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ABSTRACT: We explore various ways to group orbitals into
clusters in a matrix product state (MPS). We explain how a generic
cluster MPS can often lead to an increase in computational cost and
instead propose a special cluster structure, involving only the first
and last orbitals/sites, with a wider scope for computational
advantage. This structure is a natural formalism to describe
correlated multireference (MR) theories. We demonstrate the
flexibility and usefulness of this approach by implementing various
uncontracted MR configuration interaction, perturbation, and
linearized coupled cluster theories using an MPS with large cluster
sites. Applications to the nitrogen dimer, the chromium dimer, and
benzene, including up to triple excitations in the external space, demonstrate the utility of an MPS with up to two large sites. We use
our results to analyze the quality of different multireference approximations.

1. INTRODUCTION

The density matrix renormalization group (DMRG) and its
associated ansatz of matrix product states (MPSs)1−6 are
established as useful electronic structure approximations in
problems where there are a large number of correlated open
shells.7−13 The formalism requires first mapping the orbitals to
a one-dimensional lattice of sites. One direction discussed
already in the first quantum chemistry DMRG paper14 is the
possibility of grouping clusters of related orbitals into large
“sites” (Figure 1), whose Hilbert space is then approximated
outside of the truncation procedure of DMRG. Such a cluster

MPS seems attractive for interpretation, as one can group
orbitals corresponding to chemical identity, and it has been
efficiently implemented in a number of works.15−20 However,
because the Hilbert space of the cluster site grows
exponentially quickly with the number of cluster orbitals, the
computational advantage is less clear. In addition, the
drawbacks of clustering, which gives rise to more complicated
interactions and entanglement between clusters, has been
understood since the earliest formulations of the quantum
renormalization group.21,22 In the first part of this work, we
analyze whether clustering orbitals is a good idea in chemical
problems from the view of computational cost and accuracy.
In the second part, we discuss a specific setting where

grouping sites into large clusters has a clear theoretical
computational advantage. This occurs when the clusters are at
either end of the DMRG lattice (Figure 2). Because the
clusters do not share a common boundary, the cluster Hilbert
space dimension appears together with the MPS bond
dimension in a computationally more favorable way than in
a general cluster MPS. A natural application for this type of
MPS is to represent dynamical correlations by clustering
inactive and external orbitals. As we demonstrate, this leads to
a substantial cost reduction in MPS treatments of dynamic
correlation.
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Figure 1. A cluster matrix product state obtained by combining
multiple orbitals into large sites. The Hilbert space of each of the large
sites consists of P many-body configurations that may be further
approximated.15
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The paper proceeds as follows. We start by analyzing the
cost of cluster MPS (Section 2.1) and explain why computa-
tional gains are not expected in general settings. We then
analyze the conditions leading to the favorable cost of the
single and double cluster-site model (Section 2.2) and discuss
its application to uncontracted multireference dynamic
correlation theories (Section 2.3). We next discuss the detailed
implementation of DMRG with large cluster sites in Section 3,
taking advantage of the large-scale parallel DMRG implemen-
tation in ref 23. Finally in Section 4, we demonstrate the
cluster MPS implementation of uncontracted multireference
configuration interaction (MRCI), multireference perturbation
theory (MRPT), and multireference linearized coupled cluster
theories (MRLCC) in applications to the nitrogen dimer,
chromium dimer, and the benzene molecule, using complete
active spaces (CASs) with up to 30 electrons and 30 orbitals,
with up to triples in the external space, and with up to 280
external orbitals. We conclude in Section 5.

Note: while this manuscript was under review, a related
preprint appeared that implements uncontracted MRCI by
using an MPS with a single cluster site.24

2. THEORY

2.1. Analysis of Clustering Sites in Matrix Product
States. The benefit of clustering orbitals depends on the
entanglement structure of the problem. If the entanglement is
such that groups of sites are strongly entangled internally, but
only weakly entangled between the groups, then it may make
sense computationally to cluster into large sites. The critical
question is how large this difference in intra- versus intercluster
entanglement needs to be for a computational benefit.
To start, we recall the computational cost of the standard

DMRG algorithm and then examine the cost for multiple
clusters of sites and, then finally, for large sites at the ends of
the DMRG lattice, the latter being the main focus in this work.

2.1.1. Standard Matrix Product States. In the standard
MPS/DMRG formulation, the wave function for K orbitals is
mapped to a lattice of K sites and written as a matrix product
state (MPS) of bond dimension D,1

∑|Ψ⟩ = | ⟩
{ }

n n nA A A... ...
n

n n n
K1 2

i

K1 2

(1)

where the matrices Ani at “site” i are of dimensions Di × Di+1,
except those associated with the first and last sites, which are
vectors of size Di. The bond dimension of the MPS is then
defined as D = maxi Di. The local Hilbert space {|n⟩} is that of
a spatial orbital ϕ and the dimension is P = 4 ({|ni⟩} = {|vac⟩,
|ϕi

α⟩, |ϕi
β⟩, |ϕi

α ϕi
β⟩}).

The main cost of the DMRG algorithm when using
electronic structure Hamiltonians stems from two steps,
performed at each site: (1) the construction and diagonaliza-
tion of an effective Hamiltonian in the product space of one or
more sites and the renormalized Hilbert space of their
environment and (2) the transformation of operators into
the new renormalized space.14,25 Both steps contribute to the
leading computational scaling, which is usually given (per site)
as [ + + ]< < >K K D P K K D( )2 3 2 2 2 , assuming Di ∼ D. K< (K>) is
the smaller (larger) of the numbers of orbitals to the left and
right of the bipartition at site i. In the following, we assume
that D ≫ K in order to drop the second term, which stems
from the transformation of operators. In addition, as P = 4 is a
small constant, we drop the P dependence for a standard MPS.
For the total cost, K</> ∼ K, and the cost per site is then
multiplied by K to obtain the leading cost for the DMRG
algorithm of [ ]K D3 3 . For reference, the precise scalings for a

Figure 2. (a, b) Diagrammatic representation of a cluster MPS with
two large sites at either end of the lattice. This ansatz demonstrates
favorable scaling with respect to the large site Hilbert space dimension
because there is no shared boundary between the large sites. (c)
Application to an uncontracted multireference dynamic correlation
wave function in the singles and doubles space, where the Hilbert
space of the green site covers the inactive orbitals and the Hilbert
space of the blue site covers the external orbitals.

