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ABSTRACT the upcoming generations of Intel and ARM CPU processors will

Matrix-multiplication units (MXUs) are now prevalent in every com-
puting platform. The key attribute that makes MXUs so successful
is the semiring structure, which allows tiling for both parallelism
and data reuse. Nonetheless, matrix-multiplication is not the only
algorithm with such attributes. We find that many algorithms share
the same structure and differ in only the core operation; for ex-
ample, using add-minimum instead of multiply-add. Algorithms
with a semiring-like structure therefore have potential to be accel-
erated by a general-purpose matrix operation architecture, instead
of common MXUs.

In this paper, we propose SIMD?, a new programming para-
digm to support generalized matrix operations with a semiring-like
structure. SIMD? instructions accelerate eight more types of ma-
trix operations, in addition to matrix multiplications. Since SIMD?
instructions resemble a matrix-multiplication instruction, we are
able to build SIMD? architecture on top of any MXU architecture
with minimal modifications. We developed a framework that emu-
lates and validates SIMD? using NVIDIA GPUs with Tensor Cores.
Across 8 applications, SIMD? provides up to 38.59x speedup and
more than 6.94X on average over optimized CUDA programs, with
only 5% of full-chip area overhead.
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1 INTRODUCTION

Matrices are essential data structures at the core of scientific com-
puting, data and graph analytics as well as artificial intelligence
(AI) and machine learning (ML) workloads. Due to the stagnating
general-purpose processor performance scaling and memory-wall
problem [72], a recent trend of efficient computing on matrices
focuses on building hardware accelerators. Famous examples in-
clude NVIDIA’s Tensor Cores [52, 53], Google’s Tensor Processing
Units (TPUs) [27], and the recent IBM Power 10 MMA unit [67].
The demand of matrix-multiplication accelerators is so strong that
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also provide matrix extensions and integrate MXUs [3, 23].

Compared with conventional SIMD processors (e.g., GPGPUs),
MXUs are more efficient in general matrix multiplication (GEMM)
for two reasons. First, GEMMs are easy to parallelize. Each MXU
can take tiles from input matrices and generate an output tile, and
multiple MXUs can work together to form a larger GEMM accelera-
tor, temporally or spatially. Second, GEMMs have a higher compute
intensity than vector operations (e.g., saxpy [1]). Such compute
intensity alleviates the memory-wall issue in modern throughput-
oriented SIMD processors and allows architects to simply add more
compute throughput to scale the performance of MXU with the
same on-chip and off-chip bandwidth limitation.

Besides GEMM, a wide-spectrum of problems, including all-pair-
shortest-path, minimum spanning tree as well as graph problems,
have matrix-based algorithms/solutions share the same computa-
tion pattern. They all follow a semiring-like structure - A ® (B ® C),
where the problem generates results (or intermediate results) by
performing two-step operations (& and ®) on three matrix inputs
(A, B and C). For example, dynamic programming methods for
all-pair-shortest-path problems using All Pairs Bellman-Ford or
Floyd-Warshall algorithms can be expressed in a semiring-like struc-
ture through having the ® operator represent the addition-based
distance update operations [47, 62], and the minimum operation
replaces @ operator.

However, as modern MXUs are highly specialized for just GEMM
or convolutions, programmers must perform non-trivial algorithm
optimizations (e.g., mapping matrix multiplications to convolu-
tions [21, 40]) to tailor these applications for supported matrix
operations. Besides, the resulting program may still under-utilize
MXUs as mapping the original set of matrix operations to GEMMs
that require changing the dataflow or data layout of the program
before the actual computation can start. Finally, for problems includ-
ing the dynamic programming algorithms, existing MXUs cannot
provide native support for the required @ and ® operations and
have to fallback to SIMD processors (e.g., CUDA cores), even though
these algorithms share the semiring-like structure with GEMM.

To address these issues, this paper presents the SIMD? archi-
tecture to enable more efficient matrix operations for a broader
set of applications. SIMD? provides a wider set of matrix-based
operations that naturally fit the application demands and abstract
these functions through an appropriate set of instructions. SIMD?
reuses and extends the function of existing MXUs and data paths to
minimize the overhead in supporting additional matrix operations.



The SIMD? architecture brings the following benefits in accelerat-
ing matrix applications. First, programmers or compilers can lever-
age the richer set of instructions that naturally maps to common ma-
trix operations without sophisticated code transformations, which
facilitates matrix-based programming. By performing more matrix
operations with a minimum number of instructions, the SIMD? in-
structions further reduce the control and data movement overhead
over conventional SIMD instructions by exposing a matrix-based
abstraction.

As an initial step in this direction, our SIMD? architecture in-
troduces eight more types of instructions for matrix computation,
including (1) min-plus, (2) max-plus, (3) min-mul, (4) max-mul, (5)
min-max, (6) max-min, (7) or-and, and (8) plus-norm, in addition
to existing mul-plus instructions. Similar to existing hardware-
accelerated GEMM operations, these instructions also take tiles of
matrices as inputs and update the resulting output tile. Therefore,
these instructions can easily share the same infrastructure of an
existing MXU, including instruction front-end, memory, and regis-
ter files. As these SIMD? instructions all follow the same data flow
and computation pattern, they can also share the operand delivery
structure and simply require a modified data path to perform new
operations.

As the necessary hardware support of SIMD? resembles existing
MXUs, a SIMD? architecture can be implemented on top of any
matrix-multiplication accelerators, either in standalone application-
specific integrated circuit (ASICs) or as processing elements in CPUs
or GPUs. This paper presents SIMD? in the form of extending GPU
architectures as this allows us to leverage existing interface/front-
end of GPU programming models and mature software stacks, and
focus on the benefits of the SIMD? model. On the other hand, since
modern matrix-based applications still rely on non-matrix opera-
tions to complete all computation tasks, this architecture also offers
better performance by avoiding data movements across system
interconnects and taking advantage of existing high-bandwidth
memory hierarchy in GPUs.

We evaluate the proposed SIMD? architecture and hardware
units through software emulation and hardware synthesis. We
also made the emulation framework and hardware design publicly
available through a web-hosted repository!. We demonstrate § ap-
plications that can naturally leverage these operations in their core
algorithms. With the proposed SIMD? MXUs, these applications en-
joy up to 38.59% speedup and more than 6.94x speedup on average.
Synthesis results show that over a conventional MXU that supports
only multiply-and-accumulate, SIMD? MXU adds 69% area over-
head while supporting 8 different operations under the same clock
period. This area overhead is 5% of the total chip area according to
public die shot photos.

In presenting the SIMD? architecture, this paper makes the fol-
lowing contributions.

(1) It identifies a set of matrix applications with semiring-like struc-
ture and reveals strong potential in performance gain if SIMD?
support is available in hardware.

(2) It proposes SIMD? architecture, programming model, instruc-
tions, and hardware units to accelerate semiring-like applications.
(3) It evaluates the performance benefit of the proposed SIMD?

1You may find the code repository at https://github.com/escalab/SIMD2

Table 1: Exemplary problems with their mappings to
semiring-like structures and the corresponding definitions
of operators to their solutions.

