
A Real-Time virtio-based Framework for

Predictable Inter-VM Communication

Gero Schwäricke∗ Rohan Tabish† Rodolfo Pellizzoni§ Renato Mancuso‡

Andrea Bastoni∗ Alexander Zuepke∗ Marco Caccamo∗

∗ Technical University of Munich, {name.surname}@tum.de
† University of Illinois at Urbana-Champaign, rtabish@illinois.edu

§ University of Waterloo, rpellizz@uwaterloo.edu
‡ Boston University, rmancuso@bu.edu

Abstract—Ensuring real-time properties on current heteroge-
neous multiprocessor systems on a chip is a challenging task.
Furthermore, online artificial intelligent applications –which are
routinely deployed on such chips– pose increasing pressure on
the memory subsystem that becomes a source of unpredictability.
Although techniques have been proposed to restore independent
access to memory for concurrently executing virtual machines
(VM), providing predictable inter-VM communication remains
challenging. In this work, we tackle the problem of predictably
transferring data between virtual machines and virtualized hard-
ware resources on multiprocessor systems on chips under consid-
eration of memory interference. We design a “broker-based” real-
time communication framework for otherwise isolated virtual
machines, provide a virtio-based reference implementation on top
of the Jailhouse hypervisor, assess its overheads for FreeRTOS
virtual machines, and formally analyze its communication flow
schedulability under consideration of the implementation over-
heads. Furthermore, we define a methodology to assess the
maximum DRAM memory saturation empirically, evaluate the
framework’s performance and compare it with the theoretical
schedulability.

I. INTRODUCTION

Nowadays, artificial intelligence (AI) algorithms are widely

used at run-time in complex embedded cyber-physical domains

(e.g., automotive, avionics, and industrial automation) that

require real-time assurance. Due to the need to reduce size,

weight, and power, modern embedded systems on a chip (SoC)

that can sustain the heavy data requirements of AI feature

not only multicore architectures but also integrate special-

purpose accelerators such as FPGAs and GPUs. Examples of

such complex heterogeneous multiprocessor systems on a chip

(MPSoC) are the Xilinx Ultrascale+ and Versal or the NVIDIA

Jetson Xavier [39], [55], [57]. Ensuring the real-time proper-

ties of these complex systems is challenging. To make things

worse, the need to transfer large amounts of data among cores

and accelerators to meet the requirements of AI applications

causes the memory hierarchy –shared caches, interconnect,

and DRAM– to become a source of unpredictability.

In order to enable a practical real-time analysis of such

systems, previous work [31], [33], [58], [59] has focused on

isolating the access to the memory hierarchy for independent

execution contexts (partitions or virtual machines (VM)). A

significant advantage of these techniques is that they integrate

easily into hypervisors (e.g., [31], [56]) and enable the isolated

execution of unmodified VMs. By design, though, the strength

of these approaches (i.e., ensuring isolation) is also their

major drawback when it comes to establishing communication

channels –which, by definition, violate isolation– between

VMs.

In this paper, we propose an architecture that enables pre-

dictable communication for VMs on heterogeneous MPSoCs

under explicit consideration of the interference caused by

memory communication. We further analyze and evaluate

the memory interplay between cores and a DMA engine

concurrently accessing the interconnect. DMA engines (widely

available on MPSoCs) are specifically designed to perform

efficient data copying and thus are the natural accelerator-

choice to perform bulk data transfers. Still, it is unclear what

their impact is on the timeliness of transfers under memory

interference. As basic building blocks, we rely on established

mechanisms (cache-coloring, MemGuard, hardware-enforced

QoS [7], [33], [49], [59]) that have proved to perform well

to guarantee isolation, but we: a) extend their scope to isolate

independent VM communication flows and empirically deter-

mine the maximum sustainable DRAM memory bandwidth;

b) make them available as a virtio-based, transparent and

predictable communication framework; c) provide an analysis

of the scheduling of different communication flows under

consideration of the maximum sustainable bandwidth and

framework overheads, and provide guidelines for system-

designers on how to dimension the DMA regulation to both

maximize CPU bandwidth and ensure schedulability.

Given the widespread adoption of hypervisors (e.g., [4],

[24], [44]) as industry standard to partition complex software

systems, our real-time communication framework enables pre-

dictable communication between (unmodified) VMs hosted on

top of a hypervisor (in our proof-of-concept, Jailhouse [4]).

The interface between our framework and the unmodified

VMs is implemented using the virtio standard [1], to ensure

the widest portability. Using a standardized virtual device

interface at the hypervisor level, the system can be composed

of different operating systems, each satisfying the require-

ments of its applications. By exploiting the flexibility of the

virtio approach, our framework provides universal but pre-

dictable communication between OSs of different complexity

and criticality, for example RTOSs and baremetal algorithms

for hard real-time applications and Linux for soft real-time

applications.

Our approach is inspired by the split driver model provided

by Xen [54] and used in the high-performance domain to

multiplex accesses from different VMs to a single hardware

device. Under this model, a device (i.e., its hardware resources,

including the interfaces –mapped registers, PCI aperture, etc.–

to access it) is assigned by the hypervisor configuration to

a single VM (normally with special privileges), which then

acts as multiplexer (or broker) for other VMs that require

access to it. The other VMs do not see the physical device but

communicate via a virtualized device –emulated at hypervisor

level– first with the broker, which in turn schedules the

communication flows on the physical device.

Our architecture adopts a similar broker-based approach

with the following advantages:

• Asynchronous communication: Once the data to be trans-

ferred has been taken in charge by the broker, a VM

could continue its execution in parallel to the data transfer

(assuming there are no data dependencies).

• Straightforward DMA integration: Since modern MP-

SoCs feature at least one DMA, the broker can program

the DMA to take care of the copy operations. Since

the broker is the only VM entitled to program the

DMA, access control to this resource is trivially solved.

Furthermore, compared to CPU-based data copies, using

DMA engines in a real environment makes the broker’s

CPU available to perform other computations.

• Centralized scheduling: being in charge of both DMA

and shared hardware devices, the broker can centralize

scheduling decisions regarding, e.g., priorities of com-

munication flows.

By design, our architecture does not allow direct shared-

memory communication between VMs, which we assume to

have different criticality. The broker is the only (privileged)

VM that mediates communication among different criticality

levels. This type of architecture cleanly separates the configu-

ration and resource allocation concerns for partitioned systems

(e.g., avionics or automotive ones) and easily integrates onto

systems that already support communication concepts such

as ARINC’s queuing ports [5]. Strictly partitioning shared-

memory areas and delegating the control over communication

to a privileged entity simplifies the certification activities that

are required by, e.g., DO-178 C or ISO 26262 standards [27],

[46]. In fact, communication among entities with different

criticality levels is traditionally subject to careful planning and

close scrutiny by certification authorities [47] since this repre-

sents an intentional violation of partitioning. Our framework

aims to simplify these certification activities by enabling the

separation of different independent communication flows.

