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Abstract

Recent experimental advances have stimulated interest in the use of large, two-dimensional arrays of Rydberg atoms

as a platform for quantum information processing and to study exotic many-body quantum states. However, the native

long-range interactions between the atoms complicate experimental analysis and precise theoretical understanding of

these systems. Here we use new tensor network algorithms capable of including all long-range interactions to study

the ground state phase diagram of Rydberg atoms in a geometrically unfrustrated square lattice array. We find a greatly

altered phase diagram from earlier numerical and experimental studies, revealed by studying the phases on the bulk

lattice and their analogs in experiment-sized finite arrays. We further describe a previously unknown region with a

nematic phase stabilized by short-range entanglement and an order from disorder mechanism. Broadly our results

yield a conceptual guide for future experiments, while our techniques provide a blueprint for converging numerical

studies in other lattices.

Introduction

Rydberg atom arrays consist of a set of cold neutral atoms that are trapped in an optical lattice, interacting strongly

with each other via excitation into Rydberg states [1, 2]. Advances in experimental control over a large number of

atoms, arranged in two-dimensional arrays, have generated significant interest in using these systems for a variety

of applications, including quantum information processing and stabilizing quantum states with long-range entangle-

ment [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. A recent seminal experiment [18], backed by numerical

studies [19, 20], has suggested a richness in the ground states of Rydberg atom arrays on a 2D square lattice. However,

although the observed, non-disordered, phases are not all classical crystals, they contain little entanglement [19]. Thus
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it remains unclear whether such arrays realize non-trivial entangled quantum ground-states on simple lattices.

The Rydberg atom array Hamiltonian is

Ĥ =

N
∑

i=1

[

Ω

2
σ̂xi − δn̂i

]

+
1

2

∑

i 6=j

V

(|ri − rj |/a)6
n̂in̂j . (1)

Here σ̂xi = |0i〉 〈1i|+ |1i〉 〈0i| and n̂i = |1i〉 〈1i| ({|0i〉 , |1i〉} denote ground and Rydberg states of atom i). a is lattice

spacing, Ω labels Rabi frequency, and δ describes laser detuning. V parameterizes the interaction strength between

excitations. This can be re-expressed in terms of the Rydberg blockade radius Rb, with V/(Rb/a)
6 ≡ Ω. We study

the square lattice in units a = Ω = 1 [19], yielding two free parameters δ and Rb.

The ground states of this Hamiltonian are simply understood in two limits. For δ/Ω � 1, Rb 6= 0, the system is

classical and one obtains classical crystals of Rydberg excitations [21, 22, 23, 24] whose spatial density is set by the

competition between δ and Rb. For δ/Ω � 1, Rb 6= 0, Rydberg excitations are disfavored and the solutions are

dominated by Rabi oscillations, leading to a trivial disordered phase [19, 25, 26]. In between these limits, it is known

in 1D that no other density-ordered ground states exist besides the classical-looking crystals, with a Luttinger liquid

appearing on the boundary between ordered and disordered phases [26].

In 2D, however, the picture is quite different. An initial study [19] using the density matrix renormalization group

(DMRG) [27, 28, 29, 30] found additional quantum crystalline (or so-called density-ordered) phases, where the local

excitation density is not close to 0 or 1. A recent experiment on a 256 programmable atom array has realized such

phases [18]. However, as also discussed there, the density-ordered phases are unentangled quantum mean-field phases,

and thus not very interesting. In addition, more recent numerical results [17] highlight the sensitivity of the physics to

the tails of the Rydberg interaction and finite size effects. Thus, whether Rydberg atom arrays on a simple unfrustrated

lattice – such as the square lattice – support interesting quantum ground-states, remains an open question.

Here, we resolve these questions through high-fidelity numerical simulations. To do so, we develop and employ new

numerical techniques based on variational tensor network methods. Tensor networks have led to breakthroughs in the

understanding of 2D quantum many-body problems [31], and our two new techniques address specific complexities

of simulating interactions in Rydberg atom arrays. The first we term Γ-point DMRG, which utilizes a computational

spin basis with periodic boundary conditions, and which can also be viewed as a type of DMRG that is deployed on a

torus with interactions wrapping around to infinite range, while employing a traditional finite system two-dimensional

DMRG methodology [27]. This removes interaction truncations and boundary effects present in earlier studies [16,

17, 19, 20], and allows us to controllably converge the bulk phase diagram. The second is a representation of long-
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range interactions [32] compatible with projected entangled pair states (PEPS) [33, 34, 35, 36]. With this, we use

PEPS to find the ground states of a Hamiltonian with long-range interactions for the first time, and specifically here,

model the states of finite Rydberg arrays of large widths as used in experiment. We show that, unexpectedly, the faithful

inclusion of all long-range terms in our simulations yields quite different physics compared to both previous theoretical

and experimental analyses. Some previously predicted ground state phases are destabilized, while other unanticipated

phases emerge – including evidence of a non-trivial nematic phase stabilized by short-range entanglement in an order

from disorder mechanism [37], even on the geometrically unfrustrated square lattice array. In the following, we first

describe the new numerical techniques, before turning to the bulk and finite-size phase behavior of square lattice

Rydberg arrays and the question of entangled quantum phases.

