Work 1n Progress: Identifying Unexpected Inter-core
Interference Induced by Shared Cache

Denis Hoornaert*, Shahin Roozkhosh!, Renato Mancuso! and Marco Caccamo*

*Technical University of Munich

tBoston University

{denis.hoornaert, mcaccamo}@tum.de, {shahin, rmancuso} @bu.edu

Abstract—In modern real-time multicore systems, understand-
ing and adequately managing shared caches is essential to ensure
the temporal isolation of critical tasks. Recent research has
identified and extensively studied the sources of unpredictability
imputable to shared caches, heavily promoting techniques such
as cache partitioning and internal resources management.

In this article, we highlight the existence of an enigmatic source
of inter-core interference: the CPU-brainfreeze. Experiments
realized on a development board show that benchmarks (selected
from the San-Diego Vision Benchmark Suite) can exhibit up to
a 10-fold increase in their execution time. The same experiment
shows that for extreme cases, the core cluster can be stalled
indefinitely.

Index Terms—Multi-processors Systems, Real-Time Systems,
Non-blocking Shared Caches

I. INTRODUCTION

In modern high-performance mutliprocessor system-on-a-
chips (MPSoCs), caches have become an essential piece of
hardware bridging the gap between the speed of the process-
ing elements and the main memory. The growing demand
for high-performance system has engendered the emergence
of non-blocking caches, a type of shared cache capable of
accommodating several concurrent accesses to main memory
and hiding the cache-miss penalty.

Unfortunately, while non-blocking shared caches offer high
average bandwidth, their behavior is opaque and unpredictable.
Understanding the cache behavior is of the utmost impor-
tance for safety-critical hard real-time systems where timing
constraints must be respected and guaranteed. For instance,
the Federal Aviation Administration (FAA) mandates the use
of a single processor unless the impact of all the temporal
interference channels existing in multi-core platforms can be
appropriately identified, mitigated, or bounded.

A great deal of research has been conducted on cache
management for real-time applications on MPSoCs. The two
main sources of unpredictability imputed to the last-level
cache (LLC) are (1) the inter-core cache line eviction and
(2) the opaque management of shared internal resources.

The material presented in this paper is based upon work supported by
the National Science Foundation (NSF) under grant number CCF-2008799.
Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views
of the NSF. Marco Caccamo was supported by an Alexander von Humboldt
Professorship endowed by the German Federal Ministry of Education and
Research.

The inter-core cache line eviction is a well-studied source
of unpredictability that arises when the memory accesses of
two independent cores lead to the eviction of each other cache
lines in a destructive way. Such source of unpredictability can
be prevented by enforcing the spatial isolation of the cores
through way-based or set-based partitioning [3], [5], [8].

Inter-core interferences caused by shared internal resources
such as the Miss-Status-Holding-Registers or the write-
back unit have been recently studied in [2], [10]. If left
unmanaged, the contention on these resources can create
significant interferences even if the cores are spatially isolated.

In this article, we show the existence of a third source
of inter-core interference linked to the speed at which the
cacheable target memory reacts. In other words, if a target
memory acknowledges a transaction coming from one core
but waits to deliver the response, the execution time of
tasks running on independent cores (co-runners) is impacted.
Experiments performed on the ARM Cortex-A53 core cluster
[1] show that a co-running task can see its execution time
multiplied up to 10 times. Furthermore, we show that if
the target memory acknowledges a single read transaction
but never provides a response, the whole core cluster is
frozen indefinitely. Considering the advertised Memory-Level-
Parallelism of modern core clusters such as the ARM Cortex-
AS53, such a result is unexpected and counter-intuitive.

To the best of our knowledge, this article is the first to report
inter-core interference caused by isolated and unserved read
transactions.

II. BACKGROUND
A. Non-blocking Caches

Caches in modern MPSoCs are crucial components that
efficiently circumvent the performance gap between the speed
of the processing elements and the main memory. However,
as good as they are at providing high bandwidth, blocking
caches are ineffective at hiding cache-miss penalty because
they stall the processing elements until the data is received
from the main memory. In order to hide this penalty and
improve the cache performance, [4] proposed the first Miss-
Handling-Architecture (MHA). This type of cache referred to
as Non-blocking relies on the introduction of a set of new
registers called Miss-Status-Holding-Register (MSHR), which
are in charge of tracking the status of cache line misses.

Cores LS

Programmable Logic

LPD

 —
hAad

100

DRAM Controller

Configuration port

[Route to: (Uncached)

Main memory
(Cached)

AXI-Regulator
(Cached)

Fig. 1: Schematic view of the considered setup with the partitioning of the core cluster (both cores and LLC) on the left, the
different path taken by the transactions highlighted in cyan, orange and red, and the AXI-Regulator on the right.