Table 1. Comparison of the Scaling for the Computational Cost of the Various MPS-Based DMRG Formulationsa

method diagonalization and renorm. operators compl. renorm. op.

normal MPS K3D3 K4D2

cluster MPS CK2 [D3P + D2poly(P)] CK3D2

single large site MPS Kact (Kact
2 + K)Dact

3 + (Kact
2 + K)[Dext

2 P + Dextpoly(P)] Kact
2 KD2

MPS-MRCISD (large site MPS) as single large site MPS with P = Kext
2

MPS-MRCISD (conventional MPS) Kact(Kact
2 + K)Dact

3 + ∑i = Kact

K (K<,i
2 + K)Di

3 Kact
2 KD2 + ∑i = Kact

K K<,i
2 K>,iDi

2

aD defines the bond dimension, K the number of orbitals, P the number of configurations on the large site, and C the number of clusters (large
sites) in a cluster MPS. For the MPS with large sites at either ends, we here assume only one large site with Kext orbitals, for simplicity. The number
of standard (orbital-based) sites is then Kact and Kext + Kact = K. The first column shows the costs for carrying out the Davidson diagonalization and
operator renormalization steps, while the second column is an additional cost for the complementary operator renormalization step.
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normal MPS and different variations of MPSs discussed below
are gathered in Table 1.
2.1.2. Cluster Matrix Product States. The above analysis

can be repeated for a cluster MPS with clusters of orbitals as
sites. We assume that each cluster has Kc orbitals, with a cluster
Hilbert space of P configurations. Then the number of sites in
the cluster MPS is reduced to K/Kc = C. To simplify the
analysis, we assume that Kc is similar for all clusters. Note that
to obtain the same accuracy as the standard MPS, the bond
dimension used between two clusters must be the same as the
bond dimension in the standard MPS between the sites at the
boundary of the two clusters. Now consider increasing the
number of orbitals in each cluster Kc. Assuming the full Hilbert
space of each cluster is used, then P ∼ 4Kc. Because P is now
potentially large, we consider it as important as D and K in the
analysis of the leading scaling.
The cost of the cluster MPS is then given by
{ [ + ] + }D P D P DCK poly( ) CK2 3 2 3 2 , analogous to the

standard MPS cost. We again assume that D ≫ K and drop
the last term. In contrast to the cost given above for the
standard MPS, here we have written the first term without a P2

dependence because we assume the use of a tripartition to
perform the diagonalization and renormalization. As explained
below in Section 3.3, this changes the cost of the first term per
site from <K D P( )2 3 2 to < >K K D P( )3 . The term containing
poly(P) stems from applying operators in the cluster space
onto the site and is at most P2. However, in many common
situations we can use a local basis (such as a determinantal
basis) in which the Hamiltonian is sparse. Then poly(P) ∼ P.
Hence, the leading cost of the cluster MPS simplifies to

D P(CK )2 3 .
While P only appears linearly in the scaling, it grows much

faster than the 1/Kc reduction in the number of sites in the
cluster MPS. Although there are ways to truncate the cluster
Hilbert space, e.g., via filtering determinants (“selected
configuration interaction”),15 general linear subspace projec-
tion (“Tucker decomposition”),26 or using an additional
factorized ansatz for the MPS cluster matrix (“comb tensor
networks”),16,27 any choice must achieve an effective
exponential reduction in P complexity, to compete with the
standard MPS cost. This means that in systems whose
entanglement is well described by a standard MPS with
constant bond dimension across the lattice, a cluster MPS is
unlikely to reduce computational cost for the same accuracy.
A different limiting case is in problems described by an MPS

with highly nonuniform bond dimensions, large within a
cluster of sites and very small between clusters. The extreme
case is no entanglement (D = 1) between clusters, i.e., the state
is a product state of cluster wave functions (such as a
generalized valence bond wave function, or for infinitely
separated or noninteracting systems).18,20,28,29 Since D = 1, it
does not appear in the scaling and we need to consider terms
nonleading in D in the analysis. Assuming determinant-like
sparsity in the local basis, the DMRG cost is then

[ + ]C K P K( )2 3 . Conversely, when treating the problem
using a standard MPS, D > 1 when cutting across a cluster.
In the worst case, ∼D P( )1/2 , yielding P(CK )2 3/2 cost (the
leading D term). This is larger than the cluster MPS result
because we assumed no compressibility within the cluster, and
the renormalized MPS basis cannot use sparsity. Thus, the
cluster MPS is advantageous in this limit.

In general, chemical problems fall between these two
limiting cases. Sufficiently weakly interacting units are close
to the second limiting case, and thus there are computational
benefits to using the cluster MPS there. But the exponential
overhead of clustering, together with the presence of long-
range interactions (which introduce long-range entanglement)
means that many problems are in fact close to the first
scenario. To illustrate this, in the Appendix we carry out
numerical simulations using both cluster MPS as well as the
ordinary MPS for hydrogen chains at several geometries. The
results show that there can be little gain from clustering even in
a regime where the chemical identity of individual atoms or
molecular units is evident.

2.2. Matrix Product States with Large Sites at the
Ends. We now turn to the case of main interest in this work,
when there are large sites at one or both ends of the MPS
lattice. In anticipation of the multireference use-cases discussed
later, the orbitals treated in the usual MPS fashion will be
denoted active orbitals, orbitals in the left cluster will be
denoted inactive, and orbitals in the right cluster will be
denoted external. The number of orbitals in each class is then
Kact, Kinact, and Kext, respectively. The ansatz thus takes the
form (see also Figure 2).

∑|Ψ⟩=

| ⟩
{ }

+ +

+ +

n n

A A A A

n n

...

...

n

n n

K K

n n

inact 1 2 ext

K Kinact inact 1 inact 2 ext

inact inact (2)

where ninact and next label the Hilbert space of the inactive and
external sites of dimension Pinact, Pext, respectively.
To simplify the scaling discussion, we will ignore the left

large site, i.e., Kinact = 0. The main finding is easily generalized
to the case of Kinact ≠ 0. Following the discussion above, the
DMRG cost at sites within the active space is the same as in
standard DMRG, i.e., [ + ]K K D P( )act

2 3 2 (P = 4), where the
only difference is that Kact ≠ K. The new consideration is for
the site at the boundary between the active sites and the large
external site. The contraction at the boundary has cost

[ + [ + ]K K D P D P( ) poly( )act
2

ext
2

ext ext ext where Dext is the bond
dimension at the boundary. As for the cluster MPS, we assume
poly(Pext) ∼ Pext and drop the last term. Unlike in the general
cluster MPS, however, the cluster Hilbert space dimension
appears with Dext

2 , not Dext
3 . Thus, for Pext not too large (see

below) it is possible to obtain a speedup. For the case of two
large sites we must also consider the boundary between the
inactive large site and the active space, but this takes the same
form where the inactive cluster Hilbert space dimension is
multiplied by Dinact

2 . In the limiting case of Kact = 0, i.e., the
MPS consists of only two large sites, the cost scales as

[ + ]K K D P( )Int
2

ext ext
2

ext . This corner case may be advantageous
when Pext is small enough, but will not be considered further
here.
One concrete application is to use the ansatz eq 2 to

represent orbital partitioned quantum chemistry models, such
as the restricted active space (RAS) model and other
uncontracted multireference dynamic correlation models. For
example, if we assume a singles and doubles theory where the
external space contains at most two electrons, then Pext ∼ Kext