To summarize, in this paper, we: 1) propose the design of

a virtio-based real-time communication framework to enact

predictable communication between isolated VMs under con-

sideration of memory interference; 2) contribute a real-time

analysis of limited-preemption EDF scheduling of the commu-

nication flows under consideration of the measured framework

overheads; 3) provide guidelines to system designers on the

dimensioning of the system regulation to achieve maximum

bandwidth, while preserving the I/O flow schedulability; 4)

propose a reference implementation of the framework on the

Jailhouse hypervisor [4] using FreeRTOS virtual machines and

contribute a methodology to empirically assess the maximum

DRAM memory saturation under non-additive memory regu-

lation; and 5) empirically evaluate our solution and compare

it against the theoretical analysis.

We introduce the system model in Section II. Section III

presents the architecture and technical details on the imple-

mentation. Section IV contains the schedulability analysis and

summarizes guidelines to dimension the minimum DMA band-

width. Section V shows how to measure DRAM saturation

and our experimental results. We present related work in

Section VI, and we conclude in Section VII.

II. SYSTEM MODEL

We consider a multi-core platform with m general-purpose

application CPUs (or cores), identified as CPUk, k ∈
{1, . . . ,m}. Each CPU includes a private level 1 (L1) cache

(separated for data and instructions); all the CPUs share

a level 2 (L2) cache, which is also the last-level cache

(LLC). The caches implement a hardware coherence protocol.

The LLC uses a write-back, write-allocate policy for normal

cacheable memory. To be as generic as possible, we assume

that the LLC line replacement policy is pseudo-random. Mem-

ory transactions that miss in LLC cause accesses to DRAM.

A cache refill causes a read transaction of size Sl bytes; a

dirty line write-back triggers a write transaction of Sl bytes.

We assume that the mapping between physical addresses and

cache sets is known, i.e., we assume that the cache controller

performs no index bits hashing [34].

The main memory subsystem comprises a single DRAM

controller in a multi-bank configuration. We assume that bank

interleaving is disabled. This way, the bits in the physical

addresses (PA) that encode for DRAM banks (bank bits) are

more significant than those encoding for DRAM rows (row

bits) and columns (column bits).

Our architecture employs a partitioning hypervisor to define

a set of isolated partitions. Each partition has a set of statically

allocated hardware resources so that the guest OS operating

within the partition is only capable of using/accessing a subset

of the system resources. We refer to the guest OS and its

partitioned hardware resources with the term virtual machine

(VM). The partitioning hypervisor performs no virtual-CPU

scheduling. Although a VM could have multiple CPUs as-

signed, without loss of generality, in this paper we consider

the case that a given VMk is statically allocated one CPUk.1

Furthermore, each VM (and hence CPU) has a statically

assigned private slice of DRAM and a private LLC partition

using page coloring [31], [33].

We consider sporadic unicast VM-to-VM communication

facilitated by a broker that is responsible for organizing

1The CPU-dependent memory-regulation consideration can be applied
independently to each CPU.

is its period –or minimal inter-arrival time for sporadic flows–

and Di represents its (arbitrary) relative deadline. Finally, si
(resp., ri) represents the index of the sender (resp., receiver)

VM and corresponding CPU.

III. ARCHITECTURE

Figure 1 presents our system architecture. A hypervisor

instantiates a specialized VM for communication management

(broker VM) and up to m−1 real-time constrained application

VMs (each associated with one core). The hypervisor uses

cache coloring [31] to provide dedicated cache partitions to

each VM (including the broker VM) and regulates the band-

width of the VMs using MemGuard [59]. It also configures the

DMA engine’s bandwidth regulation and memory mapping.

The system features an IO-MMU (e.g., [8]) that allows the

DMA to use the same address translation as the cores.

A. Virtio Interface

In order to achieve maximum portability across different

virtual machines and guest OSs, the communication model as

specified in Section II utilizes the widely-used virtio spec-

ification [1] as the interface for data exchange. The guest

operating system can use regular virtio-compliant drivers. The

hypervisor exposes a virtualized device (virtio device) to the

guest OS and provides a transparent relay of communication

requests to the broker VM. Virtio provides several types of

virtual devices (e.g., block or network devices).

The virtio specification follows a classic driver model for

DMA-capable devices: The driver allocates data buffers and

provides them to the (virtual) device in advance for incoming

traffic and on-demand for outgoing traffic. Data buffers are

organized in a structure called virtqueue, which is based on

a buffer descriptor table, and two ring buffers for buffer

exchange between driver and device. Virtio devices utilize

multiple virtqueues for different purposes. A basic device

setup uses one RX virtqueue for incoming traffic and one TX

virtqueue for outgoing traffic. In addition to the device types,

the virtio specification defines their virtqueues, and the format

of data exchange with them. Furthermore, different transport

options for virtqueues such as MMIO and PCI-based device

virtualization are specified.

The event notification between drivers and devices relies on

OS/hypervisor-provided primitives. Specifically, a virtio device

can notify a driver using interrupts. A driver can notify a

device using a synchronous exception by performing an access

to a specific address that is mapped with restricted access

permissions for the VM.

Our approach uses the interface for socket-type devices,

which avoids the overheads of simulating a full communi-

cation device (e.g., networking card) by utilizing the inher-

ent ring buffers of the virtio specification for direct packet

exchange between the guest and the host (hypervisor). We

use one virtqueue for incoming (RX) and one virtqueue for

outgoing (TX) data transfers. The socket interface also defines

a third type of virtqueue for event data that is not required by

our approach and therefore unused in our architecture.

Virtio socket devices transfer data in packets, which consist

of a fixed-size header and a data payload of dynamic size.

However, since the receiver allocated buffers for incoming

traffic in advance, the buffers’ (pre-allocated) size can be

much smaller than the data payload buffer. This has to be

accommodated in the communication infrastructure by split-

ting the payload and copying it into multiple receiver buffers.

As a simplification, we split packets with large payloads into

multiple data transfers.

B. Data Flow Scheduling

Our approach employs a trusted communication broker

VM for predictable data traffic between otherwise isolated

environments. As discussed in Section II, this is achieved by

scheduling and rate-limiting the data transfers of statically

defined communication flows between pairs of VMs. The

broker receives all packet transfer requests and schedules

the packets according to EDF using the fixed granularity

Sc. The broker then programs the DMA to perform data

copies of the same Sc size. The packets are inserted into a

queue sorted by increasing absolute deadlines. To reduce the

processing overhead on the broker VM, we use a separate

queue per guest and let the driver on the sender core insert

the packet from hypervisor mode. Due to this optimization,

we create a separate cache partition to isolate data that needs

to be shared between broker and hypervisor from interference.

This partition contains information about the communication

channels, the sorted packet queues of all guests, lock objects,

and ring buffers for the return of used packet information

objects.