Type of 1st OP | 2nd OP | Representative

matrix operations @ ® Algorithm(s)

Plus-Multiply + X Matrix Multiplications,
Matrix Inverse

Min-Plus min + All-pairs shortest paths
problem

Max-Plus max + Maximum cost (critical path)

Min-Multiply min X Minimum reliability paths

Max-Multiply max X Maximum reliability paths

Min-Max min max Minimum spanning tree

Max-Min max min Maximum capacity paths

Or-And or and Transitive and reflexive
closure

Add-Norm + la—b|? | L2 Distance

architecture, and the cost of SIMD? hardware units over a common
MXU to demonstrate the opportunity of a SIMD? programming
paradigm.

2 THE CASE FOR SIMD?

The motivation of proposing SIMD? for matrix and tensor problems
comes from two sources— A family of matrix algorithms that share
the same semiring pattern in computation, and the emergence of
GEMM accelerators designed around the semiring pattern. Both
motivate the need and the possibility of a single umbrella that
covers a large set of matrix algorithms to facilitate efficient use of
hardware components.

2.1 The Commonality among Matrix Problems

Matrices provide a natural mathematical expression for linear
systems, graphs, geometric transformations, biological datasets,
and so on. In addition to data representations, many applications
using matrices as inputs and outputs also share the same algebraic
structure in their algorithms. This algebraic structure contains two
binary operators, @ and ®. The @ operator satisfies properties
analogous to addition. The ® operator is associative and typically
has a multiplicative identity element analogous to multiplication.
In other words, a large set of matrix algorithms can be formalized
as:

D=Co®(A®B)
where A, B, C are input matrices, D is the output, as well as the two
customized operators, ® and ®.

The above algebraic structure is similar to a semiring, (R, ®, ®),
which contains a set R equipped with two binary operators, ® and
®. The @ operator in a semiring satisfies properties analogous to
addition. The ® operator in a semiring has more restrictions as it
must be associative, distributive as well as having a multiplicative
identity element. Since some algebraic structure of matrix problems
is similar, but not mathematically identical to semirings, we use
the term semiring-like structure when referring to this identified
algebraic structure.

General matrix multiplication (i.e., GEMM) is one classic example
that follows this structure. To simplify the discussion, we use square



1 |for (i = 0; 1 < N; i++)

2 for (j = 0; j < N; j++)

3 for(k = 0; k < N; k++){
4 DLil[j] = C[ill[]j]

5 + A[i][k] « B[k][]];
6 }

7 (a)

N o W e

for (src = 0; src < N; src++)
for (dst = 0; dst < N; dst++)
for(k = < N; k++){

0; k
D[src][dst] = min(C[src][dst],
(Clsrc][k] + A[k][dst]));

(b)

Figure 1: Code snippet of (a) GEMM and (b) APSP. See Section 4 for full APSP implementation.

matrices in the following examples. Let A be an N by N matrix and
a(i, j) represent the (i, j)-entry of A. Then, there also exists two
other n by n matrice, B and C, where b(i, j) and c(i, j) represent the
(i, j)-entries of B and C, respectively. General matrix multiplication
consists of a set of computation for the (i, j)-entry of the resulting
matrix D, d(i, j), where d(i,j) = c(i,j) + ZkN=0 a(i, k) x b(k, j).
Figure 1(a) illustrates the code example for matrix multiplication
with N X N matrices. The matrix multiplication therefore has a
semiring-like structure where the @ operates as pair-wise addition
for each pair of elements sharing the same coordinate i, j on each
side of the operator, matrix C and the result of A® B. The ® operates
as calculating the value of the (i, j)-entry in the result matrix D
as 22:1 a(i, k) x b(k, j) for each i, j, k. With the aforementioned
common form, a matrix multiplication problem is D = C + A X B.

Besides matrix multiplications, a wide spectrum of algorithms,
especially those for solving graph problems or algorithms that
leverage dynamic programming, can also be formulated as a struc-
ture similar to matrix multiplications by customizing the @ and ®
operators. For example, Figure 1(b) shows how the inner loops of all-
piars Bellman-Ford algorithm [10] for all-pairs-shortest-path (APSP)
problem is similar to the semiring-like algebraic structure as GEMM
(Figure 1(a)). Each iteration in Line 4-5 of Figure 1(b) performs
the computation of d(i, j) = min{c(i, j), minszo[c(i, k) +a(k, j)]},
where each d(i, j), c(i, j), or a(i, j) represents the (i, j)-entry of
matrix D, C or A, respectively. The D matrix is the result of tem-
poral all-pairs distances after the iteration, C is the result from the
last iteration, and A is the original adjacency matrix. Therefore,
we can leverage the semiring-like structure to express the all-pairs
Bellman-Ford algorithm for the APSP problem by replacing the
@ operator with min and the ® operator with +. The core loops
become D = C min (C + A).

In addition to the APSP problem, there are other algorithms
amenable to such a semiring-like structure. Table 1 illustrates a set
of problems and their corresponding customizations of ® and ®
operators in their algorithms.

Though a semiring-like structure can serve as a generic program-
ming paradigm for matrix problems, conventional approaches in
solving matrix problems require the programmers to transform
matrix data into lower-ranked data representations (e.g., scalar
numbers or vectors) and redesign algorithms on these data repre-
sentations to fulfill the programming paradigm that modern CPUs
and GPUs can support. Performance optimizations on programs
solving these problems is especially challenging as they are in-
tensive in both computation and data accesses on conventional
processor architectures.
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Figure 2: An example SIMD architecture.
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Figure 3: An example MXU for GEMM.

2.2 Hardware Support for Semiring-like
Structure in GEMMs Accelerators

The semiring-like algebraic structure is the key enabler behind mod-
ern tensor accelerators, like MXUs for GEMMs, which improves
over conventional SIMD processors. From a hardware design point
of view, conventional SIMD architectures, shown in Figure 2, are
bottlenecked by the vector register file bandwidth. Such data trans-
fer bottleneck (von Neumann bottleneck [70]) limits how many
compute units (ALUs) can be fed by the on-chip memory. For exam-
ple, a 4-wide register file can only supply to 4 ALUs at a time. Even
if the degree of parallelism grows as the problem size increases, the
data transfer bottleneck remains.

MXUs, instead, leverage the semiring-like algebraic structure
to break such bottleneck. Figure 3 shows an example implementa-
tion of MXU, modeled after the matrix unit in TPUs [27]. In this
MXU example, one input matrix is broadcast to multiple ALUs be-
cause of the intrinsic data reuse opportunities in algorithms with
a semiring-like structure. The output matrix also leverages the
structure (associative) and is accumulated across multiple ALUs
before being stored into the output matrix buffer. With the same
4-wide memory structure, we can now supply data to 16 ALUs.
More importantly, since the computation complexity is O(N?), and
the data transfer is O(N?) in semiring-like algorithm, the number
of ALUs can scale much more than the on-chip memory bandwidth,
alleviating the memory wall issue.
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Figure 4: The high-level architecture of how SIMD? units are integrated in GPU systems and the design of an SIMD? unit.

As a result, modern MXUs are designed around the semiring-like
structure, instead of optimizing the ALUs for multiply-add. The
programming model of these MXUs also leverages the nature of
the algorithm to perform work partitioning and tiling to execute
a larger GEMM with multiple MXUs in a system [52] or across
systems [26]. For example, the wmma API for NVIDIA Tensor Core
works at the sub-tile granularity (e.g., 16x16), and programmers
can combine multiple wmma calls to merge sub-tile into the full
problem.