Results

Bulk simulation strategy and Γ-point DMRG

A challenge in simulating Rydberg atom arrays is the long-range tails of the interaction. Because itinerancy only arises

indirectly as an effective energy scale [25], the main finite size effects arise from interactions. Many previous studies

have employed a cylindrical DMRG geometry common in 2D DMRG studies [27]. However, there the interaction is

truncated to the cylinder half-width, while along the open direction, edge atoms experience different interactions than

in the bulk; both choices produce strong finite size effects.

To avoid these problems, we perform 2D DMRG calculations in a site Bloch basis. Given the site basis |nx,y〉,

n ∈ {0, 1}, the Bloch basis states are periodic combinations, |ñx,y〉 =
∑

l |n(x,y)+Rl
〉 where Rl = (n · Lx,m · Ly),

n,m ∈ Z, are lattice vectors, Lx, Ly are the supercell side lengths, and nx,y = n(x,y)+Rl
, i.e. the occupancies at

the translationally related sites are the same. The above are analogous to Bloch states at the Γ-point of the supercell

Brillouin zone. The finite many-body Hilbert space under the Γ-point restriction is
∏

x,y |ñx,y〉; this Hilbert space

should be interpreted as a model of the Hilbert space of the infinite system, rather than a true subspace of it. The

corresponding matrix product state (MPS) is expressed as |Ψ〉 = ∑

{e}

∏

x,y A
ñx,y

{ex,y}
|ñx,y〉 where A

ñx,y is the MPS

tensor associated with Bloch function ñx,y , ex,y denote its bonds, and a 2D snake ordering has been chosen through

the lattice. In the above picture, Γ-point 2D DMRG formally models an infinite lattice (Fig. 1a) with a wavefunction

constrained by the supercell shape. This differs from using a periodic MPS as periodicity is enforced by the Bloch basis

rather than the MPS. The Γ-point DMRG calculation can also be viewed as working on a finite toroidal geometry (i.e.

the supercell) with the typical pure site basis |nx,y〉, but where the interactions are allowed to wrap infinitely around the

torus, rather than being cut off. In either interpretation, the Hamiltonian per supercell contains interactions expressed
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as an infinite lattice sum,

Ĥ =
∑

i

[

1

2
σ̂xi − δn̂i

]

+
1

2

∑

i 6=j+Rl,Rl

R6
b

|ri − rj+Rl
|6 n̂in̂j , (2)

Further details of this approach and its two interpretations are discussed in the Methods section.

The only finite size parameter is the supercell size Lx×Ly . We thus perform exhaustive scans over Lx, Ly to identify

competing ground state orders. We systematically converge the energy per site of low-energy orders by increasing the

commensurate supercell sizes to contain many copies of the order (up to 108 sites). The finite size effects converge

rapidly because no interactions are truncated and there are no edge effects even in the smallest cells, allowing us

to converge the energy per site to better than 10−5, compared to the smallest energy density difference we observe

between competing phases of ∼ 10−4 (see Fig. 1b and Supplementary Methods).

Finite simulations and PEPS with long-range interactions

To simulate ground-states of finite arrays, we consider finite systems (with open boundaries) of sizes 9×9 up to 16×16

atoms. This resembles capabilities of near-term experiments [10, 18]. The width of the largest arrays challenges what

can be confidently described with MPS and DMRG for more entangled states. Consequently, we employ PEPS wave-

functions which capture area law entanglement in 2D, and can thus be scaled to very wide arrays (Fig. 1c). Together

with DMRG calculations on moderate width finite lattices, the two methods provide complementary approaches to

competing phases and consistency between the two provides strong confirmation. However, PEPS are usually com-

bined with short-range Hamiltonians. We now discuss a way to combine long-range Hamiltonians efficiently with

PEPS without truncations.

For this, we rely on the representation we introduced in Ref. [32]. This encodes the long-range Hamiltonian as a sum

of comb tensor network operators (Fig. 1d). As discussed in Ref. [32], arbitrary isotropic interactions can be efficiently

represented in this form, which mimics the desired potential via a sum of Gaussians, i.e. 1
r6

=
∑kmax

k=1 cke
−bkr

2

(where

kmax ∼ 7 for the desired accuracy in this work). The combs can be efficiently contracted much more cheaply than

using a general tensor network operator.

While Ref. [32] described the Hamiltonian encoding, here we must also find the ground-state. We variationally

minimize 〈Ψ|Ĥ|Ψ〉 using automatic differentiation [38]. Combined with the comb-based energy evaluation, this

allows for both the PEPS energy and gradient to be evaluated with a cost linear in lattice size. Further details are

discussed in the Methods section, including some challenges in stably converging the PEPS optimization.
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Summary of the bulk phase diagram

Figure 2a shows the bulk phase diagram from Γ-point DMRG with infinite-range interactions. We first discuss the

orders identified by their density profiles (orders of some phase transitions are briefly discussed in Supplementary

Note 3). Where we observe the same phases as in earlier work [19] we use the same names, although there are very

substantial differences with earlier phase diagrams.