Each MSHR stores important information regarding the cache-
misses such as the target address and the location of the
cache line to refill. For each level of cache in a system,
the amount of MSHRs denotes the number of outstanding
(i.e., simultaneous) transactions it can handle. This amount
is known as the Memory-Level-Parallelism (MLP).

At run time, a non-blocking cache behaves as follows. When
a cache-miss occurs, the metadata of the cache-miss is stored
in one of the available MSHRs. In case the same cache-miss
already happened and one MSHR already holds the metadata,
the two requests are merged. It is only once the cache line refill
request has been served and placed in the proper cache line
that the MSHR is made available to store new cache-misses
requests. If none of the MSHRs are available, the system stops
until one of them becomes available.

B. Programmable Logic In the Middle (PLIM)

The Programmable Logic In the Middle (PLIM) is a new
paradigm introduced by [6] that takes advantage of the newly
available platforms associating a traditional Processing System
(PS side) with a tightly integrated Programmable Logic (PL
side). In a PLIM system, the PL side is leveraged to create
a secondary route between the core cluster and the main
memory as displayed in Figure 1 with the orange route. This
secondary route is populated with custom logic IPs, called
PLIM modules, allowing the CPU-originated traffic to be
manipulated before reaching the main memory. Despite the
inherent cost of re-routing the traffic through the PL side,
the use of PLIM modules broadens the control over memory
operations considerably as it becomes possible to manipulate
the memory traffic at the granularity of individual transactions.
For instance, [6] tackles significant constraints imposed by the
cache coloring technique via a PLIM module, called bleacher,
which applies a configurable transformation on each incoming
transaction address.

In this paper, the PLIM paradigm is used to have fine control
over certain transactions and as a mean to showcase the CPU-
brainfreeze.

III. RELATED WORK

A sizable amount of research has focused on addressing the
challenges of isolating the cores sharing the same cache in
order to prevent unpredictable temporal behavior. Most of this
research [5], [8] has aimed at spacially isolating the cores (i.e.,
avoiding inter-core cache line eviction by constraining each
core data and instructions in a specific region of the shared
cache). Hardware-based solutions such as lockdown per way
[3] are efficient, but not integrated in every platform. On the
other hand, software-based solutions such as cache coloring
[5], [9] can be deployed on most platforms but come at the
cost of increased memory space requirements.

However, recent research [2], [10] has highlighted that,
while cache partitioning is successful in most cases, in some
situations, contention on shared internal units such as the
MSHRs or the write-back unit can also introduce substantial
inter-core interferences. In [10], the authors evaluate the
impact of inter-core interference originated at the MSHRs
on multiple platforms and propose a solution to eliminate
this contention. The solution is based on a combination of
a small hardware module and an OS-level controller. Their
experiments show that, if left unmanaged, the execution time
of independent cores is multiplied respectively by 10.6 and
21.3 under read and write workloads. Via simulation, they
prove that their approach successfully provides the best overall
throughput for each core while mitigating the inter-core inter-
ference caused by the MSHRs. Similarly, [2] investigates the
contention in caches caused by shared internal units in the case
of Denial-of-service (DOS) attacks and propose an OS-level
solution enabling finer management of the system bandwidth.
In contrast to [10], the internal unit studied and exploited is
the write-back unit. They report that, by exploiting this unit
efficiently, one can increase the execution time of a victim task
by a factor of 346.

The CPU-brainfreeze studied in this paper differentiates
itself from the one in [2], [10] as inter-core interference is
not caused by the saturation of shared resources. Instead, the
CPU-brainfreeze arises when a single outstanding transaction
is left unserved by the target memory for an extended period.

IV. SYSTEM MODEL

The system model assumed in this paper is composed of two
isolated actors: a victim and an attacker. On one hand, the vic-
tim is defined as a set of trusted hard real-time tasks (HRTs).
On the other hand, the attacker is a lightweight application
in charge of disturbing the victim. The attack consists in a
continuous flow of single sequential read transactions emitted
towards a slow memory, the AXI-Regulatorl.

This section is divided into three parts, each giving further
details on the system model components. First, in Section
IV-A details regarding the isolation of the actors are given.
Secondly, a complete description of the attacker’s design is
provided in Section IV-B. Finally, Section IV-C explains the
AXI-Regulator architecture and mechanism.

A. Processing System Organization

As displayed in Figure 1, the actors are located on the
same core cluster but are allocated non-overlapping sets of
resources. In other words, they run on different cores and
have private LLC partitions. This measure enforces the in-
dependence of the two actors and ensures that the observed
interference cannot be imputed to either a common software
stack or inter-core cache line evictions. Moreover, the private
LLC partition of the attacker is subdivided into two. The first
half allows the attacker to access the main memory, where its
code is located (red route in Figure 1), whereas the second
half is dedicated to the data read through the AXI-Regulator
(orange route in Figure 1).

