs from the

POSIX standard to allow deployment on an extensive range of Oper-

ating Systems (OS) and bare-metal software stacks (e.g. Newlib [39]).

We decouple it from any system-specific limitations through user

application-level implementation. The only exception is user-space

interaction with platform-specific cycle counters for which support

is provided in all the leading architectures.

We test our framework by adapting to the state-of-the-art bench-

mark suits as we explore their characteristics in the remainder of

this paper. A proof-of-concept integration of IsolBench [37] and

San Diego Vision Benchmark Suite (SD-VBS) [38] into the proposed

framework is provided. The open-source RT-Bench implementation

is available at https://gitlab.com/bastoni/rt-bench.

1San-Diego Vision Benchmark suite [38]

2 RELATED WORK

With the ever-growing explosion in the complexity of embedded

computing platforms, performance characterization and prediction

have become increasingly more challenging. Moreover, to reach a

conclusive assessment regarding the temporal properties of a sys-

tem, it is crucial to test the system’s behavior under different work-

loads. The real-time community has adopted a number of strategies

to obtain indicators of the system behavior through benchmarking.

This section provides a comparative survey of popular bench-

mark suites used in the real-time community. The survey is summa-

rized in Table 1. These suites can be categorized into three groups:

• Synthetic Benchmarks (SB) that will stress a particular

element or aspect of the system under analysis.

• Pragmatic Benchmarks (PB) batch processing tasks mim-

icking realistic workload such as image processing, signal

processing, physics simulation, and matrix multiplication.

• Full-Scale (FS) real-time applications containing a mixture

of hard/soft/non-realtime jobs with both periodic and non-

periodic tasks to be executed on embedded systems for full-

system concrete timing verification.

Popular Synthetic benchmarks include IsolBench [37] (used in [14,

15, 23]), the RT-Test [3] suite and the RTEval [4] benchmark. Isol-

Bench is a collection of memory workloads used to analyze the

memory bandwidth and latency. It supports periodic execution,

but it does not have a comprehensive interface logging data on

each period. The RT-Test suite is a set of benchmarks to profile the

responsiveness of the Linux kernel. The RTEeval benchmark relies

on RT-Test to measure the performance of the Linux kernel under

specific workloads.

The most accustomed Pragmatic benchmark suites include:

TACLeBench [13] (used in [25, 27, 36]), San Diego Vision Bench-

marks [38] (used in [6, 14, 32]), Mälardalen [17] (used in [8, 28,

29]), several versions of SPLASH [5, 33, 40] (used in [16, 26, 41]),

EEMBC [11] (used in [20, 21]), and MiBench [18] (used in [12, 24]).

TACLeBench has been designed with portability in mind for most

of the benchmarks, as they target WCET analysis. This suite re-

groups other synthetic benchmarks such as Papabench [30]. Hence,

TACLeBench lacks a homogeneous interface. SD-VBS performs

general image processing and vision-related jobs, and it aims at

offering maximum portability. However, to be used as embedded ap-

plications, the benchmarks must be adapted for periodic execution.

Dynamic memory allocation is also widely used, which further hin-

ders their temporal determinism. TheMälardalen benchmarks share

many components with TACLeBench. However, they also suffer

from some of the same shortcomings. The Mälardalen benchmarks

are not designed for periodic execution. Instead, they are mainly

designed to be good targets for static WCET analysis. EEBMC is a

selection of benchmarks specifically targeting embedded devices

of different types, ranging from mobile to automotive systems.

MiBench is similar to EEMBC, but was created to address its short-

comings. Finally, the SPLASH benchmark suite is a collection of

benchmarks tailored to parallel execution and WSS analysis from

Pragmatic models. On a similar flavor, suites like the PARSEC [9]

(used in [16]) and Rodinia [10] suites (used in [7, 31]) represent an

interesting alternative as they specifically target parallel execution,

RT-Bench: an Extensible Benchmark Framework for the Analysis and Management of Real-Time Applications RTNS ’22, June 7–8, 2022, Paris, France

Table 1: Benchmark suites comparison (ALL = Synthetic, Pragmatic, and Full-Scale)

Benchmark

suite
Type

Periodic

exec.

Cross

Platform

Unified

Interface

Dead.

status

Exec.

Time

Utili-

zation
Density

Profiled

WCET

Profiled

WSS

Perf.

counters

Memory

Profiler

TACLeBench [13] ALL - - × × × × × × × × ×

SD-VBS [38] PB × X × × X × × × × × ×

Mälardalen [17] PB × X × × × × × X × × ×

SPLASH [5, 33] PB × CUDA × × X × × × X × ×

Rodinia [10] PB × X × × - × × × × × ×

PARSEC [9] PB × X × × X × × × × × ×

IsolBench [37] SB X X × × X × × × × × ×

EEBMC [11] PB × X × × X × × × × × ×

MiBench [18] PB × X × × × × × × × × ×

PapaBench [30] FS X AVR × × × × × × × × ×

RT-Tests [3] PB/SB some X × × X × × some × × ×

RTEval [4] SB × X × × X × × X × × ×

RT-bench PB/SB X ARM/x86 X X X X X script script Perf Aarch64

with Rodinia even offering support for GPUs and heterogeneous

systems.

Full-scale real-time applications mostly come from the WA-

TERS industrial challenge [19], formerly called Formal Methods

for Timing Verification (FMTV). Full-scale applications are, for the

most part, periodic, but extending them is complex, and they might

not have broad multi-platform support. An example of a full-scale

real-time application is the Papabench [30] benchmark, which en-

capsulates all the main components of a control system for UAVs.

Table 1 summarizes the essential characteristics (columns) of the

surveyed benchmarks (rows). The reported characteristics include

(1) the Type of benchmark the suite offers according to the afore-

mentioned categories, (2) the capability to be executed in a Periodic

fashion, (3) the provided cross-platform support, (4) whether it

provides a unified interface with other suites, and (5) the metrics

natively reported by the suites. For the latter, this includes, from

left to right, whether the deadline has been met, the execution

time, the processor utilization2, the density3, the empirically ob-

served WCET, the ability to collect and report end-to-end hardware

events obtained though performance counters (e.g., cache accesses),

and the ability to monitor the trend of observed hardware events

throughout the execution. Note that categories for which no clear-

cut answer exists are marked in orange. This is the case for the

platforms supported, and the test provided by RT-Bench noted as

script, meaning that they rely on high-level tools. The table high-

lights the necessity of a framework that is specifically designed

for the analysis of real-time systems. Indeed, the core philosophy

of the proposed RT-Bench framework is to provide an infrastruc-

ture to build a reference set of real-time benchmarks with standard

functionalities. As a first step in this direction, RT-Bench already of-

fers key analysis tools such as execution-time distribution analysis,

WSS examination, and sensitivity to interference. Moreover, with

RT-Bench, existing benchmarks can be integrated to execute peri-

odically and to exhibit controlled memory footprint with minimum

re-engineering effort.