Figure 2 shows an example packet transfer from VM1 to

VM2. When a guest application in VM1 decides to send a

packet 1 , its virtio socket driver prepares the packet header

and payload in a buffer in the TX virtqueue. VM1 then 2

sends a notification to the virtio socket device. The device,

which operates in hypervisor mode, 3 determines the channel

of the pending packet and inserts the packet information into

the per-VM transfer queue. In detail, the device computes

the absolute deadline for the packet as the current time

plus the modified relative deadline D′
i for the packet (see

Section IV for how D′
i is derived) and inserts the packet into

the queue, sorting by the absolute deadline. Then 4 it notifies

the broker VM. The broker proceeds to 5 schedule all transfers

pending from any guest (see also the analysis in Section IV).

When a packet is scheduled for transfer, the DMA engine is

programmed to 6 copy the payload data from the TX buffer

of the sender to an empty RX buffer of the receiver. After

completion 7 , the DMA notifies the broker, which in turn
8 informs the sender and the receiver VM of the completed

transfer. The guest OSs will then 9 free the no longer required

TX buffer (VM1) and process the received packet payload

(VM2). Lastly, VM2 will add a new (or the received) RX

buffer to its RX virtqueue to restore the full capacity of the

virtqueue for incoming traffic.

make a scheduling decision, the time to program the DMA

engine before the transfer, the time for processing the DMA

notification once the transfer is completed, and the time it

takes to trigger a notification of a partial transfer to the

receiver VM. The last transfer suffers an additional overhead

Opckt,i to remove the packet from its sender’s queue, resulting

in a transfer time Odma + C last
i /bb + Opckt,i. We show

how to determine the values of such overheads in details

in Section V-B. Furthermore, the broker cannot make any

scheduling decision while a transfer is ongoing. We thus model

the scheduling of data transfers by associating each task τ ′i
with an execution time:

C ′
i(b

b) = (⌈Ci/Sc⌉ − 1) · (Odma + Sc/b
b) + (3)

Odma + C last
i /bb +Opckt,i =

= ⌈Ci/Sc⌉ ·Odma + Ci/b
b +Opckt,i,

obtained by summing the transfer times of all packets, and a

non-preemptive time equal to the maximum transfer time of

any packet:

q′i(b
b) = Odma + (4)

{

C last
i /bb +Opckt,i if Ci ≤ Sc;

max
(

Sc/b
b, C last

i /bb +Opckt,i

)

if Ci > Sc.

Finally, let Or to denote the time required by the receiver

VM to obtain such notification after it is triggered by the

broker. When scheduling flow τi, our implementation uses a

modified relative deadline D′
i = Di − Omax

s − Or. Hence, if

Γ′ is schedulable, any packet of τi will complete transfer no

later than a′i,j +Di − Omax
s − Or; since a′i,j ≤ ai,j + Omax

s

and it takes Or to notify the receiver VM after the last data

transfer of the packet, this means that the packet will complete

no later than ai,j + Di, i.e., τi and indeed Γ is schedulable

according to our model.4

We next summarize the schedulability analysis for sporadic,

limited-preemption tasks under EDF in [9], [12]. Note that [9],

[12] do not consider release jitter, but such term can be inte-

grated in the analysis following related work (e.g., see [50]).

We use U ′
i(b

b) = C ′
i(b

b)/P ′
i and U ′(bb) =

∑n

i=1 U
′
i(b

b) for

the utilizations of task τ ′i and task set Γ′, respectively.

For an interval of length t, the demand bound function

DBFi(t, b
b) of task τ ′i is the maximum cumulative execution

requirement of all jobs of τ ′i that have both their release times

and absolute deadlines within the interval. When including

release jitter and arbitrary deadlines, this is computed as:

DBFi(t, b
b) = max

(

0, 1+
⌊ t− (D′

i − J ′
i)

P ′
i

⌋)

·C ′
i(b

b). (5)

[9], [12] show that if Γ′ is not schedulable, then at least one

of the following conditions must hold: (1) ∃ t ≥ 0 such that:
∑

i=1...n

DBFi(t, b
b) > t; (6)

4Note that the reverse is not true, i.e., it is possible for Γ to be schedulable
and Γ′ to be unschedulable. Hence, the schedulability condition in the
Theorem 1 is necessary and sufficient for Γ′ but only sufficient for Γ.

(2) ∃ t, t′ with t ≥ t′ > 0 and a job of a task τ ′j with absolute

deadline strictly greater than t such that the job executes non-

preemptively between time 0 and t′ and:

∑

i=1...n,i 6=j

DBFi(t, b
b) > t− t′. (7)

Note that by definition t′ ≤ q′j(b
b), and hence t − t′ ≥ t −

q′j(b
b). Therefore, Equation 7 implies:

q′j(b
b) +

∑

i=1...n,i 6=j

DBFi(t, b
b) > t. (8)

Also note that since the job of τ ′j executes starting at 0 and has

absolute deadline after t, it must hold D′
j > t. Assume D′

j >
t ≥ D′

j − J ′
j ; then by definition DBFj(t, b

b) ≥ C ′
j(b

b) ≥
q′j(b

b). This implies:

∑

i=1...n

DBFi(t, b
b) ≥ q′j(b

b) +
∑

i=1...n,i 6=j

DBFi(t, b
b) > t,

(9)

meaning that Condition (1) is also violated at time t. For this

reason, it suffices to check Condition (2) for t < D′
j −J ′

j , for

which DBFj(t, b
b) = 0 and thus

∑

i=1...n,i 6=j DBFi(t, b
b) =

∑

i=1...n DBFi(t, b
b).

A schedulability criterion can then be constructed by negat-

ing Condition (1) and (2). In the following theorem, we

express it in a compact way by maximizing the value of

q′j(b
b) in Equation 8 over all tasks that meet the condition

D′
j − J ′

j > t.

Theorem 1: A sporadic limited-preemption task set Γ′ is

schedulable under EDF if and only if:

∀ t ≥ 0 : Q(t, bb) +
∑

i=1...n

DBFi(t, b
b) ≤ t, (10)

where:

Q(t, bb) = max 0 ∪ {q′j(b
b) | ∀j ∈ {1...n}, D′

j − J ′
j > t}.