2 .
With the use of a standard MPS to represent such a state, the
external space restriction limits the bond-dimension of the
MPS to Dext at the boundary. The cost of the standard DMRG
contraction at the boundary site is K D P( )ext

2
ext
3 2 (with P = 4),
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and assuming Dext decreases linearly across the external
orbitals, the leading cost becomes K D( )ext

3
ext
3 (the precise

scaling is detailed in Table 1). However, using a large external
site, and the expression for the single boundary contraction,
then for Kext ∼ K > Kact

2 we obtain a speedup of Dext relative to
the standard DMRG implementation. If Kext < Kact

2 , the
speedup will be larger than ∼Dext/Kext. For an external space
with only single excitations out of the active space, the speedup
is even greater, namely up to KDext. For a more general external
space, e.g., constructed by selected configuration interac-
tion,30−33 a similar analysis can be applied.
2.3. Matrix Product State Formulation of Uncon-

tracted Dynamical Correlation Methods. We next
describe how to approximate various uncontracted multi-
reference dynamical correlation methods using MPS. In all
these cases, the large site MPS ansatz (2) can be used, and
when the excitation degree is small (e.g., up to singles and
doubles, in some cases up to triples), we can expect speedup
relative to the standard MPS formulation. This will be assessed
in the benchmark in Section 4.
2.3.1. Multireference Configuration Interaction Theory.

The uncontracted multireference CI (uc-MRCI) ansatz takes
the form

∑ ∑|Ψ ⟩ = | ⟩ + | ⟩− c C c E
C

n

C
E

Euc MRCI

ref

(3)

where |C⟩ denotes a configuration from the reference space
(no particles in the external space, no holes in the inactive
space) and |E⟩ are configurations outside of the reference
space, classified as singles (one particle in the external space),
doubles (two particles in the external space), and so on. The
uc-MRCI coefficients cC and cE are determined by minimizing
the variational energy.
MRCI does not give an extensive energy, e.g., the energy of

independent subsystems is not the sum of the energy of the
systems. Defining the correlation energy as ΔE = EMRCI − E0
(E0 being the energy of the reference wave function |Ψ0⟩ =
∑CcC

0 |C⟩, with cC
0 determined variationally), the following

approximate size-extensivity corrections have been defined
(among others34):

= − ΔE c E(1 )D 0
2

(4)

= − ΔE c c E(1 )/RD 0
2

0
2

(5)

θ
θ

θ

=
+ −

[ − ]
Δ

≈ − =

E
N N N

E

N E c

2 tan(2 )

2 sec(2 ) 1

(1 2/ ) , arccos( )

P
el
2

el el

el RD 0 (6)

= =
− −

−
E g E g

N N
N N

,
( 2)( 3)

( 1)M M RD M
el el

el el (7)

where ED (ERD) is the (renormalized) Davidson correc-
tion,34,35 EP is the Pople correction,

36 and EM is the Meissner
correction.37 Nel is the number of correlated electrons, and c0

2 is
either defined as38

∑=c c
C

n

C0
2 2

ref

(8)

or as39

= ⟨Ψ |Ψ ⟩c0
2

0 MRCISD
2

(9)

Here, we use eq 8, which has been found to be slightly more
accurate in many situations.34,40 The size-consistency-
corrected MRCI methods will be referred to as MRCI+QX,
where X stands for the particular correction used.
One can also define an energy functional to variationally

minimize that includes the size-extensivity correction in its
definition. This permits a simple implementation of the
gradients and properties. Many such functionals can be
obtained by shifting the diagonal of the MRCI Hamiltonian
according to

̂ → ̂ + Δ ̂ Δ = − ΔH H P g E, (1 ) (10)

where

∑̂ = | ⟩⟨ |P E E
E (11)

and the parameter g defines the type of correction.34 Here, we
will use only two variants g = 1 − gM (MR-averaged quadratic
coupled-cluster, MR-AQCC, method41) and g = 2/Nel (MR
averaged coupled pair functional, MR-ACPF).42 MR-AQCC is
related to EM and MR-ACPF is related to EP, and MR-ACPF is
extensive for identical subsystems.
The MPS versions of the above theories are easily defined,

by constraining MPS to preserve constraints in the inactive and
external Hilbert spaces. We will refer to the MPS versions of
the above theories by prepending MPS to the name of the
method, e.g., MPS-MRCI, MPS-ACPF, MPS-AQCC, etc. For
brevity, we avoid the additional “uc” prefix and assume that
“MPS-MRX” implies an uncontracted multireference formula-
tion of method X.

2.3.2. Multireference Perturbation Theory and Multi-
reference Coupled Cluster theory. It is straightforward to
formulate uncontracted multireference perturbation theory in
terms of MPS. This was discussed in ref. 43 with subsequent
extensions in refs. 44−47. Given a zeroth-order Hamiltonian,
Ĥ0, the first-order perturbed wave function, |Ψ1⟩, can be
obtained by minimizing the Hylleraas functional48

[|Ψ⟩] = ⟨Ψ| ̂ − |Ψ⟩ + ⟨Ψ| ̂ ̂ − ̂ |Ψ ⟩H H E Q H H2 ( )1 1 0 0 1 1 0 0 (12)

where Q̂ = 1 − |Ψ0⟩⟨Ψ0|. The MPS formulation corresponds to
representing both |Ψ0⟩ and |Ψ1⟩ as MPS, approximating the
uncontracted perturbation solution. The energy for third-order
MRPT can be obtained from

= + ⟨Ψ| ̂ − ̂ |Ψ⟩E E H HPT3 PT2 1 0 1 (13)

In ref 43, the above theory was implemented for the Dyall
Hamiltonian49 to approximate the uncontracted n-electron
valence-state perturbation theory (NEVPT2),50−52 and the
resulting formulation was termed MPS-PT2. The Dyall
Hamiltonian Ĥ0,D is defined as49,52

∑ ∑ ∑

∑

̂ = ̂ ̂ + ̂ ̂ + ̂ ̂

+ ⟨ | ⟩ ̂ ̂ ̂ ̂ +

∈

†

∈

†

∈

†

∈

† †

H F a a F a a h a a

ab cd a a a a E
1
2

D
ij

ij i j
rs

rs r s
ab

ab a b

abcd
a b d c D

0,
inactive ext act

eff

act (14)

∑= + [ ⟨ | ⟩ − ⟨ | ⟩]
∈

h h ai bi ai ib2ab ab
i

eff

inactive (15)
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∑ ∑= − + [ ⟨ | ⟩ − ⟨ | ⟩]
∈ ∈

