
Noname manuscript No.
(will be inserted by the editor)

Profile-driven Memory Bandwidth Management for

Accelerators and CPUs in QoS-enabled Platforms

Parul Sohal · Rohan Tabish · Ulrich

Drepper · Renato Mancuso

Received: date / Accepted: date

Abstract The proliferation of multi-core, accelerator-enabled embedded sys-
tems has introduced new opportunities to consolidate real-time systems of
increasing complexity. But the road to build confidence on the temporal be-
havior of co-running applications has presented formidable challenges. Most
prominently, the main memory subsystem represents a performance bottleneck
for both CPUs and accelerators. And industry-viable frameworks for full-system
main memory management and performance analysis are past due.

In this paper, we propose our Envelope-aWare Predictive model , or E-WarP
for short. E-WarP is a methodology and technological framework to: (1) analyze
the memory demand of applications following a profile-driven approach; (2)
make realistic predictions on the temporal behavior of workload deployed on
CPUs and accelerators; and (3) perform saturation-aware system consolidation.
This work aims at providing the technological foundations as well as the
theoretical grassroots for truly workload-aware analysis of real-time systems.
This work combines traditional CPU-centric bandwidth regulation techniques
with state-of-the-art hardware support for memory traffic shaping via the
ARM QoS extensions. We make three key observations. First, our profile-
driven methodology achieves, on average, 6% over-prediction on the runtime of
bandwidth-regulated applications. Second, we experimentally validate that the
calculated bounds hold system-wide if the main memory subsystem operates
below saturation. Third, we show that the E-WarP methodology is practical

Parul Sohal, Renato Mancuso
Boston University, USA
E-mail: {psohal, rmancuso}@bu.edu

Rohan Tabish
University of Illinois at Urbana-Champaign, USA
E-mail: rtabish@illinois.edu

Ulrich Drepper
Red Hat, USA
E-mail: drepper@redhat.com

2 Parul Sohal et al.

even when applications exhibit input-dependent memory access patterns. We
provide a full implementation of our techniques on a commercial platform
(NXP S32V234).

1 Introduction

The proliferation of inexpensive and high-performance multi-core embedded
platforms has been enthusiastically embraced by the industry. These are seen as
an opportunity to migrate away from system designs with many interconnected
single-core chips; to consolidate all the application workload onto a few systems-
on-chip (SoC) with multiple CPUs and accelerators. And while the transition
has been smooth for general-purpose workloads, the same cannot be stated for
safety-critical systems.

It is well known that contention over shared hardware resources leads to
substantial violation of temporal properties when workload developed and
tested in isolation is consolidated on the same multi-core platform. Effects
like shared cache contention [1, 2], DRAM bank conflicts [3, 4], and contention
at the DDR controller [5] have significantly slowed down the adoption of
multi-core solutions in the safety-critical domain. The presence of performance
interference channels has been acknowledged by certification authorities [6],
which have mandated methodologies to “account and bound” the temporal
effect of interference channels for the certification of avionic systems. The last
decade has produced seminal results [7] on techniques to manage contention
at the different levels of the memory hierarchy. But unfortunately, there is a
substantial lack of frameworks and methodologies that can be applied system-
wide to: (1) take into account realistic applications, (2) consider that processing
workload does not occur only on CPUs; accelerators (e.g. DMAs, video-encoders,
GPUs) are also fundamental components in real systems, and (3) that can
be deployed on existing platforms while ensuring that the models assumed
to derive analytical guarantees are in match with the true behavior of the
hardware.

In realistic systems that harness the power of multiple CPUs and accelera-
tors, the main memory subsystem represents the performance bottleneck [5, 8].
Thus we focused on the problem of contention in the DRAM subsystem. DRAM
bandwidth management [8, 9] is a promising grassroots technique to exert con-
trol over main memory contention. Many works have studied the behavior
of applications in multi-core systems under main memory bandwidth regula-
tion [4, 10, 11]. But the overwhelming focus of these works has been put on
formulating an increasingly more refined model of the DRAM subsystem [4,11]
to reduce the pessimism in the timing analysis. On the other hand, the behavior
of applications is abstracted away with only a few parameters, for instance, to
summarize the worst-case end-to-end number of cache misses [4, 5, 12].

In this paper, we propose a focus shift. We introduce a comprehensive
framework of techniques called Envelope-aWare Predictive model , or E-WarP
for short. In E-WarP, accurate predictions on the worst-case execution time

Title Suppressed Due to Excessive Length 3

(WCET) of co-running applications are made following a profile-driven approach.
Profiling represents a substantial refinement of measurement-driven approaches,
where fine-grained knowledge of the interaction between applications and the
platform is collected and leveraged. Conversely, as much as possible, we treat
the DRAM subsystem as a black-box. By shifting our emphasis on a more
precise representation of memory bandwidth requirements of applications and
by ensuring that the DRAM subsystem operates below its saturation threshold,
we demonstrate that highly accurate predictions on the behavior of tasks
operating on CPUs and accelerators can be made.

We stress upfront that we do not construct a formal model of the DRAM
subsystem, nor formulate provable guarantees. The correctness of our approach
is corroborated by a full-system evaluation, which provides evidence that the
work presented is practical for industrial applications. Furthermore, our profile-
driven approach enables a better understanding of the important aspects that
have traditionally received little attention. Precise regulation overheads, impact
of burst size on DRAM utilization, and the unexpected presence of memory
instructions that bypass regulation are some examples. The proposed E-WarP
framework can be used to integrate multi-core, accelerator-enabled real-time
systems in all those domains where a measurement-based approach was deemed
acceptable for single-core systems.

In summary, this journal paper which is an extension of ”E-WarP: A System-
wide Framework for Memory Bandwidth Profiling and Management [13]” makes
the following contributions. (1) It introduces the E-WarP model where the time-
varying demand for main memory resources is characterized via envelopes. (2) It
introduces key requirements and design principles for profile-driven approaches.
(3∗) In depth discussion of how the ARM QoS infrastructure operates along
with the traffic controls that it enables. (4) It considers the integration of
broadly implementable techniques for DRAM bandwidth regulation of CPUs
and accelerators. (5) It describes how to leverage memory enveloping to perform
accurate WCET predictions under regulation for both CPU and accelerator
workload. (6∗) It further expands on how to apply the proposed methodology
to applications that exhibit input-dependent memory access patterns. (7) It
provides a technique to reason on the saturation level of the DRAM subsystem.
(8) Lastly, it proposes a full-system implementation and evaluation that includes
a low-overhead profiler and an augmented partitioning hypervisor.

2 Related Work

There has been many research works [4, 5, 10,14] that aimed to provide hard
real-time guarantees for tasks running on multi-core systems. A common
denominator in these works is that they consider the worst-case number of
main memory transactions (LLC misses) for tasks in isolation [5, 10–12]; then
compute an upper-bound on memory interference when multiple applications

Contributions indicated with a * are new additions in the journal extension.

4 Parul Sohal et al.

run in parallel. This type of analysis has been proposed with various degrees of
refinement on different DRAM/CPU models. For instance, in [4] the authors
assume that there is only one outstanding request per CPU; while [5] focuses
on the First-Ready First-Come First-Served (FR-FCFS) DRAM scheduling
policy. Compared to this line of work, E-WarP is substantially different because
its premise is to rely on high-accuracy observations of the memory demands of
applications while treating the DRAM subsystem mostly as a black-box.

Other works, such as [8, 9, 15] focus on implementable mechanisms to
regulate/throttle the bandwidth of other low criticality tasks with the goal
of reducing contention and improving performance isolation. The first work
in this sense was [8], where budget-based bandwidth enforcement is proposed.
The work in [9] builds on this technique by allowing high-priority tasks to
acquire a “bandwidth lock” on the memory controller. These techniques have
also been shown to be implementable at the hypervisor level [15, 16]. Recently,
there have been important efforts to control, account, and ultimately integrate
the behavior of accelerators into real-time systems. The work in [17] lays the
groundwork for managing hardware accelerators defined in FPGA, while [18]
touches on the topic of non-CPU components regulated via platform-specific
throttling mechanisms. In many ways, E-WarP builds on top of the seminal
results achieved in this context and complements the CPU-centric management
by integrating traditional accelerators (e.g., DMAs, GPUs) in the picture.