(11)

Note that Theorem 1 does not provide a schedulability test,

because we cannot test an infinite number of values of t.
However, it is simple to see that it is sufficient to test those

values of t for which the demand bound function for some

task changes, which comprise the following set:

D = {k · P ′
i +D′

i − J ′
i | ∀i ∈ {1...n}, k ∈ N}. (12)

Furthermore, following [10], [11], [23], it can be shown that if
Conditions (1), (2) are violated, then it must hold U ′(bb) > 1
or t < T ∗(bb), with:

T ∗(bb) =














H if U ′(bb) = 1;

min
[

H,max
(

maxn
i=1{D

′

i − J ′

i},

1
1−U′(bb)

·
∑n

i=1 U
′

i(b
b) ·

(

P ′

i − (D′

i − J ′

i)
)

)] if U ′(bb) < 1,

(13)

Algorithm 1: Compute minimum DMA bandwidth for

which Γ′ is schedulable

1 input: Transformed task set Γ′

2 output: Minimum bandwidth bbmin; or FAILURE if

the task set cannot be scheduled

3 if U ′(bb) ≤ 1 cannot be satisfied then

4 return FAILURE

5 Compute bbmin,0 (Eq. 16)

6 bbmin ← bbmin,0

7 for tk ∈ D in increasing order do

8 if tk ≥ T ∗(bbmin) then

9 return bbmin

10 if Q(tk, b
b) +

∑n

i=1 DBFi(tk, b
b) ≤ tk cannot be

satisfied then

11 return FAILURE

12 Compute bbmin,k (Eq. 18 for case Q(tk, b
b) = 0)

13 bbmin ← max(bbmin, b
b

min,k)

where H = lcm(P ′
1, . . . , P

′
n) is the hyperperiod. Therefore,

instead of Equation 10 the schedulability test can use the

equivalent condition:

U ′(bb) ≤ 1 ∧ (14)

∀ t ∈ D, t < T ∗(bb) : Q(t, bb) +
∑

i=1...n

DBFi(t, b
b) ≤ t.

Note that the test involves performing a O(n) computation for

each time point in D until T ∗(bb). As discussed in [9], [12], if

U ′(bb) is upper bounded by a constant c < 1, then the number

of points to be tested, and thus the complexity of the test, is

pseudo-polynomial.

A. Minimum DMA Bandwidth

Equation 14 allows us to check the schedulability of the

transformed task set Γ′, and therefore also of the original flow

set Γ, assuming that the bandwidth bb available to the DMA is

given. However, in general the system designer might be more

interested in specifying a set of flows, and then determining

the minimum value of bb under which Γ′ is schedulable;

minimizing bb maximizes the remaining memory bandwidth

that can be assigned to the m cores according to Equation 2.

A naive way of computing such minimum bandwidth bbmin

would be to use binary search over the values of bb that

satisfy Equation 14. However, in the remaining of this section

we show that we can directly compute bbmin with the same

computational complexity of running the test in Equation 14

–that is, by performing a O(n) computation for each tested

point in D. For simplicity of exposition, let us index the time

instants in D as t1, t2, . . . , tk, . . . in increasing order. We also

use ηi(t) = max
(

0, 1 +
⌊

t−(D′

i
−J ′

i
)

P ′

i

⌋)

to denote the number

of jobs included in the demand bound function for τ ′i at t.

Note that the condition U ′(bb) ≤ 1 can be rewritten to:

n
∑

i=1

(

⌈Ci/Sc⌉ ·Odma + Ci/b
b +Opckt,i

)

/P ′
i = (15)

n
∑

i=1

(

⌈Ci/Sc⌉ ·Odma +Opckt,i

)

/P ′
i +

∑n

i=1 Ci/P
′
i

bb
≤ 1.

Then if
∑n

i=1

(

⌈Ci/Sc⌉ · Odma + Opckt,i

)

/P ′
i ≥ 1, the

condition cannot be satisfied, and the task set is unschedulable.

Otherwise, we obtain:

bb ≥

∑n

i=1 Ci/P
′
i

1−
∑n

i=1

(

⌈Ci/Sc⌉ ·Odma +Opckt,i

)

/P ′
i

. (16)

Let bbmin,0 denote the minimum value of bb that satisfies

Equation 16 (that is, the right hand size of the equation). We

use bbmin,k to denote the minimum value of bb that satisfies

Equation 10 for t = tk; we can obtain bbmin,k by rewriting

Equation 10 in a way similar to Equation 15. However, because

it can either hold Q(t, bb) = 0 or Q(t, bb) = Odma + Sc/b
b

or Q(t, bb) = Odma + C last
j /bb + Opckt,j for some task τ ′j ,

we have to consider three cases. If ∄τ ′j : D′
j − J ′

j > t, then

Q(t, bb) = 0 and we obtain:

∑

i=1...n

DBFi(t, b
b) = (17)

n
∑

i=1

ηi(t) ·
(

⌈Ci/Sc⌉ ·Odma +Opckt,i

)

+

∑n

i=1 ηi(t) · Ci

bb
≤ t.

Again, if
∑n

i=1 ηi(t) ·
(

⌈Ci/Sc⌉ · Odma + Opckt,i

)

≥ t, the

condition cannot be satisfied, and the task set is unschedulable.

Otherwise we obtain:

bbmin,k =

∑n

i=1 ηi(t) · Ci

t−
∑n

i=1 ηi(t) ·
(

⌈Ci/Sc⌉ ·Odma +Opckt,i

) .

(18)

Similar equations can be derived if there exists a task τ ′j with

D′
j −J ′

j > t, in which case we need to consider both the case

of Q(t, bb) = Odma + C last
j /bb + Opckt,j , where τ ′j is the

task with the largest value of C last
j among those that satisfy

D′
j − J ′

j > t, as well as the case Q(t, bb) = Odma + Sc/b
b

(if for any such task it holds Ci > Sc). In this case, bbmin,k is

taken as the maximum between the cases that apply.

Finally, Algorithm 1 shows how to compute bbmin. We

initially set bbmin = bbmin,0. Then, we iterate over the points in

D. At each step, we update bbmin as the maximum between its

previous value, and the newly computed bbmin,k. If at any step

the schedulability condition cannot be met no matter the value

of bb, the algorithm fails. Otherwise, the algorithm terminates

once it reaches a tk greater than or equal to T ∗(bbmin), as this

guarantees that the condition is met for all subsequent values

of t under the computed DMA bandwidth bbmin.

TABLE I
DMA QOS REGULATION VALUES TO PROTECT CORES AT FIXED MEMGUARD BUDGET.

Total MemGuard
Budget

∑
Qk

Per Core Assigned
MemGuard Budget Qk

USTRESS Bandwidth (MB/s)
1 CPU only

USTRESS Bandwidth (MB/s)
with 3 CPUs and DMA

DMA Bandwidth (MB/s) @ QoS a
b

s.t. BW of CPUs unaffected

150 50 220 220 1074 @ QoS 0 (disabled)

165 55 244 244 649 @ QoS 60

180 60 264 264 485 @ QoS 40

195 65 286 286 148 @ QoS 10

210 70 308 308 47 @ QoS 3

225 75 330 318 No valid QoS possible

TABLE II
OVERHEADS AND DELAYS IN OUR IMPLEMENTATION (IN NANOSECONDS)

AND MAPPING TO COMMUNICATION FLOWS IN FIGURE 2.

Symbol
Actions

Fig. 2
MIN AVG MAX MED

Hypervisor entry & exit
(Sender OS to Hyp.)

∆HC 2 939 941 949 939

PCI transport layer
(Hyp.)