E h F ij ij ij ji2 ( ) 2D
i

ii ii
ijinactive inactive

(16)

where F is the generalized Fock matrix. hij = ⟨i|h|j⟩ are the one-
particle Hamiltonian matrix elements and ⟨ab|cd⟩ the electron
repulsion matrix elements.
In ref 44, Fink’s restraining the excitation degree (RE)

Hamiltonian,53,54

∑ ∑̂ = + ̂ ̂ + ⟨ | ⟩ ̂ ̂ ̂ ̂
Δ =

†

Δ =

† †H E h a a pq rs a a a a
1
2F

n
pq p q

n
p q s r0, 0

pq; 0 pqrs; 0ex ex

(17)

was used, leading to an MPS-based version of RE perturbation
theory (REPT). Δnex = 0 indicates that excitations between the
inactive, active, and external spaces are omitted, compared to
the full Hilbert space. If there is no active space, then |Ψ0⟩ is a
single Slater determinant, and the result from REPT2 is
identical to the linearized-coupled cluster (LCC) approxima-
tion, thus this approximation was termed MPS-LCC in ref 44.
However, given a multireference |Ψ0⟩, this equivalence no
longer holds. We will consider another linearized multi-
reference coupled cluster approximation below, thus we will
refer to this choice of Ĥ0,F as MPS-MRREPT2.
Refs 55 and 56 defined the first linearized multireference

coupled cluster approximation (MR-LCCM). This corre-
sponds to the choice

= ̂ ̂ ̂ + |Ψ ⟩⟨Ψ | |Ψ ⟩⟨Ψ |H PHP E0,LCCM 0 0 0 0 0 (18)

where P̂ is defined in eq 11 and |Ψ1⟩ is solved for only in the
excited space, i.e., |Ψ1⟩ = P̂|Ψ1⟩. It differs from REPT2 in that
(a) |Ψ1⟩ has no contributions in the reference space and (b)
the excitation spaces of degree nex > 0 are coupled in Ĥ0. We
refer to the MPS implementation of this theory as MPS-
MRLCCM.

3. IMPLEMENTATION
We have implemented the modified MPS algorithms described
above in several ways. We have implemented uncontracted
dynamical correlation methods within a standard MPS
formulation by restricting the occupancy of different spaces,
as described in Section 3.1 within BLOCK2.23 The large site
implementation of the dynamical correlation methods is
implemented in BLOCK2 as well, as described in Section
3.2. Finally, the general cluster MPS (used in the computations
in the Appendix) is implemented within the DMRG program
SCHWARZBROT18 as described in Section 3.3. For general
references on DMRG implementation, we refer to the
literature.4,23,25,57−60 The above MPS algorithms are interfaced
with the PySCF program.61,62

3.1. Restricting Configurations in Matrix Product
States. To implement the unrestricted multireference
dynamical correlation theories in Section 2.3 in a standard
MPS, we enforce constraints on the MPS matrices. Elementary
symmetries such as particle number or spin symmetry are
usually taken into account by introducing irreducible blocks in
the MPS site matrices Ani,1,6,25,63 where each block
corresponds to a different symmetry (e.g., number of particles)
to the left and right of the given site. If the MPS sites are
ordered according to the orbital spaces, inactive (Kinact), active
(Kact), and external (Kext), the same technique can be used to
constrain the MPS ansatz to a wave function of the form (3)
with a given excitation level. For example, restricting the

particle numbers on site i ≤ Kinact to be {i, i − 1, i − 2} and the
particle numbers on site i > KInt to be {Nel, Nel − 1, Nel − 2},
we approximate the ansatz (3) with singles and doubles
excitations. We assume here that the inactive orbitals are
placed on the left of the MPS and that the external orbitals are
placed on the right of the MPS. The particle number then
increases from site to site up to the total electron number, Nel,
at the end of the last site. Corner cases are neglected. Particle
number restriction is sufficient to implement the uncontracted
multireference dynamical correlation approaches in this work,
but extensions to other symmetry sectors (e.g., Sz and S2

symmetry) is possible, and can, for example be used to
describe wave functions restricted by the seniority quantum
number.63 In passing, we note that this approach is very
different from the “multilevel” DMRG,64 where different
maximal bond dimensions are used in the three subspaces,
without any restrictions on the particle number blocks.

3.2. Matrix Product States with Large Sites in the
Ends. Introducing large sites in an MPS requires significant
changes in the implementation of a DMRG code. Since for
conventional MPSs in electronic structure theory, the physical
dimension of a site is P = 4, or, with spin−orbital sites, even 2,
one typically does not optimize the DMRG implementation
around the size of the physical dimension. However, for large
sites, P can become arbitrarily large. Hence care must to be
taken to avoid unfavorable costs and scaling with respect to P.
In standard CI methods, the matrix representation of

operators is seldom explicitly constructed, and instead, matrix
vector products, such as Ĥ |Ψ⟩, are evaluated on the fly. Here,
however, we store all required operators that act in the large
site Hilbert space and represent them as sparse matrices (in the
determinantal basis of the large site) of size P × P. This is
because (a) operators in DMRG need to be accessed more
often than in standard CI methods and (b) the size of the large
site basis is small (∼106), compared to standard CI methods.
Note that the determinantal configurations range over different
numbers of electrons (e.g., between 0 and 2 for the external
site in an implementation of the multireference singles and
doubles theories), and this yields extremely sparse operator
matrices depending on the operator, e.g., with P( ) or even

(1) nonzeros. In our implementation, for up to two electrons
in the external space, most of the memory and runtime
(including the initialization) is spent on optimizing the regular
sites in the active space and not the large inactive or external
sites.
A standard DMRG implementation uses a decomposed form

of the Hamiltonian Ĥ = ∑α ÔL
αÔR

α to carry out the
optimization of the MPS matrix at a given site, where ÔL

α,
ÔR

α define operators that act to the left/right (inclusive) of the
given site. There are multiple such decompositions,23 e.g., we
can group the Hamiltonian integrals with either the left or right
operator, resulting in a normal (no integrals) or comple-
mentary (with integrals) operator. When approaching the site
in the middle of an MPS during a sweep, it is advantageous in
the standard algorithm to swap the assignment of normal and
complementary between the left and right operators in order to
reduce the number of terms in the α sum.23,65,66 In the large
site implementation of multireference dynamic correlation, this
is not required, because we can usually assume that Kext ≫
Kinact + Kact, and thus the sweep is always over the first “half” of
the sites. In practice, this means that only the normal operators
are constructed for the inactive and active sites, and only the
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complementary operators are constructed for the last external
site.
The standard DMRG algorithm extracts a renormalized

basis at each site by constructing and diagonalizing a density
matrix.2,25 Small perturbations are also added to this density
matrix to improve convergence during the optimization.67 For
the large site, however, the density matrix would have size