Finally, the need for a DRAM controller capable of enforcing bandwidth
partitioning and traffic prioritization has been expressed in multiple papers [19–
22]. We acknowledge the important design principles proposed in said works.
However, as we strive for immediate industrial applicability, we restrict ourselves
to commercial-off-the-shelf platforms.

In summary, our work sets itself apart because it proposes a novel profile-
driven methodology to characterize the behavior of applications that execute on
CPUs and accelerators. It then combines (1) CPU-centric bandwidth regulation
techniques with (2) broadly available hardware support for the regulation of
non-CPU masters. In doing so, key relationships between extracted bandwidth
and saturation of the DRAM subsystem are derived. Finally, a full-system
integration is proposed where we demonstrate that E-WarP is practical in real
systems.

3 System Model and Assumptions

We consider a heterogeneous multi-core system with accelerators and tradi-
tional CPUs. A hardware accelerator can be any module capable of initiating
transactions to the main memory. DMA engines, GPUs, video encoders/de-
coders, audio sequencers, network interfaces, are some notable examples. We
use m to indicate the number of CPUs present in the system and the index
k ∈ {1, . . . ,m} to refer to a given CPUk. The system also features a accelera-
tors indexed using l, with l ∈ {1, . . . , a}. The l-th accelerator is indicated with

Title Suppressed Due to Excessive Length 5

ACCl. We use processing element (PE) whenever what stated applies to both
CPU and accelerator.

We make a restriction, namely the single driver assumption, on how ac-
celerators are used in our system. We assume that there exists a single CPU
task that acts as the driver for a given accelerator. I.e., it must hold that for
ACCl there exists at most one CPU task acting as the driver. The assumption
allows us to abstract away the differences in the preemption model of accel-
erators. The single driver assumption is accurate only in a subset of possible
system designs, but it allows us to keep our focus on how accelerators interact
with the main memory. For the same reason, we make the assumption that
shared caches [16,23] and DRAM banks [3, 4] are statically partitioned on a
per-core basis to ensure that the load generated by each application toward
main memory does not change when multiple applications execute in parallel.

We assume that only one main memory controller is used by all the tasks
under analysis. This is referred to as the “DDR controller” or the “DRAM
controller”. If more than one controller exists, the techniques presented in
this work can be extended by partitioning tasks to memory controllers, and
then considering each sub-system independently. We assume that the traffic
originated by CPUs and accelerators towards main memory can be regulated.
We use budget-based periodic regulation (MemGuard [8]) to manage traffic from
the CPU; we leverage standard ARM QoS support that is broadly available in
modern ARM-based SoCs to regulate traffic from accelerators (see Section 6.2).
Lastly, the bandwidth at the interconnect should be greater than the bandwidth
of both memory controllers.

4 E-WarP Task Model

The E-WarP task model incorporates the relationship between a task’s progress
and its demand for main memory. This relationship, expressed via cumulative

memory envelopes, is captured for each task in isolation. It is leveraged to derive
precise predictions on the behavior of the task under regulation. Section 8 is
dedicated to constructing memory envelopes following a profile-driven approach.

We consider a set of n sporadic, deadline-constrained real-time tasks sched-
uled according to fixed-priority. The generic task τi is statically assigned to
execute on a given CPUk — partitioned fixed-priority scheduling. A task τi is
a tuple of the following form: τi = {Ti, Di, Ci,Mi}. Ti represents the minimum
inter-arrival time between two jobs of the same task, Di is the relative deadline
of task τi, and Ci captures the worst-case execution time (WCET) of τi in
isolation and without memory bandwidth regulation. The Mi parameter is
a super-set of memory envelopes, one per each PE that the task uses. Each
memory envelope Mj ∈Mi is of the form {Rj , σj(1), . . . , σj(Li)}. Here, Li is
simply the number of σj(h) elements that compose the envelope, while each
σj(h) captures the activity of the task over a fixed small time interval δ. It
follows that Li = ⌈Ci/δ⌉. The generic σj(h) has the structure {x+

j (h), x
−
j (h)},

where x+
j (h) (resp., x

−
j (h)) captures the upper-bound (resp., lower-bound) on

Title Suppressed Due to Excessive Length 7

bomb. We briefly outline the principles according to which a profiler that
satisfies both requirements can be designed and implemented. We describe our
software-only implementation in Section 9.

To satisfy the fine-granularity requirement, the target platform must provide
a performance monitoring interface to sample key metrics of the DDR activity.
The closer the interface is to where the transactions are served, the higher the
accuracy of the resulting profile. Modern embedded platforms include extensive
facilities for performance monitoring [24]. Some of these interfaces, such as the
ARM Performance Monitoring Unit (PMU), are broadly known and supported
in software. Often, however, there exist better interfaces that operate much
closer to main memory. A few notable examples are discussed in the following
paragraph.

The P- and T-series of NXP embedded platforms [25, 26] have been ex-
tensively studied in the literature [3, 10, 12, 27, 28]. These platforms include
an Event Processing Unit (EPU) and a DDR debug subsystem. The DDR
debug subsystem can be configured to generate a trace of events at the DDR
controller(s) that includes performed reads, writes, DRAM refreshes, DRAM
row hit/miss events, and so on. The trace can be processed on chip to create
custom event counters. The trace can be also exported to be stored in any
block of addressable memory [29,30].

The Xilinx Zynq UltraScale+ family platforms [31] that are surging in pop-
ularity in the recent years [32–34] include an AXI Performance Monitor (APM)
that is interposed between the interconnect and the DDR and that well fits our
requirement. The APM can measure the exact number of bytes read/written,
as well as their max/min latency over a user-specified sampling interval [31].
Unsurprisingly, support for fine-grained monitoring close to memory resources
is not limited to embedded platforms. Intel has recently introduced its family of
memory monitoring and management techniques under the name of Resource
Director Technology (RDT) [35]. RDT includes support to monitor the memory
bandwidth extracted by CPUs via the Memory Bandwidth Monitoring (MBM)
interface [36]. On top of the families of platforms mentioned above, yet another
example is the NXP S32V234 (NXP S32V family) platform [37] targeted in
our implementation.

To ensure transparency, the platform must allow storing the profiled samples
without introducing spurious DRAM traffic. Fortunately, modern embedded
platforms feature heterogeneous memory subsystems, with two common features
that can be leveraged. (1) The presence of fast on-chip scratchpad memories
(SPM); and (2) the existence of multiple DDR controllers. Both are valid
alternatives. But the limited size of SPMs restricts the length of profiled
application, and/or the granularity of the profile. The NXP P- and T-series
family of platforms, the Xilinx Zynq UltraScale+ SoCs, the NXP S32V and
S32G family of platforms all define both multiple DDR controllers and on-chip
SPMs. A key takeaway is that fine-grained transparent profiling is possible
today on a range of modern platforms. A sound implementation requires
careful consideration of platforms-specific features and the flow of data within

10 Parul Sohal et al.

and memory modules. In AXI4, component-to-component interactions occur
through one-to-one full-duplex AXI segments. Each AXI segment defines five
channels and the interfaces at the two ends of a segment are referred to as
master and slave interfaces. The master interface is responsible for initiating
any read/write transaction. The slave interface produces responses to master-
initiated requests.

Figure 3 depicts the signals used between the master and slave interfaces
when handling read transactions. A similar view is provided in Figure 4 for write
transactions. AXI4 reads are carried out through two channels: (1) the read
address channel (AR), and (2) the read data channel (R). The AR channel
carries, among other signals, the address of the data to be read (ARADDR). The
amount of data to retrieve and the number of subsequent data beats that
should comprise the response are also carried on the AR channel by the signals
ARSIZE—data to be transmitted in each data beat—and ARLEN—number of
data beats to transfer, i.e. burst length. The resulting data width of each request
can be computed as w = ARLEN × ARSIZE. The value of w is an important
parameter that can change when analyzing the memory behavior of a CPU as
opposed to that of an accelerator. Indeed, a single request might transfer more
or less data (and thus extract higher bandwidth) depending on the value of w
used by the master interface. CPUs addressing cacheable memory generally set
w equal to the cache line size when performing cache refills and write-backs. In
DMA engines, the burst length, and thus the w parameter, can be configured.
The slave responds with a sequence of ARLEN data beats where the requested
data is carried by the RDATA signals through the R channel.

