A Real-Time virtio-based Framework for
Predictable Inter-VM Communication

Gero Schwiricke* Rohan Tabish! Rodolfo Pellizzoni® Renato Mancuso?
Andrea Bastoni* Alexander Zuepke* Marco Caccamo*
* Technical University of Munich, {name.surname } @tum.de
t University of Illinois at Urbana-Champaign, rtabish@illinois.edu
§ University of Waterloo, rpellizz@uwaterloo.edu
¥ Boston University, rmancuso@bu.edu

Abstract—Ensuring real-time properties on current heteroge-
neous multiprocessor systems on a chip is a challenging task.
Furthermore, online artificial intelligent applications —which are
routinely deployed on such chips— pose increasing pressure on
the memory subsystem that becomes a source of unpredictability.
Although techniques have been proposed to restore independent
access to memory for concurrently executing virtual machines
(VM), providing predictable inter-VM communication remains
challenging. In this work, we tackle the problem of predictably
transferring data between virtual machines and virtualized hard-
ware resources on multiprocessor systems on chips under consid-
eration of memory interference. We design a “broker-based’ real-
time communication framework for otherwise isolated virtual
machines, provide a virtio-based reference implementation on top
of the Jailhouse hypervisor, assess its overheads for FreeRTOS
virtual machines, and formally analyze its communication flow
schedulability under consideration of the implementation over-
heads. Furthermore, we define a methodology to assess the
maximum DRAM memory saturation empirically, evaluate the
framework’s performance and compare it with the theoretical
schedulability.

I. INTRODUCTION

Nowadays, artificial intelligence (AI) algorithms are widely
used at run-time in complex embedded cyber-physical domains
(e.g., automotive, avionics, and industrial automation) that
require real-time assurance. Due to the need to reduce size,
weight, and power, modern embedded systems on a chip (SoC)
that can sustain the heavy data requirements of Al feature
not only multicore architectures but also integrate special-
purpose accelerators such as FPGAs and GPUs. Examples of
such complex heterogeneous multiprocessor systems on a chip
(MPSoC) are the Xilinx Ultrascale+ and Versal or the NVIDIA
Jetson Xavier [39], [55], [57]. Ensuring the real-time proper-
ties of these complex systems is challenging. To make things
worse, the need to transfer large amounts of data among cores
and accelerators to meet the requirements of Al applications
causes the memory hierarchy —shared caches, interconnect,
and DRAM- to become a source of unpredictability.

In order to enable a practical real-time analysis of such
systems, previous work [31], [33], [58], [59] has focused on
isolating the access to the memory hierarchy for independent
execution contexts (partitions or virtual machines (VM)). A
significant advantage of these techniques is that they integrate
easily into hypervisors (e.g., [31], [56]) and enable the isolated

execution of unmodified VMs. By design, though, the strength
of these approaches (i.e., ensuring isolation) is also their
major drawback when it comes to establishing communication
channels —which, by definition, violate isolation— between
VMs.

In this paper, we propose an architecture that enables pre-
dictable communication for VMs on heterogeneous MPSoCs
under explicit consideration of the interference caused by
memory communication. We further analyze and evaluate
the memory interplay between cores and a DMA engine
concurrently accessing the interconnect. DMA engines (widely
available on MPSoCs) are specifically designed to perform
efficient data copying and thus are the natural accelerator-
choice to perform bulk data transfers. Still, it is unclear what
their impact is on the timeliness of transfers under memory
interference. As basic building blocks, we rely on established
mechanisms (cache-coloring, MemGuard, hardware-enforced
QoS [7], [331], [49], [59]) that have proved to perform well
to guarantee isolation, but we: a) extend their scope to isolate
independent VM communication flows and empirically deter-
mine the maximum sustainable DRAM memory bandwidth;
b) make them available as a virtio-based, transparent and
predictable communication framework; c) provide an analysis
of the scheduling of different communication flows under
consideration of the maximum sustainable bandwidth and
framework overheads, and provide guidelines for system-
designers on how to dimension the DMA regulation to both
maximize CPU bandwidth and ensure schedulability.

Given the widespread adoption of hypervisors (e.g., [4],
[24], [44]) as industry standard to partition complex software
systems, our real-time communication framework enables pre-
dictable communication between (unmodified) VMs hosted on
top of a hypervisor (in our proof-of-concept, Jailhouse [4]).
The interface between our framework and the unmodified
VMs is implemented using the virtio standard [1], to ensure
the widest portability. Using a standardized virtual device
interface at the hypervisor level, the system can be composed
of different operating systems, each satisfying the require-
ments of its applications. By exploiting the flexibility of the
virtio approach, our framework provides universal but pre-
dictable communication between OSs of different complexity
and criticality, for example RTOSs and baremetal algorithms

for hard real-time applications and Linux for soft real-time
applications.

Our approach is inspired by the split driver model provided
by Xen [54] and used in the high-performance domain to
multiplex accesses from different VMs to a single hardware
device. Under this model, a device (i.e., its hardware resources,
including the interfaces —mapped registers, PCI aperture, etc.—
to access it) is assigned by the hypervisor configuration to
a single VM (normally with special privileges), which then
acts as multiplexer (or broker) for other VMs that require
access to it. The other VMs do not see the physical device but
communicate via a virtualized device —emulated at hypervisor
level- first with the broker, which in turn schedules the
communication flows on the physical device.

Our architecture adopts a similar broker-based approach
with the following advantages:

o Asynchronous communication: Once the data to be trans-
ferred has been taken in charge by the broker, a VM
could continue its execution in parallel to the data transfer
(assuming there are no data dependencies).

o Straightforward DMA integration: Since modern MP-
SoCs feature at least one DMA, the broker can program
the DMA to take care of the copy operations. Since
the broker is the only VM entitled to program the
DMA, access control to this resource is trivially solved.
Furthermore, compared to CPU-based data copies, using
DMA engines in a real environment makes the broker’s
CPU available to perform other computations.

o Centralized scheduling: being in charge of both DMA
and shared hardware devices, the broker can centralize
scheduling decisions regarding, e.g., priorities of com-
munication flows.

By design, our architecture does not allow direct shared-
memory communication between VMs, which we assume to
have different criticality. The broker is the only (privileged)
VM that mediates communication among different criticality
levels. This type of architecture cleanly separates the configu-
ration and resource allocation concerns for partitioned systems
(e.g., avionics or automotive ones) and easily integrates onto
systems that already support communication concepts such
as ARINC’s queuing ports [5]. Strictly partitioning shared-
memory areas and delegating the control over communication
to a privileged entity simplifies the certification activities that
are required by, e.g., DO-178 C or ISO 26262 standards [27],
[46]. In fact, communication among entities with different
criticality levels is traditionally subject to careful planning and
close scrutiny by certification authorities [47] since this repre-
sents an intentional violation of partitioning. Our framework
aims to simplify these certification activities by enabling the
separation of different independent communication flows.

To summarize, in this paper, we: 1) propose the design of
a virtio-based real-time communication framework to enact
predictable communication between isolated VMs under con-
sideration of memory interference; 2) contribute a real-time
analysis of limited-preemption EDF scheduling of the commu-
nication flows under consideration of the measured framework

overheads; 3) provide guidelines to system designers on the
dimensioning of the system regulation to achieve maximum
bandwidth, while preserving the I/O flow schedulability; 4)
propose a reference implementation of the framework on the
Jailhouse hypervisor [4] using FreeRTOS virtual machines and
contribute a methodology to empirically assess the maximum
DRAM memory saturation under non-additive memory regu-
lation; and 5) empirically evaluate our solution and compare
it against the theoretical analysis.

We introduce the system model in Section II. Section III
presents the architecture and technical details on the imple-
mentation. Section IV contains the schedulability analysis and
summarizes guidelines to dimension the minimum DMA band-
width. Section V shows how to measure DRAM saturation
and our experimental results. We present related work in
Section VI, and we conclude in Section VII.

II. SYSTEM MODEL

We consider a multi-core platform with m general-purpose
application CPUs (or cores), identified as CPU, k €
{1,...,m}. Each CPU includes a private level 1 (L1) cache
(separated for data and instructions); all the CPUs share
a level 2 (L2) cache, which is also the last-level cache
(LLC). The caches implement a hardware coherence protocol.
The LLC uses a write-back, write-allocate policy for normal
cacheable memory. To be as generic as possible, we assume
that the LLC line replacement policy is pseudo-random. Mem-
ory transactions that miss in LLC cause accesses to DRAM.
A cache refill causes a read transaction of size S; bytes; a
dirty line write-back triggers a write transaction of S; bytes.
We assume that the mapping between physical addresses and
cache sets is known, i.e., we assume that the cache controller
performs no index bits hashing [34].

The main memory subsystem comprises a single DRAM
controller in a multi-bank configuration. We assume that bank
interleaving is disabled. This way, the bits in the physical
addresses (PA) that encode for DRAM banks (bank bits) are
more significant than those encoding for DRAM rows (row
bits) and columns (column bits).