Our insight is that supporting a wide range of semiring-like
algorithms requires minimal changes on top of any systems with
GEMM accelerators. It is clear that the ALU in Figure 3 is orthogonal
to the hardware support (broadcast and accumulate) for a semiring-
like structure. For example, if we enhance the ALU in Figure 3 to
support add — minimum, then the same MXU architecture can now
be used to accelerate solving APSP. That is, the recent development
of MXUs for GEMM has laid the ground of supporting semiring-like
algorithms, and with a better abstraction and hardware support,
many more matrix algorithms can be accelerated. This motivates
us to propose and design SIMD?, a new programming paradigm
and architecture for semiring-like algorithms.

3 SIMD? ARCHITECTURE

We propose the SIMD? ISA to efficiently support matrix algorithms
beyond GEMMs. SIMD? provides a programming paradigm and an
instruction set to reflect the natural semiring-like structure in solv-
ing these matrix problems. The hardware units for SIMD? instruc-
tions extend existing MXU to support the proposed programming
paradigm. This section will introduce both.

3.1 The SIMD? hardware architecture

Like GEMM accelerators, SIMD? architecture can be implemented
as a standalone processor that contains SIMD? units only, or func-
tional units embedded with general-purpose scalar/vector processor
cores to share the same instruction front-end. In this work, we chose
the latter design and prototype SIMD? architecture on a GPU as
Figure 4 shows. Specifically, we build on top of the NVIDIA SM ar-
chitecture [5], which integrates Tensor Core as part of the subcore
in a GPU SM. The resulting high-level architecture resembles GPU
SM with Tensor Cores [59] as the SIMD? units implementing SIMD?
instructions are part of a streaming multiprocessor, but the rest of
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Figure 5: ® ALU and ® ALU in an SIMD? unit.

the architectural components (front-end, memory-subsystem, etc.)
are shared with conventional GPU cores.

The SIMD? unit in Figure 4(c) extends conventional MXUs to
use different ® and @ operators. Each SIMD? unit can perform
an SIMD? arithmetic instruction using ® operation on fixed-size
matrix tiles (e.g., 4x4 in Figure 4(c)) and produce an output matrix
by reducing the result from ® operation with the ® operator. Unlike
tensor cores that only support multiply and accumulation, the ®
ALU supports multiply, min/max, add/and, and L2 dist, and the
@ ALU supports add, min/max, or, and subtract. Both ALUs are
configured by decoding SIMD? instructions, as shown in Figure 5.

We chose to build SIMD? architecture on top of GPUs for the
following reasons. First, since matrix operations just serve as the
core computation in matrix applications, applications typically rely
on scalar or vector processors to preprocess or postprocess ma-
trix data structures. Collocating SIMD? units with other process-
ing elements enables efficient and fine-grained data exchange and
synchronization among heterogeneous computing units. Second,
GPU’s memory architecture design is more bandwidth-oriented
and serves better for the purpose since each SIMD? unit would con-
sume/produce large amounts of data at once. Finally, there already
exists Tensor Cores in NVIDIA’s GPU architecture that allow us to
leverage as a baseline design and an emulation framework.

Alternatively, we have also explored implementing the SIMD?
unit by building a dedicated hardware unit for each semiring-like
algorithm. For example, in addition to the MXU for GEMM, we
can add a hardware unit for min-add, another unit for add-norm,
and so on. Nonetheless, this design introduces 300% area overhead
(See Section 6.1) to the GEMM-only MXU, which is > 4x of the
overhead introduced by the combined design in Figure 4.

(2]



Table 2: A summary of the PTX instruction set architecture for SIMD?

Data Movement Instructions | Data Types | Matrix Shape | Source — Destination

SIMD? load fp16 16x16 Shared Memory — Register File
SIMD? store fp32 16x16 Register File — Share Memory
Arithmetic Instructions o oP ® OP Algorithm

SIMD?. mma + X GEMM

SIMD? minplus min + All-pairs shortest paths problem
SIMD? maxplus max + Maximum cost (critical path)
SIMD?Z. minmul min X Minimum reliability paths
SIMD? maxmul max X Maximum reliability paths
SIMD? minmax min max Minimum spanning tree

SIMD? maxmin max min Maximum capacity paths
SIMD?.orand or and Transitive and reflexive closure
SIMD?.addnorm + la—b|? L2 Distance

Table 3: Example API of SIMD? programming model

Sample Low-level Synopsis

Description

simd2::matrix<matrix_type, m, n, k, data_type>

Declaration function, declare the matrix will be applied in the mxnxk
matrix-matrix operation.

simd2::fillmatrix(simd2::matrix, value)

Fill the target matrix with given value.

simd2::loadmatrix(simd2::matrix, source, 1d)

Load value from source memory location to the target matrix, load with
the step of leading dimension.

simd2::mmo(simd2::matrix, simd2::matrix,
simd2::matrix, simd2::matrix, simd2::opcode)

Performs the matrix-matrix operation with given opcode.

simd2:storematrix(target, simd2::matrix, 1d)

Store value to source memory location from the target matrix, store with
the step of leading dimension.

While we chose GPUs as the baseline system, building an SIMD?
architecture on other GEMM-based accelerators, such as TPUs [27],
should be straightforward and low overhead.

3.2 The SIMD? ISA

The SIMD? instruction extension builds on top of the warp-level
matrix-multiply-accumulate (wmma [54]) instructions for GPUs and
extends it to support new arithmetic instructions. Table 2 lists these
SIMD? instructions.

The load instruction moves a chunk of data from the 1D shared
memory address space as a fixed-size (16x16) matrix to the per-
thread register file. Like the wmma abstraction, each thread in the
warp stores part of the matrix in the register file and contributes
to the whole warp-level operation. The store instruction instead
moves the matrix segments in the register file back to the 1D shared
memory address space.

In our implementation, we assume input operands are always
in 16-bit, half-precision floating-point format (fp16), while the out-
put data is always in 32-bit, single-precision floating point format
(fp32). While supporting other formats (e.g., int8) is possible, for
many algorithms, we find fixed-precision format cannot converge
to the same result as baseline fp32 implementations without SIMD?
instructions.

For the arithmetic operations, we introduced eight more &-®
ops, in addition to the classic matrix-multiply-accumulate (mma).
These nine instructions map to the frequently used matrix prob-
lem patterns in Table 1. The SIMD? arithmetic instruction shares
the same register file as the vector processor, and uses arguments
that specify register locations of input and output matrices. The

latency of each SIMD? instructions depends on the actual hardware
implementation of the SIMD? unit, and in our implementation, we
provision the SIMD? unit to be the same throughput as the con-
ventional MXUs so that all SIMD? arithmetic instructions have the
same latency.

Similar to our changes for hardware architecture, we expect
adding the SIMD? instructions to other ISAs that already support
GEMMs, such as Intel AMX [23], to be straightforward. These ma-
trix extensions already support matrices as input or output operands
and provide data movement instructions for matrices (load/store
matrix). SIMD? simply adds more arithmetic instruction on top of
them. We align our SIMD? design point with modern GPU archi-
tectures to facilitate our evaluation, but this is not fundamental.

4 PROGRAMMING MODEL

The SIMD? units in our proposed architecture can perform matrix
operations on a set of predefined matrix shapes and data types.
Therefore, the native programming interface reflects the abstrac-
tion by which these SIMD? units expose through the SIMD? ISA. To
further facilitate programming at the application level, the frame-
work can provide higher-level library functions that decouple the
programmability from architecture-dependent parameters.