To carry out write transactions, a similar interaction occurs between master
and slave interfaces. In this case, as depicted in Figure 4, the width w of the
data to be written is determined by the AWLEN and AWSIZE signals on the AW

channel. The master then produces AWLEN data beats on the W channel with
the memory content to be written. The slave uses the B channel to transmit
acknowledgements and for error signaling.

Both read and write interfaces supply additional signals (ARCACE/AWCACHE)
to propagate cacheability attributes and permission attributes (ARPROT/AWPROT)
through the memory hierarchy. Furthermore, the AXI4 standard includes a set
of signals, namely ARQOS and AWQOS, to relay traffic prioritization information
for the purpose of on-chip memory QoS enforcement. Unfortunately, these
signals are not meaningful on their own, but require (1) upstream PEs and
interconnects to appropriately set these values; and (2) downstream memory
components to appropriately perform QoS-aware request handling.

6.2.2 Transaction Prioritization at the Memory Controller

QoS signaling through the AXI4 interfaces described above is only useful if
slave components that serve transactions are QoS-aware. An excellent example
of QoS-awareness is provided by the DRAM controller implemented in the
NXP S32V234 platform that we consider for our evaluation. The controller
defines separate read and write queues. Requests arriving at the two queues

12 Parul Sohal et al.

requests. In this mode, the network interconnect (NIC) enforces a minimum gap
between any two requests originated by a given master as they are forwarded by
the interconnect. Read and write traffic can be treated separately or jointly, de-
pending on a configuration switch. The calculation of the inter-transaction gap
depends on three configurable parameters, namely the peak rate (ar p/aw p),
burstiness allowance (ar b/aw b), and average rate (ar r/aw r). Transactions
are forwarded at the peak rate until the number of outstanding transactions
reaches the burstiness allowance, after which they are forwarded at the average
rate.

Next, in the outstanding transactions regulation mode, the NIC keeps track
of the number of transactions that have been forwarded by the interconnect
and for which a response has not been received yet—i.e., outstanding. The NIC
allows setting a maximum value of outstanding transactions that can be issued
by a master. It stops forwarding additional transactions from said master when
the current limit has been reached. The rationale of this approach is that the
memory component downstream is a lossless queuing system. Therefore, at
steady-state, one can describe the relationship between the average memory
latency Tq, arrival rate λ, and number of outstanding transactions q as q = λTq—
i.e. using Little’s Law [41]. Therefore, by controlling q, one can assert implicit
control over the average issuance rate λ and average response latency Tq.

Finally, in the latency regulation mode, the NIC tracks the latency of
the transactions forwarded by a given master. With that, it allows setting
three main parameters. (1) A target latency expressed in clock cycles; (2) the
minimum and (3) the maximum value of QoS to be used when forwarding
traffic from the considered master. Next, the NIC manipulates the value
of the ARQOS/AWQOS signals of forwarded transactions to try and meet the
configured target latency. This regulation mode is effective on the considered
platform because, as described in the previous section, the downstream memory
controller is capable of appropriately prioritizing traffic based on the emitted
ARQOS/AWQOS signals.

6.2.4 Our Implementation

As mentioned earlier, in transaction rate regulation mode, one can specify a set
of parameters to enforce traffic shaping separately for traffic on the AR (read
requests) and AW (write requests) channels. Focusing on the AR, the ar r

parameter controls the rate of read requests; the ar b the accepted burst size,
and ar p the peak rate of read transactions within the allowed burst size. As
MemGuard works on a similar regulation technique of controlling the number of
transactions within a period, using this QoS mechanism ensures the calculation
for DDR utilization is compliant for both accelerators and CPUs. Also, the
pipeline for outstanding transaction request regulation did not provide the
finer granularity control we needed to achieve regulation for accelerator traffic.

Setting ar b =1 and ar p =0 enforces strict regulation at the rate selected
by ar r, which is the way QoS is used in this work. The value of ar r can be
any 12-bit value greater than 0 [39]. The resulting inter-transaction gap can be

14 Parul Sohal et al.

to the corresponding bandwidth in MB/s — where P is expressed in seconds
and Ls represents the size of a cache line in bytes. Then a linear slope Uα

mg

is applied and the initial offset Uβ
mg is added to find the contribution of each

CPUk to the total utilization. For accelerators, instead, we convert directly
from QoS level to contribution in utilization with similar parameters Uα

qos,w

and Uβ
qos,w. These parameters depend on the transfer size in bytes, w, that

masters are capable of transferring with each read/write request — recall that
ARM QoS only enforces a minimum inter-arrival time on memory requests,
regardless of their size.

7 From Profiles to E-WarP Tasks

In order to instantiate the E-WarP model, the starting point is the profiles
acquired on the task under analysis in isolation. Indeed, a large number of runs
and corresponding profiles are required to build confidence on the worst-case
behavior, like in traditional single-core measurement-based WCET estimation.
The profiles are then integrated to build the task envelopesMi for the task
under analysis. If a task executes on multiple processing elements, then multiple
sets of profiles need to be acquired, one per each processing element Rj used
by the task. We hereby focus on the definition of the generic Mj for processing
element Rj .

Let us first consider a single run and resulting acquired raw profile. A profile
is an ordered collection of samples {sr(1), sr(2), . . .}. Each sample collected by
the profiler captures the activity of the task under analysis during an interval
of length δ. The smaller the parameter, the more accurate the E-WarP model
will be. Moreover, for the model to produce valid predictions on the task’s
WCET under regulation, it must hold that δ < P . We hereby consider that
δ << P and evaluate how to find a suitable lower limit for δ in Section 10.2.

We use the notation sr(h) to refer to the h-th sample in the r-th run. Each
sample collected by the profiler carries the following information. (1) srr number
of bytes read during δ; (2) the swr number of bytes written during δ. The profile
also contains (3) the sur ∈ [0, 1] utilization of the DDR controller during the δ
time window. The latter information is not stored in the task envelopes, but
it is useful to study the saturation point of the DDR controller, as studied in
Section 10.3.

Algorithm 1 constructs the envelope Mj and also returns the observed task’s
WCET in isolation from an arbitrary set of runs R sorted by shortest-to-longest.
The logic of the algorithm is simple: (1) we expand the length of the envelope
Mj if longer runs are observed (Lines 11-17); and (2) we keep track of the
highest and lowest cumulative number of transactions in each run (Lines 18-19).
Note that Algorithm 1 only considers read traffic in the profiles, which is the
correct way of deriving envelopes when Rj is a CPU. To apply the algorithm to
accelerator tasks, it is enough to replace Line 10 with: xr ← max(srr(h), s

w
r (h)),

to only keep track of the type of traffic that constitutes the bottleneck. As
shown in Figure 11, the gap between the upper and the lower memory curve

Title Suppressed Due to Excessive Length 15

Algorithm 1 Envelope Mj from profiler runs

1: function GetEnvelope(τi, Rj ,R)
2: Li ← 0
3: Mj ← {Rj} ⊲ The first element is the proc. element
4: for r ← 1, |R| do ⊲ Consider each run
5: xr ← 0 ⊲ Cumulative num. of transfers in run r
6: h← 1 ⊲ Current sample index
7: Lr ← 0
8: for ∃sr(h), h← h + 1 do

9: Lr ← Lr + 1 ⊲ Track length of the run
10: xr ← xr + srr(h)
11: if Lr > Li then

12: Li ← Lr ⊲ Remember longest run
13: x

+

j
(h)← max(x+

j
(h− 1), xr)

14: x
−

j
(h)← xr

15: σj(h)← {x
+

j
(h), x−

j
(h)}

16: Mj ←Mj + {σj(h)}
17: else

18: if xr > x
+

j
(h) then x

+

j
(h)← xr

19: if xr < x
−

j
(h) then x

−

j
(h)← xr

20: return Mj , Li · δ ⊲ Return envelope and WCET

for an accelerator task is less due to the presence of finer controls at the level
of the bus master.