Our architecture employs a partitioning hypervisor to define
a set of isolated partitions. Each partition has a set of statically
allocated hardware resources so that the guest OS operating
within the partition is only capable of using/accessing a subset
of the system resources. We refer to the guest OS and its
partitioned hardware resources with the term virtual machine
(VM). The partitioning hypervisor performs no virtual-CPU
scheduling. Although a VM could have multiple CPUs as-
signed, without loss of generality, in this paper we consider
the case that a given V M}, is statically allocated one C PUy.!
Furthermore, each VM (and hence CPU) has a statically
assigned private slice of DRAM and a private LLC partition
using page coloring [31], [33].

We consider sporadic unicast VM-to-VM communication
facilitated by a broker that is responsible for organizing

IThe CPU-dependent memory-regulation consideration can be applied
independently to each CPU.

Guest0S's VM, VM, Broker
virtioI virtio I virtiaI
Hypervisor

Coherence
Domains

PMCT i

Bus accesses l I
1

PMC |

I

1
1

!

1

1

1

1

1

'

|

1

1

1

[m
: PMC

i 1
| |
]

)

T

)

! |

e P P, P I
Colored Mapping I

Main I
Memory |Pa P2 Pn P, P, P, P, P, 3 S—— |

Fig. 1. Proposed system architecture for a system with m processor cores.
VM-to-VM communication is mediated by a Broker VM that coordinates
DMA transfers. VMs memory is partitioned using cache-coloring.

the data transfers. An overview of the system is displayed
in Figure 1. To carry out any memory transfer, the broker
exclusively manages a Direct Memory Access (DMA) engine.
To achieve more flexibility with respect to configuration and
application deployment, in our prototype (Section III), the
broker is exclusively allocated to one of the main CPUs of
the system, but it could equivalently operate on a specialized
CPU with dedicated local scratchpad memory. Such CPUs
are commonly available on many MPSoCs (e.g., [57]). In our
prototype, the logic of the broker is implemented as bare-metal
firmware with minimal memory footprint. We assume that the
DRAM traffic generated by the broker’s logic is negligible
(i.e., the broker’s code and data fully fit into the private L1
caches), and we focus on the traffic generated by the broker-
controlled DMA engine.”

A. Memory Regulation Model

The partitioning hypervisor is responsible for DRAM band-
width partitioning. Specifically, memory traffic originated by
the CPUs as a result of LLC line refills (reads) and write-
backs (writes) is regulated with a technique similar to Mem-
Guard [33]. Conversely, the memory bandwidth of the broker’s
DMA is regulated via hardware QoS extensions, such as the
ARM QoS subsystem [7] considered in, e.g., [49].

The generic MemGuard-regulated C'PUj, is assigned a
quota of @y cache refills per regulation period P. i is an
absolute number, typically related to architecturally available
hardware performance counters (PMC), while P is expressed
in seconds. We indicate the upper-bound on the memory band-
width that can be consumed by CPUy as b5 = (by", b)),
where by (resp., by") is the read (resp., write) DRAM
bandwidth expressed in bytes/second. In the worst-case, any
cache refill causes two DRAM transactions — a cache refill
plus a write-back. Thus, we make the simplifying assumption

Note that, although beneficial, a DMA engine is not strictly required by the
proposed architecture. In the absence of DMA, the broker VM could directly
perform the data transfer to the destination VM. In future work, we plan to
extend the analysis to also include this use case.

tl;a: bZ’TCTU b.". Given Qy, it is always possible to compute
by = b = (Qr - S1)/P.

The DMA used by the broker to perform VM-to-VM data
transfers is assigned a QoS level aP. In this case, the parameter
expresses the rate at which read/write transactions are issued
by the DMA towards the DRAM. We assume the same level
of regulation for both read and write transactions and symmet-
ric communication transfers between source and destination.
Therefore, the corresponding data bandwidth achieved by the
DMA is b = pP7 = pbv,

When using ARM QoS extensions, the a® parameter is
an integer € [1,2'?] that determines the transactions/second
issuance rate = (aP - fur)/2'? [49] for the DMA, where
feix 1s the clock frequency of the interconnect. Thus, one can
compute the bandwidth in bytes/second

b = (Sy-a® - fur)/2'2 (1)

where S, is the size in bytes of the read/write memory
transactions generated by the DMA (block size). The actual
bandwidth of the DMA is subject to contention due to memory
interference by other bus masters and delays due to the DMA’s
internal management. We determine the DMA bandwidth
limiting under given interference in Section V-A.

We assume that the broker pays a non-negligible overhead
Ogma to program the DMA engine for a new transfer. As such,
it is convenient to program the DMA to transfer (large) chunks
of fixed size S. expressed in bytes. S. must be a multiple of
Sp. The time it takes for the DMA to complete a single transfer
of size S. can then be computed as Ogynq + Se./b°.

A key property we rely on is that applications deployed on
the CPUs as well as transfers performed by the DMA engine
incur negligible contention delay when accessing the main
memory as long as the DRAM subsystem always operates
below 100% utilization (saturation threshold) [49]. To ensure
that this is respected by design, we assume that it is possible
to model the impact of bandwidth assignment to cores and
the broker’s DMA on the DRAM utilization. Specifically, the
function U°(b%) is used to compute the worst-case DRAM
utilization that results from assigning b6 to C' PUy. Similarly,
UP(bP) captures the worst-case DRAM utilization caused by
the broker’s DMA regulated at b°. Thus, it must hold that:

UPBP) + > UC(by) < 1.)
k=1

B. Communication Infrastructure & Model

We consider a set I' of n directed, periodic communication
flows where for each flow, a sender VM and a receiver VM are
uniquely identified. Communication channels between senders
and receivers are statically configured and their characteristics,
i.e., periodicity and required bandwidth per flow, are known
at run-time. Since we focus on inter-VM communication, we
assume that the sender and receiver VM are distinct. Each
flow 7, € T',i € {1,...,n} comprises a potentially infinite
sequence of packets, and it is defined as a tuple of the form
(Ci, D;, Pi, s;,1;), where C; is the data size of its packets, P;

is its period —or minimal inter-arrival time for sporadic flows—
and D; represents its (arbitrary) relative deadline. Finally, s;
(resp., ;) represents the index of the sender (resp., receiver)
VM and corresponding CPU.

III. ARCHITECTURE

Figure 1 presents our system architecture. A hypervisor
instantiates a specialized VM for communication management
(broker VM) and up to m—1 real-time constrained application
VMs (each associated with one core). The hypervisor uses
cache coloring [31] to provide dedicated cache partitions to
each VM (including the broker VM) and regulates the band-
width of the VMs using MemGuard [59]. It also configures the
DMA engine’s bandwidth regulation and memory mapping.
The system features an IO-MMU (e.g., [8]) that allows the
DMA to use the same address translation as the cores.

A. Virtio Interface

In order to achieve maximum portability across different
virtual machines and guest OSs, the communication model as
specified in Section II utilizes the widely-used virtio spec-
ification [1] as the interface for data exchange. The guest
operating system can use regular virtio-compliant drivers. The
hypervisor exposes a virtualized device (virtio device) to the
guest OS and provides a transparent relay of communication
requests to the broker VM. Virtio provides several types of
virtual devices (e.g., block or network devices).

The virtio specification follows a classic driver model for
DMA-capable devices: The driver allocates data buffers and
provides them to the (virtual) device in advance for incoming
traffic and on-demand for outgoing traffic. Data buffers are
organized in a structure called virtqueue, which is based on
a buffer descriptor table, and two ring buffers for buffer
exchange between driver and device. Virtio devices utilize
multiple virtqueues for different purposes. A basic device
setup uses one RX virtqueue for incoming traffic and one TX
virtqueue for outgoing traffic. In addition to the device types,
the virtio specification defines their virtqueues, and the format
of data exchange with them. Furthermore, different transport
options for virtqueues such as MMIO and PCI-based device
virtualization are specified.

The event notification between drivers and devices relies on
OS/hypervisor-provided primitives. Specifically, a virtio device
can notify a driver using interrupts. A driver can notify a
device using a synchronous exception by performing an access
to a specific address that is mapped with restricted access
permissions for the VM.

Our approach uses the interface for socket-type devices,
which avoids the overheads of simulating a full communi-
cation device (e.g., networking card) by utilizing the inher-
ent ring buffers of the virtio specification for direct packet
exchange between the guest and the host (hypervisor). We
use one virtqueue for incoming (RX) and one virtqueue for
outgoing (TX) data transfers. The socket interface also defines
a third type of virtqueue for event data that is not required by
our approach and therefore unused in our architecture.

Virtio socket devices transfer data in packets, which consist
of a fixed-size header and a data payload of dynamic size.
However, since the receiver allocated buffers for incoming
traffic in advance, the buffers’ (pre-allocated) size can be
much smaller than the data payload buffer. This has to be
accommodated in the communication infrastructure by split-
ting the payload and copying it into multiple receiver buffers.
As a simplification, we split packets with large payloads into
multiple data transfers.