With weaker interactions (Rb < 1.8), the ground states progress through densely-packed, density-ordered phases

starting from checkerboard (pink, Rb ∼ 1.2), to striated (cyan, Rb ∼ 1.5), to star (blue, Rb ∼ 1.6). While the

checkerboard and star phases are classical-like crystals, the striated state is a density-ordered quantum phase, seen

previously [19].

With stronger interactions (Rb > 1.8), the phases look very different from earlier work, which truncated the interac-

tions [19]. Ordered ground states start with the 1
5 -staggered phase (red, Rb ∼ 1.95), then progress to a nematic phase

(dark green, Rb ∼ 2.2) and the 1
8 -staggered phase (gold, Rb ∼ 2.4). There is also a small region at larger δ (not

shown) where the nematic phase and a classical-like crystal (which we call 3-star) appear to be essentially degenerate,

with an energy difference per site of ∆e < 3 · 10−5 (see Supplementary Note 2).

Effects of interactions on the bulk phases

In Figure 2b we show the phase diagram computed using Γ-point DMRG with interactions truncated to distance 2.

This approximation resembles earlier numerical studies [19], but here bulk boundary conditions are enforced by the

Bloch basis, rather than cylindrical DMRG. Comparing Figures 2a,b we see the disordered and striated phases are

greatly stabilized using the full interaction, and new longer-range orders are stabilized at larger Rb. Comparing Figure

2b and Ref. [19], we see that having all atoms interact on an equal footing (via the Bloch basis) destroys some quantum

ordered phases seen in [19] at larger Rb.

Classical, mean-field, and entangled bulk phases

Without the Rabi term Ω, one would obtain classical Rydberg crystals without a disordered phase. Figure 2c shows

the classical phase diagram. For the δ values here, the 1D classical phase diagram has sizable regions of stability for

all accessible unit fraction densities [22, 26]. However, the connectivity of the square lattice in 2D changes this. For

example, only a tiny part of the phase diagram supports a 1
3 -density crystal, and we do not find a stable 1

7 -density

crystal within unit cell sizes of up to 10 × 10. All ordered quantum phases in Figure 2a appear as classical phases

except for the striated and nematic phases, while there are small regions of classical phases at densities 1
3 and 2

9 with

no quantum counterpart. The striated and nematic phases emerge near the 1
3 and 1

7 density gaps respectively, however
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the nematic phase also supersedes the large region of the 1
6 density 3-star crystal.

Ref. [18] suggested that quantum density-ordered phases are qualitatively mean-field states of the form
∏

i αi|0i〉 +
√

1− |αi|2|1i〉. Figure 2d shows the mean-field phase diagram. The disordered phase does not appear, as it emerges

from defect hopping and cannot be described without some entanglement [25]. The mean-field phase diagram contains

features of both the classical and quantum phase diagrams. The striated quantum phase indeed appears as a mean-field

state, confirmed by the match between the mean-field and exact correlation functions (Fig. 3a). However, the nematic

phase does not appear, and in its place is the same 1
6 -density crystal stabilized in the classical phase diagram. This

shows that a treatment of entanglement is required to describe the nematic phase.

Nature of the bulk nematic phase

Figure 3b shows the density correlation function of the nematic phase, which does not display mean-field character.

To reveal the phase structure, Figure 3c shows the lowest energy classical states in the same region of the phase dia-

gram. Due to the Rydberg blockade radius (Rb = 2.3), excitations are spaced by 3 units within a column, giving 3

column configurations |a〉, |b〉, |c〉. Column-column interactions, however, prevent adjacent columns from being in

the same configuration (with excitations separated by 2 units); thus states such as |abcb . . .〉 are allowed, but |accb . . .〉

are not. Without long-range interactions, these column constraints give rise to an exponential classical degeneracy.

Long-range interactions partially lift the classical degeneracy, yielding the |abc . . .〉 crystal (3-star phase) and its 6-

fold degenerate permutations. However, after including quantum fluctuations and entanglement through a 4th order

perturbative treatment of σx (giving rise to defect itinerancy), |abab . . .〉 and related configuration energies are lowered

below those of the |abc . . .〉 configurations; the fluctuations stabilize non-classical crystal configurations (see Supple-

mentary Note 1). Figure 3c gives the weights of the configurations in the computed quantum ground-state, which are

distributed across the exponentially numerous non-classical |abab . . .〉, |abcbab〉 etc., configurations, with the classical

crystal |abc . . .〉 configurations strongly disfavored. The bi-partite entanglement entropy and entanglement spectrum

are further shown in Figure 3d. Although the fluctuations are presumably of finite range, the entanglement spectrum

carries 3 large Schmidt values across every cut along the DMRG snake MPS, showing the state is entangled across

the entire supercell, and well approximated by an MPS of bond dimension 3. The entanglement structure emerges

from the combination of defect itinerancy and the constraints on adjacent columns. Thus, it is clear that quantum fluc-

tuations are much stronger in this phase than in any of the surrounding ordered phases. Assuming the entanglement

is ultimately short-ranged (i.e. on scales beyond the supercell sizes we can treat here) this phase can be identified

as containing strong fluctuations around a non-classical crystal, stabilized by an order from disorder mechanism [37]

(further discussion in Supplementary Note 1).
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Finite phase diagram

Current experiments are limited to lattices with open boundary conditions consisting of a few hundred atoms [10, 18].