8 Predicting WCETs from Regulation Levels

In this section, we describe how to predict the WCET of tasks for which
a memory envelope has been constructed according to Section 7. The key
idea is to mimic the behavior of budget-based regulation (for CPU envelopes)
or QoS-based regulation (for accelerator envelopes) as we move through the
envelope.

Let us first consider CPU envelopes. Given a generic envelope Mj where
Rj = CPUk, we use Algorithm 2 to predict the WCET of the task when
CPUk is assigned MemGuard budget Qk. To be correct in practice, an extra
overhead introduced by MemGuard needs to be taken into account. There are
two types of overhead involved. The first, namely tovh is the upper-bound on
the extra time overhead introduced by each periodic budget replenishment.
Each activation of MemGuard might also pollute some of the cache partition
of the application under analysis, leading to extra memory transactions xovh

being budgeted to the task, compared to when it operates without regulation.
We incorporate this overhead as a restriction on the budget given to the core
under analysis. Hence, Algorithm 2 considers Q′k = Qk − xovh.
Intuition: Algorithm 2 returns the predicted WCET by keeping track of the
additional time tadd due to regulation at quota Q′k. During every regulation
period of length P , the algorithm performs multiple steps through the profile
samples. At each step, from a memory bandwidth perspective, the worst-case
is when (1) the behavior of the application has followed the lower envelope, i.e.
when at the generic sample h−1 its cumulative number of memory transactions

16 Parul Sohal et al.

is exactly x−j (h − 1) (Line 16); and (2) at sample h the cumulative number

of memory transactions jumps to x+
j (h). If this difference is greater than Q′k,

(Line 12) then we increase the overall regulation stall. But in doing that, we
remember that at least Q′k transactions were performed by increasing the value
of xoff which is always considered instead of x−j (·) (· refers to an arbitrary

sample) when xoff > x−j (·). This prevents the algorithm from being overly
pessimistic. Indeed, by tracking xoff , the algorithm captures the worst-case
progress of the application as a trajectory somewhere between x+

j (h) and

x−j (h).
Correctness: To understand why the algorithm is safe, lets take a closer look.
Consider the easy case where the upper-envelope is equal to the lower envelope,
i.e. ∀h, x+

j (h) = x−j (h). In this case, it is enough to keep tracking the progression
of transactions. If within a regulation period P we observe more transactions
than Q′k, then the extra regulation time is added to the WCET (Lines 12-
15). Conversely, if the budget is not exceeded, it is replenished and counting
transactions restarts (Lines 9-11). In this case, transactions might suffer a tstall
time due to contention, which is accounted (Line 10). This parameter makes
the calculation generic and applicable to in-order micro-architectures. In our
observations, no visible stall was measured when the saturation of the DDR is
kept below 100%; hence we considered tstall = 0. Moreover, any carry-in due to
misalignments between δ and P needs to be taken into account — see Line 11.

In the more general case, i.e. when x+
j (h) 6= x−j (h), one must consider the

case where the task might have been idle (in terms of DDR activity) and
then suddenly performs x+

j (h) − x−j (h − 1) transactions. If the jump incurs
regulation, we add the regulation time but also shift up the lower envelope by
Q′k, always preventing it from exceeding x+

j (h) — see Lines 15-16.

Algorithm 2 Predict WCET for CPU Envelope

1: function GetWCET CPU(τi,Mj , CPUk)
2: tadd ← P ⊲ Track time added by regulation, add tail
3: xoff ← 0 ⊲ Tracks offset of lower envelope
4: ts ← 0 ⊲ Start time of regulation period
5: xs ← 0 ⊲ Transactions at beginning of regul. period
6: h← 1
7: for ∃σj(h), h← h + 1 do

8: t← δ · h ⊲ Advance time
9: if t− ts ≥ P then ⊲ No regulation
10: tadd ← tadd + tstall · xs + tovh ⊲ Add stall due to contention
11: ts ← t− ((t− ts)− P) ⊲ New beginning of regulation period.

12: if x
+

j
(h)− xs ≥ Q′

k then ⊲ Budget exceeded

13: tadd ← tadd + P − (t− ts) + tovh ⊲ Add regulation stall
14: ts ← t
15: xoff ← max(xoff , x

−

j
(h)) + Q′

k ⊲ Track offset on lower env.

16: xs ← min(x+

j
(h),max(x−

j
(h), xoff)) ⊲ New initial number of trans.

17: return twcet = t + tadd ⊲ Predicted WCET

To compute WCET predictions on envelopes defined on accelerators, i.e.
when Rj = ACCl, we follow a similar yet different strategy because regulation

Title Suppressed Due to Excessive Length 17

performed by MemGuard differs from QoS traffic shaping. For this purpose,
we formulate Algorithm 3. In this case, instead of tracking if Qk has been
surpassed, we track the number of transactions executed in sample period
δ. The number of transactions (N) allowed per δ is calculated based on the
inter-transaction gap (explained in Section 6.2) i.e. N should be less than
δ/ttrans for regulation to not take place—see Line 8.

If enough transactions to induce regulation fall in the current interval,
the resulting regulation-induced inflation to the total runtime is computed at
Line 9. Since we do not know in principle how close will be the first transaction
in the subsequent sampling interval, we conservatively assume that an extra
regulation gap will be inserted. Next, the algorithm tracks the transactions
that have already been considered for regulation (Line 10).

Conversely, when regulation does not take place, we increase the time by δ
only. Lastly, for the next iteration of the algorithm, we update the new initial
number of transactions in xs that will be used in iteration h+1, while ensuring
we do not exceed the upper envelope. At the same time, the total number
of transactions that must have occurred at interval index h+ 1 must remain
above (or in match with) the lower envelope x−j (h).

Algorithm 3 Predict WCET for Accelerator Envelope

1: function GetWCET ACC(τi,Mj , ACCl)
2: ttrans ← (212/Ql)/fclk ⊲ Compute inter-transactions spacing at Ql

3: twcet ← 0
4: xoff ← 0 ⊲ Offset for lower envelope
5: xs ← 0 ⊲ Transaction at the beginning of the considered interval
6: for ∃σj(h), h← h+ 1 do

7: N ← x+

j (h)− xs ⊲ Update number of transactions in this sample period

8: if (N + 1) ∗ ttrans ≥ δ then ⊲ Transactions can cause regulation
9: twcet ← twcet + ((N + 1) ∗ ttrans) ⊲ Add regulation gaps
10: xoff ← max(xoff , x

−

j (h)) +N ⊲ Track regulated transactions
11: else ⊲ No Regulation
12: twcet ← twcet + δ ⊲ Add time spent without regulation

13: xs ← min(x+

j (h),max(x−

j (h), xoff)) ⊲ New initial number of transactions

14: return twcet ⊲ Predicted WCET

If a task τi runs only on a CPUk, then the new WCET Ci(Qk) under
regulation with budget Qk can be computed by invoking Algorithm 2. In this
case, schedulability can be checked using the traditional partitioned fixed-
priority scheduling with preemptions, as long as preemptions are restricted to
occur only at the boundaries of regulation periods. However, if preemptions
can occur, care must be taken in adding the additional overhead in terms of
extra memory transactions performed by τi due to cache-related preemption
delay (CRPD) [42,43].

However, if a task assigned to CPUk also uses an accelerator ACCl, then
we assume it will be blocked on CPUk while it executes on ACCl. From a CPU
scheduling point of view, the time it takes for ACCl to return control to CPUk

18 Parul Sohal et al.

is a self-suspension interval. τi’s worst-case response time can be computed
leveraging the results in [44]. To compute the overall WCET of τi Ci(Qk, Ql)
subject to regulation on CPUk with budget Qk and with ACCl subject to
QoS-based regulation at level Ql, the following needs to be computed. First, we
compute the stall due to regulation on CPUk as tstallk = Ci(Qk)−Ci computed
using Algorithm 2; next, we compute tstalll = Ci(Ql)− Ci using the equivalent
of Algorithm 2 for QoS regulation. Finally, Ci(Qk, Ql) = Ci + tstallk + tstalll .