P( )2 . To avoid constructing this large object, we use the
singular value decomposition (SVD) of the large site, Anext/inact,
which reduces the scaling of the memory to (DP).68,69

Finally, standard DMRG simulations often use a two-site
algorithm where two adjacent sites are optimized simulta-
neously, in order to improve convergence and to optimize the
distribution of symmetry blocks in each MPS matrix. We use a
two-site algorithm on all sites except the large sites, which are
treated using the one-site algorithm. To ensure that symmetry
sectors in each matrix are not lost during the DMRG sweep,
we always retain at least one state in each symmetry sector
(particle number, point group, and Sz) in the SVD. Our large
site implementation does not currently use S2 symmetry.
To evaluate the scalar size-extensivity energy corrections, the

weight of the reference space, c0
2, is required. An evaluation as

eq 9 via |⟨Ψ0|ΨMRCISD⟩|
2 is done by straightforward contraction

of two MPSs.1 An evaluation as eq 8 via ∑C cC
2 requires first

setting the inactive and external configurations in the MPS
ansatz (2), ninact = {21 ... 2Kinact

}, next = {01 ... 0Kext
}, and then

computing the norm by contracting the resulting MPS with
itself. The energy functionals associated with the AQCC and
ACPF methods are implemented by modifying the diagonal of
the Hamiltonian during the optimization, as shown in eq 10.
We shift the diagonal of Ĥ, excluding the reference space, by
constructing a matrix product operator (MPO)1,65 representa-
tion of P̂ defined in eq 11, giving Ĥ → Ĥ + ΔP̂. For ΔE, we
evaluate the correlation energy using the lowest energy so far
observed during the DMRG sweep.
The perturbation-based methods MPS-MRLCCM and

MPS-MRREPT2 are implemented in the DMRG sweep
algorithm by solving linear equations at each site instead of
eigenvalue problems.43 For MPS-MRLCCM, eq 18 can be
constructed by removing the reference space in |Ψ1⟩. The
zeroth-order Hamiltonian in MPS-MRREPT can be con-
structed by including only particle-number-conserving oper-
ators on the large sites.
3.3. Cluster Matrix Product States. While the

implementation of the cluster MPS follows that of an MPS
with many large sites, more care has to be taken to avoid a P2-
type of computational cost. In addition to the modifications
described in Section 3.2, all DMRG optimization sweeps are
performed in the one-site mode and explicitly blocked
operators (which act on the Hilbert space of a block enlarged
by a site) are not explicitly constructed. (For example, this
means that we always use a tripartition of the Hamiltonian Ĥ =
∑α ÔL

α ÔS
α ÔR

α where the S index denotes the site being
optimized in the sweep). This changes the <K D P( )2 3 2 term in
the scaling of operator multiplication at a site in the DMRG
sweep to < >K K D P( )3 , c.f. Section 2.1.2.

4. APPLICATIONS

4.1. Nitrogen Dimer. Here, we compare relative timings of
(a) a standard DMRG computation (approximating full
configuration interaction, FCI), (b) an MPS-MRCISD

computation based on a standard MPS with restricted
quantum numbers, and (c) an MPS-MRCISD computation
based on an MPS with large sites. Specifically, we compare
timings for N2 with MPS-MRCISD based on a valence
CAS(10e,8o), double and triple ζ bases, and different maximal
bond dimensions.
The computations are performed with shared-memory

parallelism23 on one node with 28 Intel(R) Xeon(R) E5-
2680 v4 CPUs. For each experiment, we start with a random
initial state and perform two sweeps with the one-site DMRG
algorithm and with perturbative noise.67,68 For all computa-
tions, we measure and compare the total runtimes (including
initialization steps such as the setup of the Hamiltonian matrix
product operator).
The absolute and relative timings are shown in Figure 3. For

the same bond dimension, the MPS-MRCI simulations (full

and dashed lines) are typically faster than the FCI-based
DMRG simulations (dotted lines). This is expected as the
Hilbert space size (and thus the matrices in the MPS) are
restricted in the MPS-MRCI computation. Likewise, MPS-
MRCI simulations converge faster than conventional MPS
(FCI) simulations with respect to bond dimension (see
below). For all basis sizes the large site MPS (full lines)
performs significantly faster than the MPS based on restricted
quantum numbers (dashed lines) (right panel in Figure 3).
The speedup is always significantly larger than 1, decreases
with increasing bond dimension, and increases with basis size.
For example, in a triple ζ basis with 60 orbitals, a speedup of
more than 50 compared to the standard MPS can be obtained.
Notably, the large site MPS computation with a triple ζ basis
(60 orbitals; full black line) is faster than the MPS with
restricted quantum numbers with a double ζ basis (28 orbitals;
dashed green line).
The convergence of the energy versus bond dimension is

shown for N2 in Figure 4. We compute the energy at the
equilibrium distance (R = 1.1208 Å) using the cc-pVDZ basis.
MRCISD is based on a full CAS(14e,10o), employing a

Figure 3. Runtime (left panel) and speedup (right panel) of different
MPS-based simulations for N2 in different bases (total number of
orbitals, K are shown). In the left panel, the dashed lines indicate
runtimes for an MPS-MRCISD computation with an MPS based on
restricted quantum numbers (as many sites as orbitals). The full lines
indicate runtimes for the same MRCI setup but with an MPS where
the virtual orbitals are collectively described by one large MPS site.
The MPS-MRCI computation is based on a valence CAS(10e,8o).
The dotted lines indicate runtimes for a normal MPS/DMRG
computation, approximating full CI. The right panel shows the
speedup of using MPS-MRCI with a large-site MPS over using an
MPS with restricted quantum numbers.
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combination of natural orbitals obtained from CASSCF (for
the CAS space) and from Møller−Plesset second-order PT
(MP2)48 (by diagonalizing the one-particle density matrix in
the space of the external orbitals). We use the same natural-
occupation-based ordering for the MPS-MRCISD and the
standard MPS wave functions. While for this example the
normal MPS approaches the uc-MRCISD energy more rapidly,
namely around D ∼ 300, the overall convergence with respect
to D is slower. Due to the restrictions on the wave function,
the MPS-MRCISD method requires a much smaller bond
dimension of less than 400 to approach an error of less than
1 mEH. In contrast, a normal MPS requires a bond dimension
of ∼1000 for a similar convergence tolerance.70

