
Work in Progress: Identifying Unexpected Inter-core

Interference Induced by Shared Cache

Denis Hoornaert∗, Shahin Roozkhosh†, Renato Mancuso† and Marco Caccamo∗

∗Technical University of Munich †Boston University

{denis.hoornaert, mcaccamo}@tum.de, {shahin, rmancuso}@bu.edu

Abstract—In modern real-time multicore systems, understand-
ing and adequately managing shared caches is essential to ensure
the temporal isolation of critical tasks. Recent research has
identified and extensively studied the sources of unpredictability
imputable to shared caches, heavily promoting techniques such
as cache partitioning and internal resources management.

In this article, we highlight the existence of an enigmatic source
of inter-core interference: the CPU-brainfreeze. Experiments
realized on a development board show that benchmarks (selected
from the San-Diego Vision Benchmark Suite) can exhibit up to
a 10-fold increase in their execution time. The same experiment
shows that for extreme cases, the core cluster can be stalled
indefinitely.

Index Terms—Multi-processors Systems, Real-Time Systems,
Non-blocking Shared Caches

I. INTRODUCTION

In modern high-performance mutliprocessor system-on-a-

chips (MPSoCs), caches have become an essential piece of

hardware bridging the gap between the speed of the process-

ing elements and the main memory. The growing demand

for high-performance system has engendered the emergence

of non-blocking caches, a type of shared cache capable of

accommodating several concurrent accesses to main memory

and hiding the cache-miss penalty.

Unfortunately, while non-blocking shared caches offer high

average bandwidth, their behavior is opaque and unpredictable.

Understanding the cache behavior is of the utmost impor-

tance for safety-critical hard real-time systems where timing

constraints must be respected and guaranteed. For instance,

the Federal Aviation Administration (FAA) mandates the use

of a single processor unless the impact of all the temporal

interference channels existing in multi-core platforms can be

appropriately identified, mitigated, or bounded.

A great deal of research has been conducted on cache

management for real-time applications on MPSoCs. The two

main sources of unpredictability imputed to the last-level

cache (LLC) are (1) the inter-core cache line eviction and

(2) the opaque management of shared internal resources.

The material presented in this paper is based upon work supported by
the National Science Foundation (NSF) under grant number CCF-2008799.
Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views
of the NSF. Marco Caccamo was supported by an Alexander von Humboldt
Professorship endowed by the German Federal Ministry of Education and
Research.

The inter-core cache line eviction is a well-studied source

of unpredictability that arises when the memory accesses of

two independent cores lead to the eviction of each other cache

lines in a destructive way. Such source of unpredictability can

be prevented by enforcing the spatial isolation of the cores

through way-based or set-based partitioning [3], [5], [8].

Inter-core interferences caused by shared internal resources

such as the Miss-Status-Holding-Registers or the write-

back unit have been recently studied in [2], [10]. If left

unmanaged, the contention on these resources can create

significant interferences even if the cores are spatially isolated.

In this article, we show the existence of a third source

of inter-core interference linked to the speed at which the

cacheable target memory reacts. In other words, if a target

memory acknowledges a transaction coming from one core

but waits to deliver the response, the execution time of

tasks running on independent cores (co-runners) is impacted.

Experiments performed on the ARM Cortex-A53 core cluster

[1] show that a co-running task can see its execution time

multiplied up to 10 times. Furthermore, we show that if

the target memory acknowledges a single read transaction

but never provides a response, the whole core cluster is

frozen indefinitely. Considering the advertised Memory-Level-

Parallelism of modern core clusters such as the ARM Cortex-

A53, such a result is unexpected and counter-intuitive.

To the best of our knowledge, this article is the first to report

inter-core interference caused by isolated and unserved read

transactions.

II. BACKGROUND

A. Non-blocking Caches

Caches in modern MPSoCs are crucial components that

efficiently circumvent the performance gap between the speed

of the processing elements and the main memory. However,

as good as they are at providing high bandwidth, blocking

caches are ineffective at hiding cache-miss penalty because

they stall the processing elements until the data is received

from the main memory. In order to hide this penalty and

improve the cache performance, [4] proposed the first Miss-

Handling-Architecture (MHA). This type of cache referred to

as Non-blocking relies on the introduction of a set of new

registers called Miss-Status-Holding-Register (MSHR), which

are in charge of tracking the status of cache line misses.





IV. SYSTEM MODEL

The system model assumed in this paper is composed of two

isolated actors: a victim and an attacker. On one hand, the vic-

tim is defined as a set of trusted hard real-time tasks (HRTs).

On the other hand, the attacker is a lightweight application

in charge of disturbing the victim. The attack consists in a

continuous flow of single sequential read transactions emitted

towards a slow memory, the AXI-Regulator1.