B. Data Flow Scheduling

Our approach employs a trusted communication broker
VM for predictable data traffic between otherwise isolated
environments. As discussed in Section II, this is achieved by
scheduling and rate-limiting the data transfers of statically
defined communication flows between pairs of VMs. The
broker receives all packet transfer requests and schedules
the packets according to EDF using the fixed granularity
S.. The broker then programs the DMA to perform data
copies of the same S, size. The packets are inserted into a
queue sorted by increasing absolute deadlines. To reduce the
processing overhead on the broker VM, we use a separate
queue per guest and let the driver on the sender core insert
the packet from hypervisor mode. Due to this optimization,
we create a separate cache partition to isolate data that needs
to be shared between broker and hypervisor from interference.
This partition contains information about the communication
channels, the sorted packet queues of all guests, lock objects,
and ring buffers for the return of used packet information
objects.

Figure 2 shows an example packet transfer from V M; to
V Ms. When a guest application in V' M; decides to send a
packet @, its virtio socket driver prepares the packet header
and payload in a buffer in the TX virtqueue. VM; then @
sends a notification to the virtio socket device. The device,
which operates in hypervisor mode, ® determines the channel
of the pending packet and inserts the packet information into
the per-VM transfer queue. In detail, the device computes
the absolute deadline for the packet as the current time
plus the modified relative deadline D} for the packet (see
Section IV for how D} is derived) and inserts the packet into
the queue, sorting by the absolute deadline. Then ® it notifies
the broker VM. The broker proceeds to ® schedule all transfers
pending from any guest (see also the analysis in Section IV).
When a packet is scheduled for transfer, the DMA engine is
programmed to ® copy the payload data from the TX buffer
of the sender to an empty RX buffer of the receiver. After
completion @, the DMA notifies the broker, which in turn
® informs the sender and the receiver VM of the completed
transfer. The guest OSs will then © free the no longer required
TX buffer (V M;) and process the received packet payload
(VMs). Lastly, VM, will add a new (or the received) RX
buffer to its RX virtqueue to restore the full capacity of the
virtqueue for incoming traffic.

Hypervisor | @) ! I
| vsock dev | | vsock dev | vsock broker
Q@ |® © @
| vsock | vsock
1 1
VMs 0s, 1 driver 0 2| driver Broker
@ Q |©
LLC/Main 1 1
1RX 1 TX 1RX 1 TX
Memory | | 1 1
© *

Fig. 2. Communication flow in the virtio backend for an example packet
transfer from VM1 to V Ma.

C. Implementation

We have validated our architecture by implementing it
on a Xilinx ZyngMP ZCU102 embedded MPSoC [57]. The
platform features four ARM Cortex-A53 cores sharing a last
level L2 cache of 1 MiB size. Each core has 32 KiB of
private L1 instruction and data caches. The cores provide
cache-refill performance counters needed for MemGuard. Our
implementation employs the coherent DMA provided by the
ZCUI102 and limits its transfer rate using the interconnect’s
hardware QoS regulators [7].

We use the partitioning hypervisor Jailhouse [4]. By cour-
tesy of earlier works [31], [49] that made their implementa-
tions publicly available, the Jailhouse version used in this work
integrates cache coloring, MemGuard, and QoS bandwidth
regulation. We implemented the virtio PCI transport layer
based on Jailhouse’s virtualized PCI root controller. The virtio
PCI transport layer enables automatic discovery of our virtio
socket devices by the OS. The socket device is implemented
in the hypervisor and integrates with the broker VM for data
exchange and signaling.

The communication broker is implemented as a baremetal
application with minimal footprint, and its code and data
sections fit entirely in the core’s L1 caches. For all code
and data of the broker as well as all shared data between
hypervisor and broker, we use a dedicated cache partition
in the L2 cache to reduce cache interference with the other
VMs. Packet notifications are implemented using chip-wide
broadcast events (SEV/WFE) to eliminate IPI delays and
IRQ processing overheads. The overhead for notification ® is
therefore included as a small constant overhead in the queue
insertion ® and the queue searching ®.

We have integrated our architecture with FreeRTOS [22]
guest instances’ where we implemented a virtio socket driver
and the PCI transport layer. We note that Linux provides a
standard virtio socket driver. However, since the Linux kernel
enforces extra data copies for secure communication between
kernel and user-space, we believe the Linux implementation

3The implementation is available at https:/github.com/gschwaer/rt-virtio.

might introduce considerable overheads. We plan to integrate
the Linux driver and evaluate its performance in future work.
Our implementation of the memory bandwidth regulation
currently does not take the (comparatively few) memory
accesses performed by the hypervisor and by the address
translation units into account. Furthermore, the hypervisor
address space is not colored, and memory accesses by the
hypervisor can result in the eviction of cache lines.

IV. ANALYSIS

In this section, we discuss how to assess schedulability for
a flow set I assuming a DMA bandwidth bP. Following the
architecture described in Section III, we assume that a packet
of flow 7; arrives when the guest application sends it and
completes when the receiver VM is notified of the transfer;
hence, we say that 7; is schedulable if the difference between
completion and arrival time for any packet of 7; is no larger
than its relative deadline D,.

We show how I' can be transformed into a set of sporadic
tasks I'" whose feasibility can be tested using standard analysis
techniques for uniprocessor scheduling, such that I being
schedulable implies that I' is also schedulable. Specifically, we
will transform each flow 7; into a limited preemption [9], [12],
sporadic task 7/ = (C/(b°), D!, P!, J!, ¢} (bP)), where C/(b")
is the execution time of the task, P/ its minimum interarrival
time, D] its relative deadline, .J] its release jitter, and ¢} (b°)
the maximum time that the task executes in non-preemptive
mode.

Let a; ; denote the arrival time of the j-th packet of flow 7;;
by definition in our model, it holds that a; ;11 > a; ; + P;. As
discussed in Section III-B, the absolute deadline of the packet
is computed by the virtio device. The arrival time aéy ; of the
j-th job of the transformed task 7/ corresponds to the instant at
which the absolute deadline is computed. Let O™* Q™% de-
note the minimum and maximum time, respectively, between
the guest application sending the packet and the virtio device
computing its deadline. This implies that for any packet/job,
agyj > a;; + O™in and agyj < gy + Or#; and from
@ j+1 > a;;+P; we derive: a§7j+170?1r’ > agyj—O;“aXJrPZ-,
which means that 7/ is still sporadic but with a reduced period
P! = P, + O™ — Omax_ Ag we will show in Section V-B, in
practice the difference O™#* — O™ is small (less than one
microsecond in our implementation).

Note that, even if the absolute deadline of the packet
is computed at time aéy ;» the packet does not immediately
become eligible for scheduling at the broker; this is because
the device needs to insert the packet in the corresponding
queue and inform the broker. We model such behavior by
introducing a release jitter .J/ for the transformed task, where
J! represents the maximum time required for queue insertion
and notification.

As discussed in Section III-A, each packet of 7; is broken
into a set of [C;/S.] transfers: specifically, [C;/S.] — 1
transfers of length S., and one of length C}as'ﬁ = C; —
([Ci/Sc] — 1) - Se. Each of the former has a transfer time
Odma +Se/ bP: note that Oy, includes the time required to

make a scheduling decision, the time to program the DMA
engine before the transfer, the time for processing the DMA
notification once the transfer is completed, and the time it
takes to trigger a notification of a partial transfer to the
receiver VM. The last transfer suffers an additional overhead
Opeckt,i to remove the packet from its sender’s queue, resulting
in a transfer time Ogpg + C2/bP + Operri. We show
how to determine the values of such overheads in details
in Section V-B. Furthermore, the broker cannot make any
scheduling decision while a transfer is ongoing. We thus model
the scheduling of data transfers by associating each task 7/
with an execution time:

Cz{(bb) = ([Ci/Sc] = 1) (Oama + SC/bb) + 3
Odma + C%aSt/bb + Opckt,i =
- [Cz/sc] : Odmu + C’i/bb + Opck‘t,i7
obtained by summing the transfer times of all packets, and a

non-preemptive time equal to the maximum transfer time of
any packet:

g(°) = Ouama +)
O’}ast/bb + Opckt,i if Cl < Sca
max (Sc/bb, Cst /b Opckm) if C; > S..

Finally, let O, to denote the time required by the receiver
VM to obtain such notification after it is triggered by the
broker. When scheduling flow 7;, our implementation uses a
modified relative deadline D} = D; — O™** — O,.. Hence, if
T is schedulable, any packet of 7; will complete transfer no
later than a;’j + D; — OP** — O,; since ag’j < a;; + 0P
and it takes O, to notify the receiver VM after the last data
transfer of the packet, this means that the packet will complete
no later than a; ; + D;, i.e., 7; and indeed I' is schedulable
according to our model.*

We next summarize the schedulability analysis for sporadic,
limited-preemption tasks under EDF in [9], [12]. Note that [9],
[12] do not consider release jitter, but such term can be inte-
grated in the analysis following related work (e.g., see [50]).
We use U/(bP) = C[(bP)/P] and U’(bP) = Y"1, U/(bP) for
the utilizations of task 7] and task set I", respectively.