∆PT 3 111 295 757 292

Packet parsing (Hyp.) ∆PP 3 181 433 1161 424

Queue locking (Hyp.) ∆QL 3 71 98 142 101

Queue insertion (Hyp.) ∆QI 3 50 74 101 70

Queue find location for
insertion (per packet)
(Hyp.)

∆QA 3 24 26 30 26

Queue remove (Broker) ∆QR 8 20 33 40 30

Find packet with earliest
deadline (per VM) (Bro-
ker)

∆PS 5 20 32 71 30

Process packet and pro-
gram DMA (Broker)

∆PD 5 373 406 949 393

Finalize transfer incl. IPI
(Broker & Hyp.)

∆FT 8 2222 2350 2646 2353

DMA IRQ processing
(Broker)

∆IP 7 797 811 828 808

OS notification IPI + IRQ
processing by receiver
(Broker to Receiver OS)

∆BR 8 + 9 1370 1403 1460 1400

accounting of the hypervisor exit, we upper bound the receiver

notification delay as:

Or = ∆max
BR −

∆max
HC

2
. (22)

Note that we use the maximum for ∆HC because we offset

∆max
HC used in Odma.

The remaining terms Opckt,i, J
′
i involve adding and remov-

ing packets from priority queues; hence, it is necessary to

discuss the queue implementation. We use a linked list imple-

mentation for the priority queues that requires n comparisons

for a queue containing n elements. The time for insertion of

a packet by VMk without locking can be bounded using the

maximum amount of packets sent by VMk that can be pending

at any time. Under the assumption that a packet is schedulable,

it cannot be pending for longer than Di. Hence, given the set

Γk of flows that have VMk as their sender, the maximum

amount of pending packets sent by VMk is
∑

i⌈Di/Pi⌉ for

τi ∈ Γk and Γk ⊆ Γ. Thus, queue insertion is bounded by:

OQI,k = ∆max
QI +

∑

τi∈Γk

⌈Di/Pi⌉ ·∆
max
QA . (23)

Additionally, the priority queues are protected by a lock, so

the sender and the broker can be blocked for a short amount

of time. The lock is based on the Jailhouse implementation

of a spinning ticket lock, such that the blocking time with

two contenders can be bounded to the maximum duration the

contender spends holding the lock. Blocking due to the broker

is given by:

BB = ∆max
QL +∆max

QR . (24)

Blocking due to the sender is given by:

BS,k = ∆max
QL +Omax

QI,k. (25)

The time to remove a packet τi ∈ Γk from the queue of sender

VMk is then:

Opckt,i = BS,k +BB . (26)

Finally, we consider the release jitter. Our implementation

uses event signaling and lock-free access to the first queue

entry (the packet with the earliest deadline) such that the

maximum time between the assignment of the deadline on

VMk and the first instant where the broker can consider the

packet τi ∈ Γk in a scheduling decision is given by:

J ′
i = (∆max

PP +BS,k +BB) · |Γk| : (27)

for each packet insertion, the virtio device has to parse the

packet header and update the queue, for which it can be

blocked due to the broker modifying the queue. After the

insertion, the packet is immediately visible by the broker. The

multiplication term results from the capability of the virtio

driver to prepare and send more than one TX buffer with one

send operation (i.e., at most |Γk|). Additionally, a prior transfer

might have just started, so the packet can only be considered

after the completion of the prior transfer.

C. Schedulability Experiments

To assess the impact of the measured overheads, we gener-

ated synthetic flow sets and tested their schedulability based on

the analysis in Section IV. A flow set is generated as follows.

We first assign a maximum allowable DMA bandwidth bb

in MB/s, a number of VMs v, flows n, a packet size C,

and a desired system utilization (prior to overhead inflation)

U ∈ [0, 1]. We then randomly and uniformly generate a

utilization Ui for each flow [14], such that U =
∑n

i=1 Ui, and

compute the inter-arrival time Pi based on Ui = (C/bb)/Pi.

Each flow is randomly assigned to a sender among the v VMs.

Figure 5 shows the obtained results of the ratio of schedu-

lable flow sets for a system with v = 4 VMs where we

10 20 30 40 50 60 70 80 90 100

Utilization (before overhead)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

a
ti
o
 o

f
s
c
h
e
d
u
la

b
le

 f
lo

w
 s

e
ts

C = 4KB, n = 3

C = 4KB, n = 12

C = 4KB, n = 48

C = 12KB, n = 3

C = 12KB, n = 12

C = 12KB, n = 48

(a) DMA BW = 150 MB/s

10 20 30 40 50 60 70 80 90 100

Utilization (before overhead)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a
ti
o
 o

f
s
c
h
e
d
u
la

b
le

 f
lo

w
 s

e
ts

C = 4KB, n = 3

C = 4KB, n = 12

C = 4KB, n = 48

C = 12KB, n = 3

C = 12KB, n = 12

C = 12KB, n = 48

(b) DMA BW = 500 MB/s

10 20 30 40 50 60 70 80 90 100

Utilization (before overhead)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a
ti
o
 o

f
s
c
h
e
d
u
la

b
le

 f
lo

w
 s

e
ts

C = 4KB, n = 3

C = 4KB, n = 12

C = 4KB, n = 48

C = 12KB, n = 3

C = 12KB, n = 12

C = 12KB, n = 48

(c) DMA BW = 1000 MB/s

Fig. 5. Ratio of schedulable flow sets: 4 VMs, flows = {3, 12, 48}, packet size = {4, 12} KiB, and DMA bandwidth = {150, 500, 1000} MB/s.

vary the DMA bandwidth in {1000, 500, 150}, the number

of flows in {3, 12, 48}, and the packet size in {4, 12} KiB.

For each utilization point, we generated and tested 1000 flow

sets. Note that schedulability significantly improves as the

DMA bandwidth bb decreases. This is because the utilization

is computed based on the transfer time C/bb; for lower

values of bb, the transfer time becomes larger while the

overheads in Table II remain constant. Thus their impact on

the schedulability of the flow sets is reduced. Also, note that

the system performs better for a larger number of tasks and

packet size: as those parameters increase, the average period

of each task at a given utilization also increases, which lessens

the blocking effect due to the non-preemptive transfer of a data

chunk of size Sc = 4 KiB.

We also measured the time required to run the schedulability

analysis for 48 flows and a packet size of 12 KiB. We

implemented the analysis using (single-threaded) Matlab code

executed on an AMD Ryzen 5 3600 and obtained a median

of 0.34ms, mean of 4.9ms, 95th percentile of 8.0ms, and

maximum of 25.82s. This shows that the time required to

perform the analysis is small for most cases, even with a large

number of flows. Note that increasing the number of VMs

would not affect the complexity of the analysis.

D. Comparison

In Table III, we show a comparison of our implementation

and the schedulability analysis. We used binary search to

find the smallest period for which a single packet of a given

size can be transferred when the DMA is limited to a given

bandwidth, where the deadline is set equal to the period.