This section is divided into three parts, each giving further

details on the system model components. First, in Section

IV-A details regarding the isolation of the actors are given.

Secondly, a complete description of the attacker’s design is

provided in Section IV-B. Finally, Section IV-C explains the

AXI-Regulator architecture and mechanism.

A. Processing System Organization

As displayed in Figure 1, the actors are located on the

same core cluster but are allocated non-overlapping sets of

resources. In other words, they run on different cores and

have private LLC partitions. This measure enforces the in-

dependence of the two actors and ensures that the observed

interference cannot be imputed to either a common software

stack or inter-core cache line evictions. Moreover, the private

LLC partition of the attacker is subdivided into two. The first

half allows the attacker to access the main memory, where its

code is located (red route in Figure 1), whereas the second

half is dedicated to the data read through the AXI-Regulator

(orange route in Figure 1).

Assuming the attacker accesses to the main memory intro-

duce little to no inter-core interference, the two actors can be

deemed as properly isolated.

B. Attacker’s Design

Even with the precautions mentioned in Section IV-A

(i.e., actors isolation), the design of the attacker must be

thought carefully to highlight the CPU-brainfreeze. Because,

if not under control, a read memory bomb will steadily fetch

data, creating many cache-misses. Following the non-blocking

cache mechanism, these cache-misses will be inserted in one

of the available MSHRs until all of them are used. In this

situation, the non-blocking cache controller will stop the whole

machinery, leading to the phenomenon reported by [10].

This effect can only be avoided by throttling down the

attacker’s core. We enforce this by following each read request

by a Data Synchronization Barrier (DSB). This instruction

ensures that at each instant, there will not be more than one

transaction targeting the AXI-Regulator and, by extension, it

guarantees at most one MSHR is occupied by the attacker.

C. AXI-Regulator IP

In our system model, the AXI-Regulator is a PLIM module

[6] located on the secondary route to the main memory (orange

route in Figure 1) and used to act as a slow cacheable target

1Advanced eXtensible Interface (AXI), the bus communication protocol used
for PS-PL communications

memory. Moreover, the AXI-Regulator prevents potential in-

terference introduced by the DRAM controller as the former

intercepts every transaction before they reach the latter.

The mechanism enabling the characteristics mentioned just

above is the following. Upon the reception of a read trans-

action coming from the core cluster via the HPM port, the

IP inserts this transaction within a queue where it waits to

be relayed out of the AXI-Regulator. The decision to relay

the transaction stored at the head of the queue to the DRAM

controller is done according to a timer. The latter is located

within the AXI-Regulator (Configuration in Figure 1) and,

from the DRAM controller perspective, enforces a minimal

inter-arrival time (MIT) between two consecutive transactions.

The MIT is expressed in clock cycles (CC) and is dynamically

reprogrammable thanks to a configuration port accessible by

all cores with uncached transactions (cyan route in Figure 1).

V. EVALUATION

For the experiments, we use the Jailhouse-RT project [7]

to partition the four ARM Cortex-A53 cores [1], and the 1

MB of shared LLC offered by the Xilinx ZCU102 platform

[12] according to the system model presented in Section

IV. As illustrated in Figure 1, the victim is allocated three

cores and half of the LLC, whereas the attacker is left with

the remaining. Software-wise, the victim runs a selection of

benchmarks issued from the San-Diego Vision Benchmark

Suite [11] on top of Linux 4.14. On the other hand, the

attacker runs a lightweight bare-metal version of the memory

bomb described in Section IV-B. Finally, the PL side and the

AXI-Regulator are clocked at 250 MHz.

To highlight the impact created by the attacker introducing

the CPU-brainfreeze interference, we run the selected set of

benchmarks2 for all the available input sizes3 (x axis in Figure

2) and for different configurations of the AXI-Regulator4. The

result of each combination of a benchmark and input size has

been normalized with respect to the same benchmark running

alone. This baseline is referred to as Solo and represented by

the leftmost bar of each bar cluster bars in Figure 2.

From the results displayed in Figure 2, two observations can

be made. Firstly, the benchmarks have different sensitivity to

the attacker. In fact, the mser benchmark is more affected

by the attacker than disparity. The former particularly

suffers for a small input size (i.e., sim), with its execution time

increased by a factor of 10. On the other hand, disparity seems

unaffected by the attacker, meaning that spatial isolation of the

cores is enough. The increments of execution time observed

in this experiment are in the same range as those reported by

previous research. However, in our case, this interference is

caused by only one outstanding memory transaction instead

of a continuous flow of transactions generated by three cores.

Secondly, big MITs tend to introduce more inter-core interfer-

2disparity, mser, sift and tracking
3with the exception of sim_fast and full_hd
4I.e., MITs of 210, 215, 217 and 2

19 clock cycles