8.1 Multiple Input Vectors for E-WarP

We further discuss how the proposed E-WarP approach can be employed to
handle applications whose memory access pattern is impacted by changes in the
supplied inputs. The key idea is to consider the behavior produced by multiple
input vectors to create a global upper and lower envelope that encapsulates
the individual x±j (h) of all the different input vectors. For the remainder of
this paper, we will refer to the global upper envelope and to the global lower

envelope with the notation X+
j (h) and X−j (h), respectively.

Creating the global envelope can be done in two steps. First, finding a
set of inputs V = {v1, v2, .., vj} that exhaustively exercise multiple execution
paths. Input generation for definitive code coverage is an open challenge for
complex applications. Important seminal results have been achieved in this area
with the combination of symbolic and concrete execution [45]. The problem of
meaningful input generation is beyond the scope of this paper. For all purposes
we assume that the set of inputs V for a given application under analysis can be
constructed. Second, the global envelope created via the set of input vectors V ,
should illustrate the worst-case memory execution pattern for the benchmark.
For each of the input vectors vj we have a memory envelope Mj which captures
the x−j (h) and x+

j (h) over the runtime of the application with a fixed profiling
time interval δ. The global upper and lower envelope is computed by invoking
Algorithm 1; the algorithm accepts a set of upper and lower cumulative curves
Mj instead of of individual single-input profiles. Note that the X±j (h) is a
strictly non-decreasing function as it is a cumulative curve.

Once the X±j (h) is created over the input set V , we need a model to
compute predictions under different CPU and accelerator regulations. There
is a probability of each input vector vj has a drastically different memory
envelope making the global memory curve explode. Hence, there is a need to
quantify how close the global envelope is to the original memory envelope Mj

for input vj .In our work, we evaluate this phenomenon by understanding the
proportion of overlapping area of x±j (h) to X±j (h) i.e. comparing the area of
Mj to the global envelope created over the input vector set V = {v1, v2, ..., vj}
for each j in V . The global envelope will be calculated including all the input
vectors and the closeness will be measured by recording the overlapping areas of
each input in V with the global envelope. The smaller the overlapping between
individual and global envelopes, the more the application’s memory behavior
can be deemed to be input-dependent. For global envelopes that result much

20 Parul Sohal et al.

has a private 32 KB+32 KB I+D L1 cache, and a 256 KB L2 cache is present
in each cluster. Because this platform is designed for vision applications, it also
integrates two accelerators. The first is a programmable GC3000 GPU [46]
and the second is the APEX-CL Image Cognition Processor, or APEX for
short. The device contains two identical instances of the APEX engine, namely
APEX0 and APEX1. This accelerator promises to deliver “high-performance
parallel processing capability” [37]. The APEX are highly complex processing
subsystems that include scalar and vector processing units, local scratchpad
memories, and DMA engines. We focus on the APEX in our evaluation as a
realistic instance of a high-performance accelerator.

The platform features two DDR controllers, namely DDR0 and DDR1, that
operate independently on two separate portions of DRAM memory of 1 GB
each. The controllers operate at fclk = 0.5 GHz and have a bus width of 32 bits.
Importantly, each controller exposes a set of memory-mapped performance
counters that report: (1) the number of DDR cycles elapsed tot ddr cyc; (2)
the number of busy DDR cycles busy ddr cyc; (3) the total number of bytes
transferred in read (rd bytes) and (4) in write (wr bytes) transactions. The
DDR profiling interface also allows defining a filter on the source of traffic (e.g.
CPU cluster 1, APEX1, etc.) that is applied when counting read/write bytes.
To differentiate between the traffic coming from different masters, counters (3)
and (4) can be programmed to only filter the traffic coming from a specific
master(s) based on their AXI-ID.

The last component that requires some introduction is the interconnect.
The S32V234 system uses a standard ARM NIC-301 [47] with ARM QoS-
301 [39] extensions. The QoS extension of the NIC is where traffic regulation is
performed on traffic that traverses the interconnect towards DDR. ARM QoS
extensions are surprisingly, broadly available in many current-generation ARM-
based platforms. When we started this work, we were surprised to discover
that little-to-no software support or research literature was available on these
modules. So we had to implement our own to carry out this research. The
NIC+QoS-301 provides a memory-mapped interface to control the regulation
parameters on a per-master basis. Regulation interfaces are depicted as colored
squares on top of the NIC in Figure 6. Because the traffic from all the CPUs
arrives through the same master interface, QoS regulation cannot be used
to regulate individual CPUs, but only the total traffic from all the CPUs.
Conversely, it allows one to set individual regulation regimes for each of the
APEX, for the GPU (see Figure 6), for the DMAs, for the network interface
and the I/O sub-shell (not shown).

We use the Jailhouse partitioning hypervisor [48] to partition resources in
our system. Jailhouse is the ideal choice for this type of implementations because
it does not perform scheduling of virtual CPUs (VCPUs), it is lightweight
and easy to port/modify, includes support for cache coloring and DRAM
bank partitioning [49], and is open-source. It also includes libraries to define
bare-metal guest-OS that can be launched directly on a subset of the CPUs.
Unfortunately, Jailhouse was not ported to the NXP S32V234 platform at the
time we started this work. Our first implementation tasks concerned writing a

Title Suppressed Due to Excessive Length 21

layer of SoC-dependent code to port Jailhouse onto the target platform. Doing
so required a few modifications to the stock boot-loader(u-boot), and to the
CPU hotplug support in the Linux kernel. It also involved writing a driver for
the LINFlexD device in the S32 that controls the console outputs.

Next, we integrated into our porting an implementation of MemGuard
originally proposed in the context of the HERCULES project [50]. We also
implemented from scratch a platform-independent support for ARM QoS
features, along with the platform-specific code to setup QoS regulation in the
S32V234 system. With the implemented support, system designers can set
multiple QoS parameters for multiple masters in a single hypercall, making
the interface suitable for efficient online dynamic QoS management.

Finally, we implemented a profiler comprised of two parts: a low-level
profiler, profvm, and a user-space control toolkit, profctl. First, profvm is
a small-footprint bare-metal guest-OS that can be loaded by Jailhouse. To
meet the stringent accuracy and transparency requirements of our profiler,
we proceeded as follows. When loaded, profvm takes exclusive ownership of a
single CPU (CPU4), and of an entire DDR controller (DDR1). Our profvm
uses the dedicated 1 GB of DRAM memory for two purposes. (1) It exposes a
shared command&control interface; and (2) when active, stores a sequence of
samples of DDR0 activity. The other three CPUs are assigned to Linux in SMP
mode and are used to run the user-space applications that need to be profiled.
When active, profvm performs periodic sampling of DDR0 at a configurable
sampling rate expressed in CPU clock cycles. Each sample collected in DDR1
contains the values, and the time of sampling, of: (1) CPU cycles counter, (2)
value of tot ddr cyc, (3) value of busy ddr cyc, (4) value of rd bytes and (5)
wr bytes. The ratio between (3) and (2) provides the instantaneous utilization
of the DDR subsystems. Some porting was also required to ensure that the
APEX driver does not attempt to use any memory space in DDR1. This is
because the out-of-the-box drivers execute APEX code from the memory space
of DDR1 controller.

Second, to facilitate profile acquisition, the profctl toolkit is provided. It
takes care of all the low-level coordination with the profvm module; launches
the benchmark(s) to be profiled; and at the end of the experiment gathers
samples from DDR1 to save them to disk for later analysis. Multiple parameters
can be configured directly from profctl, most prominently sampling period,
and filter on individual masters.