2Computed as measured execution time over the period.
3Computed as measured execution time over the relative deadline.

3 DESIGN GOALS AND OVERVIEW

As presented in Section 2, a real-time analysis should ideally be

conducted using a large set of benchmarks with different character-

istics to provide a comprehensive understanding of the (real-time)

performance of the system under analysis. With that respect, the

objective of the proposed RT-Bench framework is three-fold.

Common and cohesive interfaces. The use of benchmark suites

is widespread in the real-time community, and it is not rare for

multiple suites to be jointly used in a given study. These suites

are, in most cases, contributions from distinct individuals having

particular focuses, ranging fromCPU- ormemory-bound to CPU- or

memory-intensive applications. Unfortunately, while this diversity

is a strength, it entails a fragmentation of the parameters available

(e.g., assigned processing units, scheduling policy), the metrics

reported (e.g., response time, working set size), and the overall user

experience. RT-Bench aims at bridging this gap by homogenizing

the available features and the reports generated for any benchmark

by offering a unified and coherent interface.

Adherence to Real-Time System Abstractions We aim to incor-

porate, within the proposed RT-Bench framework, a set of features

that are in line with the typical models and assumptions used for re-

search, analysis, and testing of real-time systems. We consider this

objective of paramount importance and a clear distinctive factor

compared to the surveyed suites. RT-Bench is deliberately designed

from the ground up to transform any one-shot benchmark into a

periodic application with deadline enforcement and job-skipping

semantics, with compartmentalized one-time initialization and tear-

down routines, so to obtain precise measurements. In addition, any

benchmark integrated within RT-Bench natively features options

to control allocation on a specific set of cores; to be assigned a

scheduling policy, and to limit and pre-allocate memory. These fea-

tures effectively align the behavior of RT-Bench applications with

a critical mass of assumptions and abstraction that are customary

when analyzing real-time systems.

Extensibility, portability, and usability.We carefully designed

the proposed framework, RT-Bench, to be easily extensible, portable,

and practical. We deliberately implemented the RT-Bench core fea-

tures to operate in user space so as to decouple our framework

RTNS ’22, June 7–8, 2022, Paris, France Ma�ia Nicolella, Shahin Roozkhosh, Denis Hoornaert, Andrea Bastoni, and Renato Mancuso

Figure 1: The RT-Benchmark Generator can simply be ex-

tended with any benchmark from a collection (e.g., a, b, c,

d, and e) as long as they feature the three harnessing points

constituting the interface. It yields RT-Benchmarks version

of the adapted third-party benchmarks.

from any system-specific constraints. We do so by leveraging wide-

spread POSIX system-level interfaces. Doing so enables RT-Bench

benchmarks to be deployed on a wide range of OS’s and bare-metal

software stacks (e.g. Newlib). There are only two exceptions to

this rule which correspond to two advanced features provided by

the framework. The first is the ability to gather timing statistics

directly from architecture-specific performance counters. In this

case, assembly functions to support x86, Aaarch32, and Aaarch64

systems have already been included. Second, the possibility to also

gather statistics from performance counters relies on the Perf [2]

infrastructure, which is available by default in typical Linux kernels.

To enhance usability, we also provide a complete set of automated

build scripts. Likewise, we include a large set of on-the-fly/post-

processing scripts.

The RT-Bench framework comprises three specific components:

(1) the RT-Benchmark Generator (mandatory), (2) Utils, and (3)

Measurements Processing tools. Only RT-Benchmark Generator

is mandatory, while the rest are optional. These modules, as men-

tioned above, are described in the remainder of this section. We

further explore their purposes and interaction.

3.1 RT-Benchmark Generator

RT-Bench is designed to be extended with additional third-party

benchmarks. Towards this goal, any ported benchmark shall follow

the same interface and shall support the same real-time features

mentioned in this section.

The conversion to the RT-Bench format is near-transparent, as it

only requires the benchmark to be slightly altered to comply with

the proposed interface. The interface consists of three functions

acting as harness points: (1) Initialization, (2) Execution, and (3) Tear-

down. These functions—that must be implemented for a benchmark

to be integrated within RT-Bench—are respectively in charge of

(1) initializing shared resources such as memory, file descriptors,

shared data objects, and the like, (2) executing the main application

logic/algorithm, and (3) freeing any of the resources used. Their

exact utilization is, from the standpoint of the benchmark, opaquely

driven by the RT-Benchmark Generator (see Section 4.1), effectively

decoupling real-time features from the design of the application at

hand. Further details regarding the implementation are provided

in Section 4.2. As illustrated in Figure 1, once the benchmark to

be ported is structured following the interface outlined above, the

build scripts automate the creation of stand-alone executables that

include all the top-level features implemented by the RT-Benchmark

Generator. Therefore, encapsulating the desired benchmark within

RT-Bench transparently and effortlessly grants it a uniform set of

features and a coherent launch interface.

Periodic execution is an essential feature of the framework, as it

ensures a periodic execution of the benchmark’s main algorithm

for a specified amount of iterations—potentially infinitely many.

The periodic executions are coherent with the user-specified dead-

line, meaning if the task does not complete, its successor is not

released, and the deadline miss is reported—i.e., RT-Bench appli-

cations adhere to the job skipping [34] approach to handle any

detected overload conditions.

Core and scheduling policy selection is provided to perform par-

titioned and clustered multi-core scheduling through pinning to

a specific set of cores. The range of execution units and policies

available depends on the considered platform. On typical Linux ker-

nels, RT-Bench allows the selection of scheduling policies such as

SCHED_OTHER, SCHED_FIFO, SCHED_RR, and SCHED_DEADLINE and

corresponding parameters.

A deterministic memory layout is important for real-time appli-

cations. Indeed, one often wants to study the memory footprint

(or working set size) of the benchmark under analysis and to avoid

the overhead of page faults and swapping. While the RT-Bench

framework cannot provide a deterministic memory allocation for

applications using dynamic memory (e.g., via malloc and free), it

instead enforces a deterministic memory layout with two-fold se-

mantics to control memory allocation. When enabled, the user must

specify a maximum amount of heap memory to be pre-allocated.