We ran the same scenario in our implementation for 1,000

iterations to obtain the maximum latency. We selected four

scenarios from the middle of the possible QoS ranges (QoS

40 and QoS 10, see Table I) to select viable combinations of

utilization and periods to run the experimental scenarios. As

Table III shows, the measurement of FreeRTOS confirms the

analytical limits.

VI. RELATED WORK

This work analyzes the problem of predictably copying data

among VMs and virtualized hardware resources on MPSoCs

TABLE III
COMPARISON OF IMPLEMENTATION (LATENCY) AND ANALYSIS (PERIOD)

FOR A UNIDIRECTIONAL FLOW WITH IMPLICIT DEADLINES.

Experiment FreeRTOS

DMA Size Latency Period Diff

(MB/s) (KiB) (ns) (ns) (%)

148 4 34,535 36,933 -6.5

148 12 99,818 103,171 -3.3

485 4 14,747 17,703 -16.7

485 12 42,777 45,480 -5.94

under consideration of maximum memory bandwidth and

memory interference. The issues of real-time data communi-

cation among different VMs have been tackled from different

angles with software- and hardware-based solutions.

a) Software-based solutions: Cache partitioning (e.g.,

MemGuard) [33] and bank partitioning [59] are well-known

techniques to mitigate and eliminate memory interference

among independent partitions on MPSoCs. Kloda et al. [31]

proposed a deterministic approach to carefully control the

architecture-specific address bits used at the cache and DRAM

level. In their work, I/O devices are statically assigned to only

one VM. Sohal et al. [49] leveraged the Quality of Service [7]

infrastructure offered by some ARM boards to create a reg-

ulating framework for system-wide bandwidth management

and control. Their work does not explicitly consider I/O nor

data transfer between VMs, but we adopt the same QoS

techniques to control DMA bandwidth in our architecture.

Tabish et al. [52] proposed a communication architecture for

strictly partitioned multicore processors. Their work considers

interference but only at the DRAM-bank level and does not ex-

plicitly address virtualized environments. Several works [20],

[25], [32], [36], [53] have addressed the problem of managing

I/O in the context of the Quest-V separation kernel. Although

real-time bounds on the I/O communication are provided, the

effect of memory contention and interference at interconnect

level is not explicitly considered. The MC2 project [19],

[30] implemented inter-core communication using a shared

DRAM bank. Their approach does not explicitly consider

virtualization and the use of a DMA engine to perform data

transfer. A recent work from Casini et al. [17] proposed a

hypervisor-based architecture that shares similarities with the

architecture provided by this work. Similar to this work,

their work formally analyzed the end-to-end latencies of I/O

data transfers under consideration of virtualization overheads.

However, the problems of memory-related interference, the

use of DMA to perform data transfers, and the real-time

scheduling of independent I/O flows are not considered by

their work. In addition, contrary to [17], this work uses the

virtio API [1], thus enabling unmodified execution of virtu-

alized OSs. Several real-time resource access protocols exist

to manage memory regions shared among VMs of different

criticality (we refer to [15] for a recent review). Compared

to our architecture, approaches based on shared memory are

much more difficult to configure, as they require a global

knowledge on the activation of tasks within different VMs

(knowledge that might not even be available to the system

integrator). Furthermore, these approaches require difficult to

produce certification artefacts to document the interplay and

mitigation strategies for the partition interference channels [46]

that they create. Pellizzoni et al. [41]–[43] proposed WCET

analytical bounds that explicitly consider I/O, but consider

neither memory interference nor virtualized environments.

The predictable execution model [40] and the scratchpad-

centric OS [51] propose a three-phase execution model to

address the predictability of execution and I/O phases. Several

works [2], [3], [45] have tackled the related problems of

latency and scheduling in network communication, and in both

the real-time and high-performance computing areas, works

exist that experimentally evaluate data transfer techniques in

virtualized environments (e.g., [6], [21], [48]). In [16], [18],

the memory interference on several NVIDIA-based SoCs has

been experimentally characterized.

In order to manage I/O complexity, several approaches –

although without any formal guarantee– are adopted in the

industrial world. For example, in the avionics domain, the

ARINC [5] standard mandates queuing ports to manage inter-

partition communication, and the Xen Hypervisor uses a split-

driver and ring buffer model [54] to multiplex I/O requests

coming from different VMs.

b) Hardware-based solutions: Compared to software-

only solutions, prototyping on hardware and/or FPGA is more

complex and time-intensive. Unsurprisingly, therefore fewer

hardware-based solutions exist. Jiang et al. [28], [29] proposed

the Virtualized Complicated Device Controller and MCS-IOV

hardware extensions to enable predictable virtualization of I/O.

Betti et al. [13] implemented FPGA hardware extensions to

manage I/O data transfers on COTS systems. IOMPU and

MPIOV [37], [38] are solutions that improve the management

of PCI-based hardware devices. SR-IOV [35] devices can

isolate different communication (network) flows. Contrary to

these works, our solution does not require extra hardware.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed and implemented a frame-

work to predictably transfer data between otherwise iso-

lated VMs and virtualized hardware resources on heteroge-

neous MPSoCs under consideration of memory contention.

The framework leverages standard mechanisms (e.g., cache-

partitioning and QoS regulation) to control memory interfer-

ence and is based on the observation that DRAM utilization is

additive when working below the saturation point. Thanks to

its virtio-based design, the framework can be directly used by

unmodified guest OSs. While in this paper we have evaluated

a lightweight implementation based on FreeRTOS, we plan to

investigate Linux virtio drivers in the future.

Our analysis of the communication flows supported by the

framework enables designers to bound the maximum band-

width assigned to cores and the DMA, and to meet the deadline

constraints of the flows while avoiding over-utilization of

the DRAM memory controller, thus causing unpredictable

latencies. Our evaluation has shown the matching of the

analysis and a low-overhead implementation realized on top

of the Jailhouse hypervisor with a baremetal broker VM and

FreeRTOS guests.

Our framework targets (certifiable) systems with different

VM criticalities. As such, the architecture does not adopt a

zero-copy approach, but it requires explicit copy operations

between VMs. However, each copy operation –and its implicit

interference– is controlled by a trusted broker component.

Given its lightweight implementation, the broker only mini-

mally extends the trusted codebase (and thus a certification

effort). On the other hand, this architecture devotes a core

(even if not necessarily an application core on an MPSoC)

to the broker functionality, and it requires to separate the

hypervisor-broker communication using cache partitioning.

There are multiple directions that we would like to in-

vestigate as future work. The current architecture benefits

from the use of a DMA engine to perform the data trans-

fer. However it would be interesting to investigate the size-

dependent trade-off between DMA programming and using the

broker’s CPU to perform the data copy actively. Additionally,

other data transfer architectures are possible. For example, the

broker VM can become superfluous by shifting the burden

of performing the data copy onto the sender or receiver VM.