Table 3 summarizes the available functions from SIMD?’s low-
level programming interface. Each of these functions maps directly
to a set of instructions that Section 3.2 describes. The exemplary
programming interface resembles the C++ warp matrix operations
that NVIDIA’s Tensor Cores use to smooth the learning curve, but
not a restriction from the SIMD? architecture.



1 | void simd2_minplus( half «A, half «B,

2 float «C, float «D,

3 int m, int n, int k){

4 // set tile ID

5 int tile_id_y = get_tile_id_y ();

6 int tile_id_x = get_tile_id_x();

7 // Declare simd2 matrices

8 simd2 :: matrix <simd2 :: matrixa ,16,16 ,16 , half>
mat_A;

9 simd2 :: matrix <simd2 :: matrixb ,16,16 ,16 , half>
mat_B;

10 simd2 :: matrix <simd2 ::accum,16 ,16 ,16 , float >
mat_C;

11 // load C to c_tile

12 simd2:: loadmatrix (mat_C, C, 16)

13 // loop over K, each time do 16x16x16 mmo

14 for(int tile_id_k=0;tile_id_k <k; tile_id_k +=16)
{

15 // load A/B into a_tile/b_tile

16 simd2 :: loadmatrix (mat_A, A, 16)

17 simd2 :: loadmatrix (mat_B, B, 16)

18 // performe mmo

19 simd2 : :mmo(mat_C, mat_A, mat_B, mat C,

minplus) ;

20

21 // store back results

22 simd2:: storematrix (D,mat_C, 16);

23 |}

Figure 6: Tiled minplus MM on some architecture with SIMD?
supports

Since the low-level interface reflects the architecture of SIMD?
units, these functions must operate on a set of matrix shapes and
data types that the underlying SIMD? hardware natively supports.
The program needs to first declare the desired matrix shapes and re-

serve the register resources for input matrices using the simd2: :matrix

function. Then, the program can load input matrices into these re-
served resources using the simd2::loadmatrix function or set
values using the simd2: : fillmatrix function. The simd2: :mmo
function receives arguments describing the desired SIMD? opera-
tion to perform on the input matrices and the location of the desti-
nation matrix. After the code finishes necessary computation on
these matrices, the simd2: : storematrix can reflect the updated
values to a memory location. In case the source dataset does not
fit the supported formats, the program typically needs to explicitly
partition datasets into tiles of matrices and aggregate partial results
appropriately.

To facilitate programming and alleviate the burden of program-
mers, our framework provides a set of high-level functions as an
alternative programming interface. Each maps to a specific type of
SIMD? arithmetic operations. These functions are essentially com-
posed using the aforementioned low-level functions. In contrast to
the low-level interface with limitations on inputs, these high-level
functions allow the programmer to simply specify the memory
locations of datasets and implicitly handle the tiling/partitioning
of datasets and algorithms.

Figure 6 provides an example code that implements a high-level
interface function that solves the min-plus matrix problems. The
compute kernel starts by identifying the logical SIMD? unit of the
instance itself is occupying (Lines 6—7). The compute kernel then
allocates resources on the SIMD? units (Lines 9-11). The code then
loads the current partial result of the target tile into one of the
allocated matrix storage (Line 13). The following for-loop (Lines

1 | float « adj_mat_d;

2 | float » dist_d_delta;

3 | float = dist_d;

4 | cudaMalloc (..., adj_mat_d, ...);

5 | cudaMalloc (..., dist_d, ...);

6 | cudaMalloc (..., dist_d_delta, ...);

7

8 | cudaMemcpy (adj_mat_d, ..., H2D);

9 | cudaMemcpy (dist_d_delta, ..., H2D);

10 | cudaMemcpy (dist_d , ., H2D);

11

12 | bool converge = true;

13 | while(converge) {

14 simd2_minplus(adj_mat_d, dist_d, dist_d,
dist_d_delta, v, v, v);

15 converge = check_convergence (dist_d ,
dist_d_delta, ...);

16

17 | cudaMemcpy (... , dist_d, , D2H) ;

Figure 7: CUDA kernel implenmentation of APSP using
SIMD? API

15-21) loads different pairs of tile matrices from the raw input
(Lines 17-18) and performs min-plus operations (Line 20) on these
tile matrices together with tile loaded in Line 13.

To use the compute kernel from Figure 6 or the low-level SIMD?
interface, the programming model still requires a host program
to control the workflow, coordinate the computation on various
types of processors and move datasets among memory locations on
heterogeneous computing devices. Figure 7 shows an example code
that solves the all pair shortest path problem using the All-pairs
Bellman Ford algorithm. As SIMD? units are auxiliary computing
resources to a GPU, the program code will need to explicitly allocate
GPU device memory (Line 4-10) and move data to the allocated
space before invoking the high-level simd2_minplus function that
Figure 6 implements (Line 14). The naive SIMD? implementation
of All-pairs Bellman Ford algorithm would require V iterations of
Line 14. The naive implementation assumes the diameter of the
graph is always the same as the number of vertices, the worst case
scenario. However, the diameter of a real-world graph is way lower
than that and a majority of iterations in Line 14 repeatedly generate
identical results. Therefore, the implementation in Figure 7 added
a convergence check (i.e., the check_convergence function call)
in Line 15 to compare if any element in the result matrix changes
from the last iteration. If the result remains the same, the algorithm
can terminate earlier. The check_convergence (Line 15) is a pure
GPU kernel. Because both SIMD? units and conventional GPU cores
share the same device memory and registers, the program does not
need additional data movements between Line 14 and Line 15.

In Figure 7, we use All-pairs Bellman Ford algorithm as the inputs
of SIMD? computation in this algorithm are easier to understand.
In practice, the Leyzorek’s Algorithm can solve APSP problem
with fewer SIMD? operations [35]. Leyzorek’s Algorithm still uses
SIMD?, but computes C = C & (C ® C) in Line 14 instead. In this
way, Leyzorek’s Algorithm only requires Ig|V| iterations to solve
an APSP problem in the worst case scenario.

5 EXPERIMENTAL METHODOLOGY

As SIMD? promotes matrix-based algorithms, the SIMD?-ized im-
plementations of our benchmark applications may use different
algorithms compared to their state-of-the-art implementations, typ-
ically using vectorized or scalar-based algorithms, on alternative
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Figure 8: The workflow of the emulation framework for
SIMD? evaluation.

platforms. Therefore, we designed a framework that allows us to
validate the correctness of SIMD?-ized programs and emulate the
performance of SIMD?-ized programs with or without SIMD? hard-
ware acceleration presented. This section will describe these aspects
in detail.

5.1 Emulation framework

To evaluate SIMD?, we developed a framework that evaluates the
correctness and performance for each program under test on top
of a testbed using a state-of-the-art GPU architecture.

5.1.1 Hardware configuration. Our validation and emulation frame-
work uses a machine with NVIDIA’s RTX 3080 GPU based on the
Ampere architecture with 10 GB device memory. This machine has
an 8-core, 16 threads AMD RyZen 3700X processor with peak clock
rate at 4.4 GHz and 16 GB physical main memory installed. The
machine hosts an Ubuntu 20.04 (Linux kernel version 5.13) with
NVIDIA’s CUDA 11.1 using driver version 470.103.01.