For an interval of length ¢, the demand bound function
DBF;(t,bP) of task 7/ is the maximum cumulative execution
requirement of all jobs of 7/ that have both their release times
and absolute deadlines within the interval. When including
release jitter and arbitrary deadlines, this is computed as:

t— (Di = Ji)

DBF;(t,0°) = max (0,1+ | :
P;

|)-cio). ®

[9], [12] show that if I is not schedulable, then at least one
of the following conditions must hold: (1) 3 ¢ > 0 such that:

> DBF(t,b°) > t; (6)

i=1l...n
4Note that the reverse is not true, i.e., it is possible for I' to be schedulable

and T to be unschedulable. Hence, the schedulability condition in the
Theorem 1 is necessary and sufficient for I'” but only sufficient for I".

(2) 3¢,¢" with ¢ >t/ > 0 and a job of a task ij with absolute
deadline strictly greater than ¢ such that the job executes non-
preemptively between time 0 and ¢’ and:

Z DBF;(t,b°) > t —t'. (7)

i=1...m,i#]

Note that by definition ¢’ < q;-(bb), and hence t —t' >t —
q;-(bb). Therefore, Equation 7 implies:
gG°)+ > DBF(tb°) > t. (8)

i=1...m,i#]

Also note that since the job of ij executes starting at 0 and has
absolute deadline after ¢, it must hold D;- > t. Assume D§- >
t > D’ — Jj; then by definition DBF;(t,bP) > C}(bb) >
¢j;(bP). This implies:

> DBFi(t,b°) > ;(b°) +

1=1...n

> DBF(t,b°) > t,
i=1...n,i#j
)

meaning that Condition (1) is also violated at time ¢. For this
reason, it suffices to check Condition (2) for ¢ < D} —J j’<, for
which DBF}(t,b°) = 0 and thus) DBF;(t,b?) =
Zi:l...n DBF(t, bb)-

A schedulability criterion can then be constructed by negat-
ing Condition (1) and (2). In the following theorem, we
express it in a compact way by maximizing the value of
q; (b) in Equation 8 over all tasks that meet the condition
Dl —Ji > t.

Theorem 1: A sporadic limited-preemption task set IV is
schedulable under EDF if and only if:

i=1...n,i#j

Vt>0:Q(tb°) + Y DBF(t,b°) <t, (10)

i=1...n

where:

Q(t,b°) = max0U {¢}(b°) | Vj € {1..n}, D} — J} > t}.
(11
Note that Theorem 1 does not provide a schedulability test,
because we cannot test an infinite number of values of .
However, it is simple to see that it is sufficient to test those
values of ¢ for which the demand bound function for some
task changes, which comprise the following set:

D={k-P +D,—J |Vie{l.n},keN}. (12

Furthermore, following [10], [11], [23], it can be shown that if
Conditions (1), (2) are violated, then it must hold U’ (bP) > 1
or t < T*(bP), with:

T*(b°) =
H if U'(b%) = 1;
min [H, max (max?:l{Dg - Ji}, i U’(bb) <1
1)
ey v UL (0°) - (P — (D} — Ji)))} 13

Algorithm 1: Compute minimum DMA bandwidth for
which T is schedulable

1 input: Transformed task set T

2 output: Minimum bandwidth b®; ;
the task set cannot be scheduled

3 if U'(bP) < 1 cannot be satisfied then

4 | return FAILURE

5 Compute b2, o (Eq. 16)
6 blrfnn A bmln ,0

7 for ty, € D in increasing order do
8

9

or FAILURE if

if ¢, > T*(bP,.) then

mln

L return b°

10 if Q(ty,b°) + Y1 | DBF;(t,b°) <t} cannot be
satisfied then
11 L return FAILURE

min

12 | Compute b2 . (Eq. 18 for case Q(ty,b) = 0)
13 baln A IH&X(bgm, bglin,k:)
where H = lem(Py,..., P}) is the hyperperiod. Therefore,

instead of Equation 10 the schedulability test can use the
equivalent condition:

U@®P) <1
VteD,t< T bP): Q(t,b°) +

(14)
> DBF(t,b°) <t.

i=1..n

Note that the test involves performing a O(n) computation for
each time point in D until 7% (bP). As discussed in [9], [12], if
U’ (bP) is upper bounded by a constant ¢ < 1, then the number
of points to be tested, and thus the complexity of the test, is
pseudo-polynomial.

A. Minimum DMA Bandwidth

Equation 14 allows us to check the schedulability of the
transformed task set I, and therefore also of the original flow
set I', assuming that the bandwidth bP available to the DMA is
given. However, in general the system designer might be more
interested in specifying a set of flows, and then determining
the minimum value of bP under which I' is schedulable;
minimizing bP maximizes the remaining memory bandwidth
that can be assigned to the m cores according to Equation 2.
A naive way of computing such minimum bandwidth b2,
would be to use binary search over the values of b° that
satisfy Equation 14. However, in the remaining of this section
we show that we can directly compute b2, ~with the same
computational complexity of running the test in Equation 14
—that is, by performing a O(n) computation for each tested
point in D. For simplicity of exposition, let us index the time
instants in D as t4,ts,...,tx, ... in increasing order. We also
t—(Di—J])J

Pl

use 7;(t) = max (0,1 + {) to denote the number

of jobs included in the demand bound function for 7/ at t.

Note that the condition U’(bP) < 1 can be rewritten to:

> (1Ci/Sc] - Otma+ CifbP + Opere) [Pl = (15)
i=1
Z ([CZ/SC—I : Odma + Opckt,i) /P,L/ + W S 1.

1

(2

Then if Y7, ([ci /Se] - Odma + opcm) /P! > 1, the
condition cannot be satisfied, and the task set is unschedulable.
Otherwise, we obtain:

> i1 Ci/ Py
1- E:‘L:l ([CL/S(/] . Odma + Opckt,i) /1:)7,/

bb

Y

(16)

Let b2, .o denote the minimum value of bP that satisfies
Equation 16 (that is, the right hand size of the equation). We
use bR, , to denote the minimum value of bP that satisfies
Equation 10 for ¢ = t;; we can obtain bgnn,k by rewriting
Equation 10 in a way similar to Equation 15. However, because

it can either hold Q(¢,bP) = 0 or Q(t,bP) = Ogma + S /bb
or Q(t,bP) = Ogma + C; 1ast /bP + Opepe, J for some task ’7'],
we have to consider three cases. If 397 — J]‘ > t, then
Q(t,bP) = 0 and we obtain:
> DBF(t,b°) = (17

i=1l...n

an (C /S -| Odma + Opckt,i) +

21:1 ni(t) - C;

= p <t.
Again, if Y1 n;(¢) - ([Ci/Sc] - Ogma + Opckm) > t, the

condition cannot be satisfied, and the task set is unschedulable.
Otherwise we obtain:

P Sy mit) - C

min,k — .
t= S0 m(t) - (1C3/Se] - Otma + Ope)

(18)
Similar equations can be derived if there exists a task ’7' with
D’ — Ji > t, in which case we need to consider both the case
of Q(t,b°) = Oama + C7" /b + Opere j» Where 7/ is the
task with the largest value of C’last among those that satisfy
— Jj > t, as well as the case Q(t,b”) = Ogmq + Sc/bP
(1f for any such task it holds C; > S.). In this case, bmm’k, is
taken as the maximum between the cases that apply.
Finally, Algorlthm 1 shows how to compute b2, . We
initially set b2, = bP. .- Then, we iterate over the points in
D. At each step, we update bP. as the maximum between its
previous value, and the newly computed bmln - If at any step
the schedulability condition cannot be met no matter the value
of bP, the algorithm fails. Otherwise, the algorithm terminates
once it reaches a t, greater than or equal to 7* (b2), as this

guarantees that the condition is met for all subsequent values
of t under the computed DMA bandwidth b

min*

V. EXPERIMENTAL EVALUATION

This section presents the empirical methodology we adopt
to measure the maximum DRAM bandwidths under CPU
and DMA regulation while still satisfying Equation 2. We
validate the architecture proposed in Section III and present
our overhead-aware schedulability experiments.

A. Measuring DRAM Saturation

We study the DRAM saturation point from the perspective
of the CPU and the DMA. Following a similar methodology
as [49], we first establish a relationship between the worst
DRAM stress generated by CPUs alone and then under various
MemGuard budget values. We then study the amount of
bandwidth extracted by the DMA from the memory subsys-
tem and its relationship to the corresponding QoS regulation
values. Finally, we investigate the combined contributions of
MemGuard and QoS regulation levels.

1) MemGuard Regulation and DRAM Utilization Using
CPU: In order to generate worst-case stress for the DRAM
controller from the CPU subsystem, we use our publicly avail-
able USTRESS benchmark [49]. USTRESS uses write access
patterns (which produces worse stress patterns than reads [26])
that miss in the L2 cache and access a closed DRAM row (row
miss) on the same bank. USTRESS can therefore maximize the
DRAM controller utilization. In fact, the bandwidth reported
by USTRESS progressively decreases when the benchmark
is (synchronously) executed on a progressively increasing
number of cores.