Despite all the changes mentioned above, two important features are needed
to port E-WarP to another hardware platform. (1) Profiling: The requirements
for such a profiling tool are discussed in detail in Section 5. (2) Bandwidth
Control: MemGuard is a widely-implementable technique and ARM QoS
extensions are drop-in modules (ARM QoS-310/QoS-400) bound to increase
in popularity. Another tool, ARM Memory System Resource Partitioning and

This was required to overcome the lack of a PSCI firmware provided by the vendor to
control CPU shutdown.

https://github.com/rntmancuso/jailhouse-rt

22 Parul Sohal et al.

Monitoring (MPAM) [51] combines shared cache, memory, and interconnect
bandwidth management.

10 Validation and Evaluation

In this section, we first build a set of experiments to identify key parameters
in our system. Next, we discuss how we instantiated the E-WarP model on
real-world applications and evaluate the WCET predictions under regulation.
Then an in depth analysis of QoS-based controls for accelerators is provided.
Finally, we present a full-system integration where all the applications analyzed
in isolation on the CPU and the accelerators are deployed to run in parallel.

10.1 Experimental Setup

We used the NXP S32V234 [37] platform introduced in Section 9. A com-
bination of synthetic and real benchmarks are used to gain insight into the
platform. The synthetic benchmarks used to stress/evaluate specific parame-
ters of our platform are described in the corresponding subsections. For our
real benchmarks, we use a subset of the benchmarks in the San-Diego Vision
Benchmarks (SD-VBS) suite [52]. Because we are interested in applications that
are DRAM-bound, the selection was performed by taking all the benchmarks
that operate on images. These come with different input sizes, but we have
excluded the Fullhd inputs which lead to impractically long runtimes. We
instead focus on the next two largest sizes, i.e. VGA and CIF. The complete
list of selected benchmarks is reported in Table 2.

In terms of accelerators, we focus on the APEX engine included in the
S32 platform. The S32 features two independent APEX accelerators. Each
accelerator is fully programmable and includes a high-performance parallel
processing unit (APU) for vector and scalar operations, a DMA, and internal
scratchpad memories to operate on data/image tiles. The ARM QoS control
interface instantiated on this platform allows setting regulation parameters
on the main bus independently for the two APEX engines. The selection of
benchmarks available for this unit is limited to the examples released by the
manufacturer. We were able to fully integrate the APEX within our profiling
infrastructure. But the benchmarks we observed insisted on the processing
capabilities of the engine as opposed to generating a lot of DDR traffic. We
focus our evaluation on the most DRAM-intensive one we found, i.e., the
“Region of Interest” (RoI) benchmark. The RoI benchmark processes different
parts of the image on APEX.

For consistency, we always activate the Jailhouse hypervisor. As most of our
experiments involve the use of the presented profiler, the profvm bare-metal
VM is generally loaded (unless specified otherwise) and pinned to core 4. Linux
v4.19 is deployed on the other 3 CPUs. Some minor modifications to the kernel
were performed to port Jailhouse and to enable support for the APEX. The

Title Suppressed Due to Excessive Length 23

kernel is compiled in full-tickless (NO HZ FULL) mode. All the benchmarks are
always deployed using the SCHED FIFO scheduler and with explicit pinning to
CPUs. We use the profctl to synchronously launch multiple benchmarks in
parallel and to coordinate profiling and collection of execution times. All the
min/max/avg statistics were calculated on 30 runs for each configuration to
remain statistically significant.

10.2 Profiler Transparency and Accuracy

As a first experiment, we evaluate how well the proposed profiler satisfies the
transparency and accuracy requirements.

The accuracy was evaluated along two sub-dimensions. First, we evaluated
how closely the obtained profile matches the expected number of read/write
bytes in a synthetic benchmark of known characteristics. To limit the number
of spurious DDR transactions in the experiment, we (1) program the platform
DMA (eDMA) engine to transfer a known number of bytes; (2) leverage the
filtering capabilities of our profiler to only capture eDMA transactions. The
resulting profiles cumulative number of read/write bytes were in perfect match
with the synthetic benchmark.

Next, we want to find a suitable value for δ that directly relates to the
profiler’s accuracy. To do so, we varied the configuration of profvm’s sampling
period and selected the smallest number of CPU clock cycles that leads to a
measurement error no larger than ±2 clock cycles with 99.99% confidence over
100,000 consecutive measurements. Setting 1,500 clock cycles as the sampling
period of profvm satisfies this specification. This value was used in all the
experiments. With this setting, each acquired sample captures the behavior
of the DDR subsystem within a 1.5µs window. The profiler operates 1, 500×
faster than MemGuard, so it holds that δ << P .

Lastly, we evaluated the impact of the profiler on all the selected SD-VBS
applications. We first capture the runtime of a benchmark executing without
the profvm loaded in the system. The runtime is then compared to the case
where profvm is loaded and configured to collect the profile of the application
under analysis. On average across all cases, we observed a runtime increase of
0.33%, with a maximum of 1.67%. Since the profiler is designed to bypass the
shared cache and only interact with a private DDR controller, the overhead
necessarily arises at the shared interconnect. Because the profiler is not required
in production, this overhead will not affect the final applications and all the
WCET predictions will still be safe.

The DRAM operates at half the frequency of the CPUs.

24 Parul Sohal et al.

10.3 DRAM Controller Saturation

In this section, we study the saturation of the DDR controller under MemGuard
and QoS regulation with the goal of establishing appropriate values for the
Uα
mg, U

β
mg, U

α
qos,w, U

β
qos,w parameters discussed in the previous sections.

10.3.1 MemGuard Regulation

We first establish a relationship between MemGuard budget assigned to a CPU,
the resulting bandwidth extracted from the DRAM, and the measured DRAM
utilization. Because we are interested in an upper-bound on the utilization, it
is important to design an experiment where the DDR utilization is maximized
at the selected budget. It is already clear from Figure 2 that performing stores
achieves higher utilization at the same budget level. Furthermore, following the
analysis in [53] we want to make sure that each DRAM transaction performed
by our benchmark results in a DRAM row miss.

With this in mind, we consider the mapping of physical addresses to
DRAM coordinates (banks/rows/columns), and design the ustress synthetic
benchmark. ustress allocates in user-space a 2 MB buffer that is contiguous
in physical memory leveraging standard support for huge-pages (MAP HUGETLB).
It then performs the first store on column 0 and row 0. The next store is
performed 215 bytes away — because the first row bit is bit 15. This pattern
keeps all the accesses on bank 0. Once we reach the last accessible row, we set
the column offset to 64 bytes and restart from row 0 to fetch the second cache
line in the first row. We proceed by scanning all the rows (inner loop) and
then increasing the column offset (outer loop) until reaching the last accessible
column of the last row. This pattern not only always accesses a closed row in
the same bank, but it also bypasses the cache and ensures that no prefetching
is performed because subsequent accesses cross the 4 KB page boundary.

We then profile ustress subject to variable regulation enforced with Mem-
Guard. We compare the theoretical bandwidth that should be extracted with
what is observed in the profiles. Simultaneously studying the trend of DDR
utilization as returned by the profiles. The results are shown in Figure 7. As
predicted by our model in Equation 2 for cache line size Ls = 64 bytes, the
utilization grows linearly as the extracted bandwidth increases. At bandwidth
950 MB/s (budget = 15565) the controller is running at 97% utilization. At the
next budget value we considered (budget = 16384), 100% utilization is reached,
and the observed bandwidth starts to level-off and deviate from the linear trend.
Hence we consider 950 MB/s to be a safe bound on the cumulative budget
that can be extracted by the CPUs without saturating the DDR controller. By
finding the angular coefficient and y−intercept of the utilization trend before
saturation, we can set Uα

mg = 6.23856× 10−3 and Uβ
mg = 6.68742× 10−2.