4.2. Chromium Dimer. The chromium dimer is a
prototypical correlated system with complex bonding, which
requires both a multireference treatment and a large amount of
dynamic correlation.51,71−79 Several studies have used both
internally contracted and uncontracted MRCISD and related
methods to compute the Cr2 binding curve. Here, we will use
the MPS-based formalism to obtain results for several variants
of MPS-MRCI methods. Our purpose here is to illustrate the
flexibility of the MPS formalism and the utility of the large site
implementation which allows us to obtain results in large basis
sets and beyond doubles excitations in the MRCI ansatz.
We use a CAS self-consistent field (CASSCF) reference with

a valence CAS consisting of 12 electrons and 12 orbitals (3d
and 4s shells, 28784 configuration state functions, CSFs) and
employ the spin-free exact-2-component Hamiltonian80,81 with
the cc-pV{D,T,Q,5}Z-DK basis sets (up to quintuple ζ), which
include up to i-type functions.82 To decrease the required
bond dimension, we use CASSCF natural orbitals and Fiedler
ordering in the active space.83,84 We use standard canonical
external and inactive orbitals since an MPS-MRCISD wave
function is invariant with respect to orbital rotations in these
spaces. We do not employ any BSSE correction. The
uncontracted MRCI wave function keeps the 1s, 2s, 2p shells
frozen and includes the 3s and 3p orbitals in the inactive space,
and we correct the energies using the Pople, and other, size-
extensivity corrections. (For comparison, previous uncon-
tracted MRACPF and MRAQCC simulations by Dachsel et
al.85 and Müller73 used a generalized valence bond reference
function consisting of 3088 or 1516 CSFs, using bases with up
to h-type functions). The large site representing the external
space in the MPS has up to 153 × 103 configurations. The
PECs are generated from the binding energies as obtained by

subtracting the energy from the dimer at large distance (to
account for size consistency errors). Energy data is given in the
Supporting Information.
The MPS-MRCI+QP PECs are presented in Figure 5,

together with the earlier uc-MRAQCC results from Müller,73

and experimental curves (with a zero-point energy correction
of 0.03 eV79). The size consistency error at the 5ζ level is
0.185 eV, which is similar to the uc-MRCI+Q results obtained
by Müller.73 As usual, we computed the size consistency error
by taking the difference between the dimer energy at a large
distance and twice the energy of the Cr atom (based on
restricted open-shell Hartree−Fock orbitals). We find that the
MPS-MRCI simulations require a very large bond dimension,
typically in the middle of the MPS, which is larger than that
required for the reference wave function. The bond dimension
at each site is restricted by a density matrix eigenvalue cutoff of
10−10 and by the restrictions of possible states that lie in each
symmetry sector. The maximum bond dimension required in
the MPS representation of the CAS(12,12) wave function is
∼1,500. In contrast, in the MPS-MRCI wave function, the
additional external space leads to a dramatic increase of the
required bond dimension and with D = 15,000 (without spin
adaptation) the Qζ PEC is converged to the eye with accuracy
of ≲ 1 mEH. As mentioned in Section 4.1, the required bond
dimension still is much smaller than that needed to represent
the FCI wave function. However, we could not similarly
converge the simulation with the 5ζ basis using a maximum
bond dimension of 16,000. In particular, the relative energies
for the bond lengths between 2.1 and 2.5 Å and the absolute
energies are not converged at that bond dimension, thus we
also show an approximate extrapolation to infinite bond
dimension84 for the 5ζ results.
Compared to the experimental curve, the MPS-MRCI+QP

PECs gives too narrow of a well and the σ-bonding around 2.2
Å is underestimated. The MPS-MRCI+Q results differ
significantly from the earlier uc-MRAQCC PEC,73 which
mostly gives a qualitatively better curve, although the different

Figure 4. Bond dimension convergence for N2 at the equilibrium
distance. The curves shown are MPS-MRCISD (blue curve) and
normal DMRG (red curve). The dashed lines are the converged
reference energies.

Figure 5. Potential energy curves of the chromium dimer. The black
curves show experimental results from Casey and Leopold86 (full
lines) and a different fit to the same data by Dattani et al.87 (dashed
lines). The colored curves show (uncontracted) MPS-MRCISD+QP
results for different basis sizes (see text for details). The 5ζ result is
not fully converged with respect to bond dimension. An approximate
extrapolation with bond dimension is shown as the green dotted
curve. For reference, the gray curve shows uncontracted
MRAQCC(12,12) results in the basis set limit.73 The MRAQCC
PEC correlates fewer electrons and is based on a more restricted
reference space.
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size-extensivity corrections, basis sets, reference space, and
number of correlated electrons makes it difficult to pinpoint
the source of the difference.
To see the effect of the size-extensivity correction on the

curve shape, we also show the MPS-MRCISD+Q PECs with
various corrections for the cc-pVDZ-DK basis in Figure 6.

Compared to the PEC without any correction (blue curve),
the energy is shifted by ∼0.8 eV, illustrating the large error of
uncorrected MRCISD. All size-extensivity corrections lead to
similar curve shapes, differing mostly in the energy shift. For
the case of zero inactive orbitals, we found that the MPS-
MRAQCC curve resembles the MRCI+QP curve. Remarkably,
the uncorrected MPS-MRCISD PEC leads to an additional
minimum at larger bond distances, which is also the case for
other methods such as valence-CAS-based CIPT2, CASPT2,
and NEVPT3,71,73,76 in particular, if small bases are used. For
MPS-MRCISD, we found the additional minimum to be more
pronounced for larger bases. To estimate the effect of
excitations beyond doubles, we additionally converged MPS-
MRCISDT results with D = 16,000. The MPS-MRCISDT
PEC in the DZ basis only has a very shallow additional
minimum and overall displays a qualitatively better PEC, albeit
still very different from the more accurate selected heat-bath
configuration interaction (SHCI) curve,79 which approximates
FCI. These results indicate that the double minimum observed
in MRCI treatments is mainly a size-consistency issue which is
corrected by including higher-order excitations explicitly, or a
size-consistency correction, which partially accounts for the
disconnected higher-order pieces.
4.3. Benzene. In a recent benchmark, the exact energy of

the benzene molecule in the cc-pVDZ basis was approximated
by a number of methods,88 arriving at an estimated correlation
energy of −863.0 mEH with an uncertainty of ∼1 mEH. Here,
we compare the accuracy of several uncontracted multi-
reference methods implemented using the MPS within the
large site formalism. We also provide the variational and
extrapolated DMRG energy for comparison. (Results from
other methods can be found in refs 88−91, but the DMRG
estimate of error, which is an estimate of total error as a
fraction of extrapolation error, is most directly comparable to
the estimated errors reported here). All simulations use a
valence CAS with 30 electrons in 30 orbitals, obtained from an

MPS-CASSCF calculation.92,93 We use split-localized orbitals
with Cs symmetry, obtained from Edmiston-Ruedenberg
localization,94 followed by an additional DMRG-based internal
orbital optimization. The large site contains 78 (canonical)
orbitals, resulting in ∼12 × 103 configurations on the large site
for the MPS-MRCISD-type of wave functions (as also used in
MRPT2/3) and ∼630 × 103 for an MPS-MRCISDT ansatz.
The energies of various methods, based on MPS-MRCISD,

MPS-MRCISDT, and MPS-MR perturbation theories and
MPS-MRLCCM, are shown in Table 2. We make several

observations. First, the total energies of the MPS-MRCI
methods, with size-extensivity corrections, or even with triples,
are quite poor. This is likely due to the large number of
electrons, which MRCI methods were not designed to treat.
Second, the MPS-MRREPT family of perturbation methods
yields much better energies than the MPS-MRNEVPT family.
MPS-MRREPT2 in particular yields surprisingly accurate
energies and is the only MPS-MR method to yield a more
accurate estimate than CCSD(T) and CCSDT. Finally, despite
the similarity between the MPS-MRLCCM and MPS-
MRREPT2 methods, they yield significantly different energies,
illustrating the delicate balance needed when choosing the
reference Hamiltonian in multireference perturbation theories.