Assuming the attacker accesses to the main memory intro-
duce little to no inter-core interference, the two actors can be
deemed as properly isolated.

B. Attacker’s Design

Even with the precautions mentioned in Section IV-A
(i.e., actors isolation), the design of the attacker must be
thought carefully to highlight the CPU-brainfreeze. Because,
if not under control, a read memory bomb will steadily fetch
data, creating many cache-misses. Following the non-blocking
cache mechanism, these cache-misses will be inserted in one
of the available MSHRs until all of them are used. In this
situation, the non-blocking cache controller will stop the whole
machinery, leading to the phenomenon reported by [10].

This effect can only be avoided by throttling down the
attacker’s core. We enforce this by following each read request
by a Data Synchronization Barrier (DSB). This instruction
ensures that at each instant, there will not be more than one
transaction targeting the AXI-Regulator and, by extension, it
guarantees at most one MSHR is occupied by the attacker.

C. AXI-Regulator IP

In our system model, the AXI-Regulator is a PLIM module
[6] located on the secondary route to the main memory (orange
route in Figure 1) and used to act as a slow cacheable target

Advanced eXtensible Interface (AXI), the bus communication protocol used
for PS-PL communications

memory. Moreover, the AXI-Regulator prevents potential in-
terference introduced by the DRAM controller as the former
intercepts every transaction before they reach the latter.

The mechanism enabling the characteristics mentioned just
above is the following. Upon the reception of a read trans-
action coming from the core cluster via the HPM port, the
IP inserts this transaction within a queue where it waits to
be relayed out of the AXI-Regulator. The decision to relay
the transaction stored at the head of the queue to the DRAM
controller is done according to a timer. The latter is located
within the AXI-Regulator (Configuration in Figure 1) and,
from the DRAM controller perspective, enforces a minimal
inter-arrival time (MIT) between two consecutive transactions.
The MIT is expressed in clock cycles (CC) and is dynamically
reprogrammable thanks to a configuration port accessible by
all cores with uncached transactions (cyan route in Figure 1).

V. EVALUATION

For the experiments, we use the Jailhouse-RT project [7]
to partition the four ARM Cortex-A53 cores [1], and the 1
MB of shared LLC offered by the Xilinx ZCU102 platform
[12] according to the system model presented in Section
IV. As illustrated in Figure 1, the victim is allocated three
cores and half of the LLLC, whereas the attacker is left with
the remaining. Software-wise, the victim runs a selection of
benchmarks issued from the San-Diego Vision Benchmark
Suite [11] on top of Linux 4.14. On the other hand, the
attacker runs a lightweight bare-metal version of the memory
bomb described in Section IV-B. Finally, the PL side and the
AXI-Regulator are clocked at 250 MHz.

To highlight the impact created by the attacker introducing
the CPU-brainfreeze interference, we run the selected set of
benchmarks? for all the available input sizes® (z axis in Figure
2) and for different configurations of the AXI-Regulator*. The
result of each combination of a benchmark and input size has
been normalized with respect to the same benchmark running
alone. This baseline is referred to as Solo and represented by
the leftmost bar of each bar cluster bars in Figure 2.

From the results displayed in Figure 2, two observations can
be made. Firstly, the benchmarks have different sensitivity to
the attacker. In fact, the mser benchmark is more affected
by the attacker than disparity. The former particularly
suffers for a small input size (i.e., sim), with its execution time
increased by a factor of 10. On the other hand, disparity seems
unaffected by the attacker, meaning that spatial isolation of the
cores is enough. The increments of execution time observed
in this experiment are in the same range as those reported by
previous research. However, in our case, this interference is
caused by only one outstanding memory transaction instead
of a continuous flow of transactions generated by three cores.
Secondly, big MITs tend to introduce more inter-core interfer-

2disparity, mser, sift and tracking
3with the exception of sim_fast and full_hd
“ILe., MITs of 210, 215 217 and 219 clock cycles

Benchmark: disparity Benchmark: mser

Benchmark: sift Benchmark: tracking

10
@ -
£ i
Ll -}
y 6
=
? |
J 4|
.
1-_ - B [S -
0
R S SO S S
m Solo MIT = 210 CC mm MIT=2%5¢CC

R I I N O O

mm MT=2Y7CC mmm MT=2¥cCC

Fig. 2: Normailized execution time for different combinations of benchmark (inset), input sizes (x axis) and MITs (bar).

ence than their counterpart. For instance, a MIT of 2'9 always
introduces some visible interference, with varying magnitude.