Such architectures would require a different analytical model

than the one we currently adopted, making a comparison

between approaches even more challenging. Finally, extending

the model to consider multicast communication would be an

additional challenge.

ACKNOWLEDGMENTS

This work has been partially supported by the NSERC,

CMC Microsystems, and the National Science Foundation

(NSF) under grant numbers CNS 1932529, CNS 1815891,

CCF 2008799. Marco Caccamo was supported by an Alexan-

der von Humboldt Professorship endowed by the German

Federal Ministry of Education and Research. We want to

thank Zubair Waheed (an undergraduate at the University of

Waterloo) for performing an initial performance estimation on

the ZCU102 platform.

REFERENCES

[1] OASIS Committee Specification 01. Virtual I/O Device (VIRTIO) Ver-
sion 1.1. https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html,
April 2019.

[2] Laure Abdallah, Mathieu Jan, Jérôme Ermont, and Christian Fraboul.
Reducing the Contention Experienced by Real-Time Core-to-I/O Flows
over a Tilera-Like Network on Chip. In 2016 28th Euromicro Conference

on Real-Time Systems (ECRTS), page 86–96, 2016.

[3] Saeed Abedi, Neeraj Gandhi, Henri Maxime Demoulin, Yang Li, Yang
Wu, and Linh Thi Xuan Phan. RTNF: Predictable Latency for Network
Function Virtualization. In 2019 IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), page 368–379, 2019.

[4] Siemens AG. Jailhouse hypervisor. https://github.com/siemens Ac-
cessed: 2021-02-08.

[5] Airlines Electronic Engineering Commitee. ARINC Specification 653
P1-5, 2019.

[6] Gabriele Ara, Luca Abeni, Tommaso Cucinotta, and Carlo Vitucci.
On the use of kernel bypass mechanisms for high-performance inter-
container communications. In Michèle Weiland, Guido Juckeland,
Sadaf R. Alam, and Heike Jagode, editors, High Performance Computing

- ISC High Performance 2019 International Workshops, Frankfurt,

Germany, June 16-20, 2019, Revised Selected Papers, volume 11887
of Lecture Notes in Computer Science, pages 1–12. Springer, 2019.
doi:10.1007/978-3-030-34356-9_1.

[7] ARM. ARM CoreLink QoS-400 Network Interconnect Advanced Qual-
ity of Service. https://developer.arm.com/documentation/dsu0026/latest
Accessed: 2021-02-08.

[8] ARM. ARM System Memory Management Unit Architecture Speci-
fication - SMMU architecture version 2.0. https://developer.arm.com/
documentation/ihi0062/latest Accessed: 2021-02-08.

[9] Sanjoy Baruah. The limited-preemption uniprocessor scheduling of
sporadic task systems. In 17th Euromicro Conference on Real-Time

Systems (ECRTS’05), page 137–144, 2005.

[10] Sanjoy K. Baruah, Rodney R. Howell, and Louis E. Rosier. Feasibility
Problems for Recurring Tasks on One Processor. Theor. Comput. Sci.,
118(1):3–20, September 1993.

[11] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively
Scheduling Hard-Real-Time Sporadic Tasks on One Processor. In In

Proceedings of the 11th Real-Time Systems Symposium, page 182–190.
IEEE Computer Society Press, 1990.

[12] Marko Bertogna and Sanjoy Baruah. Limited Preemption EDF Schedul-
ing of Sporadic Task Systems. Industrial Informatics, IEEE Transactions

on, 6:579–591, 12 2010.

[13] Emiliano Betti, Stanley Bak, Rodolfo Pellizzoni, Marco Caccamo, and
Lui Sha. Real-Time I/O Management System with COTS Peripherals.
IEEE Transactions on Computers, 62(1):45–58, 2013.

[14] Enrico Bini and Giorgio C. Buttazzo. Measuring the Performance of
Schedulability Tests. Real-Time Syst., 30(1–2):129–154, May 2005.

[15] Björn B. Brandenburg. Multiprocessor Real-Time Locking Protocols: A
Systematic Review, 2019. arXiv:1909.09600.

[16] Nicola Capodieci, Roberto Cavicchioli, Ignacio Sañudo Olmedo, Marco
Solieri, and Marko Bertogna. Contending memory in heterogeneous
SoCs: Evolution in NVIDIA Tegra embedded platforms. In 2020 IEEE

26th International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), page 1–10, 2020.

[17] Daniel Casini, Alessandro Biondi, Giorgiomaria Cicero, and Gior-
gio Buttazzo. Latency Analysis of I/O Virtualization Techniques in
Hypervisor-Based Real-Time Systems. In 27th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS 2021), 2021.

[18] Roberto Cavicchioli, Nicola Capodieci, and Marko Bertogna. Memory
interference characterization between CPU cores and integrated GPUs
in mixed-criticality platforms. In 2017 22nd IEEE International Confer-

ence on Emerging Technologies and Factory Automation (ETFA), page
1–10, 2017.

[19] Micaiah Chisholm, Namhoon Kim, Bryan C Ward, Nathan Otterness,
James H Anderson, and F Donelson Smith. Reconciling the tension be-
tween hardware isolation and data sharing in mixed-criticality, multicore
systems. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages
57–68. IEEE, 2016.

[20] Matthew Danish, Ye Li, and Richard West. Virtual-CPU Scheduling
in the Quest Operating System. In 2011 17th IEEE Real-Time and

Embedded Technology and Applications Symposium, page 169–179,
2011.

[21] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma, and D. Sanchez.
KPart: A Hybrid Cache Partitioning-Sharing Technique for Commodity
Multicores. In 2018 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), pages 104–117, 2018.

[22] FreeRTOS. FreeRTOS Real-time operating system for microcontrollers.
https://www.freertos.org/.

[23] Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and
Non-Preemptive Real-Time UniProcessor Scheduling. INRIA, RR-2966,
1996.

[24] Bosch GmbH. ETAS RTA Hypervisor. https://www.etas.com/en/
products/rta-vrte.php Accessed: 2021-02-08.

[25] Ahmad Golchin, Soham Sinha, and Richard West. Boomerang: Real-
Time I/O Meets Legacy Systems. In 2020 IEEE Real-Time and Embed-

ded Technology and Applications Symposium (RTAS), page 390–402,
2020.

[26] Mohamed Hassan. Reduced latency dram for multi-core safety-critical
real-time systems. Real-Time Systems, pages 1–36, 2019.

[27] International Standardization Organization. ISO 26262:2018(E) Road
vehicles — Functional safety, 2018.

[28] Zhe Jiang and Neil Audsley. VCDC: The Virtualized Complicated
Device Controller. In 29th Euromicro Conference on Real-Time Systems

(ECRTS 2017), volume 76 of Leibniz International Proceedings in

Informatics (LIPIcs), page 5:1–5:21, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[29] Zhe Jiang, Xiaotian Dai, Pan Dong, Ran Wei, Dawei Yang, Neil Audsley,
and Nan Guan. Towards an Analysable, Scalable, Energy-Efficient I/O
Virtualization for Mixed-Criticality Systems. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, page 1–1,
2021.