5.1.2  Evaluation Process. Figure 8 illustrates the workflow of our
process in evaluating applications. For baseline applications, we
executed each application directly on the hardware platform with-
out any modification to their source code, datasets and invoked
library functions. For SIMD?-ized applications, their implementa-
tions leverage semiring-like algorithms using the programming
model and SIMD? API functions described in Section 4. The eval-
uation framework takes three types of inputs: (1) the compiled
program and command line arguments, (2) the dataset used in the
baseline application, and (3) the output of the baseline application
with the input dataset and command line arguments. Once the emu-
lation framework receives these three sets of inputs, the emulation
framework can dynamically change the linked library that imple-
ments SIMD? API functions to perform (1) correctness validation
by using a backend that leverages conventional vector processors
and compare the output with the output that the baseline version
produced, or (2) performance emulation by using a backend that
generates instructions to Tensor Cores residing on the hardware
platform. The following paragraphs will describe the correctness
validation and performance emulation process in detail.

Correctness validation. In this work, we need to validate cor-
rectness in addition to performance emulation for the following
reasons. First, as we need to alter the compute kernels to efficiently
use SIMD? units and in many cases, using a different algorithm (e.g.,
Semiring-based vs. Kruskal’s Algorithm in Minimum Spanning Tree
problems), we need to verify if the change of implementation still
delivers the same outcome as the baseline implementation. Second,
as existing hardware accelerators only support MMA operations
that cannot generate the correct output for other SIMD? operations
this paper proposes to extend, we need to verify if implemented
semiring-based algorithms can generate the desired output after
mapping the computation into the proposed SIMD? units. Finally,
this process can help collect the statistics regarding the total amount
of various matrix operations and provide the input for performance
emulation.

During the validation process, we linked the backend of the
SIMD? programming interface to a library that we extended from
cuASR [24]. This library implements exactly the same function-
ality as the proposed low-level SIMD? functions, except that the
library can simply leverage CUDA cores through NVIDIA’s high-
performance CUTLASS library, but not use Tensor Cores. When
implementing low-level SIMD? functions for validation purposes,
we carefully partitioned the inputs and outputs to fit the exact shape
of matrix inputs and outputs of proposed SIMD? units (i.e., the in-
put/output sizes of each Tensor Core in our testbed) when invoking
corresponding SIMD? function calls. We also used reduced/mixed
precision inputs/outputs to match the data types that our SIMD?
units support. Therefore, the validation process can help us access
the accuracy of SIMD? units. For each program under test, we can
optionally count the number of iterations, threads, and low-level
SIMD? function calls that are necessary to finish running the pro-
gram and compare each program’s output with its state-of-the-art
implementation on the alternative architecture.

Performance emulation. The design of SIMD? allows this work to
leverage existing Tensor Cores that are available on the GPU of our
emulation hardware for exact performance evaluation for the two
main reasons. First, adding SIMD? instructions do not increase the
timing of an existing MMA unit (e.g., a Tensor Core) as Section 6.1
reports. Second, the low-level instructions, register files, memory
hierarchy as well as the interaction with the host machine can be
made almost identical to those of Tensor Cores, except for the exact
output after each computation.

When performing performance emulation, the framework links
the backend of the low-level SIMD? API library that implements
through using equivalent Tensor Cores’ WMMA low-level interface.
As this paper simply proposes to extend the ALU functions of Ten-
sor Cores, the memory operations remain the same in SIMD? units
compared with Tensor Cores. Therefore, each simd2: : loadmatrix
and simd2: : storematrix invocation are identical in its counter-
part in CUDA’s WMMA API. However, since the state-of-the-art
Tensor Cores can only perform MMA operations, the performance
emulation backend library maps each invocation of simd2: :mmo to
a CUDA’s WMMA : :mma function call on the same size of inputs. This
is also the main reason why the performance emulation backend
cannot produce correct/meaningful computation outcomes. The
performance emulation process can optionally receive statistics



Table 4: Source and input data size of baseline implenmenta-
tion for each selected applications.

Application Baseline Source | Input Dimension
All Pair Shortest Path ECL-APSP Small | 4096
(APSP) (28, 38] Medium | 8192
’ Large 16384
All Pair Critical Path ECL-APSP Iswmzl.l :?Zg
(APLP) [28, 38] cdum
Large 16384
Maximum Capacity Path CUDA-FW ISVImZI,l :(1)22
(MCP) [43, 44] cdum
Large 16384
Maximum Reliability Path | CUDA-FW Small__| 409
(MAXRP) [43, 44] Medium | 8192
’ Large 16384
Minimum Reliability Path | CUDA-FW izzlllum :(1)22
43, 44
(MINRF) [43, 44] Large 16384
Minimum Spanning Tree cuDA Small 1024
(MST) panmng MST [17, 19,25, | Medium | 2048
60, 63] Large 4096
Graph Transitive Colsure | CUBOOL Smal.l 1024
Medium | 4096
(GTC) [56]
Large 8192
K-Nearest Neighbor KNN-CUDA Small | 409
Medium | 8192
(KNN) [69]
Large 16384

from the corresponding validation process to compare if the perfor-
mance emulation backend generates the exact amount of simd2 and
WMMA operations as desired. This performance emulation method-
ology is similar with prior work in extending Tensor Cores [11] to
support different precisions.

5.2 Applications

To demonstrate the performance of SIMD?, we ran two types of
workloads on the aforementioned evaluation framework. The first
type is a set of microbenchmark workloads that only iteratively
invoke SIMD? functions and accept synthetic datasets to help us to
understand the pure performance gain of SIMD? instructions over
alternative implementations.

The other is a set of full-fledged benchmark applications where
each program contains not only SIMD? functional, but also inter-
acts with other types of processors to complete the tasks. These
benchmark applications can accept real-world datasets and gener-
ate meaningful outputs accordingly for us to assess the quality of
results if appropriate.

For each workload, we evaluate three implementations.

State-of-the-art GPU baseline. This version of code serves as the
baseline of our workloads. We tried our best to collect implemen-
tations from publicly available open-source code hosting websites
and select the best-performing implementation on our testbed as
the state-of-the-art baseline version for each workload. These im-
plementations simply leverage CUDA cores, but not Tensor Cores
to accomplish their tasks. In fact, without a work like SIMD?, none
of the selected benchmark can leverage Tensor Cores due to the
limited MMA functions available on such hardware units.

SIMD? in CUDA cores. This version of code serves as another
baseline of our workloads. This set of programs implement SIMD?-
ized algorithms only using CUDA cores, but not Tensor Cores. Our
implementations try to leverage the highly optimized functions
from cuASR or CUTLASS whenever appropriate. Different from
backend functions used in Section 5.1.2, this version of code does not
manually partition the algorithms based on our proposed SIMD?
hardware configuration but allow the code to fully exploit the
performance from CUDA cores. This version helps us to identify
the performance variance by naively applying matrix algorithms
without the presence of appropriate matrix accelerations.

SIMD? using Tensor Cores. This version of code use identical
algorithms to the version of SIMD? in CUDA cores except that we
replace these algorithms’ matrix operations to SIMD? ones when
appropriate. As existing hardware does not support our proposed
SIMD? operations yet, we evaluate the performance and validate
the result of this version through the framework that Section 5.1
describes.

Table 4 lists the set of benchmark applications. Each of these
applications represents a use case for a proposed SIMD? instruction
as follows.