All the specified memory is physically allocated (faulted-in) and

locked (i.e., made non-swappable) at initialization. Additionally, a

watchdog routine is installed to (1) monitor the actual benchmark’s

footprint at each memory allocation, (2) disable the creation of

additional virtual memory regions, and (3) enforce a strict size limit

on the heap region, terminating any application exceeding it.

Finally, RT-Bench offers a common reporting (output) interface

to export the data collected throughout the execution. The metrics

listed in Table 2 can be reported in four verbosity levels: (1) error-

only; (2) full logging in a CSV file format; (3) full logging on the

standard output; and (4) full logging on the standard output in a

human-readable format.

Encapsulating the target benchmarkwithin RT-benchmeans that

any ported benchmark benefits from all the aforementioned fea-

tures. Moreover, they natively display the command-line options to

set any of the required parameters. This is ultimately what allows

all the applications to share a standard and coherent launch

interface throughout the RT-Benchmark collection. The entirety

of the discussed features (and command-line options) are further

discussed in Section 4.3 and exhaustively listed in the project docu-

mentation.

RT-Bench: an Extensible Benchmark Framework for the Analysis and Management of Real-Time Applications RTNS ’22, June 7–8, 2022, Paris, France

Table 2: List of metrics logged by RT-Bench and their units.

Metric Description Formula Unit

period_start Period start timestamp ns and CPU clock-cycles

period_end Period end timestamp ns and CPU clock-cycles

job_end Job end timestamp ns and CPU clock-cycles

deadline Absolute deadline timestamp ns and CPU clock-cycles

deadline_met Status of the deadline. 1 if met, 0 otherwise. Boolean

job_elapsed Absolute job response time 9>1_4=3 − ?4A8>3_BC0AC ns and CPU clock-cycles

job_utilization Job utilization
9>1_4;0?B43

?4A8>3_4=3−?4A8>3_BC0AC
Ratio

job_density Job density
9>1_4;0?B43

3403;8=4−?4A8>3_BC0AC
Ratio

l1_references L1 References (PMC) Absolute number

l1_refills L1 Refills (PMC) Absolute number

l2_references L2 References (PMC) Absolute number

l2_refills L2 Refills (PMC) Absolute number

inst_retired Instructions retired (PMC) Absolute number

3.2 Measurements Processing

Alongside the mandatory core module, a.k.a. the RT-Benchmark

Generator, the framework also includes a series of optional high-

level scripts built on top of the generator. The provided scripts are

written with high-abstraction-level languages such as python and

bash. They aim to provide a well-rounded user experience in at

least four ways: (1) they automatically perform common tasks such

as empirically determining a benchmark’s WSS, WCET, and ACET;

(2) they ease the launch of interfering tasks, both memory- and

CPU-intensive on both the same or other available CPUs; (3) they

perform system-dependent preparation tasks such as migrating and

pinning on selected CPUs to limit undesired interference; and (4)

they generate plots of the obtained results using plotting libraries.

The script set is a prime example of tools exploiting the RT-Bench

standard interfaces, setting the benchmark parameters following

the standard command options, and extracting the measurements

by parsing the reporting format.

3.3 Utils

The RT-Bench framework also comes with project maintenance

and deployment tools, further improving portability and usability.

The framework provides a fully automated build system to gen-

erate RT-Bench benchmarks for each supported suite. It enables

the building and management of suites individually and globally.

Cross-platform compiling is supported for ARM and x86_64.

Additionally, complete documentation regarding the framework’s

RT-Benchmark generator is provided. This documentation is avail-

able in both HTML and LATEX locally and on the framework’s reposi-

tory. It is generated by Doxygen [22] and already available online4.

4 IMPLEMENTATION

This section presents the main technical details behind the im-

plementation of our RT-Bench. This section focuses on the RT-

Benchmark Generator, its mechanisms, and how it must be used to

port a generic monolithic benchmark. Later in the section, the em-

phasis is put on the optional side tools offered with the framework

to streamline common real-time oriented tests.

4See https://bastoni.gitlab.io/rt-bench/.

Figure 2: Flowchart of the mechanism used by RT-Bench.

As stated in earlier sections, RT-Bench has been designed with

extensibility and portability in mind. This has led to some deter-

mining implementation decisions. The implementation presented

in-depth in this section and evaluated in Section 5 assumes that

Linux is the OS of reference. Even though most of the features

only depend on POSIX, other features such as the available real-

time scheduling policies are inherently dependent on the OS. Se-

lecting Linux provides us with a sound selection of policies (e.g.,

SCHED_FIFO, SCHED_DEADLINE) and a simple interface to configure

their parameters (i.e., SYS_sched_* syscalls).

4.1 Core Mechanism

At the heart of any of the benchmarks generated using RT-Bench

lays the logic and mechanism in charge of enabling the desired

features listed in Section 3. RT-Benchmark generator is responsible

for invoking the entry points (to be implemented as part of the

RTNS ’22, June 7–8, 2022, Paris, France Ma�ia Nicolella, Shahin Roozkhosh, Denis Hoornaert, Andrea Bastoni, and Renato Mancuso

porting of a new benchmark) at adequate moments. This enables

RT-Bench to provide the features described in Section 3 to any

compliant benchmark it is attached to.

A flow-graph representation of said logic is shown in Figure 2.

The core logic is executed as a single-threaded process. The first

step (or entry point) in the RT-Bench logic broadly consists of the

initialization of the benchmarking environment. In addition to

calling the associated benchmark’s Initialization harnessing func-

tion, this initialization phase sets up every feature provided by

RT-Bench using the user-specified inputs or the default ones. For

instance, this includes the period, the deadline, or the amount of

iterations. Noticeably, a timer-triggered (using a high-resolution

timer) signal with the specified periodicity is set up. In Fig. 2, the

timer is attached to the main thread, and its transitions are dashed

and colored in green. At any point, if an error arises, a message

is provided in output, and the benchmark is terminated (see Exit

in Figure 2). Thereafter, the benchmark is ready to enter its peri-

odic execution phase. The amount of iterations specified by the

user (=) is enforced. There are two possible outcomes: the desired

amount of iterations has been reached, or a few iterations remain

to be performed. In the latter case, the benchmark is executed by

calling the Execution harnessing function. Upon completion of

the benchmark’s workload execution, the process is blocked until

a new period starts. In such case, the process loops back to the

iteration comparison. Only iterations in which a job was started are

considered in the comparison to make sure that = jobs are executed.