We adapted the DRAM geometry of the original benchmark
to the DRAM geometry of our Xilinx ZynqMP ZCU102.
On the ZCU102, through documentation and experimentation,
we found the DRAM organization to be three column shift
bits, two bits for the bank, two bits for the bank group,
and fifteen bits for the row. The combined bandwidth of
the cores when synchronously executing USTRESS remains
stable at approximately 960 MB/s, which is thus the maximum
bandwidth that can be extracted from the DRAM memory
subsystem at maximum utilization.

Next, we study the relationship between the maximum
bandwidth of the memory subsystem and the MemGuard
regulation values. As described in Section II, MemGuard
works by assigning each C'PUj, a regulation budget of Qy
cache refills per regulation period P. @y is measured in
terms of L2 cache refills assessed via performance counters.
In our setup, MemGuard regulation period and budget values
are enforced by the Jailhouse hypervisor. Smaller P values
allow for a finer-grained CPU regulation at the expense of
increased overheads: an interrupt is generated and processed
by the hypervisor at every regulation period in order to
police the CPUs’ budgets. Prohibitively small P values would
cause MemGuard to misbehave due to excessive overheads.
We, therefore, conducted experiments to select the smallest
possible viable value of P for our setup (which represents
a worst-case scenario for MemGuard regulation strategy).
Furthermore, since we rely on the granularity of L2 cache-refill
performance counters for (0, we also evaluated the minimum

1200

T T
MG Budget vs Bandwidth ——

Q)
@ 1000 |- .
=
£ 800
b=
=
S 600
&
> 400
5]
E 200
=
0 1 1 | 1
S 4 Z 2 K @
2 % % % R %

MemGuard Budget

Fig. 3. USTRESS bandwidth with increasing QQ, and P = 30 us.

(1 that can be feasibly enforced for a C'PUj. Our empirical
results suggest that, with our setup, any value P < 30 ps and
any value @, < 50 (at P = 30 ps) would cause MemGuard
to misbehave.’

In order to establish the relationship between maximum
memory bandwidth of the memory subsystem and MemGuard
regulation, we, therefore, set P = 30 ps and progressively
increase () starting from 50 while accessing the memory
subsystem using USTRESS. The results are presented in Fig-
ure 3, which shows a linear trend until the bandwidth reaches
960 MB/s at Q) = 225. This corresponds to the maximum
bandwidth the CPUs can extract from the DRAM at maximum
utilization.

2) QoS Regulation and DRAM Utilization Using DMA:
The ZCU102 has two DMA engines: the ADMA is cache-
coherent, whereas the GDMA is not. Both DMAs can be
QoS-regulated [57]. Since we assume cache-coherent DMA
transfers (see Section II), we used the ADMA engine in
our experiments. We configured the DMA burst length to
its maximum, i.e., 16, resulting in a 128 B transfer per
transaction. Once again, all the transactions always target the
same bank, but the sequential access pattern will produce
row hits. Without QoS regulation and any interference, the
bandwidth achievable from the DMA depends on the transfer
chunk size S.. For S. € {4,8,16,32,64} KiB, we measured
a maximum throughput of approximately 2000, 2440, 2800,
3080, and 3190 MB/s, respectively.

The QoS supports different regulation modes [7] controlled
by a set of read (ar_r, ar_b, ar_p) and write parameters
(aw_r, aw_b, aw_p). By setting ar_b = aw_b = 1,
the parameters ar_r and aw_zr are sufficient to enforce a
strict regulation at the specified ar_r (aw_z) level. In our
experiments, we always use ar_r = aw_r corresponding to
the QoS level aP described in Section 1L

Figure 4 reports the DMA memory bandwidth for increasing
QoS regulation values a®? = ar r = aw_r and different
chunk sizes S. when accessing the same DRAM bank. The
figure also shows the maximum theoretical bandwidth com-
puted using Equation 1, with the maximum transaction size

SStressing the system using USTRESS with P < 30 ps caused consistent
discrepancies between measured and nominal bandwidth.

4000 T

T T T

w 4KiB ——
@ 3500 - 8KiB ——
= 3000 | 16KiB -
= 32KiB
T 2500 - 64KiB 3
-§ 2000 Theoretical ——
I3
o 1500 +~ =
ey
5 L il
g 1000
< 500+ -

0 1 | | 1 | | 1 1 |

A

b X D X % G Cn Y D
0 % 0 B g o B Yy Y %

QoS Regulation

Fig. 4. DMA bandwidth for different sizes of S. and QoS regulation values.

Sy = 128 B and the DRAM frequency f.r = 0.5 GHz. In
the least regulated cases a® = 250, the bandwidth differs
significantly depending on the chunk size. Thus larger S,
chunk sizes are preferred when only minimal QoS regulation
is applied.

3) Combining MemGuard and QoS Regulation: The ap-
proach proposed in [49] to independently compute the Mem-
Guard regulation for the cores and QoS level for the DMA
—such that Equation 2 is satisfied— is not directly applicable
to our setup. On the ZCU102, we are unable to prioritize
DMA traffic over CPU traffic statically. When the CPUs are
active before a regulation event happens, they can temporarily
force the DMA below its assigned bandwidth due to the bursty
nature of MemGuard regulation. The lost bandwidth is not re-
covered due to the strict QoS regulation (ar_b = aw_b = 1).

Therefore, we empirically determine the different DMA and
CPU contributions: We consider three active CPUs and one
DMA. The CPUs are regulated via MemGuard at P = 30us
and perform memory transactions using USTRESS. Starting
with a per-CPU MemGuard budget (0. = 50 and proceeding
step-wise towards higher) values, we generate decreasing
DMA traffic by controlling the QoS. For each ;. level, we
determine the maximum aP such that the CPU bandwidth
is unaffected by the presence of concurrent DMA transfers.
Once such) and aP levels are known, the DMA bandwidth
corresponding to this aP can be determined via Figure 4.°
Each combination (Q, aP) identifies a point that satisfies
Equation 2 and results in the maximum utilization of the
DRAM.

Table 1 reports the different (Qp, aP) value points. For
example, when (0, = 150, the CPUs are heavily regulated, and
their bandwidth (220 MB/s) does not decrease even when the
DMA is not regulated (a® = 0 means that the QoS regulation
is disabled). On the contrary, for (03 = 210, any aP > 3 would
cause the CPUs bandwidth (308 MB/s) to decrease. Starting
from @ > 225, the CPUs are interfering with each other even
without any DMA-generated traffic.

Given the observed delta between theoretical and experimental QoS to
bandwidth conversion, Figure 4 should be preferred to determine the effective
DMA bandwidth.

B. Implementation Overheads

We evaluate our implementation described in Section III-C
by measuring critical overheads and delays as well as VM-
to-VM event signaling (see Table II). We insert non-invasive
timestamping into our implementation. The timestamps are
read out during planned idle intervals of the system and
used to calculate the overheads. As a timing source, we use
the CPU’s system timer. It is synchronized across all cores,
which permits the measurement of cross-core notification
delays (Agpg). The measurements shown in Table 11 can be
directly mapped to actions marked in Figure 2. Our test system
employs two communicating VMs and four channels for two
bidirectional links between the VMs. The implementation of
the communication broker compiles to 4243 B of instructions
and 8904 B of data. Dynamically allocated memory never
exceeds 12288 B. Code and data fit into L1 caches for this
configuration, which validates our assumption that the broker
should not impact the memory bandwidth calculations. The
allocated 128 KiB L2 cache partition is sufficient to host
multiple communicating guests and channel configurations.
In our configuration 3264 B are used. Per additional channel
or VM we require additional 56 B or 1152 B, respectively.
Hypercall and IRQ-related experiments were run 1000 times.
Packet processing-related measurements are based on 4000
sent packets.

The derived overheads are used to bound the terms
O;nin,OgnaX,Odma,Opckm,J{,Or, as used in the analysis
in Section IV. The virtio device assigns a timestamp after
entering hypervisor mode and passing the PCI transport layer,
which yields (Ag¢ is round trip time):

(T o AT gy . RIEIL (19)
O™ = AR&/2+ ABF (20

The DMA overhead Oy, includes all overheads at the broker
for steps ® to @ in Figure 2, except the the DMA transfer
time itself and the time Opcp¢; to remove the packet from its
sender’s queue. Based on Table II, this results in:

Ouma = m - N+ M+ MFE + A+ AP, Q1)

where the overhead A pg of finding the packet with the earliest
deadline is paid m times because there are m per-VM queues.
Because of the ordered per-VM queues, the broker only has
to access the first element in each queue. This operation is
implemented lock-free. When the DMA finishes the transfer,
it will interrupt the broker, which results in an IRQ injection
done by the hypervisor Apc, and the processing of the
DMA interrupt by the broker A;p. At last, the broker notifies
the receiver and the sender by sending an IPI to each from
hypervisor mode A pp.

The IPI delay Agp is the time between the hypervisor
sending the IPI and the receiver finishing the IRQ processing.
The DMA overhead Og,,, considers the full hypervisor entry
and exit in App. However, the hypervisor exit is happening in
parallel to the IPI delay in Agpg. To correct for the duplicate

TABLE I
DMA QOS REGULATION VALUES TO PROTECT CORES AT FIXED MEMGUARD BUDGET.