All-Pairs Shortest Path (APSP) and All-Pairs Critical (Longest)
Path (APLP) APSP and APLP are graph problems that can be solved
via min-plus and max-plus SIMD? instructions. Without SIMD?,
the most efficient implementation, ECL-APSP [38], applied a phase-
based-tiled Floyd Warshall algorithm to exploit massive parallelism
using CUDA. We implemented APLP by extending the ECL-APSP
with reversing the input weights on DAG to support the desired
recurrence relation. For SIMD? version, the implementation simply
changes the function calls to use min-plus and max-plus.
Maximum Capacity Path (MaxCP), Maximum Reliability
Path (MaxRP) and Minimum Reliability Path (MinRP) MaxCP,
MaxRP and MinRP represent another set of graph problems with
solutions based on transitive-closure. We select CUDA-FW as the
state-of-the-art GPU baseline for these problems and apply differ-
ent operations in each iteration of their algorithms. These applica-
tions’ SIMD? kernels simply require invoking max-min, max-mul
and min-mul instructions.

Minimum Spanning Tree (MST) Minimum spanning tree or
minimum spanning forest (MSF) has rich applications in real-life
network problems. However, conventional MST or MSF algorithms
cannot efficiently take advantage of GPU architectures due to lim-
ited parallelism. The best-performing GPU implementation that
we know of is CUDA MST and we use this one as our baseline.
MST and MSF map perfectly to the min-max SIMD? instruction.
Our SIMD? version of code thus leverages min-max instruction to
investigate the efficiency of SIMD? in this type of problem.
Graph Transitive Closure (GTC) GTC is also a graph analytics
workload. Unlike other graph algorithms, GTC simply checks the
connectivity between all vertices rather than reporting a route
to fulfill the goal of optimization. Therefore, GTC can use library
functions from cuBool [56] for efficient implementation on GPUs.
In SIMD? version, we used or-and instruction to implement the
solution.

K-Nearest Neighbor (KNN) Solving pair-wise L2 distance is at
the core of K-nearest neighbor and K-means problems, and can



Table 5: The area overhead of supporting SIMD? instructions
through (a) adding instructions to the MMA unit, (b) individ-
ual accelerators, (c) extension to the MMA unit with various
precisions, compared to the baseline 16-bit MMA Unit.

Supported Ops. Area Supported Ops. | Area
MMA + All SIMD? Insts. 1.69 Min-Plus 0.26
MMA + Min-Plus 1.21 Max-Plus 0.26
MMA + Max-Plus 1.21 Min-Mul 1.03
MMA + Min-Mul 1.12 Max-Mul 1.03
MMA + Max-Mul 1.12 Min-Max 0.06
MMA + Min-Max 1.01 Max-Min 0.06
MMA + Max-Min 1.01 Or-And 0.08
MMA + Or-And 1.04 Add-Norm 0.19
MMA + Add-Norm 1.18 Total 2.96

(2) (b)

8-bit | 16-bit | 32-bit | 64-bit

MMA only 0.25 1 4.04 11.17
MMA + All SIMD? Insts. | 0.69 1.69 6.42 17.01

©

leverage SIMD?’s add-norm instruction. For the state-of-the-art
GPU baseline, we use KNN-CUDA.

6 RESULTS

This section summarizes our evaluation of SIMD?. SIMD? delivered
up to 38.59x speedup in benchmark applications with simply 5% of
total chip area overhead.

6.1 Area and Power

We implemented the proposed SIMD? unit in RTL and synthesize
them using Synopsis design compiler and the 45nm FreePDK45
library. We extended a baseline MMA unit that can simply perform
MMA functions like conventional MXUs presented in Tensor Cores.
The baseline MMA unit features 4x4 matrix multiplications on 16-
bit input elements and accumulates results in 32-bit elements. This
configuration resembles the architecture used by Tensor Cores [52]
and Accel-Sim [30]. We carefully design the proposed extensions
to make the timing of the SIMD? unit the same as the baseline. We
empirically observe that our the modification for the SIMD? unit
never increases the critical path delay.

Table 5(a) lists the area overhead of adding SIMD? instructions
into the baseline MMA unit. The baseline MMA unit is 11.52 mm?
in size. Adding each individual instruction results in 1.34% - 21.25%
overhead. The full-fledged SIMD? unit has an area overhead of
69.23%. We inspected the public die photo of an NVIDIA 3080 GPU
and found that SMs account for 50.2% of the 628.4 mm? die area,
and each SM is 3.75 mm?. If we scale the 69.23% overhead from the
45nm process to the Samsung 8N process used for our 3080 NVIDIA
GPU baseline, a SIMD? unit introduces only 0.378 mm?, which is
only 10% of the SM area and 5% of the total die area.

Table 5(b) also lists the case where we only implement a process-
ing element to support a specific SIMD? instruction without the
MMA function (i.e., as an individual accelerator). If we implement
each SIMD? instruction separately as an individual accelerator, the
total area of these accelerators will require additional 2.96x space
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Figure 9: Performance of microbenchmark with square ma-
trices using SIMD? API
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Figure 10: Performance of microbenchmark with nonsquare
matrices using SIMD? API

of the baseline MMA unit. In contrast, the design of SIMD? unit al-
lows these instructions to reuse common hardware components and
saves area. For example, we found that for the processing elements
supporting Min-Mul and Max-Mul operations, the area is almost
the same as an MMA unit. However, combining their functions
into a single SIMD? unit only results in 11.82% of area overhead,
showing these instructions can share a large amount of circuits
that were originally used for MMA operations. The baseline MMA
unit consumes 3.74 W power. Extending the baseline as a SIMD?
unit only adds 0.79 W to the active power.

If we extend the baseline MMA to support 32-bit numbers, the
size of the MMA unit becomes 4.03x larger than a 16-bit MMA unit
as Table 5(c) lists. A SIMD? unit supporting 32-bit inputs occupies
59% more area than the 32-bit MMA unit. If we further extend the
MMA to support 64-bit numbers, the size of the MMA unit becomes
11x larger than the 16-bit MMA. Extending the 64-bit MMA unit
as a 64-bit SIMD? unit will add 52% area overhead. If we make
both the baseline MMA and SIMD? units in supporting 8x8 matrix
operations in 16-bit inputs, the MMA unit will become 7.5x larger
than the 4x4 baseline. The area overhead over the baseline MXU
stays constant and scales well.



>
I SIMD? w/ cuda cores |
I SIMD? w/ SIMD? unit

Figure 11: Performance of applications using SIMD? API

6.2 Microbenchmarks

We used microbenchmark workloads that repetitively invoke SIMD?
the same instructions to gauge the performance gain of using SIMD?
units compared against equivalent GPU implementations. The re-
sult shows up to 15.8X speedup in evaluated scenarios.

Figure 9 shows the performance gain of SIMD? over the equiva-
lent GPU baseline implementations when using square matrices as
inputs. SIMD? reveals up to 15.8x speedup compared with using
CUDA cores to achieve the desired matrix operation on the same
dataset. The geometric mean (gmean) that discounts the outlier
also shows a strong 7.9x-9.9% speedup, depending on the input
set sizes. When input matrices are larger than 4,096x4,096 ones,
the performance gain saturates at about 10%, representing the level
of peak performance gain of these instructions. Figure 10 shows
the performance gain of SIMD? instructions on different shapes of
matrices. The performance gain still saturates at the level of 10x
when matrices are large, regardless of their shapes.