To investigate how this modifies the bulk behavior, we computed the phase diagram of selected finite lattices from size

9× 9 to 16× 16, using DMRG for the smaller sizes and our PEPS methodology for the larger ones.

We first focus (in Fig. 4a) on understanding the fate of the ordered phases on the 15 × 15 lattice along three slices:

δ = 2.7, 4.0, and 5.0 (16 × 16 lattice phases, as well as other lattice sizes, are discussed in Supplementary Notes

4-5). Here, many finite lattice ground state orders resemble those in the bulk. However, their regions of stability

are substantially reduced and their patterns are broken by frustration. Out of the density-ordered quantum phases,

the striated mean-field phase remains due to its commensurate boundary-bulk configurations, while in the region of

strongest interactions the nematic phase is destabilized. A new region of classical order, called here the square phase

(Fig. 4c), emerges across much of the Rb = 1.5 − 1.8 region where the star phase was stable in the bulk [20]. We

distinguish the square order from the striated order in the sense that the former has negligible quantum fluctuations on

the (1, 1)-sublattice, although it is unclear if the square and striated orders constitute truly distinct phases (in the bulk

phases the square order is not stable, only the striated order appears).

In Figure 5, we directly compare the experimental results on the 13× 13 lattice to our calculations on the same lattice.

The analysis of the experiments in Ref. [18] was based on simulations on the 9× 9 lattice using truncated interactions.

This assigned only part of the experimental non-zero order parameter space to a square/striated phase (see Fig. 5a,

note, the order parameter does not distinguish between square/striated orders). However, our simulations (Fig. 5c) in

fact reproduce the full region of the non-zero order parameter, and thus the whole region seen experimentally should

be assigned to a square/striated phase, with the square order appearing in the upper part of the region. Similarly, the

experimental analysis identified a large region of star order (Fig. 5b). This assignment is complicated by edge effects,

which mean that the order parameter used does not cleanly distinguish the star phase from other phases. However, our

simulations suggest that the region of the star phase should be considered to be much smaller, located at the very top

of the non-zero order region, and this is confirmed using a different, more sensitive order parameter (Fig. 5e). Overall,

the measured data corresponds more closely to our numerics than earlier simulations, giving confidence in our more

precise interpretation (more discussion in Supplementary Note 5).

Stabilizing the finite analog of the nematic order

Generally, the impact of boundary physics can be understood in terms of frustration of the bulk order by the boundary

order, where excitations concentrate more densely due to the lower energetic penalty from fewer long-range interac-
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tions on the edge. Examples of the effects of this frustration, ranging from modified bulk orders, to defect dominated

states, to boundary-only orders are shown in Figures 4b, 4c, 5e (see also Supplementary Note 4).

We searched for conditions to stabilize the nematic ground-state on a finite lattice by manipulating boundary effects.

We scanned various rectangular sizes and explicitly removed patterns of atoms from the edges to induce different

bulk orders. We found the best conditions to stabilize a finite-size analogy of the nematic phase occur near (δ,Rb) =

(3.4, 2.1), on a 15 × 14 lattice, while removing edge atoms to create a spacing of 4 on two edges and 3 on the other

two edges (Fig. 4d). Note that the location of this state in phase space cannot be directly compared to the locations

of states in Figure 4a due to the significant difference in the treatment of the boundary. Although there are strong

finite size effects, the density profile and correlation functions (Fig. 4d,e) reveal qualitative similarities to the bulk

nematic phase, in particular, the presence of 4-fold correlation peaks at distance
√
5 and

√
8, which are also a feature

of the bulk entangled phase (Fig. 3b). Importantly, the multiplicity of these peaks would be different in the classical

or mean-field ground-states at this density.

Discussion

Using new tensor network simulation methods, we have obtained a converged understanding of the phase diagram

of Rydberg atom arrays in both bulk and finite simple square lattices. Surprisingly, our bulk phase diagram is quite

different from that predicted in earlier numerical studies, while on finite lattices, our results support a reinterpretation

of previous experimental analysis. Theoretically, this is due to the subtle effects of the long-range interactions that

are addressed by our techniques, while experimentally, it brings into focus the challenge of more accurate theoretical

models to interpret increasing experimental capabilities in quantum many-body physics. Perhaps most intriguingly,

we find strong evidence that the geometrically unfrustrated square lattice supports a nematic phase with strong fluc-

tuations, stabilized by an order from disorder mechanism involving the competition between emergent itinerancy and

the constraints of the Rydberg interaction.

A primary focus of Rydberg atom array experiments has been to realize well-studied short-range Hamiltonians, for

example, on frustrated lattices. However, we find that lattice frustration is not necessary to produce interesting entan-

glement effects in Rydberg systems. In fact our work highlights the richness and complexity intrinsic to Rydberg atom

arrays, due to the non-trivial effects of their native interactions.
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Methods

A brief conceptual discussion of our new numerical techniques was already presented in the Results section. Here, we

will focus on more algorithmic details and subtleties.