[30] N. Kim, S. Tang, N. Otterness, J. Anderson, F. D. Smith, and D. Porter.
Supporting I/O and IPC via Fine-Grained OS Isolation for Mixed-
Criticality Real-Time Task. Real-Time Systems, 56(4):349–390, 2020.

[31] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna. Deterministic Memory Hierarchy and Virtualization for
Modern Multi-Core Embedded Systems. In 2019 IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), page 1–14,
2019.

[32] Ye Li, Richard West, Zhuoqun Cheng, and Eric Missimer. Predictable
Communication and Migration in the Quest-V Separation Kernel. In
2014 IEEE Real-Time Systems Symposium, page 272–283, 2014.

[33] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-time cache management framework for multi-core archi-
tectures. In 2013 IEEE 19th Real-Time and Embedded Technology and

Applications Symposium (RTAS), page 45–54, 2013.

[34] Clémentine Maurice, Nicolas Scouarnec, Christoph Neumann, Olivier
Heen, and Aurélien Francillon. Reverse Engineering Intel Last-Level
Cache Complex Addressing Using Performance Counters. In 2015

18th International Symposium on Research in Attacks, Intrusions, and

Defenses (RAID), volume 9404, page 48–65, 2015.

[35] Microsoft. Introduction to Single Root I/O Virtualization.
https://docs.microsoft.com/en-us/windows-hardware/drivers/
network/single-root-i-o-virtualization–sr-iov- Accessed: 2021-02-10.

[36] Eric Missimer, Katherine Missimer, and Richard West. Mixed-Criticality
Scheduling with I/O. In 2016 28th Euromicro Conference on Real-Time

Systems (ECRTS), page 120–130, 2016.

[37] Daniel Muench, Michael Paulitsch, and Andreas Herkersdorf. IOMPU:
Spatial Separation for Hardware-Based I/O Virtualization for Mixed-
Criticality Embedded Real-Time Systems Using Non-transparent
Bridges. In 2015 IEEE 17th International Conference on High Perfor-

mance Computing and Communications, 2015 IEEE 7th International

Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th

International Conference on Embedded Software and Systems, page
1037–1044, 2015.

[38] Daniel Münch, Michael Paulitsch, Oliver Hanka, and Andreas Herk-
ersdorf. MPIOV: Scaling hardware-based I/O virtualization for mixed-
criticality embedded real-time systems using non transparent bridges to
(Multi-Core) multi-processor systems. In 2015 Design, Automation Test

in Europe Conference Exhibition (DATE), page 579–584, 2015.

[39] NVIDIA. NVIDIA Jetson AGX Xavier. https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-agx-xavier/
Accessed: 2021-02-08.

[40] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John
Criswell, Marco Caccamo, and Russell Kegley. A Predictable Execution
Model for COTS-Based Embedded Systems. In 2011 17th IEEE Real-

Time and Embedded Technology and Applications Symposium, page
269–279, 2011.

[41] Rodolfo Pellizzoni, Bach D. Bui, Marco Caccamo, and Lui Sha.
Coscheduling of CPU and I/O Transactions in COTS-Based Embedded
Systems. In 2008 Real-Time Systems Symposium, page 221–231, 2008.

[42] Rodolfo Pellizzoni and Marco Caccamo. Toward the Predictable Inte-
gration of Real-Time COTS Based Systems. In 28th IEEE International

Real-Time Systems Symposium (RTSS 2007), page 73–82, 2007.
[43] Rodolfo Pellizzoni and Marco Caccamo. Impact of Peripheral-Processor

Interference on WCET Analysis of Real-Time Embedded Systems. IEEE

Transactions on Computers, 59(3):400–415, 2010.
[44] The Linux Foundation Projects. ACRN hypervisor.

https://projectacrn.org Accessed: 2021-02-08.
[45] Tao Qian, Frank Mueller, and Yufeng Xin. Hybrid EDF Packet

Scheduling for Real-Time Distributed Systems. In 2015 27th Euromicro

Conference on Real-Time Systems, page 37–46, 2015.
[46] RTCA Inc. RTCA/DO-178C Software Consideration in Airborne Sys-

tems and Equipment Certification, December 2011.
[47] RTCA Inc. Supporting Information for DO-178C and DO-278A,

December 2011.
[48] Ignacio Sañudo, Roberto Cavicchioli, Nicola Capodieci, Paolo Valente,

and Marko Bertogna. A Survey on Shared Disk I/O Management in
Virtualized Environments under Real Time Constraints. SIGBED Rev.,
15(1):57–63, March 2018.

[49] Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. E-
WarP: A System-wide Framework for Memory Bandwidth Profiling and
Management. In 2020 IEEE Real-Time Systems Symposium (RTSS),
2020.

[50] Marco Spuri. Analysis of Deadline Scheduled Real-Time Systems.
INRIA, RR-2772, 1996.

[51] Rohan Tabish, Renato Mancuso, Saud Wasly, Rodolfo Pellizzoni, and
Marco Caccamo. A real-time scratchpad-centric OS with predictable
inter/intra-core communication for multi-core embedded systems. Real-

Time Systems, 55, 10 2019.

[52] Rohan Tabish, Jen-Yang Wen, Rodolfo Pellizzoni, Renato Mancuso,
Heechul Yun, Marco Caccamo, and Lui Sha. SCE-Comm: A Real-Time
Inter-Core Communication Framework for Strictly Partitioned Multi-
core Processors. In 2020 9th Mediterranean Conference on Embedded

Computing (MECO), page 1–6. IEEE, 2020.

[53] Richard West, Ye Li, Eric Missimer, and Matthew Danish. A Virtualized
Separation Kernel for Mixed-Criticality Systems. ACM Trans. Comput.

Syst., 34(3), June 2016.

[54] Xen. Xen Split Driver Model. https://wiki.xenproject.org/wiki/
Xen Project Software Overview Accessed: 2021-02-08.

[55] Xilinx. Xilinx Versal. https://www.xilinx.com/products/silicon-
devices/acap/versal.html Accessed: 2021-02-08.

[56] Xilinx. Xilinx Xen Support with Cache-Coloring. https://github.com/
Xilinx/xen/commits/xilinx/release-2020.2. Accessed: 2021-02-08.

[57] Xilinx. ZCU 102 MPSoC TRM. https://www.xilinx.com/support/
documentation/user guides/ug1085-zynq-ultrascale-trm.pdf.

[58] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms. In 2014 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS), page 155–166, 2014.

[59] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
Bandwidth Management for Efficient Performance Isolation in Multi-
Core Platforms. IEEE Transactions on Computers, 65(2):562–576, 2016.