From both results, SIMD? has the largest performance gains for
min-max, max-min, and or-and instructions, by up to 15.8%. Such
improvement is larger than the peak throughput difference between
vector units and SIMD? units. We suspect the extra benefit from
SIMD? units is due to the structural hazard in the GPU SM archi-
tecture, where min and max operations share the same hardware
resources(e.g., ALU port), and so are or and and operations. By fus-
ing these operations in a single instruction, SIMD? unit avoids this
bottleneck and results in much higher speedup. The speedups of
Plus-Mul and Plus-Norm operations are relatively low compared
with others, but still enjoy a 3.1x speedup over using CUDA cores.
This is because CUDA cores provide support for fused multiply-add
(FMA) that allow the GPU to complete plus-mul operations with
a single instruction. We expect that supporting more instructions
similar to FMA would also provide similar performance boost to the
class of problems that SIMD? addresses. Nevertheless, SIMD? still
has a significant advantage, obtaining a speedup of up to 5.96x for
larger matrix operations. We conclude that the SIMD? architecture
has larger potential than fusing more vector operations, which we
leave to future work.

6.3 Benchmark Applications

Figure 11 shows the speedup of kerenl latency of applications using
SIMD? (SIMD? w/ SIMD? units) over the baseline, optimized GPU

implementations. SIMD? achieves a geometric mean of 6.94x —
8.25%, with speedup as large as 38.59x. The performance gain of
SIMD? in 7 out of the 8 applications remains strong even when
dataset sizes increased.

Compared with implementing the same matrix-based algorithms
without SIMD? presented (SIMD? w/ CUDA cores), all applications
show significant slow down when SIMD? units are absent. For
APLP, MST, MaxRP, MinRP, and APSP, these applications can never
take advantage of matrix-base algorithms due to their higher com-
putational complexities when SIMD? units are absent. This result
explains why these algorithms were not favorable in conventional
architectures. However, the introduction of SIMD? makes these
matrix algorithms feasible. The matrix processing power from the
SIMD? unit can compensate or even improve the performance of
the applications as our experimental results tell. In fact, these algo-
rithms can potentially take advantage of the embarrassingly parallel
nature of matrix multiplication to parallelize hard-to-parallelize
problems.

For MCP, GTC, and KNN, their SIMD? implementations out-
perform their baseline, state-of-the-art implementations, even with-
out the presence of SIMD? units. For KNN, the computational com-
plexity is the same for both SIMD? and the baseline implemen-
tations. However, the SIMD? kernel can still achieve a maximum
speedup of 6.55x without the help of SIMD? units. This is because
the baseline implementation uses customized functions to imple-
ment the algorithm, but the backend library of SIMD? without
SIMD? units leverages CUTLASS that is more optimized and adap-
tive to modern GPU architectures. However, the performance gap
between configurations with or without SIMD? units ranges be-
tween 4.79x and 6.43X. The performance advantage is more signifi-
cant when we use the largest dataset. Therefore, even we revisit the
design of the GPU baseline and make that as efficient as SIMD? on
CUDA cores, such implementation still has a huge performance gap
to catch up with the performance using SIMD? units. For MCP and
GTC, SIMD? w/ CUDA cores can outperform their baseline imple-
mentations even though the computational complexity is higher in
SIMD? implementations for two reasons. The first reason is similar
to the case in KNN that SIMD? w/ CUDA cores benefits from more
optimized library functions than the baseline ones. The other reason
is that the rich parallelism of these matrix-based algorithms allow
these implementations to scale better on modern GPU architectures
- considering that the RTX 3080 GPU has twice as many CUDA
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cores than that of the previous generation of GPU architecture.
However, the state-of-the-art baseline implementation cannot take
advantage of this architectural improvement. On the other hand,
this result also reveals that SIMD? programming model can make
programs more adaptive to various underlying architectures since
these architectural optimizations on SIMD? operations will remain
without the demand of further code optimization.

The performance of APLP and MST using SIMD? degrades when
datasets become larger. This is because both APLP and MST using
SIMD? require additional convergence checks that are sensitive to
input data values to determine the completion of the solution. As
the input dataset grows, the variance in the content also becomes
more significant and needs more iterations for the algorithm to
converge. However, if the number of iterations do not increase with
the growth of dataset sizes, the program can still show performance
gain over conventional CUDA cores since SIMD? still makes each
iteration faster. For MST, the baseline GPU solution uses Kruskal’s
algorithm that can solve MST/MSF problems with computational
complexity at O(ElogE) [7, 31], where E is defined as the number
of edges in the input graph. In contrast, each iteration of the matrix-
based SIMD? solution has the complexity of O(V?) [7, 12], where
V is the number of vertices in the input graph. Therefore, SIMD?

tions in the worst-case scenario. To evaluate the worst-case per-
formance, we implemented a version of these applications without
convergence checks. Figure 12 illustrates the performance of these
implementations with bars labeled as Leyzorek w/o convergence.
The baseline remains the same as Figure 11. Despite the increas-
ing numbers of iterations, all applications still outperform their
baseline GPU implementations, ranging from 1.11X to 10.91X.

In Figure 12, we also present implementations of these applica-
tions using the less efficient all-pair Bellman-Ford algorithm (AP-BF
w/ convergence). As Bellman-Ford algorithm can take up to |V|
SIMD? operations, using Bellman-Ford algorithm can slow down
APLP and MST when datasets become large. MINRP can never beat
GPU implementations if we use Bellman-Ford algorithm-based im-
plementations. However, the performance gain remains significant
for other applications as the advantage of SIMD? architecture out-
weighted the shortcomings of increased computational complexity.

6.5 SIMD? for Sparse Workloads

SIMD? on architectural support for sparsity. The idea of SIMD?
can be applied to architecture support for sparse inputs, too. As an
initial look of the SIMD? model, we extend our emulation frame-
work and build on top of the cuSparselt library to model the
benefit of applying the SIMD? idea to the sparse Tensor Cores in
the RTX 3080 GPU, which supports structured sparsity and provides
up to 2x throughput. We assume the inputs are pre-processed and
stored in the format required by the sparse Tensor Core, excluding
the processing overhead when reporting the speedup.
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Figure 14: Performance of sparse matrix multiplication

Figure 13 shows the speedup over baseline implementation when
using a sparse SIMD? unit. We performed experiments using datasets
with densities at 1%. Using sparse SIMD? units can improve perfor-
mance by up to 68.33%, with geometric means ranging from 12.79x—
15.65%. Compared with the baseline SIMD?, SIMD? on sparse Tensor
Cores is 1.67x-1.9% faster.

SIMD? for extremely sparse inputs. Some applications often
have extremely sparse inputs, especially for graph algorithms. For
these sparse inputs, a dense SIMD? unit might provide less perfor-
mance improvement over implementations that are designed for
sparse inputs, such as the cuSparse library. We therefore explore at
what sparsity SIMD? can still provide benefits, which is illustrated
in Figure 14. The x-axis in Figure 14 shows the sparsity of inputs,
meaning the ratio of zeros to non-zeros in each dataset. The y-axis
shows the speedup of using NVIDIA’s spGemm function, a sparse
GEMM function optimized for Tensor Cores, from cuSparse library
compared against gemmEx function, a dense GEMM function for
Tensor Cores, from cuBlas library. The results show that cuSparse
does not outperform cuBlas for matrices of size 1024 X 1024, and for
matrices of size 4096 X 4096, cuSparse can outperform cuBlas when
the sparsity of the input matrix exceeds 99%. This result shows that
while many applications need to process sparse inputs, there is still
a range of sparsity where SIMD? can provide benefit. Such range
also covers a number of real graph datasets that do not exceed
the sparsity indicated in the results [45], implying that it is more
efficient to use the dense matrix processing method for these cases
if appropriate architectural support for sparse matrix operations
are absent.