Total MemGuard Per Core Assigned USTRESS Bandwidth (MB/s) | USTRESS Bandwidth (MB/s) | DMA Bandwidth (MB/s) @ QoS aP
Budget > Q| MemGuard Budget Q) 1 CPU only with 3 CPUs and DMA s.t. BW of CPUs unaffected
150 50 220 220 1074 @ QoS 0 (disabled)
165 55 244 244 649 @ QoS 60
180 60 264 264 485 @ QoS 40
195 65 286 286 148 @ QoS 10
210 70 308 308 47 @ QoS 3
225 75 330 318 No valid QoS possible

TABLE II
OVERHEADS AND DELAYS IN OUR IMPLEMENTATION (IN NANOSECONDS)
AND MAPPING TO COMMUNICATION FLOWS IN FIGURE 2.

Symbol }S1°% MIN | AVG | MAX | MED
ig. 2

Hypervisor entry & exit | Agc @ | 939 | 941 | 949 | 939
(Sender OS to Hyp.)
PCI transport layer | App ® 111 | 295 | 757 | 292
(Hyp.)
Packet parsing (Hyp.) App (3 | 181 | 433 | 1161 | 424
Queue locking (Hyp.) Aqgr, B 71 98 142 101
Queue insertion (Hyp.) Agr B 50 74 101 70
Queue find location for | Aga ® 24 26 30 26
insertion (per packet)
(Hyp.)
Queue remove (Broker) AgRr ® 20 33 40 30
Find packet with earliest | Apg ® 20 32 71 30
deadline (per VM) (Bro-
ker)
Process packet and pro- | App ® 373 | 406 | 949 | 393
gram DMA (Broker)
Finalize transfer incl. IPI | App (® |2222]2350 | 2646 | 2353
(Broker & Hyp.)
DMA IRQ processing | Arp @ | 797 | 811 | 828 | 808
(Broker)
OS notification IPI + IRQ | Agr [®)+(®)| 1370 | 1403 | 1460 | 1400
processing by receiver
(Broker to Receiver OS)

accounting of the hypervisor exit, we upper bound the receiver
notification delay as:

O, = NBF — gc. (22)

Note that we use the maximum for Ay because we offset

HE used in Ogma-

The remaining terms Opert,i, J; involve adding and remov-
ing packets from priority queues; hence, it is necessary to
discuss the queue implementation. We use a linked list imple-
mentation for the priority queues that requires n comparisons
for a queue containing n elements. The time for insertion of
a packet by V M}, without locking can be bounded using the
maximum amount of packets sent by V M, that can be pending
at any time. Under the assumption that a packet is schedulable,
it cannot be pending for longer than D;. Hence, given the set
I'). of flows that have V M} as their sender, the maximum
amount of pending packets sent by VM, is > ,[D;/P;] for
7; € 'y, and T'y, C I'. Thus, queue insertion is bounded by:

Oqri = ABF + Y [Di/P] - ABS".

T €l

(23)

Additionally, the priority queues are protected by a lock, so
the sender and the broker can be blocked for a short amount
of time. The lock is based on the Jailhouse implementation
of a spinning ticket lock, such that the blocking time with
two contenders can be bounded to the maximum duration the
contender spends holding the lock. Blocking due to the broker
is given by:

Bp = AR + AGR" 24)
Blocking due to the sender is given by:
Bs = AG1" + 001 % (25)

The time to remove a packet 7; € I';, from the queue of sender
V My, is then:

Opckt,i = BS,k + BB- (26)

Finally, we consider the release jitter. Our implementation
uses event signaling and lock-free access to the first queue
entry (the packet with the earliest deadline) such that the
maximum time between the assignment of the deadline on
V' M, and the first instant where the broker can consider the
packet 7; € 'y in a scheduling decision is given by:

J/ = (ABE + Bsyi + Bp) - [Tkl : (27)

for each packet insertion, the virtio device has to parse the
packet header and update the queue, for which it can be
blocked due to the broker modifying the queue. After the
insertion, the packet is immediately visible by the broker. The
multiplication term results from the capability of the virtio
driver to prepare and send more than one TX buffer with one
send operation (i.e., at most |I'y|). Additionally, a prior transfer
might have just started, so the packet can only be considered
after the completion of the prior transfer.

C. Schedulability Experiments

To assess the impact of the measured overheads, we gener-
ated synthetic flow sets and tested their schedulability based on
the analysis in Section IV. A flow set is generated as follows.
We first assign a maximum allowable DMA bandwidth bP
in MB/s, a number of VMs v, flows n, a packet size C,
and a desired system utilization (prior to overhead inflation)
U € [0,1]. We then randomly and uniformly generate a
utilization U; for each flow [14], such that U = Z?:l U;, and
compute the inter-arrival time P; based on U; = (C/bP)/P;.
Each flow is randomly assigned to a sender among the v VMs.

Figure 5 shows the obtained results of the ratio of schedu-
lable flow sets for a system with v = 4 VMs where we

o
)

o o
® ©

o
3

0.7

o
£

06

4
o

S
=

4
w

[|—+—C=4KB,n=3
C=4KB,n=12

4 C=4KB,n=48
—©6—C=12KB,n=3
r|—© -C=12KB,n=12
C=12KB, n =48

Ratio of schedulable flow sets
Ratio of schedulable flow sets

o
N

o

o

—+—C=4KB,n=3
C=4KB,n=12 09

—+—C=4KB,n=3
C=4KB,n=12

+- C=4KB,n=48
—e—C=12kB,n=3 081
— & —C=12KB,n=12
C=12KB, n =48

+-- C=4KB,n=48
—6—C=12KB,n=3
— & —C=12KB,n=12
C=12KB,n=48

Ratio of schedulable flow sets

, NG

=)

20 30 40 50 60 70 80 90 100 10 20 30 40
Utilization (before overhead)

(a) DMA BW = 150 MB/s

Utilization (before overhead)

(b) DMA BW = 500 MB/s

60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Utilization (before overhead)

(c) DMA BW = 1000 MB/s

Fig. 5. Ratio of schedulable flow sets: 4 VMs, flows = {3, 12,48}, packet size = {4,12} KiB, and DMA bandwidth = {150, 500, 1000} MB/s.

vary the DMA bandwidth in {1000, 500,150}, the number
of flows in {3,12,48}, and the packet size in {4,12} KiB.
For each utilization point, we generated and tested 1000 flow
sets. Note that schedulability significantly improves as the
DMA bandwidth bP decreases. This is because the utilization
is computed based on the transfer time C/bP; for lower
values of P, the transfer time becomes larger while the
overheads in Table II remain constant. Thus their impact on
the schedulability of the flow sets is reduced. Also, note that
the system performs better for a larger number of tasks and
packet size: as those parameters increase, the average period
of each task at a given utilization also increases, which lessens
the blocking effect due to the non-preemptive transfer of a data
chunk of size S. = 4 KiB.

We also measured the time required to run the schedulability
analysis for 48 flows and a packet size of 12 KiB. We
implemented the analysis using (single-threaded) Matlab code
executed on an AMD Ryzen 5 3600 and obtained a median
of 0.34ms, mean of 4.9ms, 95th percentile of 8.0ms, and
maximum of 25.82s. This shows that the time required to
perform the analysis is small for most cases, even with a large
number of flows. Note that increasing the number of VMs
would not affect the complexity of the analysis.

D. Comparison

In Table III, we show a comparison of our implementation
and the schedulability analysis. We used binary search to
find the smallest period for which a single packet of a given
size can be transferred when the DMA is limited to a given
bandwidth, where the deadline is set equal to the period.
We ran the same scenario in our implementation for 1,000
iterations to obtain the maximum latency. We selected four
scenarios from the middle of the possible QoS ranges (QoS
40 and QoS 10, see Table I) to select viable combinations of
utilization and periods to run the experimental scenarios. As
Table III shows, the measurement of FreeRTOS confirms the
analytical limits.

VI. RELATED WORK

This work analyzes the problem of predictably copying data
among VMs and virtualized hardware resources on MPSoCs

TABLE III
COMPARISON OF IMPLEMENTATION (LATENCY) AND ANALYSIS (PERIOD)
FOR A UNIDIRECTIONAL FLOW WITH IMPLICIT DEADLINES.