Once all execution iterations have been performed, the benchmark

can terminate gracefully by entering its tear-down phase, effectively

calling the Tear-down harnessing functions.

Note that the Initialization and Tear-down phases are excluded

from the measurements reported, preventing them from being

tainted with extra noise from the setting-up and cleaning-up phases.

4.1.1 Measurements and Logging. The gathering and logging of

the measurements at each period occur in two specific places: at

periods’ boundaries and after each execution phase.

Periods’ boundary measurements are taken upon the reception

of the period timer-triggered signal (Measures & log in Figure 2).

The handling of the signal prompts the taking of the measurements

and their logging. Once done, a new period is started by releasing

the semaphore blocking the main execution thread (i.e., the new

period? condition in Figure 2). This relationship is shown by the red

dotted arrow in Figure 2. Note that this operation is only carried out

if and only if the previous benchmark job has finished execution.

Otherwise, the logging is filled with zeros instead, and no new jobs

are released (job skipping). This also prevents logging irrelevant

or misleading measurements. Deadline detection is carried out via

a single boolean shared between the execution payload wrapper

function and periodic signal handler. The flag is asserted when

execution completes and de-asserted when logging completes.

4.1.2 Memory Footprint Watchdog. Upon request from the user via

the provided command line options, a memory utilization watchdog

is enabled through the alteration of memory allocation functions,

namely, malloc(), free(), and mmap(). Following the framework

scheme, the watchdog life-cycle is characterized by three phases:

initialization, execution, and tear-down.

During initialization phase, the watchdog calls the mallopt()

function in order to pre-allocate the user-specified amount of mem-

ory and disables the mmap() function. A preventive allocation of

the requested memory space ensures that the allocated limit is

never exceeded without requiring OS modifications. The functions

malloc() and mmap() are wrapped such that, during the execution,

any call to one of these two functions results in a working set size

check. In case of failure, the benchmark is terminated. During the

tear-down phase, the watchdog is disabled, meaning mmap() and

mallopt() are re-enabled and their initial parameters are restored.

4.1.3 Memory Usage Profiling. If requested by the user via the

command line options and available on the target platform5, a

thread in charge of monitoring the performance counters can be

launched. In our case, the thread monitors and logs the performance

counter associated with the L2 Refills. To mitigate the impact on

the core logic thread, it is recommended to launch it on another

core (see Section 4.3) and to reduce the monitoring sample period.

Unlike the core mechanism, the objective of this thread is to log

measurements during the benchmark execution phases, instead of

simply measuring before and after each execution. As shown in Fig-

ure 2, the thread is launched at the initialization phase and consists

of a doubly-nested loop. The first step consists of a comparison,

checking whether the thread is enabled by the main thread. The

change of status is operated via a shared variable asserted at the

initialization phase and de-asserted at the tear-down phase. In the

latter case, it leads to the benchmark’s termination. Otherwise, the

thread enters a “sample-log-wait” loop as long as the benchmark

remains in its execution phase (i.e., the Bmark. running? condition

changes before and after the Execution block).

At the time of writing, the monitoring thread only samples the L2

Refills performance counter. This limitation is an implementation

artifact that can be easily addressed. In addition, due to the close link

between the performance counters and the platform implementing

them, enabling support is not straightforward. The version of RT-

Bench evaluated in Section 5 relies on the Linux Perf [2] and we

specifically evaluate only events specific to ARM Cortex-A53 CPUs

(Table 1).

4.2 Harnessing Functions and Extension

The capability of RT-bench to enable any benchmark with the set

of desired features mentioned in Section 3 transparently is only

possible if the benchmark has the three harnessing points.

From a practical point of view, the “adapted” benchmarks must

implement these harnessing points. Each of them is a function with

an immutable name and a clear objective. The Initialization harness

point is implemented as the function benchmark_init(). It is in

charge of initializing all the resources needed during the execution

of the workload. Typically, memory allocation, variable initializa-

tion, and thread creation are carried out in the Initialization harness

point. The Execution harness point is implemented as the function

benchmark_execution(). As the name suggests, this function con-

sists of the workload implementation that uses the previously-set

variables. The Tear-down harness point is implemented as the func-

tion benchmark_teardown() and is the one in charge of freeing

5At the time of writing, only on ARM Cortex-A53

RT-Bench: an Extensible Benchmark Framework for the Analysis and Management of Real-Time Applications RTNS ’22, June 7–8, 2022, Paris, France

the resources used and, if desired, posting the obtained results. In

other words, it ensures a clean termination.

Adapting an existing benchmark to RT-Bench requires the end-

user to implement the three aforementioned harnessing functions,

identify the relevant code segment corresponding to each harness-

ing function, and move the segments in the adequate functions.

These alterations might seem heavy; however, in reality, most

benchmarks already follow a form of setup-execute-teardown orga-

nization. Naturally, the initial organization of the benchmark to be

adapted dictates the effort required. As an indication, we report on

the changes and efforts required to adapt SD-VBS’s disparity and

pca via their number of changed lines of code using the cloc [1] tool.

The disparity benchmark modifications amounts to 19 modified,

17 added and 12 removed SLOCs (or source lines of code) whereas

modifications to pca amounts to 68 modified, 182 added and 216

removed SLOCs. Overall, the adaptation of the ten benchmarks

composing the SD-VBS suite required a total of 302 modified, 925

added, and 689 removed SLOCs.

The end-user is free to define the content of the harnessing

functions as desired. Nonetheless, whenmulti-threading is required,

we recommend implementing the workload using the fork-join

approach in each relevant function. In other words, we recommend

that every thread created within a harnessing function is destroyed

within the same function.

On the compilation side, an executable of the ported benchmark

can be obtained viamainstream tools such as gcc. The ported source

files shall not implement an entry function (i.e., main). Instead, the

RT-Bench core interface must be linked in. As such, additional file

directories must be added to the include path. This translates in

utilizing gcc’s -I/path/to/rt-bench/base/ option in addition to

any benchmark-specific compilation flags and options.