5. CONCLUSIONS
In summary, we have explored the advantages and disadvan-
tages of clustering groups of orbitals into large sites in a matrix
product state (MPS) from a computational perspective. While
often attractive from a chemical perspective, in many situations
clustering leads to an increase in cost because of (1) the
underlying exponential scaling of the cluster Hilbert space with

Figure 6. Potential energy curves of the chromium dimer in the cc-
pVDZ-DK basis. Shown are MPS-MRCISD, MPS-MRCISD+Q, and
MPS-MRCISDT curves. The gray curve shows the selected heat bath
configuration interaction (SHCI) result from Li et al.,79 which
approximates the exact PEC in that basis.

Table 2. Correlation Energies for Benzene, Computed
Using Various (Uncontracted) MPS Multireference
Methods, Based on a Valence CAS(30, 30)a

method D ΔED/mEH ΔE/mEH error/mEH

CCSD(T) −859.5
CCSDT −859.9
CCSDTQ −862.4
DMRG 6000 −859.2 −862.8 0.7
MPS-CASSCF(30,30) 4000 −393.3
MPS-MRCISD 9000 −808.3 −819.8 2.3
MPS-MRCISD+QRD 9000 −864.8 −880.7 3.0
MPS-MRCISD+QP 9000 −868.0 −884.5 3.3
MPS-MRCISD+QM 9000 −857.4 −872.7 3.1
MPS-MRACPF 9000 −869.6 −891.7 4.4
MPS-MRAQCC 9000 −864.0 −875.5 2.3
MPS-MRCISDT 9000 −822.5 −832.5 2.0
MPS-MRREPT2 10000 −857.6 −862.0 0.9
MPS-MRREPT3 10000 −850.1 −854.5 0.9
MPS-MRNEVPT2 10000 −779.3 −783.0 0.7
MPS-MRNEVPT3 10000 −829.9 −834.3 0.9
MPS-MRLCCM 9000 −872.9 −889.9 3.4

aShown are the maximal bond dimension (D), the correlation energy
(ΔED), the energy extrapolated to infinite bond dimension (ΔE), and
its error, defined as 1/5 of its extrapolation distance.84 Note that the
DMRG optimization from ref 88 was performed with spin symmetry
included, whereas all MPS-MR-based optimizations were performed
without spin symmetry. Thus the MPS-MR methods require a larger
bond dimension. The correlation energy is estimated to be around
−863 mEH.
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cluster size and (2) longer-range intercluster correlations,
which do not allow for a significant decrease in the MPS bond
dimension.
A special case however is the MPS with large cluster sites at

either end of the MPS. Because each large site only has a single
boundary (and does not have a boundary with another large
site), when combined with a configuration selection of the
large site Hilbert space, there is a large regime of computa-
tional advantage. Here we explore the approximation of
uncontracted multireference correlation theories using such a
large site MPS. We found that the large site MPS formalism
yields significant (more than an order of magnitude)
computational speedups, compared to a conventional MPS
implementation, for multireference wave functions with up to
three particles in the external space. General multireference
theories are easily realized in this language, as we demonstrate
by implementing multireference configuration interaction
(MRCI) and MRCI-based size-extensivity-corrected func-
tionals such as averaged quadratic coupled cluster
(MRAQCC), various perturbation theories (PTs) such as n-
electron valence-state PT (NEVPT) and restraining the
excitation degree PT (REPT), and the multireference
linearized coupled cluster method (MRLCCM).
We use the large site MPS implementation of the above

theories to investigate some of the properties of the various
multireference treatments in the (a) nitrogen dimer, (b)
chromium dimer, and (c) benzene molecule. Our computa-
tions used active spaces with up to 30 electrons and 30 orbitals,
with up to triple excitations in the external space, and with up
to 280 external orbitals. For Cr2, our results show that the
often observed double minimum in the potential energy curve
is a result of the neglect of beyond double excitations and can
be corrected by their disconnected component (e.g., via size-
consistency corrections to MRCI) or the explicit inclusion of
triples. For the benzene molecule, we found that among the
various theories mentioned, only the multireference REPT2
energy is within 1 mEH of the estimate of the exact correlation
energy. All other theories, including various size-extensivity-
corrected MRCISD variants, MRCISDT, MRNEVPT, and
MRLCCM, yield poor results showing (1) the need for size-
extensive methods and (2) the importance of the choice of the
reference Hamiltonian in multireference perturbation theories.

■ APPENDIX

Cluster Matrix Product State for a Hydrogen Chain
Here, we show results for a H10 chain, in a cc-pVDZ basis95

using a cluster MPS with selected configurations within each
cluster. The linear nature of H10 chains make them very
favorable for a description by an MPS, as well as for MPS-
based clustering, since the average inter-cluster distance is
large. We first discuss a chain of equidistantly spaced H atoms
with an atom separation of either 1.1 a0 (more delocalized) or
1.1 Å (2.08 a0; more insulating). In the thermodynamic limit,
the metal-insulator transition is close to 1.7 a0, thus the more
widely separated system is deep in the insulating regime. The
shape of the orbitals is crucial for an efficient cluster MPS. To
minimize entanglement, we use a localized basis obtained by
aligning H10 along the x axis and using orbitals that diagonalize
x̂. These localized orbitals were then grouped into 10 clusters,
corresponding to the 10 H atoms. To reduce the required
number of configurations, within each cluster, natural orbitals

were obtained by diagonalizing the MP2 one-particle density
matrix within the cluster block.
The optimal selection of configurations in a large site can be

defined from the exact wavefunction, computing the density
matrix of the cluster in the configuration (e.g., determinantal)
basis and selecting those corresponding to the largest diagonal
elements of the density matrix. Results obtained this way by
first approximating the exact wavefunction for the full problem
(using the variant of SHCI implemented in PySCF) are
denoted “selection based on the full system”. We also used a
more scalable method where the density matrix of the cluster is
approximated using a one-shot two-site density matrix
embedding.96,97 Here, a cluster and a neighboring cluster are
chosen as the fragment, and the remaining sites are represented
by the density matrix embedding bath. The fragment plus bath
problem is then solved via SHCI.33 Finally, the diagonal of the
fragment density matrix is constructed and the configurations
corresponding to the largest elements of the density matrix are
used for subsequent cluster MPS calculations.
Figure 7 compares the error in the energy as a function of

included configurations per site. Compared to selection based

on the full system, the selection based on the embedded
subsystems performs well. To reach an accuracy of ∼10−3 EH
for a separation of 1.1 a0, P ∼ 50 configurations per site are
required, on average. This corresponds to ∼5% of the total
number of 1024 possible configurations. In the more stretched
geometry with a separation of 1.1 Å, only around 30
configurations are required for a similar accuracy.
To shed light on the possible reduction in bond dimension,

we show a convergence plot in Figure 8. Compared to an
ordinary MPS, for a given error the bond dimension of the
cluster MPS at 1.1 a0 is reduced by ∼12−27%. When the
interatomic distance is changed from 1.1 a0 to 1.1 Å, the