Experiment FreeRTOS
DMA Size Latency Period Diff
(MB/s) (KiB) (ns) (ns) (%)
148 4 34,535 36,933 -6.5
148 12 99,818 103,171 -3.3
485 4 14,747 17,703 -16.7
485 12 42,777 45,480 -5.94

under consideration of maximum memory bandwidth and
memory interference. The issues of real-time data communi-
cation among different VMs have been tackled from different
angles with software- and hardware-based solutions.

a) Software-based solutions: Cache partitioning (e.g.,
MemGuard) [33] and bank partitioning [59] are well-known
techniques to mitigate and eliminate memory interference
among independent partitions on MPSoCs. Kloda et al. [31]
proposed a deterministic approach to carefully control the
architecture-specific address bits used at the cache and DRAM
level. In their work, I/O devices are statically assigned to only
one VM. Sohal et al. [49] leveraged the Quality of Service [7]
infrastructure offered by some ARM boards to create a reg-
ulating framework for system-wide bandwidth management
and control. Their work does not explicitly consider I/O nor
data transfer between VMs, but we adopt the same QoS
techniques to control DMA bandwidth in our architecture.
Tabish et al. [52] proposed a communication architecture for
strictly partitioned multicore processors. Their work considers
interference but only at the DRAM-bank level and does not ex-
plicitly address virtualized environments. Several works [20],
[25], [32], [36], [53] have addressed the problem of managing
I/O in the context of the Quest-V separation kernel. Although
real-time bounds on the I/O communication are provided, the
effect of memory contention and interference at interconnect
level is not explicitly considered. The MC? project [19],
[30] implemented inter-core communication using a shared
DRAM bank. Their approach does not explicitly consider
virtualization and the use of a DMA engine to perform data
transfer. A recent work from Casini et al. [17] proposed a

hypervisor-based architecture that shares similarities with the
architecture provided by this work. Similar to this work,
their work formally analyzed the end-to-end latencies of I/O
data transfers under consideration of virtualization overheads.
However, the problems of memory-related interference, the
use of DMA to perform data transfers, and the real-time
scheduling of independent I/O flows are not considered by
their work. In addition, contrary to [17], this work uses the
virtio API [1], thus enabling unmodified execution of virtu-
alized OSs. Several real-time resource access protocols exist
to manage memory regions shared among VMs of different
criticality (we refer to [15] for a recent review). Compared
to our architecture, approaches based on shared memory are
much more difficult to configure, as they require a global
knowledge on the activation of tasks within different VMs
(knowledge that might not even be available to the system
integrator). Furthermore, these approaches require difficult to
produce certification artefacts to document the interplay and
mitigation strategies for the partition interference channels [46]
that they create. Pellizzoni et al. [41]-[43] proposed WCET
analytical bounds that explicitly consider I/O, but consider
neither memory interference nor virtualized environments.
The predictable execution model [40] and the scratchpad-
centric OS [51] propose a three-phase execution model to
address the predictability of execution and I/O phases. Several
works [2], [3], [45] have tackled the related problems of
latency and scheduling in network communication, and in both
the real-time and high-performance computing areas, works
exist that experimentally evaluate data transfer techniques in
virtualized environments (e.g., [6], [21], [48]). In [16], [18],
the memory interference on several NVIDIA-based SoCs has
been experimentally characterized.

In order to manage I/O complexity, several approaches —
although without any formal guarantee— are adopted in the
industrial world. For example, in the avionics domain, the
ARINC [5] standard mandates qgueuing ports to manage inter-
partition communication, and the Xen Hypervisor uses a split-
driver and ring buffer model [54] to multiplex I/O requests
coming from different VMs.

b) Hardware-based solutions: Compared to software-
only solutions, prototyping on hardware and/or FPGA is more
complex and time-intensive. Unsurprisingly, therefore fewer
hardware-based solutions exist. Jiang et al. [28], [29] proposed
the Virtualized Complicated Device Controller and MCS-IOV
hardware extensions to enable predictable virtualization of I/O.
Betti et al. [13] implemented FPGA hardware extensions to
manage [/O data transfers on COTS systems. IOMPU and
MPIOV [37], [38] are solutions that improve the management
of PCI-based hardware devices. SR-IOV [35] devices can
isolate different communication (network) flows. Contrary to
these works, our solution does not require extra hardware.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed and implemented a frame-
work to predictably transfer data between otherwise iso-
lated VMs and virtualized hardware resources on heteroge-

neous MPSoCs under consideration of memory contention.
The framework leverages standard mechanisms (e.g., cache-
partitioning and QoS regulation) to control memory interfer-
ence and is based on the observation that DRAM utilization is
additive when working below the saturation point. Thanks to
its virtio-based design, the framework can be directly used by
unmodified guest OSs. While in this paper we have evaluated
a lightweight implementation based on FreeRTOS, we plan to
investigate Linux virtio drivers in the future.

Our analysis of the communication flows supported by the
framework enables designers to bound the maximum band-
width assigned to cores and the DMA, and to meet the deadline
constraints of the flows while avoiding over-utilization of
the DRAM memory controller, thus causing unpredictable
latencies. Our evaluation has shown the matching of the
analysis and a low-overhead implementation realized on top
of the Jailhouse hypervisor with a baremetal broker VM and
FreeRTOS guests.

Our framework targets (certifiable) systems with different
VM criticalities. As such, the architecture does not adopt a
zero-copy approach, but it requires explicit copy operations
between VMs. However, each copy operation —and its implicit
interference— is controlled by a trusted broker component.
Given its lightweight implementation, the broker only mini-
mally extends the trusted codebase (and thus a certification
effort). On the other hand, this architecture devotes a core
(even if not necessarily an application core on an MPSoC)
to the broker functionality, and it requires to separate the
hypervisor-broker communication using cache partitioning.

There are multiple directions that we would like to in-
vestigate as future work. The current architecture benefits
from the use of a DMA engine to perform the data trans-
fer. However it would be interesting to investigate the size-
dependent trade-off between DMA programming and using the
broker’s CPU to perform the data copy actively. Additionally,
other data transfer architectures are possible. For example, the
broker VM can become superfluous by shifting the burden
of performing the data copy onto the sender or receiver VM.
Such architectures would require a different analytical model
than the one we currently adopted, making a comparison
between approaches even more challenging. Finally, extending
the model to consider multicast communication would be an
additional challenge.

ACKNOWLEDGMENTS

This work has been partially supported by the NSERC,
CMC Microsystems, and the National Science Foundation
(NSF) under grant numbers CNS 1932529, CNS 1815891,
CCF 2008799. Marco Caccamo was supported by an Alexan-
der von Humboldt Professorship endowed by the German
Federal Ministry of Education and Research. We want to
thank Zubair Waheed (an undergraduate at the University of
Waterloo) for performing an initial performance estimation on
the ZCU102 platform.

[2]

[3]

[4]
[5]
[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

OASIS Committee Specification 01. Virtual I/O Device (VIRTIO) Ver-
sion 1.1. https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html,
April 2019.

Laure Abdallah, Mathieu Jan, Jérdme Ermont, and Christian Fraboul.
Reducing the Contention Experienced by Real-Time Core-to-1/O Flows
over a Tilera-Like Network on Chip. In 2016 28th Euromicro Conference
on Real-Time Systems (ECRTS), page 86-96, 2016.

Saeed Abedi, Neeraj Gandhi, Henri Maxime Demoulin, Yang Li, Yang
‘Wu, and Linh Thi Xuan Phan. RTNF: Predictable Latency for Network
Function Virtualization. In 2019 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), page 368-379, 2019.
Siemens AG. Jailhouse hypervisor. https://github.com/siemens Ac-
cessed: 2021-02-08.

Airlines Electronic Engineering Commitee. ARINC Specification 653
P1-5, 2019.

Gabriele Ara, Luca Abeni, Tommaso Cucinotta, and Carlo Vitucci.
On the use of kernel bypass mechanisms for high-performance inter-
container communications. In Michele Weiland, Guido Juckeland,
Sadaf R. Alam, and Heike Jagode, editors, High Performance Computing
- ISC High Performance 2019 International Workshops, Frankfurt,
Germany, June 16-20, 2019, Revised Selected Papers, volume 11887
of Lecture Notes in Computer Science, pages 1-12. Springer, 2019.
doi:10.1007/978-3-030-34356-9_1.

ARM. ARM CoreLink QoS-400 Network Interconnect Advanced Qual-
ity of Service. https://developer.arm.com/documentation/dsu0026/latest
Accessed: 2021-02-08.

ARM. ARM System Memory Management Unit Architecture Speci-
fication - SMMU architecture version 2.0. https://developer.arm.com/
documentation/ihi0062/1atest Accessed: 2021-02-08.

Sanjoy Baruah. The limited-preemption uniprocessor scheduling of
sporadic task systems. In I/7th Euromicro Conference on Real-Time
Systems (ECRTS’05), page 137-144, 2005.

Sanjoy K. Baruah, Rodney R. Howell, and Louis E. Rosier. Feasibility
Problems for Recurring Tasks on One Processor. Theor. Comput. Sci.,
118(1):3-20, September 1993.

Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively
Scheduling Hard-Real-Time Sporadic Tasks on One Processor. In In
Proceedings of the 11th Real-Time Systems Symposium, page 182—-190.
IEEE Computer Society Press, 1990.

Marko Bertogna and Sanjoy Baruah. Limited Preemption EDF Schedul-
ing of Sporadic Task Systems. Industrial Informatics, IEEE Transactions
on, 6:579-591, 12 2010.

Emiliano Betti, Stanley Bak, Rodolfo Pellizzoni, Marco Caccamo, and
Lui Sha. Real-Time I/O Management System with COTS Peripherals.
IEEE Transactions on Computers, 62(1):45-58, 2013.

Enrico Bini and Giorgio C. Buttazzo. Measuring the Performance of
Schedulability Tests. Real-Time Syst., 30(1-2):129-154, May 2005.
Bjorn B. Brandenburg. Multiprocessor Real-Time Locking Protocols: A
Systematic Review, 2019. arxXiv:1909.09600.