4.3 Common Input Interface

As per the design goals presented in Section 3, any benchmark

yielded by the RT-Benchmark Generator benefits from the same

set of features, composing the homogenized input interface. Each

of these features can be tailored via the enabled command-line

options. The options under only represent a subset of the options

made available to all benchmarks by RT-bench:

-p : Relative period of a single benchmark execution;

-d : Relative deadline of a single benchmark execution;

-l : Log level;

-c : Core affinity;

-f : FIFO scheduling with specified priority;

-m : Memory limit;

-t : Number of tasks to execute before termination;

-b : Benchmark specific arguments and options;

-P : SCHED_DEADLINE period;

-D : SCHED_DEADLINE deadline;

-T : SCHED_DEADLINE runtime;

-M : Enable PMC monitoring thread;

-C : Core affinity for PMC monitoring thread;

-B : PMC monitoring sample period;

The options listed above constitute the main options used in the

Evaluation (see Section 5). An exhaustive list of the options, together

with additional details, is provided in the project documentation.

4.4 High-level Automated Tests

The provided base scripts written in Python3 constitute a collection

of utility functions implementing profiling and real-time minded

experiments. These tests have been used in the article’s evalua-

tion section (Section 5) to highlight the capability of the RT-Bench

framework. At the time of writing, the set includes six experiments:

Minimum WSS. This test aims at empirically deriving the least

amount of memory footprint required by the benchmark. To do

so, the test explores the memory size allocation space via a binary

search using the fact that the memory watchdog terminates any

benchmark exceeding the user-defined allocation limited as the

discriminant. I.e., if the program is terminated by the watchdog,

the WSS is larger than the imposed limit; conversely, if the bench-

mark completed correctly, the WSS is smaller than (or equal to) the

considered amount.

WCET. Thanks to the metrics reported by the RT-benchmarks,

determining a benchmark’s WCET can be empirically obtained via

subsequent execution batches. The provided test explores candidate

values by setting a default deadline value and validates by using the

maximal observed execution time as the deadline for the following

batch. TheWCET is set as the minimum deadline value that reliably

prevents misses when the benchmark is executed in isolation.

Schedulability Test. Based on previously established WCETs, this

test looks at the rate of schedulable/unschedulable jobs as a function

of the task’s utilization. In this case, the deadlines are determined

by dividing the previously-derived WCET by the target utilization.

The test starts at 5% utilization and goes up to 100% in steps of 5%.

Caches Miss Rate. Leveraging the performance counters reported

in the output interface, the Cache Miss Rate metric can be easily

obtained by computing the ratio between the cache references and

cache refills events. The test is applied on any available cache level.

Memory and CPU Intensity. This test investigates if a benchmark

is CPU- or memory-bound by inspecting the ratio between the L2

cache misses and the number of retired instructions, two metrics

natively reported by RT-Bench.

Memory Usage Profiling. Perhaps more importantly than know-

ing whether a benchmark is memory-bound, understanding the

run-time demand is crucial for any system under memory band-

width regulation. This test highlights the memory consumption

phases a benchmark displays.

In any of the aforementioned tests, basic manipulations are per-

formed. For instance, (1) before the benchmark execution, all tasks

on the device are migrated to one core (often core 0) if requested

by the user (2) measurements obtained are automatically plotted,

and (3) co-running interference tasks are launched on other cores.

5 EVALUATION

This section showcases the capabilities and user-friendliness of

the proposed framework, RT-Bench. The evaluation presented in

this section consists in the set of experiments listed in Section 4.4:

finding the minimum WSS (Section 5.1), determining the observed

WCET (Section 5.2), performing the schedulability test (Section 5.3),

studying the cache miss rates (Section 5.4), understanding whether

RTNS ’22, June 7–8, 2022, Paris, France Ma�ia Nicolella, Shahin Roozkhosh, Denis Hoornaert, Andrea Bastoni, and Renato Mancuso

Table 3: Comparative table of the evaluation platforms

Xilinx ZCU102 AMD RYZEN 9 5900HS

ISA ARM64 x86_64

CPU 4×Cortex-A53 (@1.5GHz) 8×CPU (@3-4.6GHz)

L1 32KB+32KB I & D caches 8KB+8KB I & D caches

L2 1MB Unified cache 4MB Unified cache

L3 - 16MB Unified cache

DRAM 4GB DDR4 32GB DDR4

Linux 5.4.14 5.16.9

GCC 9.4.0 10.3

the benchmark is memory or CPU bound (Section 5.5), and ob-

serving the evolution of the memory consumption at run-time

(Section 5.6).

The experiments have been performed on two different plat-

forms: the Xilinx ZCU102 development board and the widely avail-

able AMD RYZEN 9 CPU model. Their architecture specifications

and the version of the software tools (e.g., Linux kernel version and

GCC version) are displayed in Table 3. From now on, the Xilinx

ZCU102 is referred to as the “ARM platform” whereas the AMD

RYZEN 9 is referred to as the “x86 platform”.

Throughout the evaluation, the RT-Bench’s capabilities are shown

by using benchmarks issued from a RT-Bench adapted version of

the San Diego Vision Suite (or SD-VBS) [38]. The exact benchmarks

considered are disparity, mser, localization, tracking, and

sift. In addition, all the available input sizes but test, qcif, and

full_hd have been considered, that is sim_fast, sim, sqcif, cif,

and vga (ordered by increasing size). For tests requiring an interfer-

ing co-runner, instances of the “bandwidth” benchmark issued from

a RT-Bench adapted version of IsolBench [37] are launched. The

interfering task instances sweep across a dedicated 100MB-wide

buffer. Their number and their memory access mode (i.e., read or

write) depend on the test performed and the platform capabilities.

In each experiment presented in this section, the benchmark

under analysis is run using SCHED_FIFO and is assigned a priority

of 99. Likewise, interfering co-runners are assigned a priority of 99.

The RT-Throttling is turned off, allowing for a 100% CPU utilization.

5.1 Minimum Working Set Size Test

First, this experiment investigates the WSS of the supported SD-

VBS benchmarks (Figure 3). Next, we place our emphasis on the

WSS of disparity for all the available inputs (Figure 4). In both

Figure 3 and 4 the minimal WSS found is reported by the height of

the bars (y-axis in log scale). This set of experiments is only carried

out on the x86 platform due to space constraints.

Figure 3 shows that, for the vga input, all the benchmarks require

at least 10MB of main memory. Only sift and localization do

not follow the rule as the former requires 100MB and the latter

requires 1MB. However, as highlighted by Figure 4, the minimum

required memory footprint is dependent on the input. In fact, one

can observe that the WSS for a vga input is orders of magnitude

bigger than that for a sim_fast input. Note that the observed size

order matches the input size order.