Figure 7. Convergence behavior of configuration selection in a cluster
MPS for H10/cc-pVDZ. Shown is the absolute error per H atom
versus the average number of configurations per cluster/site. The dark
(pale) green and blue curves correspond to a separation of the H
atoms of 1.1 Å (1.1 a0). The configuration selection is either based on
the wave function from a selected heat-bath configuration interaction
(SHCI) calculation of the full system (blue curves) or based on a
SHCI calculation of each subsystem embedded in the full system
(green curves); see text for details. The dotted (dashed) line
corresponds to the error from a cluster MPS calculation with all 1024
configurations included for a separation of 1.1 Å (1.1 a0). The
remaining error is due to the finite bond dimension.
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reduction in bond dimension increases to ∼30−38%. Note
that at the larger distance, far from the insulating transition, the
atoms have a clear atomic character. The lack of a large
reduction of bond dimension reflects the presence of longer-
range correlations, in part from the long-range nature of the
Coulomb interaction.
While the small number of configurations per cluster is

promising, the reduction in bond dimension is not. Comparing
the scaling of an ordinary MPS with a cluster MPS, the
computational effort is reduced by introducing clusters if KD3

> CDcluster
3 P. For P = 50, this would only be the case if the bond

dimension of the cluster MPS, Dcluster, were reduced by more
than 54%. For P = 30, the reduction needs to be larger than
45%. Either requirement is not fulfilled at either of the two
geometries.
The required bond dimension in a cluster MPS can be better

understood by analyzing the singular values σi of the site matrix

and the corresponding von Neumann entropy, − ∑iσi
2 ln(σi

2),
at each site in an MPS. The ideal case for a cluster MPS would
be to have a very large entropy (large singular values) within
each cluster but a small entropy (small singular values) at the
boundaries of each cluster. Figure 9 shows this for H10 at a
separation of 1.1 Å in the cc-pVDZ and cc-pVTZ bases. In
contrast to the previous computations, here the localized basis
has not been rotated into the natural orbital basis within each
cluster. This, however, does not change the analysis of the
bond dimension at the cluster boundaries. A decrease at the
boundary of each cluster (vertical dashed lines) is only visible
for some sites. In agreement with the results from Figure 8, the
decrease is only marginal. Increasing the basis, i.e., increasing
the amount of long-range (dynamical) correlation that needs
to be described, worsens the efficiency of clustering further.
We now discuss a H10 chain where 5 molecular H2 units

(with bond distance of 0.74 Å, close to the molecular
equilibrium geometry) are separated either by 1.1 or 1.5 Å
from each other. Compared to the equidistant separation
discussed above, these configurations have H2 as chemical
units, thus there are 5 clusters instead of 10. The larger
separation of the H2 units should favor clustering in the sense
of a reduced bond dimension between the clusters, compared
to the bond dimension within each cluster. Figure 10 compares
the accuracy versus bond dimension for a normal and a cluster
MPS. Note that, compared to equidistantly spaced H10, the
overall accuracy for a given bond dimension is much higher. At
a separation of 1.5 Å, the bond dimension can be reduced by
up to ∼44−48%, indicating the more favorable clustering. At
the smaller cluster distance of 1.1 Å, the decrease in bond
dimension is reduced to ∼36−44%. This is not much different
from the equidistant H atom example discussed above. The
singular values of the MPSs at each boundary are shown in
Figure 11. While the clustering is much more pronounced
compared to Figure 9, the decrease of the bond dimension for
a particular singular value at the boundary is not dramatic (red
contour lines). Note that the first and the last H2 clusters in
H10 cannot be resolved in the singular value plot.

Figure 8. Convergence behavior of the bond dimension in a cluster
MPS (blue curves) versus standard MPS (green curves) for H10/cc-
pVDZ. The cluster MPS includes all possible configurations. The dark
(pale) green and blue curves correspond to a separation of the H
atoms of 1.1 Å (1.1 a0).

Figure 9. Singular values and von Neumann entropy at different bipartitions in H10 (separation 1.1 Å) in a cc-pVDZ basis (left panel) and a cc-
pVTZ basis (right panel). The colors corresponds to the magnitude of the singular values σi at each bond. The red line denotes the contour at σ =
10−4. The black line denotes the entropy at the corresponding bipartition. The dashed vertical lines denote the possible cluster decomposition.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00957
J. Chem. Theory Comput. 2022, 18, 749−762

758

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00957?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00957?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00957?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00957?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00957?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00957?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00957?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00957?fig=fig9&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00957?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


We note that the simulations performed above are for one-
dimensional problems because this is the most favorable
setting for the clustering approach. In 1D, the size of the
cluster boundary does not scale with the size of the cluster,
thus, for sufficiently weak interactions between the clusters,
one can expect a regime where the inter-cluster interactions
only generate a small number of excitations along the
boundary independent of cluster size. The numerical
simulations above, however, illustrate that this regime is not
always reached in practice, in part due to the long-range of the
Coulomb interaction. However, in say two-dimensional lattices
(without additional structure) mapped onto one-dimensional
slices, then even with local interactions, size-consistency
dictates that one needs to retain both an exponential number
of configurations per slice and an exponentially growing bond
dimension as the system width increases, thus clustering is
always asymptotically worse than the standard MPS approach.
(See Supporting Information for additional numerical
simulations on a 2D hydrogen lattice to illustrate this.) Such
general conclusions do not change either under a change of
basis (e.g., to a split-localized basis), which simply lead to
different constants in the scaling or (in the case of delocalized
bases) worse asymptotic behaviour with system size.
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from each other.

Figure 11. Same as Figure 9 but showing 5 H2 molecules on a line,
separated by either 1.1 Å (left panel) or 1.5 Å (right panel) from each
other. The red lines show a contour of the singular values at 10−5

(upper lines) and 10−4 (lower lines). We here show results for the cc-
pVDZ basis.
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