Γ-point DMRG: theory and relation to other methods

In this work we chose to perform 2D DMRG in a site Bloch basis at the Γ-point in the Brillouin zone. Let us define

the computational supercell of the DMRG calculation to be of dimension Lx × Ly sites. Then, such a Γ-point site

Bloch basis state |ñx,y〉 is related to the normal site basis state |nx,y〉 at site rx,y by

|ñx,y〉 =
∑

l

|n(x,y)+Rl
〉 (3)

where Rl = (n · Lx,m · Ly); n,m ∈ Z. In other words, each single particle basis state is a superposition of the

original site basis states separated by lattice vectors of the supercell. The occupancies of sites related by the supercell

lattice vectors, i.e. nx,y and n(x,y)+Rl
are constrained to be the same. The Bloch function has unit norm per supercell.

The many-particle 2D DMRG wavefunction is then

|Ψ〉 =
∑

{e}

∏

x,y

A
ñx,y

{ex,y}
|ñx,y〉 (4)

where A
ñx,y is the MPS tensor associated with Bloch function ñx,y , ex,y denote its bonds, and a standard snake

ordering has been chosen through the lattice [27]. The Hilbert space is
∏

x,y |ñx,y〉, i.e. it is of dimension 2LxLy . Note

that, for supercells larger than a single site, the Hilbert space is a product of Bloch functions, but no double occupancy

occurs because different Bloch functions ñx,y occupy non-overlapping sites on the infinite lattice. The final Hilbert

space is best viewed as a model of the Hilbert space of the infinite system, rather than a subspace in the Hilbert space

of the infinite system. We have implemented this strategy with the ITensor software library [39].

As mentioned earlier, this representation is different from the cylindrical boundary condition MPS employed in pre-

vious studies [19, 17, 16]. The primary advantage of the current approach is that regardless of supercell size, the 2D

DMRG state models an infinite system in 2D (rather than a finite system in at least one direction in prior cylindrical

studies) simply because the underlying single-particle basis is a discrete periodic function on the infinite 2D square

lattice. Thus there is no need to truncate the Rydberg interactions unlike in cylinder studies. We note that this type of

Bloch basis, i.e. linear combinations of local states separated by (supercell) lattice vectors, is widely used in electronic
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structure theory partly for similar reasons, namely it allows one to treat the infinite range Coulomb interaction. For an

example of a DMRG calculation of an infinite system using such Bloch bases (known as crystalline atomic orbitals)

in electronic structure, see e.g. Ref. [40].

Systematic convergence to the correct bulk behaviour in the Bloch representation is controlled by two parameters: the

DMRG bond dimension and the size of the supercell. The Γ-point basis functions for larger supercells span larger and

larger models of the Hilbert space of the infinite system. Examining convergence with bond dimension and supercell

size is fully sufficient to establish convergence to the thermodynamic limit. Because of the hardcore constraints of the

bosons, it is not convenient to consider the product space of Bloch states at different points in the supercell Brillouin

zone. However, we could in principle choose to define all Bloch states in Eq. 3 to be away from the Γ point in the

supercell Brillouin zone, equivalent to adding phase factors in Eq. 3. This would correspond to a twisted boundary

condition, and averaging over such boundary conditions might be expected to further reduce finite size effects.

One way to understand the 2D DMRG calculation in the Bloch basis is to examine the form of the correlation func-

tions it predicts for an infinite system. Because the Bloch states at the Γ-point are periodic, all correlation functions

are implicitly periodic across supercells. For example, transformed to the site basis, the density-density correlation

function satisfies

〈nx1,y1nx2,y2〉 = 〈nx1,y1n(x2,y2)+Rl
〉. (5)

Particles in adjacent supercells are thus entangled and correlated with each other, but in a highly constrained fash-

ion. (This can be seen from the entanglement of a single particle state in the Bloch basis, which has the maximum

entanglement entropy of log 2 for a cut in the site basis). Note that a 2D infinite tensor network, such as an iPEPS,

also introduces a constrained form of correlations between particles; but the constraint there is different and controlled

solely by the bond dimension. In the 2D DMRG calculations in the Bloch basis, the full flexibility of long-range

correlations is restored by increasing the supercell size.

An alternative, and completely equivalent, way to describe the 2D DMRG calculation in the Bloch representation at

the Γ point is to map it to a calculation on a finite system. This finite system is a torus of dimension Lx × Ly; we

see that it has a Hilbert space of the same dimension, labelled by the same occupancies |ñx,y〉; thus the model Hilbert

space of the infinite system at the Γ point can be identified with the toroidal Hilbert space.

In the Γ-point picture, the transformation from the basis |nx,y〉 to the Bloch basis |ñx,y〉 modifies the interaction from

the original Rydberg form to an infinite lattice sum over the real space lattice (Eq. 2). This Hamiltonian (Eq. 2) then
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encodes the per supercell energy of the infinite bulk system. In the toroidal picture, this lattice sum can be viewed as

arising from taking interactions that loop around a torus infinitely many times, with the proper decaying form. There

is a 1-1 mapping between the toroidal representation with infinite wrap-around, and the Γ-point supercell formulation

discussed above. For example, the torus representation can also be generalized to the twisted Bloch basis discussed

above: this corresponds to inserting hoppings across the torus with a phase factor. Which language is used is thus

primarily a matter of preference.