Figure 3: SD-VBS benchmarks minimumWSS for vga input.

Figure 4: Disparity’s minimumWSS for different inputs.

Figure 5: SD-VBS benchmarks WCET on x86 with vga input.

5.2 Worst case execution time test

In this experiment, theWCET test is used to understand the intrinsic

behavior of the benchmarks when running in isolation (i.e., alone)

and when they face memory interference from other cores. We

present tests run on both the x86 and the ARM platforms.

To represent the distribution of the measured execution times, a

violin plot was chosen. Each violin is associated with a benchmark

running a vga input on the G-axis, and the ~-axis reports their

measured execution time in seconds. Each violin is composed of

three horizontal lines representing the minimum, maximum and

average measurements. The width of the violins represents the

distributions of all the measurements.

RT-Bench: an Extensible Benchmark Framework for the Analysis and Management of Real-Time Applications RTNS ’22, June 7–8, 2022, Paris, France

(a) 4 cores interference. (b) 6 cores interference.

Figure 6: SD-VBS benchmarks WCET tests on x86_64 on vga input with interference.

On the x86 platform, three scenarios are explored: (1) WCET in

isolation (Figure 5), (2) WCET with 2 read and 2 write interfering

cores (Figure 6a), and (3) WCET with 6 write interfering cores

(Figure 6b). Figure 5 shows that without interfering processes, most

of the benchmark execution samples do not present high variance.

Conversely, mser and sift are the most likely to suffer from inter-

core interference. This intuition is confirmed by Figure 6a which

shows that, under interference, all benchmarks see their execution

time distributions being stretched. In contrasts, Figure 6b shows

that memory interference created by 6 cores writing data introduces

higher variations in execution times. Disparity and sift are the

most impacted with their WCET increased by twofold in Figure 6a,

and eight-fold and threefold in Figure 6b, respectively.

On the ARM platform, two similar scenarios have been explored:

WCET in isolation Figure 7a and WCET with 2 write-interfering

cores Figure 7b. Unlike the x86 platform, the effect of interference

creates a more consistent execution time distributions and only

leads to longer execution times. However, as with the x86 scenarios,

Figure 7a and 7b show that disparity and sift are the most

impacted by interference.

5.3 Deadline Miss Ratio Test

To gain insight into the schedulability of the chosen benchmarks

at a certain system load, two scenarios on the x86 platform and

one scenario on the ARM platform are shown. On the x86 platform,

Figure 8a shows the effect of two read and two write interfering

cores, while Figure 8b shows the effect of six write interfering cores.

On the ARM platform, there is only one scenario with two writing

cores that generate interference, as shown by Figure 9. In both

Figure 8 and Figure 9, the x-axis of the figures shows the utilization

value, while the y-axis shows the number of benchmarks that met

the deadline.

Figure 8a shows that only mser and disparity are severely

impacted by the interference on the other four cores. While the

impact on the other benchmarks is minimal. However, changing

the interference pattern to six cores will severely impact all the

benchmarks, keeping mser and disparity as the most impacted

ones, as Figure 8b shows.

As Figure 9 shows, the ARM platform has a more predictable

behavior than the x86 platform, having all the benchmarks meet

the deadline or failing when the deadline gets too short to allow the

benchmark to complete the execution with two writing cores that

produce interference. As on the x86 scenarios, the most impacted

benchmarks are mser and disparity.

5.4 Caches Miss Rate

The cache miss rate experienced by a benchmark is a widely used

metric to show how reliant on memory a benchmark is and the

extent of memory interference impact. The L2 miss-rate experi-

enced by the benchmarks running on the ARM platform is shown

in Figure 10 (the bar clusters). In each bar cluster, the miss rate

when running in isolation is drawn in blue (referred to as “solo”),

whereas the observed miss rate under a two cores write contention

is drawn in yellow (referred to as “interf”). Figure 10 highlights

the existence of two categories. On the one hand, disparity, sift,

and tracking are marginally impacted, hinting at a low temporal

data locality (if the data is not reused later on, it does not matter

whether it is evicted by an interfering task). On the other hand,

localization and mser display a higher sensitivity to memory

interference, hinting at a high temporal data locality. Remarkably,

mser constitutes a hybrid case as it naturally displays a high miss

rate in isolation and high sensitivity to memory interference.

5.5 Memory and CPU Intensity

To get further insight into the execution behavior of the chosen

benchmarks, their ratio between the cache misses, and the number

of instructions retired can be analyzed. This analysis is portrayed

for the ARM platform by Figure 11, which shows, in a bar graph,

the aforementioned ratio for all the benchmarks with and without

interference.

From Figure 11 it can be deducted if a benchmark is more mem-

ory or CPU bound. localization is an example of a CPU bound

benchmark, while disparity is an example of a memory-bound

benchmark. As for the previous test, the benchmark most impacted

by interference is mser. Comparing Figure 10 and Figure 11 in-

sight on how the cache misses affect the benchmark execution can

be gained. While sift and tracking have more or less the same

amount of cache misses, sift is more CPU bound than tracking,

due to a smaller ratio between cache misses and instructions retired.

RTNS ’22, June 7–8, 2022, Paris, France Ma�ia Nicolella, Shahin Roozkhosh, Denis Hoornaert, Andrea Bastoni, and Renato Mancuso

(a) no interference. (b) 2 cores interference.

Figure 7: SD-VBS benchmarks WCET tests on ARM64 with vga input.

(a) 4 cores interference. (b) 6 cores interference.

Figure 8: SD-VBS benchmarks schedulability tests on x86_64 on vga input with interference.

Figure 9: SD-VBS disparity schedulability test on ARM64

with vga input and 2 cores that produce interference.

Figure 10: SD-VBS benchmarks’ L2 cache miss-rate with and

without interference (vga input).

Figure 11: SD-VBS benchmarks’ L2 cache miss-rate over in-

struction retired ratio with and without interference (vga in-

put).

It can also be inferred that localization is the most CPU-bound

benchmark, since it has the lowest ratio between cache misses and

instructions retired.

5.6 Memory Usage Profile

A memory usage profile can help identify how a benchmark uses

memory during its execution. Figure 12 show the memory profiles

of disparity, mser and tracking during their execution with a

plot of the L2 cache misses on the y-axis and the time on the x-axis.