To handle extremely sparse inputs (sparsity >= 99%) on larger
graphs, we can apply SIMD? sparse accelerators for spGEMM,
which also use multiply-and-add for the ALU, such as GAMMA [73].
For example, a GAMMA PE uses FP64 multiplier and adder, and an
SIMD? GAMMA PE will use two FP64 ALUs, one supports the & op,
and the other supports the ® op. This SIMD? GAMMA accelerator
would then be able to run APSP on sparse graphs. In fact, extend-
ing sparse accelerators with SIMD? would incur less overheads, as
compute units contribute to less area than dense accelerators. For
example, in GAMMA, only 10% of the total area is due to the FP64
MAC unit. We leave this extension to future work.

It is worth mentioning that while libraries like cuSparse have
an advantage in terms of space complexity when dealing with
extremely sparse matrices, the compressed matrix format may con-
sume more device memory when storing relatively dense matrices.
Experimental results show that cuSparse requires more memory
than a single RTX 3080 GPU can provide when processing matrices
with sparsity less than 90% (the OOM result in Figure 14) and size
more than 16384 X 16384. However, when using a dense processing
method, a GPU with 10GB of device memory can accommodate a
matrix multiplication of at least 32768 X 32768 in size.

7 RELATED WORK

In addition to the related work that motivates SIMD? in Section 2,
several other lines of research that are relevant to SIMD? deserve
mention.

7.1 Matrix extensions and instructions

Instruction-level support for matrix-matrix multiplication can be
dated back to the 90s. MOM [6] proposes to leverage MXU to
accelerate multi-media applications. As neural networks become
one of the most critical workloads, commercial general processors
now also include matrix instructions as well as MXUs to accelerate
tiled-matrix-multiplication. NVIDIA Tensor Core [52, 53], Intel
AMX [23], and Arm SME [3] all provide instructions for GEMM.
Our SIMD? architecture is compatible with these prior work and
modern designs. SIMD? reuses the existing hardware and software
infrastructure to accelerate matrix operations beyond GEMM.

7.2 Dense tensor accelerators

SIMD? builds on top of recent dense tensor accelerators for matrix-
multiplication [4, 26, 27, 37, 52, 67] to efficiently share data across
datapath and reduce the bandwidth requirement of SIMD? instruc-
tions. While we implement our SIMD? microarchitecture using
systolic-array-like hardware structure, other matrix-multiplication
accelerator architecture, such as the IBM MMA [67] unit, can be
extended to support SIMD? instructions.

In addition to matrix-multiplication, prior work also proposes
accelerators for other dense linear algebra algorithms with different
data sharing patterns. For example, Weng et al. [71] propose a hy-
brid systolic-dataflow architecture for inductive matrix algorithms
(e.g., linear algebra solver). Tithi et al. [68] propose a spatial accel-
erator for edit distance algorithms. While these algorithms have a
different data sharing pattern than SIMD? instructions support, we
expect they can be implemented as CISC-SIMD? instructions with
variable latency. We nonetheless leave this extension to prior work.

7.3 Sparse tensor accelerators

Since sparse matrices are common for many applications, such as
HPC workloads, there is also ample prior work in sparse tensor
accelerators [2, 13, 14, 18, 33, 57, 58, 65, 66, 75-77]. These accel-
erators propose various sparse optimizations to skip ineffectual
computations to speed up the tensor algorithms with sparse inputs.
They leverage various hardware support for gather/scatter opera-
tion and intersection to transform sparse tensor algebra into dense
tensor algebra, improving conventional dense tensor accelerators.



These techniques are therefore orthogonal to SIMD?, and we ex-
pect SIMD? can be extended to support sparse tensor operation by
applying similar techniques, as discussed previously.

7.4 Graph algorithm accelerators

While many graph algorithms can be expressed as tensor operations
and linear algebra [29] and accelerated by tensor accelerators, prior
work has also proposed hardware accelerators to speed up graph
algorithms and analytics in their classic form. Graphicionado [16],
GraphR [64], GraphP [74], and GraphQ [79] leverage processing-in-
memory (PIM) architecture to alleviate the bandwidth bottleneck
in graph algorithms. PHI [50] and HATS [49] instead enhance con-
ventional multi-core processors to accelerate common operations
in graph analytics, such as commutative reduction and traversal
scheduling. These hardware acceleration techniques focus on lever-
aging properties in graph algorithms to reduce data movement
and bandwidth requirement. In contrast, SIMD? proposes a new
instruction set for tensorized graph algorithms to leverage tensor
accelerators ubiquitous in all compute platforms.

7.5 Democratizing Domain-Specific
Accelerators

In addition to accelerating NN, recent projects have demonstrated
the strong potential of using NN/MMA accelerators for a broader
spectrum of applications. Both Tensor Cores and TPUs can help
improve the performance of linear algebra beyond GEMM [15, 21],
database queries [8, 20, 22], cryptography [34] and scientific com-
puting problems [9, 11, 36, 40-42, 48, 51]. Ray tracing accelerators
are also useful for Monte Carlo simulations [61], robotics naviga-
tion [46] and nearest neighbor search problems [78]. However, due
to the domain-specific nature of these accelerators, programmers
have to intensively re-engineer the algorithm implementation to
make use of these hardware accelerators. The resulting program
may also incur overhead when transforming data structures to
fulfill the demand of the target accelerator. By extending the hard-
ware features, SIMD? provides better programmability to reduce
the overhead of remapping algorithms and allows applications that
are not possible on conventional NN/MMA accelerators.

With hardware accelerators lifting the roofline, a critical issue is
designing a memory hierarchy that streamlines the data inputs/out-
puts for computational logic. Potential solutions include bringing
hardware accelerators closer to large memory arrays [32] or us-
ing other hardware accelerators to produce the demanding data
structures for the target computing resource [39, 55].

8 CONCLUSION

Recent advance in hardware accelerators that accelerate matrix
multiplications in AI/ML workloads encourage us to take a new
look at other matrix problems. As many matrix problems share a
similar computation pattern with matrix multiplications that exist-
ing hardware accelerators already optimize for, a more generalized
matrix processor will allow these matrix problems to benefit from
hardware acceleration.

This paper introduces SIMD? to investigate the potential of this
research avenue. We leverage the common computation pattern of
significant matrix problems to design the SIMD? instruction set and

implement a feasible, exemplary hardware architecture supporting
these SIMD? instructions with 5% total chip area overhead. We
demonstrate the effectiveness of SIMD? using a set of benchmark
applications, some of them are rewritten with algorithms that are
traditionally considered inefficient due to the lack of hardware
support like SIMD?. Our evaluation results show that the proposed
SIMD? architecture achieves more than 6.94x speedup on average
across eight applications with various tensor computation patterns.
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