Emulating an infinite MIT by configuring the AXI-
Regulator to accept the transaction but never answer systemat-
ically leads the whole system to be suspended indefinitely. In
other words, if a task tries to fetch data from a non-responding
memory, not only its core stalls, but the whole core cluster is
suspended. This result suggests that for extremely big MITs,
significant increases in execution could be observed and that
tasks deployed on all the cores might be affected by the inter-
core interference.

VI. DISCUSSION

Non-blocking caches are advertised as capable of seam-
lessly hiding the cache-miss penalty and managing multiple
simultaneous memory accesses unless either all the MSHRs
are occupied or if the write-back unit buffer is full. A priori,
nothing in the non-blocking cache architecture suggests that a
single outstanding read transaction could introduce inter-core
interference. However, our experiments suggest otherwise.

While the exact source of the observed inter-core interfer-
ence is unclear to the authors, all the precautions taken during
the experiment (i.e., isolation of the inmates and partition of
the cache) and the result suggest that the source originates
from the LLC controller itself.

The authors acknowledge that the described phenomenon is
unlikely to occur in a normal situation (i.e., all the inmates
target the main memory), and if it does, the consequences
should be negligible. Nonetheless, this experiment has the
merit of pinpointing a clear issue in the LLC controller design
in ARM Cortex-A53 clusters [1]. It is a reminder of the
gap between the theoretical models, the expectations on the
hardware, and real-world behavior.

VII. CONCLUSION

In this article, we have highlighted the existence of an
enigmatic source of inter-core interference in the ARM Cortex-
AS3 clusters caused by isolated and delayed read transactions.
The interference increases the execution time of co-runners by
a factor of 10 in the worst case despite all the precautions taken

to eliminate known sources of interferences. Even worst, the
experiment shows that in the most extreme case, the whole
core cluster can be stalled, jeopardizing any isolation.

Extensions of this work will focus on strengthening the
experimental setup, narrowing down the scope of potential
sources of the observed interference, and propose a solution
to prevent it. In addition, the authors plan to experiment with
other wide-spread ARM Cortex CPUs to see whether the issue
is specific to the A53 model.

REFERENCES

[11 ARM, “ARM Cortex-A53 MPCore Processor Technical Reference Man-
ual,” Tech. Rep., 2014. [Online]. Available: http://infocenter.arm.com/
help/topic/com.arm.doc.ddi0500d/DDIOS00D_cortex_aS3_rOp2_trm.pdf

[2] M. Bechtel and H. Yun, “Denial-of-service attacks on shared cache in
multicore: Analysis and prevention,” in RTAS 2019, 2019, pp. 357-367.

[3] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Frohlich, and
R. Pellizzoni, “A survey on cache management mechanisms for
real-time embedded systems,” ACM Comput. Surv., vol. 48, no. 2, Nov.
2015. [Online]. Available: https://doi.org/10.1145/2830555

[4] D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,” in
Proceedings of the Sth Annual Symposium on Computer Architecture,
ser. ISCA ’81. Washington, DC, USA: IEEE Computer Society Press,
1981, p. 81-87.

[5] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni, “Real-time cache management framework for multi-core archi-
tectures,” RTAS 2013, pp. 45-54, 2013.

[6] S.Roozkhosh and R. Mancuso, “The potential of programmable logic in
the middle: Cache bleaching,” in RTAS 2020, Sydney, Australia, 2020.

[7]1 P. Sohal, R. Tabish, U. Drepper, and R. Mancuso, “E-WarP: a system-
wide framework for memory bandwidth profiling and management,” in
41st IEEE RTSS 2020, Houston, TX, USA, Dec. 2020.

[8] N. Suzuki, H. Kim, D. d. Niz, B. Andersson, L. Wrage, M. Klein,
and R. Rajkumar, “Coordinated bank and cache coloring for temporal
protection of memory accesses,” in 2013 IEEE 16th International
Conference on Computational Science and Engineering, 2013.

[9] M. S. T. Kloda, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna,

“Deterministic Memory Hierarchy and Virtualization for Modern Multi-

Core Embedded Systems,” in 25th I[EEE RTAS 2019, Montreal, Canada,

April 2019, conference, pp. 1-14.

P. K. Valsan, H. Yun, and F. Farshchi, “Addressing isolation challenges

of non-blocking caches for multicore real-time systems,” Real-Time

Systems, vol. 53, pp. 673-708, 2017.

S. K. Venkata, 1. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Be-

longie, and M. B. Taylor, “SD-VBS: The san diego vision benchmark

suite,” in JISWC 2009, 2009, pp. 55-64.

[12] Xilinx, “Zynq UltraScale+ Device Technical Reference Manual,”

Tech. Rep., 2019. [Online]. Available: https://www.xilinx.com/support/
documentation/user_guides/ugl 085-zynq-ultrascale-trm.pdf

(10]

(11]