RT-Bench: an Extensible Benchmark Framework for the Analysis and Management of Real-Time Applications RTNS ’22, June 7–8, 2022, Paris, France

(a) SD-VBS disparity.

(b) SD-VBS mser.

(c) SD-VBS tracking.

Figure 12: The plot shows the total L2 cache refills during a

single benchmark execution using the vga input.

Figure 12a shows that disparity is always accessing memory

during its execution; this explains why it is so impacted by interfer-

ence, even if it does not have a significant increase in cache misses

when interfering processes are present. Instead, mser has three

well-defined phases in which its memory access pattern changes

significantly, explaining why it is impacted so heavily by interfer-

ence in Figure 11. tracking has different phases with a different

memory access pattern. This pattern highlights that it benefits from

temporal and spatial locality in the data.

5.7 RT-Bench Framework Overhead

To quantify the overhead of the framework, an ad-hoc benchmark,

overhead, has been used. The main payload of the overhead bench-

mark consists of an empty function. Therefore, the benchmark

execution time will be dominated by the time spent to execute

RT-Bench’s core logic. Table 4 shows the measured overhead on

the two platforms with and without using the performance coun-

ters. It can be observed that, on average, the overhead is contained

between 20 to 50 `B .

6 CONCLUSION

The article presents RT-Bench, an open-source framework that

aims to ease the tedious task of profiling and monitoring commonly

used benchmark suites by providing a unified interface that can

be built upon and re-used by the community. RT-Bench lays the

Table 4: Rt-Bench overhead measurements

Platform Min Mean Max Std

x86 (`B) 5.49 24.57 515.99 13.99

ARM no Perf (`B) 1.36 30.63 95.91 8.39

ARM Perf (`B) 25.33 44.35 115.90 6.06

x86 (clock cycles) 18711 84987 1700193 47339

ARM no Perf (clock cycles) 2877 3086 9570 819

ARM Perf (clock cycles) 3817 4438 11588 605

foundation for a coherent benchmarking and profiling system for

the real-time community. We provided an in-depth description of

RT-Bench capability and outlined the main implemented features

for a clean and reusable interface.

Through the evaluation of RT-Bench presented in Section 5 using

well-known benchmarks suites such as SD-VBS and IsolBench, we

showcase how the proposed implementation drastically simplifies

the gathering and post-processing of experimental data.

While enabling the end-user with an interesting range of fea-

tures, the presented version of RT-Bench is in its early days with a

sizeable potential for community-fueled contributions and improve-

ments. These include increasing the range of collected data, adding

more performance counters, extending the provided benchmarks

(including other popular suites like MiBench and TACLeBench),

and extending the inputs to enable broader insight into the bench-

mark behavior with different inputs of the same size. Other possible

avenues are the support for DAG tasks and a broader range of ar-

chitectures, such as PowerPC and RISC-V. Finally, integration with

IPC systems could be pursued to analyze inter-task dependencies.

ACKNOWLEDGMENTS

The material presented in this paper is based upon work supported

by the National Science Foundation (NSF) under grant number CCF-

2008799. Any opinions, findings, and conclusions or recommenda-

tions expressed in this publication are those of the authors and do

not necessarily reflect the views of the NSF. Andrea Bastoni and

Denis Hoornaert were supported by the Chair for Cyber-Physical

Systems in Production Engineering at TUM and the Alexander von

Humboldt Foundation.

REFERENCES
[1] [n.d.]. cloc. https://github.com/AlDanial/cloc
[2] [n.d.]. Perf wiki. https://perf.wiki.kernel.org/index.php/Main_Page
[3] [n.d.]. RT-Test. https://wiki.linuxfoundation.org/realtime/documentation/howto/

tools/rt-tests
[4] [n.d.]. RTEval. https://wiki.linuxfoundation.org/realtime/documentation/howto/

tools/rteval
[5] [n.d.]. Splash2x benchmark suite. https://parsec.cs.princeton.edu/parsec3-doc.

htm#splash2x
[6] Joshua Bakita, Shareef Ahmed, Sims Hill Osborne, Stephen Tang, Jingyuan Chen,

F Donelson Smith, and James H Anderson. 2021. Simultaneous Multithreading in
Mixed-Criticality Real-Time Systems. In 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 278–291.

[7] Soroush Bateni, Zhendong Wang, Yuankun Zhu, Yang Hu, and Cong Liu. 2020.
Co-Optimizing Performance and Memory Footprint Via Integrated CPU/GPU
Memory Management, an Implementation on Autonomous Driving Platform.
In 2020 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). 310–323. https://doi.org/10.1109/RTAS48715.2020.00007

RTNS ’22, June 7–8, 2022, Paris, France Ma�ia Nicolella, Shahin Roozkhosh, Denis Hoornaert, Andrea Bastoni, and Renato Mancuso

[8] Nicolas Bellec, Simon Rokicki, and Isabelle Puaut. 2020. Attack detection through
monitoring of timing deviations in embedded real-time systems. In ECRTS 2020-
32nd Euromicro Conference on Real-Time Systems. 1–22.

[9] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques. 72–81.

[10] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 44–54.

[11] Embedded Microprocessor Benchmark Consortium. [n.d.]. EEMBC Benchmarks.
https://www.eembc.org/products

[12] Minyu Cui, Angeliki Kritikakou, Lei Mo, and Emmanuel Casseau. 2021. Fault-
tolerant mapping of real-time parallel applications under multiple DVFS schemes.
In 2021 IEEE 27th Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS). IEEE, 387–399.

[13] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch,
Christine Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann,
and Simon Wegener. 2016. TACLeBench: A Benchmark Collection to Support
Worst-Case Execution Time Research. In 16th International Workshop on Worst-
Case Execution Time Analysis (WCET 2016) (OpenAccess Series in Informatics
(OASIcs), Vol. 55), Martin Schoeberl (Ed.). Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2:1–2:10.

[14] Farzad Farshchi, Qijing Huang, and Heechul Yun. 2020. BRU: Bandwidth Reg-
ulation Unit for Real-Time Multicore Processors. In 2020 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 364–375. https:
//doi.org/10.1109/RTAS48715.2020.00011

[15] Golsana Ghaemi, Dharmesh Tarapore, and Renato Mancuso. 2021. Governing
with Insights: Towards Profile-Driven Cache Management of Black-Box Applica-
tions. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 196), Björn B. Brandenburg
(Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
4:1–4:25. https://doi.org/10.4230/LIPIcs.ECRTS.2021.4

[16] Robert Gifford, Neeraj Gandhi, Linh Thi Xuan Phan, and Andreas Haeberlen. 2021.
DNA: Dynamic Resource Allocation for Soft Real-Time Multicore Systems. In
2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 196–209.