Further details regarding analysis of finite size errors and convergence strategy can be found in Supplementary Meth-

ods.

PEPS: overview

The PEPS simulations in this work combine recent advances in optimizing PEPS wavefunctions using automatic dif-

ferentiation [38] and 2D operator representations of long-range interactions [32]. This combination illuminated many

new challenges for PEPS optimization with respect to complicated Hamiltonians. The following sections will detail

the various challenges and the technical solutions used in this work. The instability of PEPS optimization remains an

open problem and it is an area of future research to determine a PEPS optimization pipeline (using automatic differen-

tiation) that is fully robust to problem instance. In the following sections,D will refer to the PEPS bond dimension and

χ will refer to the maximum bond dimension allowed during contraction before approximations (via singular value

decomposition, SVD) are performed. The algorithms were implemented with the quimb software package [41], using

PyTorch as the backend library for automatic differentiaion [42].

PEPS: operator representation

The method proposed in Ref. [32] to represent Hamiltonians with long-range interactions writes the interaction poten-

tial as a sum of Gaussians,

1

(
√

x2 + y2)6
≈

K
∑

k=1

cke
−λk(x

2+y2) ≡ Vfit(r). (6)

Using standard methods for fitting functions by exponential sums [43, 44], we can obtain a K = 7 fit with error

ε = maxi |1/r6i − Vfit(ri)| = 10−5 on the domain r ∈ [1, 16
√
2], which is used throughout the work.

PEPS: essential computational techniques

As originally discussed in Ref. [38], when trying to use automatic differentiation to optimize a PEPS there are a

few essential techniques that must be employed, which are not typically default in standard automatic differentiation

libraries. They are essential; without them the computation of the energy expectation value and its derivative will
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typically not run to completion due to out-of-memory errors or numerical infinities.

The first techniques is numerical stabilization of the gradient of SVD, by adding Lorentzian broadening to the in-

verse singular values. Consider a standard SVD of a rectangular matrix A = USV T . In reverse-mode automatic

differentiation, the derivative of this operation is given by,

A =
1

2
U
[

F+ �
(

UTU − U
T
U
)

+ F− �
(

V TV − V
T
V
)]

V T

+ USV T + (I − UUT )US−1V T + US−1V
T
(I − V V T ). (7)

Here, U , S, and V are the derivatives (or, adjoints) of U , S, and V with respect to the preceding operations in the

reverse-computational graph. [F±]ij =
1

sj−si
± 1
sj+si

for i 6= j, otherwise F = 0, where the si are individual singular

values. In the case of (quasi-) degeneracy of singular values, or if their magnitudes becomes vanishing small, A is

not well-defined. At the cost of introducing a small error into the gradients, this issue can be practically resolved by

applying a Lorentzian broadening to the various inverses, e.g. 1
sj−si

≈ sj−si
(sj−si)2+ε

. In this work we use ε = 10−11.

The second essential technique is the broad usage of intermediate checkpointing when evaluating the energy to reduce

the memory load of computing gradients. This is a well-known technique in reverse-mode automatic differentiation

that trades additional compute time for a lower peak memory usage. Consider the forward-pass computational graph

to evaluate the energy. After every n steps in the graph, one can save an intermediate of the computation and discard

all the other intermediates within the n-step interval that automatic differentiation libraries would typically need to

store. Then, to propagate through the reverse-pass computation graph (to compute the gradients), a single n-step

chunk is run in forward-pass to populate all the necessary intermediates in that segment of the graph. The reverse-

mode computation can then progress through that segment, and the process is repeated for the subsequent n-step

segments until the entire reverse-graph has been computed. The key for application with PEPS is to choose the proper

intermediates to store, which do not require too much memory (i.e. store intermediates after compressing their bond

dimensions).

PEPS: stabilizing the optimization

A straightforward implementation of the energy expectation value as described in [32], with optimization via auto-

matic differentiation including the above techniques, typically fails to find the ground state PEPS for the Rydberg

Hamiltonian (see Supplementary Fig. 3). This failure can be generally attributed to the fact that in the quantity under

optimization E = 〈ψ|H|ψ〉
〈ψ|ψ〉 , both the numerator and denominator are evaluated approximately and thus the computa-

tion is not strictly bound by the variational principle. Consequently, the optimization can find pathological regions of
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the PEPS parameter values which make the PEPS contractions inaccurate for the chosen χ, even when starting from

an accurately contractible PEPS. Unfortunately, in this problem we find that simply raising the value of χ does not

prevent this behavior until χ is impractically large.

In order to mitigate this problem we use the following four techniques in tandem:

• We employ line search methods that minimize the gradient norm as well as the energy. In this work, we use the

BFGS algorithm [45] in conjunction with such a line search, as suggested in [38].

• We use the cost functionE1/2+E2/2+λ|E2−E1| whereE1 andE2 are the energies of PEPS on lattices rotated

by 180 degrees and λ is a penalty factor. This strongly penalizes the optimization from entering parameter space

with large contraction error (where E1 and E2 would be very different).