Nicola Capodieci, Roberto Cavicchioli, Ignacio Safiudo Olmedo, Marco
Solieri, and Marko Bertogna. Contending memory in heterogeneous
SoCs: Evolution in NVIDIA Tegra embedded platforms. In 2020 IEEE
26th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), page 1-10, 2020.

Daniel Casini, Alessandro Biondi, Giorgiomaria Cicero, and Gior-
gio Buttazzo. Latency Analysis of I/O Virtualization Techniques in
Hypervisor-Based Real-Time Systems. In 27th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS 2021), 2021.
Roberto Cavicchioli, Nicola Capodieci, and Marko Bertogna. Memory
interference characterization between CPU cores and integrated GPUs
in mixed-criticality platforms. In 2017 22nd IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA), page
1-10, 2017.

Micaiah Chisholm, Namhoon Kim, Bryan C Ward, Nathan Otterness,
James H Anderson, and F Donelson Smith. Reconciling the tension be-
tween hardware isolation and data sharing in mixed-criticality, multicore
systems. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages
57-68. IEEE, 2016.

Matthew Danish, Ye Li, and Richard West. Virtual-CPU Scheduling
in the Quest Operating System. In 2011 17th IEEE Real-Time and
Embedded Technology and Applications Symposium, page 169-179,
2011.

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma, and D. Sanchez.
KPart: A Hybrid Cache Partitioning-Sharing Technique for Commodity
Multicores. In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 104-117, 2018.
FreeRTOS. FreeRTOS Real-time operating system for microcontrollers.
https://www.freertos.org/.

Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and
Non-Preemptive Real-Time UniProcessor Scheduling. /NRIA, RR-2966,
1996.

Bosch GmbH. ETAS RTA Hypervisor.
products/rta-vrte.php Accessed: 2021-02-08.
Ahmad Golchin, Soham Sinha, and Richard West. Boomerang: Real-
Time I/0 Meets Legacy Systems. In 2020 IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS), page 390-402,
2020.

Mohamed Hassan. Reduced latency dram for multi-core safety-critical
real-time systems. Real-Time Systems, pages 1-36, 2019.

International Standardization Organization. ISO 26262:2018(E) Road
vehicles — Functional safety, 2018.

Zhe Jiang and Neil Audsley. VCDC: The Virtualized Complicated
Device Controller. In 29th Euromicro Conference on Real-Time Systems
(ECRTS 2017), volume 76 of Leibniz International Proceedings in
Informatics (LIPIcs), page 5:1-5:21, Dagstuhl, Germany, 2017. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

Zhe Jiang, Xiaotian Dai, Pan Dong, Ran Wei, Dawei Yang, Neil Audsley,
and Nan Guan. Towards an Analysable, Scalable, Energy-Efficient I/0
Virtualization for Mixed-Criticality Systems. [EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, page 1-1,
2021.

N. Kim, S. Tang, N. Otterness, J. Anderson, F. D. Smith, and D. Porter.
Supporting I/O and IPC via Fine-Grained OS Isolation for Mixed-
Criticality Real-Time Task. Real-Time Systems, 56(4):349-390, 2020.
T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna. Deterministic Memory Hierarchy and Virtualization for
Modern Multi-Core Embedded Systems. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), page 1-14,
2019.

Ye Li, Richard West, Zhuoqun Cheng, and Eric Missimer. Predictable
Communication and Migration in the Quest-V Separation Kernel. In
2014 IEEE Real-Time Systems Symposium, page 272-283, 2014.

R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-time cache management framework for multi-core archi-
tectures. In 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), page 45-54, 2013.

Clémentine Maurice, Nicolas Scouarnec, Christoph Neumann, Olivier
Heen, and Aurélien Francillon. Reverse Engineering Intel Last-Level
Cache Complex Addressing Using Performance Counters. In 2015
18th International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID), volume 9404, page 48-65, 2015.

Microsoft. Introduction to Single Root I/O Virtualization.
https://docs.microsoft.com/en-us/windows-hardware/drivers/
network/single-root-i-o-virtualization—sr-iov- Accessed: 2021-02-10.
Eric Missimer, Katherine Missimer, and Richard West. Mixed-Criticality
Scheduling with I/O. In 2016 28th Euromicro Conference on Real-Time
Systems (ECRTS), page 120-130, 2016.

Daniel Muench, Michael Paulitsch, and Andreas Herkersdorf. IOMPU:
Spatial Separation for Hardware-Based I/O Virtualization for Mixed-
Criticality Embedded Real-Time Systems Using Non-transparent
Bridges. In 2015 IEEE 17th International Conference on High Perfor-
mance Computing and Communications, 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems, page
1037-1044, 2015.

Daniel Miinch, Michael Paulitsch, Oliver Hanka, and Andreas Herk-
ersdorf. MPIOV: Scaling hardware-based I/O virtualization for mixed-
criticality embedded real-time systems using non transparent bridges to
(Multi-Core) multi-processor systems. In 2015 Design, Automation Test
in Europe Conference Exhibition (DATE), page 579-584, 2015.
NVIDIA. NVIDIA Jetson AGX Xavier. https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-agx-xavier/
Accessed: 2021-02-08.

Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John
Criswell, Marco Caccamo, and Russell Kegley. A Predictable Execution
Model for COTS-Based Embedded Systems. In 2011 17th IEEE Real-

https://www.etas.com/en/

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

Time and Embedded Technology and Applications Symposium, page
269-279, 2011.

Rodolfo Pellizzoni, Bach D. Bui, Marco Caccamo, and Lui Sha.
Coscheduling of CPU and I/O Transactions in COTS-Based Embedded
Systems. In 2008 Real-Time Systems Symposium, page 221-231, 2008.
Rodolfo Pellizzoni and Marco Caccamo. Toward the Predictable Inte-
gration of Real-Time COTS Based Systems. In 28th IEEE International
Real-Time Systems Symposium (RTSS 2007), page 73-82, 2007.
Rodolfo Pellizzoni and Marco Caccamo. Impact of Peripheral-Processor
Interference on WCET Analysis of Real-Time Embedded Systems. IEEE
Transactions on Computers, 59(3):400-415, 2010.

The Linux Foundation Projects. ACRN
https://projectacrn.org Accessed: 2021-02-08.

Tao Qian, Frank Mueller, and Yufeng Xin. Hybrid EDF Packet
Scheduling for Real-Time Distributed Systems. In 2015 27th Euromicro
Conference on Real-Time Systems, page 3746, 2015.

RTCA Inc. RTCA/DO-178C Software Consideration in Airborne Sys-
tems and Equipment Certification, December 2011.

RTCA Inc. Supporting Information for DO-178C and DO-278A,

December 2011.
Ignacio Safiudo, Roberto Cavicchioli, Nicola Capodieci, Paolo Valente,

and Marko Bertogna. A Survey on Shared Disk I/O Management in
Virtualized Environments under Real Time Constraints. SIGBED Rev.,
15(1):57-63, March 2018.

Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. E-
WarP: A System-wide Framework for Memory Bandwidth Profiling and
Management. In 2020 IEEE Real-Time Systems Symposium (RTSS),
2020.

Marco Spuri. Analysis of Deadline Scheduled Real-Time Systems.
INRIA, RR-2772, 1996.

hypervisor.

[51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

Rohan Tabish, Renato Mancuso, Saud Wasly, Rodolfo Pellizzoni, and
Marco Caccamo. A real-time scratchpad-centric OS with predictable
inter/intra-core communication for multi-core embedded systems. Real-
Time Systems, 55, 10 2019.

Rohan Tabish, Jen-Yang Wen, Rodolfo Pellizzoni, Renato Mancuso,
Heechul Yun, Marco Caccamo, and Lui Sha. SCE-Comm: A Real-Time
Inter-Core Communication Framework for Strictly Partitioned Multi-
core Processors. In 2020 9th Mediterranean Conference on Embedded
Computing (MECO), page 1-6. IEEE, 2020.

Richard West, Ye Li, Eric Missimer, and Matthew Danish. A Virtualized
Separation Kernel for Mixed-Criticality Systems. ACM Trans. Comput.
Syst., 34(3), June 2016.

Xen. Xen Split Driver Model. https://wiki.xenproject.org/wiki/
Xen_Project_Software_Overview Accessed: 2021-02-08.

Xilinx. Xilinx Versal. https://www.xilinx.com/products/silicon-
devices/acap/versal.html Accessed: 2021-02-08.

Xilinx. Xilinx Xen Support with Cache-Coloring. https://github.com/
Xilinx/xen/commits/xilinx/release-2020.2. Accessed: 2021-02-08.

Xilinx. ZCU 102 MPSoC TRM. https://www.xilinx.com/support/
documentation/user_guides/ug1085-zynqg-ultrascale-trm.pdf.

H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms. In 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), page 155-166, 2014.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
Bandwidth Management for Efficient Performance Isolation in Multi-
Core Platforms. IEEE Transactions on Computers, 65(2):562-576, 2016.