26 Parul Sohal et al.

Table 1: MemGuard budgets (Qk) and QoS levels (Ql) with the corresponding
Bandwidth and Utilization

Setting Bandwidth (MB/s) DDR Utilization (%)
MemGuard QoS MemGuard QoS MemGuard QoS

492 5 30.03 74.51 3.14 15.68
819 10 49.99 149.01 5.18 30.73
1475 20 90.03 298.02 9.27 60.83
2130 40 130.00 596.05 13.36 121.02
4096 80 250.00 1192.09 25.62 241.41
5734 100 349.98 1490.12 35.84 301.61
7373 160 450.01 2384.19 46.06 482.2
9830 320 599.98 4768.37 61.39 963.76

In terms of overhead, we mentioned that MemGuard introduces two types
of overheads, i.e. tovh and xovh. We designed two synthetic tasks to evaluate
these quantities. To evaluate tovh, we implemented a task that defines a buffer
smaller than the L1 cache size, and that continuously samples the CPU cycle
counter, storing the difference between two successive samples in the buffer.
Because the benchmark does not generate DDR traffic, it will not be regulated
by MemGuard. It will, however be interrupted by the periodic interrupt used
for budget replenishment. To discover the end-to-end overhead, we then look
for discontinuities in the sampled time deltas. With this, we measured the
overhead of our Jailhouse implementation of MemGuard to be up to 450 cycles.
This is also in line with [54] and we set tovh = 450/1.0 GHz = 4.5× 10−4 ms.

To compute xovh, we rely on the profiler. We created a benchmark that
allocates a buffer of the same size as the last-level cache — 256 KB. Like
in ustress, the buffer is placed contiguously in physical memory to control
cache-set conflicts. When this benchmark is profiled, we observe small spikes of
memory transactions at the periodicity of MemGuard activations. By counting
these transactions on a per-period basis, we computed xovh = 35 transactions.

Another phenomenon we observed by analyzing the profiles of some of
our benchmarks is unregulated CPU activity. MemGuard, as well as later
implementations like the one in [9], rely on the L2 CACHE REFILL event to
count transactions. Clearly, a CPU can perform DRAM transactions that
are not counted by this event by accessing non-cacheable memory, or when
performing cache maintenance operations — e.g. a cache flush. Fortunately,
these operations are not common in user-space applications. But there exists
a class of instruction routinely used in user-space applications that behave
in a similar way. Instructions like STM (in ARM aarch32) and STP (in ARM
aarch64) that might be treated as write-no-allocate, which bypass the cache
and generate DRAM write transactions. Common operations such as memset
are implemented using these instructions. We have modified our benchmarks
to avoid the use of the problematic instructions.

Title Suppressed Due to Excessive Length 33

(a) disparity: def (b) disparity: nor1 (c) disparity: nor2 (d) tracking: def

(e) tracking: nor1 (f) tracking: nor2 (g) All: deg1 (h) All: deg2

Fig. 15: Default and additional input images to understand global envelopes
with changing input vectors.

Figure 15 provides a visualization of the considered input vectors. In the
case of disparity, the input is a stereoscopic scene. We depict one of the two
images in Figure 15; finally tracking takes as input four subsequent video
frames. We provide the first frame of the sequence.

We divided the experiments for each benchmark into three separate
cases to generate the global memory envelopes: V1 = {deg1, deg2, def},
V2 = {nor1, nor2, def}, and V3 = {deg1, deg2, nor1, nor2, def}. The results
from this experiment are summarized in Table 3. For example, lets take
V1 = {deg1, deg2, def} i.e. Row 1 and Row 4 in Table 3. These rows show,
for each columns, the overlapping area between the global memory envelope
obtained with V1 and the envelope obtained with only one specific input image
(i.e., deg1, deg2, or def). We also show, on the right-hand side of the table,
the WCET over-prediction percentage for three MemGuard budgets when an
envelope constructed using V1 is considered. We calculate over-prediction by
comparing the predicted time obtained using X±j (h) to the measured execution
time on the def input vector.

The input vectors of disparity on average share 50% of the area with the
global memory curve versus only 22.65% in the case of tracking. In other
words, the global envelope for disparity is denser than that of tracking.
Hence, disparity has lower over-prediction in when performing multi-input
WCET predictions compared to what happens with tracking. Certain input
vectors inflate the global memory envelope. Indeed, if deg2 is not considered in
the input vector set (i.e., V2 at Row 5), then the over-prediction for tracking
decreases to about 10%.

Figure 15b, 15c: original photos by Alexander Klein and Stefan Wernthaler, respectively,
from https://www.stereoscopy.com/; Figure 15e, 15f: original video frames from the Visual
Tracker Benchmark, respectively Basketball and CarScale data sets available at http://

cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html. The original photos have been
scaled and/or cropped to match the same resolution and aspect ratios as the default SD-VBS
image files.

36 Parul Sohal et al.

we believe that an active DCU makes for a more realistic setup. Hence, we
conduct our experiments by simply accounting for its impact on the utilization
of the DDR subsystem.

We measure the upper-bound on DDR utilization caused by the DCU at
36%. Unfortunately, the DCU cannot be regulated using QoS. To reduce the
number of parameters, we also set the QoS level for the APEX at 10, so that the
APEX can increase the DDR utilization by at most 30.73%. From Section 6.3,
we know that a safe utilization is 97%. Hence the cores need to be assigned
MemGuard budgets so that they increase the DDR utilization by no more
than 30.27%, which corresponds to a total budget of 4915 (about 300 MB/s).
With 4 active CPUs, and by performing even division of this quota, we expect
that the DDR remains below the saturation threshold as long as the individual
CPU budgets remain below 1228.

In Figure 18 (resp., Figure 19), we plot what happens to the runtime of
the CPU tasks, i.e. RoI and mser (resp., tracking) with VGA input as we
increase the budgets on the CPUs. The black solid line tracks the predicted DDR
utilization, with the 100% threshold marked with dashed line. Solid blue lines
are used to plot the maximum observed runtime of the mser (resp, tracking),
with our predictions depicted in the same color and dashed lines. The same
convention using red lines is used to plot the runtime of the RoI benchmark.
The areas under the blue/red curves captures the difference between observed
maximum and average runtimes. Three main characteristics stand out in the
figures. (1) In both, the maximum runtimes correctly remain below the predicted
WCETs until 100% DDR utilization is reached, which confirms the validity of
the E-WarP approach. (2) Once the saturation point is exceeded, the behavior
of the system is highly unpredictable, with our benchmarks experiencing large
swings in execution times that are not mitigated by increasing the CPU budgets.
(3) In the system with tracking, the benchmarks behave erratically slightly
later than the predicted saturation point. This is possible because the proposed
utilization model has to be conservative to be safe.

11 Conclusion and Future Work

This work presented E-WarP, a framework of technologies to profile and
bound the temporal behavior of workload on CPUs and accelerators. E-WarP
achieves full-system memory bandwidth management by integrating two broadly
available regulation mechanisms. We design and implement a fine-granularity,
transparent profiler. We show how to build relationships between regulation
levels and DDR saturation. Finally, we experimentally demonstrate that the
formulated WCET predictions hold as long as the main memory subsystem
remains below its saturation threshold.

E-WarP is meant to be a stepping stone for profile-driven real-time applica-
tion analysis with realistic upper-bounds on application runtimes. It enables
important future research avenues in directions that include: (1) optimally
setting regulation parameters leveraging the convexity of the E-WarP’s pre-

38 Parul Sohal et al.

4. H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar, “Bounding
memory interference delay in COTS-based multi-core systems,” in 2014 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2014, pp.
145–154.

5. R. Pellizzoni and H. Yun, “Memory Servers for Multicore Systems,” in 2016 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2016, pp.
1–12.

6. C. A. S. Team, “Multi-core Processors Position Paper,” November 2016, accessed on
07.01.2020.

7. C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and R. I. Davis, “A Survey
of Timing Verification Techniques for Multi-Core Real-Time Systems,” ACM Comput.
Surv., vol. 52, no. 3, Jun. 2019. [Online]. Available: https://doi.org/10.1145/3323212

8. H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “MemGuard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms,” in 2013
IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS),
2013, pp. 55–64.

9. H. Yun, W. Ali, S. Gondi, and S. Biswas, “BWLOCK: A Dynamic Memory Access
Control Framework for Soft Real-Time Applications on Multicore Platforms,” IEEE
Transactions on Computers, vol. 66, no. 7, pp. 1247–1252, 2017.