• During the first iterations of the gradient optimization we only update small patches of tensors at a time, which

are chosen to break spatial symmetries that may be contained in the initial guess. After this has pushed the

optimization towards the symmetries of the true ground state order, then all tensors can be updated at each

optimization step.

• We evaluate the numerator and denominator of E in a consistent way by using a technique we call local nor-

malization. During the computation of 〈ψ|H|ψ〉, writing H as a comb tensor sum H =
∑Lx

i=1 hi, then for each

comb tensor numerator 〈ψ|hi|ψ〉, the associated denominator uses the identical contraction, but with hi replaced

by the identity (the environments are not recomputed).

Combining all four of these techniques removes the most egregious instabilities in the optimization trajectory (see

Supplementary Fig. 3), at the cost of a slightly larger computational burden. However, as in more standard DMRG

calculations with small bond dimension, convergence to the correct ground-state (rather than a local minimum) still

requires a reasonable initial guess.

PEPS: initial guess

Obtaining an accurate ground state PEPS typically relies on starting with an accurate initial guess. The predominant

algorithms to generate such a guess for problems with a local Hamiltonian are simple update [46, 47, 48] or imaginary

time projection of a converged small D solution to a larger D guess. However, in the presence of long-range interac-

tions it becomes challenging to generalize either of these methods in an efficient and/or accurate way. We therefore

used the following simple scheme to generate initial guesses in this work.

• Sum n manually constructed D = 1 PEPS to obtain an initial PEPS of bond dimension D = n. The config-
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urations of these D = 1 PEPS were set to reproduce specific low energy Rydberg crystals and defects within

them.

• For small Rb: truncate the long-range interactions in H to next-nearest, or next-next-nearest, neighbor inter-

actions (distance of
√
2 or 2), and run conventional simple update starting from the above manually summed

PEPS. This fails once the ground state excitations are spaced by more than 2.

• For large Rb: add positive random noise to the manually summed PEPS, and then run a highly approximate,

first-order gradient optimization for ∼ 25 iterations using a large step size when updating the parameters.

Further details regarding the convergence can be found in Supplementary Methods.

Finite 2D DMRG

Standard 2D DMRG calculations with open boundaries were used to study the 9×9 system, a low-entanglement region

of the 13× 13 system, and to supplement convergence of PEPS on the larger 15× 14, 15× 15, and 16× 16 lattices.

Like the PEPS calculations, these too included all long-range interactions (according to Eq. 1). The maximal bond

dimension used for the 9 × 9 and 13 × 13 simulations was Dmax = 1200, which we found was more than enough to

accurately study the regions of interest in Fig. 5 for these lattices (see Supplementary Fig. 6). For supplementing PEPS

convergence on the larger lattices, we used Dmax = 750. Although this bond dimension is not large enough to capture

the ground state energy or entanglement of such large systems with high precision, we found it sufficient to capture

the first 3-4 digits of the ground state energy and to help with distinguishing between the different low-entanglement

ordered phases present in the finite phase diagram, which have substantially larger gaps than the bulk system due to

edge effects.

Bulk mean field and classical phases

The mean field phase diagram for the bulk system (including all long-range interactions) in Fig. 2d was generated by

the following procedure.

• Parameterize the single site wavefunction as |φi〉 = sin2(θi)|0〉 + cos2(θi)|1〉, where |0〉 is the atomic ground

state and |1〉 is the excited Rydberg state.

• Construct a completely un-entangled many-body wavefunction as a typical product of these single-site states

according to all reasonable unit cells between size 2× 2 and 8× 10 (supercells are not necessary for mean-field

convergence).

• Initialize all possibly relevant configurations for each unit cell as initial guesses. These can be obtained from
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classical algebraic arguments or classical Monte Carlo. We used a simple classical Monte Carlo Metropolis

algorithm to find low energy crystals for each unit cell size.

• Minimize the Γ-point energy for all guesses with respect to the {θi} using gradient descent. Analytic gradients

are easily derived, or automatic differentiation can be employed.

• Classify the phase of the lowest energy state using the same density-based order parameters as the Γ-point

DMRG calculations.

The phase space was scanned with a δ-resolution of 0.1 and a Rb-resolution of 0.025. Importantly, these calculations

are subject to the same limitation as the Γ-point DMRG - they do not capture any possible low energy states with a

unit cell larger than 8 × 10. Although such states are not expected in the phase space under examination, this study

cannot definitively rule them out.

The classical phase diagram for the bulk system (including all long-range interactions) in Fig. 2c was generated by

the following procedure.

• Run classical Monte Carlo minimization of the Γ-point energy for every unit cell size between 2×2 and 10×10

at phase space points spaced by ∆δ = 0.3, ∆Rb = 0.1.

• For all low energy configurations obtained at all phase points, derive their continuous functional form E(δ,Rb)

by numerically integrating the interactions.

• Analytically solve for the intersection line between each adjacent pair of configurations in phase space that have

minimal energy.

These calculations are also subject to the same limitation as above - any states with unit cells larger than 10 × 10 are

not captured, and we cannot rule out their possible existence.

Data Availability

Data and plotting scripts for Figures 3, 4, and 5 can be found at https://gitlab.com/mattorourke41/

rydberg_public_data. All other data is available from the authors upon request.