[17] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. 2010. The
Mälardalen WCET benchmarks: Past, present and future. In 10th International
Workshop on Worst-Case Execution Time Analysis (WCET 2010). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[18] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. 2001. MiBench: A free, commercially representative
embedded benchmark suite. In Proceedings of the fourth annual IEEE international
workshop on workload characterization. WWC-4 (Cat. No. 01EX538). IEEE, 3–14.

[19] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, Falk Wurst,
and Dirk Ziegenbein. 2017. Waters industrial challenge 2017. In International
Workshop on Analysis Tools andMethodologies for Embedded and Real-time Systems
(WATERS). https://waters2017.inria.fr/

[20] Mohamed Hassan. 2020. Discriminative Coherence: Balancing Performance
and Latency Bounds in Data-Sharing Multi-Core Real-Time Systems. In 32nd
Euromicro Conference on Real-Time Systems (ECRTS 2020) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 165), Marcus Völp (Ed.). Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 16:1–16:24. https://doi.
org/10.4230/LIPIcs.ECRTS.2020.16

[21] Mohamed Hassan and Rodolfo Pellizzoni. 2020. Analysis of Memory-Contention
in Heterogeneous COTS MPSoCs. In 32nd Euromicro Conference on Real-Time
Systems (ECRTS 2020) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 165), Marcus Völp (Ed.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 23:1–23:24. https://doi.org/10.4230/LIPIcs.ECRTS.2020.23

[22] Dimitri van Heesch. 2021. Doxygen. Dimitri van Heesch. https://www.doxygen.nl
[23] Denis Hoornaert, Shahin Roozkhosh, and Renato Mancuso. 2021. A Memory

Scheduling Infrastructure for Multi-Core Systems with Re-Programmable Logic.
In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021) (Leibniz In-
ternational Proceedings in Informatics (LIPIcs), Vol. 196), Björn B. Brandenburg
(Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
2:1–2:22. https://doi.org/10.4230/LIPIcs.ECRTS.2021.2

[24] Bashima Islam and Shahriar Nirjon. 2020. Scheduling computational and energy
harvesting tasks in deadline-aware intermittent systems. In 2020 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE, 95–109.

[25] Marine Kadar, Gerhard Fohler, Don Kuzhiyelil, and Philipp Gorski. 2021. Safety-
Aware Integration of Hardware-Assisted Program Tracing in Mixed-Criticality
Systems for Security Monitoring. In 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 292–305.

[26] Anirudh Mohan Kaushik and Hiren Patel. 2021. A Systematic Approach to
Achieving Tight Worst-Case Latency and High-Performance Under Predictable
Cache Coherence. In 2021 IEEE 27th Real-Time and Embedded Technology and

Applications Symposium (RTAS). IEEE, 105–117.
[27] Filip Marković, Jan Carlson, Sebastian Altmeyer, and Radu Dobrin. 2020. Im-

proving the accuracy of cache-aware response time analysis using preemption
partitioning. In 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[28] Filip Marković, Jan Carlson, and Radu Dobrin. 2020. Cache-aware response time
analysis for real-time tasks with fixed preemption points. In 2020 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE, 30–42.

[29] Filip Marković, Jan Carlson, Sebastian Altmeyer, and Radu Dobrin. 2020. Improv-
ing the Accuracy of Cache-Aware Response Time Analysis Using Preemption
Partitioning. In 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 165), Marcus Völp
(Ed.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
5:1–5:23. https://doi.org/10.4230/LIPIcs.ECRTS.2020.5

[30] Fadia Nemer, Hugues Cassé, Pascal Sainrat, Jean-Paul Bahsoun, and Marianne
De Michiel. 2006. Papabench: a free real-time benchmark. In 6th International
Workshop on Worst-Case Execution Time Analysis (WCET’06). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

[31] Ignacio Sañudo Olmedo, Nicola Capodieci, Jorge LuisMartinez, AndreaMarongiu,
and Marko Bertogna. 2020. Dissecting the CUDA scheduling hierarchy: a per-
formance and predictability perspective. In 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 213–225.

[32] Shahin Roozkhosh and Renato Mancuso. 2020. The potential of programmable
logic in the middle: cache bleaching. In 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 296–309.

[33] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. 2016.
Splash-3: A properly synchronized benchmark suite for contemporary research.
In 2016 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 101–111.

[34] Lui Sha, Tarek Abdelzaher, Anton Cervin, Theodore Baker, Alan Burns, Giorgio
Buttazzo, Marco Caccamo, John Lehoczky, Aloysius K Mok, et al. 2004. Real
time scheduling theory: A historical perspective. Real-time systems 28, 2 (2004),
101–155.

[35] Dharmesh Tarapore, Shahin Roozhkhosh, Steven Brzozowski, and Renato Man-
cuso. 2021. Observing the invisible: Live cache inspection for high-performance
embedded systems. IEEE Trans. Comput. (2021).

[36] Corey Tessler, Venkata P Modekurthy, Nathan Fisher, and Abusayeed Saifullah.
2020. Bringing inter-thread cache benefits to federated scheduling. In 2020 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE,
281–295.

[37] Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. 2016. Taming Non-
Blocking Caches to Improve Isolation in Multicore Real-Time Systems. In 2016
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).
1–12. https://doi.org/10.1109/RTAS.2016.7461361

[38] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christo-
pher Louie, Saturnino Garcia, Serge Belongie, and Michael Bedford Taylor.
2009. SD-VBS: The San Diego Vision Benchmark Suite. In 2009 IEEE Inter-
national Symposium on Workload Characterization (IISWC). 55–64. https:
//doi.org/10.1109/IISWC.2009.5306794

[39] Corinna Vinschen and Jeff Johnston. [n.d.]. Newlib. https://sourceware.org/
newlib/

[40] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. 1995. The SPLASH-2 programs: Characterization and method-
ological considerations. ACM SIGARCH computer architecture news 23, 2 (1995),
24–36.

[41] Zhuanhao Wu, Anirudh Mohan Kaushik, Paulos Tegegn, and Hiren Patel. 2021.
A Hardware Platform for Exploring Predictable Cache Coherence Protocols for
Real-time Multicores. In 2021 IEEE 27th Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 92–104.