Code Availability

Source codes for the numerical simulations are available from the authors upon request.
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Figure Legends/Captions

Figure 1: Numerical methods and strategy. (a) A schematic representation of Γ-point DMRG. A single infi-

nite bulk configuration is given by periodic images of the central supercell configuration. The wavefunction

coefficient for this infinite configuration is given by the contraction of a snake MPS, which is defined only

within a single supercell. (b) By widely varying the size of the supercell, Γ-point DMRG obtains many differ-

ent ground states. Identifying all accessible supercells which give the same ground state order (shown with

identically colored points), we can ensure that all competing low-energy states are well converged w.r.t.

finite size effects, and thus properly identify the true ground state (inset shows ground-state order (dark

green) converged w.r.t. supercell size, separated from other low-energy orders by 10−4 energy units). (c)

A PEPS wavefunction ansatz with bond dimension D for a finite system. Each tensor is a different color

because they can all be unique. (d) A simplified diagrammatic representation of the long-range Hamiltonian

construction for PEPS in Ref. [32]. All terms in the Hamiltonian are accounted for by a sum of Lx comb

tensor network operators. Tensors of the same color are identical.

Figure 2: Phase diagrams of the bulk system under various assumptions. The color of a dot/region identi-

fies the ground state order. The density profiles for each color are given in (e) and shown near each phase

domain. (a) The phase diagram given by Γ-point DMRG including all long-range interactions. (b) The phase

diagram from Γ-point DMRG when interactions are truncated to 0 beyond a distance of |ri − rj | = 2. (c)

The classical phase diagram (when all sites are either fully occupied or empty) including all long-range

interactions. (d) The mean-field phase diagram, including all long-range interactions. Error bars display the

uncertainty of the computed phase boundaries. (e) Representative density profiles for all phases in (a)-(d),

identified by the colored dot in each lower right corner. All profiles have Γ-point boundary conditions on all

edges. In (a)-(b) dots denote computed data, while shading is a guide for the eye. (c),(d) are computed with

very fine resolution/analytically, thus no dots are shown.

20



Figure 3: Mean-field striated versus entangled nematic phase. (a) Density-density correlation functions

of the mean-field and exact striated ground state, both at (δ,Rb) = (3.1, 1.5); these agree, confirming the

mean-field nature of the striated phase. (b) Density-density correlation functions for the entangled nematic

phase ground state and two different mean-field ground states (from a 6 × 3 unit cell and a 3 × 4 unit

cell) at (δ,Rb) = (5.0, 2.3). In (a)-(b), 2-fold/4-fold degeneracy of a peak is indicated by 2/4 horizontal dots

distributed around the proper distance coordinate. 8-fold degeneracy in (a) is shown as two rows of 4 dots.

The non-mean-field (entangled) character of the nematic phase is evident. (c) Structure of the nematic state

in terms of classical configurations constructed via compositions of 3 individual column states |a〉 , |b〉 , |c〉.
In the classical limit, there are 4 distinct sets of low-energy configurations, all characterized by the absence

of adjacent columns in the same state (e.g. |aa...〉) and large degeneracies due to permutational symmetry

between |a〉, |b〉, and |c〉. The lowest in energy is 6-fold degenerate, corresponding to the 3-star state.

However, in the quantum nematic state the configurations that are slightly higher in energy have much

larger wavefunction coefficients. The most relevant classical states in the wavefunction are those with the

greatest number of possible single full column hops (e.g. a → b) without introducing unfavorable states like

|aa...〉, revealing the role of itinerancy in the nematic phase. (d) Bipartite entanglement entropy for each

possible bipartition of the 12× 9 supercell nematic ground state. One inset shows the path that the partition

location axis follows through the supercell MPS, while the other shows the entanglement spectrum at a

central cut.

Figure 4: Phase diagram of the 15×15 finite system and finite lattice orders. (a) The phase diagram, where

colors correspond to the same phase classifications as Fig. 2. Triangles represent tentative classification of

points showing inconsistent PEPS convergence, see Supplementary Methods. A new order, which we call

square, is specified in (c) and various examples of boundary-bulk frustrated ground states in (b). (d) The

density profile for a nematic-like ground state that can be stabilized on a 15× 14 lattice at (δ,Rb) = (3.4, 2.1)
with manually tailored edge excitations (see text). (e) Comparing the correlations of the finite nematic

phase to the converged bulk phase. The degeneracy of the peaks is split by the boundary excitations,

but the number of peaks is generally conserved between the two (green ovals), which provides a clear

distinction from mean-field states (see Fig. 3b).

Figure 5: Comparison to experiment. The (a)-(b) row directly reproduces experimental phase diagram

data on the 13 × 13 lattice (data extracted from Ref. [18] Fig. 4), while the (c)-(e) row is 13 × 13 numerical

data computed in this work. The first two columns show the order parameters used in [18] to identify the

square/striated and star phases, while the third column shows a new, more sensitive order parameter for

the star phase. Red dots in (a)-(b) denote the phase boundaries assigned in [18], while the cyan dotted

lines in (c)-(e) indicate the subset of parameter space that was computed. Our calculations support a re-

interpretation of the experimental data with a significantly larger square/striated region and much smaller

star phase.
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