10. A. Agrawal, R. Mancuso, R. Pellizzoni, and G. Fohler, “Analysis of Dynamic Memory
Bandwidth Regulation in Multi-core Real-Time Systems,” in 2018 IEEE Real-Time
Systems Symposium (RTSS), 2018, pp. 230–241.

11. M. Hassan and R. Pellizzoni, “Analysis of Memory-Contention in Heterogeneous COTS
MPSoCs ,” in (ECRTS2020), 2020.

12. R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun, “Wcet(m) estimation in
multi-core systems using single core equivalence,” in 2015 27th Euromicro Conference
on Real-Time Systems, 2015, pp. 174–183.

13. Parul Sohal and Rohan Tabish and Ulrich Drepper and Renato Mancuso, “E-WarP:
A System-wide Framework for Memory Bandwidth Profiling and Management,” 2020
IEEE Real-Time Systems Symposium (RTSS), pp. 345–357, 2020.

14. G. Yao, H. Yun, Z. P. Wu, R. Pellizzoni, M. Caccamo, and L. Sha, “Schedulability Analysis
for Memory Bandwidth Regulated Multicore Real-Time Systems,” IEEE Transactions
on Computers, vol. 65, no. 2, pp. 601–614, 2016.

15. P. Modica, A. Biondi, G. Buttazzo, and A. Patel, “Supporting temporal and spatial
isolation in a hypervisor for ARM multicore platforms,” in 2018 IEEE International
Conference on Industrial Technology (ICIT), 2018, pp. 1651–1657.

16. H. Kim and R. Rajkumar, “Real-time cache management for multi-core virtualization,”
in 2016 International Conference on Embedded Software (EMSOFT), 2016, pp. 1–10.

17. M. Pagani, A. Balsini, A. Biondi, M. Marinoni, and G. Buttazzo, “A Linux-based support
for developing real-time applications on heterogeneous platforms with dynamic FPGA
reconfiguration,” in 2017 30th IEEE International System-on-Chip Conference (SOCC),
2017, pp. 96–101.

18. P. Houdek, M. Sojka, and Z. Hanzálek, “Towards predictable execution model on
ARM-based heterogeneous platforms,” in 2017 IEEE 26th International Symposium on
Industrial Electronics (ISIE). IEEE, 2017, pp. 1297–1302.

19. Y. Li, K. Akesson, and K. Goossens, “Architecture and analysis of a dynamically-
scheduled real-time memory controller,” Real-Time Systems, vol. 52, no. 5, p. 675–729,
9 2016.

20. D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke, “Temporal isolation on multiprocessing
architectures,” in 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC),
2011, pp. 274–279.

21. P. K. Valsan and H. Yun, “MEDUSA: A Predictable and High-Performance DRAM
Controller for Multicore Based Embedded Systems,” in 2015 IEEE 3rd International
Conference on Cyber-Physical Systems, Networks, and Applications, 2015, pp. 86–93.

22. B. Akesson, K. Goossens, and M. Ringhofer, “Predator: A predictable SDRAM memory
controller,” in 2007 5th IEEE/ACM/IFIP International Conference on Hardware/Soft-
ware Codesign and System Synthesis (CODES+ISSS), 2007, pp. 251–256.

Title Suppressed Due to Excessive Length 39

23. R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni, “Real-time
cache management framework for multi-core architectures,” in 19th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS 2013), Philadelphia, PA,
USA, April 2013, conference, pp. 45–54.

24. R. Neill, A. Drebes, and A. Pop, “Fuse: Accurate multiplexing of hardware performance
counters across executions,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 14, no. 4, pp. 1–26, 2017.

25. NXP, “P-Series in QorIQ Processing Platforms,” accessed on 07.01.2020.
26. ——, “T-Series in QorIQ Processing Platforms,” accessed on 07.01.2020.
27. J. Freitag, S. Uhrig, and T. Ungerer, “Virtual Timing Isolation for Mixed-Criticality

Systems,” in 30th Euromicro Conference on Real-Time Systems (ECRTS 2018), ser.
Leibniz International Proceedings in Infiormatics (LIPIcs), S. Altmeyer, Ed., vol. 106.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, pp.
13:1–13:23. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2018/8990

28. A. Agrawal, G. Fohler, J. Freitag, J. Nowotsch, S. Uhrig, and M. Paulitsch, “Contention-
aware dynamic memory bandwidth isolation with predictability in COTS multicores:
An avionics case study,” in 29th Euromicro Conference on Real-Time Systems (ECRTS
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

29. NXP, “P4080 Multicore Communication Processor Reference Manual,” September 2015,
accessed on 07.01.2020.

30. ——, “QorIQ T2080 Reference Manual,” Novemebr 2016, accessed on 07.01.2020.
31. Xilinx, “ZCU102 User Guide,” November 2016, accessed on 07.01.2020.
32. S. Roozkhosh and R. Mancuso, “The potential of programmable logic in the middle:

cache bleaching,” in 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2020, pp. 296–309.

33. G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo,
“Designing mixed criticality applications on modern heterogeneous MPSoC platforms,” in
31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019.

34. Alejandro Serrano, Juan M Reina, Enrico Mezzetti, Jaume Abella, Francisco J Cazorla,
“Leveraging Hardware QoS to Control Contention in the Xilinx Zynq UltraScale+ MPSoC,”
July 2021.

35. Intel, “Resource Director Technology Refrence Manual,” March 2019, accessed on
07.01.2020.

36. K. T. Nguyen, “Introduction to Memory Bandwidth Monitoring in the Intel® Xeon®
Processor,” February 2016, accessed on 07.01.2020.

37. NXP, “S32V234 Reference Manual,” Jnauary 2020, accessed on 07.01.2020.
38. Xilinx, “AXI4 Refrence Guide,” July 2017, accessed on 07.01.2020.
39. ARM, “ARM® CoreLink™ QoS-301 Network Interconnect Advanced Quality of Service,”

2011, accessed on 07.01.2020.
40. ——, “ARM® CoreLink™ QoS-400 Network Interconnect Advanced Quality of Service,”

2013, accessed on 07.01.2020.
41. J. L. Gustafson, Little’s Law. Boston, MA: Springer US, 2011, pp. 1038–1041. [Online].

Available: https://doi.org/10.1007/978-0-387-09766-4 79
42. S. Altmeyer and C. M. Burguière, “Cache-related preemption delay via useful cache

blocks: Survey and redefinition,” Journal of Systems Architecture, vol. 57, no. 7, pp.
707–719, 2011.

43. S. Altmeyer, C. Maiza, and J. Reineke, “Resilience analysis: tightening the CRPD bound
for set-associative caches,” ACM Sigplan Notices, vol. 45, no. 4, pp. 153–162, 2010.

44. G. Nelissen, J. Fonseca, G. Raravi, and V. Nélis, “Timing Analysis of Fixed Priority
Self-Suspending Sporadic Tasks,” in 2015 27th Euromicro Conference on Real-Time
Systems, 2015, pp. 80–89.

45. P. Dinges and G. Agha, “Targeted test input generation using symbolic-concrete
backward execution,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 31–36. [Online]. Available:
https://doi.org/10.1145/2642937.2642951

46. Vivante, “Vega Cores for 3D,” accessed on 07.01.2020. [Online]. Available:
http://www.vivantecorp.com/index.php/en/technology/3d.html

40 Parul Sohal et al.

47. ARM, “AMBA Network Interconncet(NIC-301) Technical Reference Manual,” 2010,
accessed on 07.01.2020.

48. J. Kiszka, V. Sinitsin, H. Schild, and contributors, “Jailhouse Hypervisor,” accessed on
07.01.2020. [Online]. Available: ttps://github.com/siemens/jailhouse

49. M. S. T. Kloda, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna, “Deterministic
Memory Hierarchy and Virtualization for Modern Multi-Core Embedded Systems,” in
25th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS
2019), Montreal, Canada, April 2019, conference, pp. 1–14.

50. C. Scirdino, L. Cuomoand, M. Solieri, and M. Sojka, “HERCULES: High-Performance
Real-Time Architectures for Low-Power Embedded Systems,” December 2018, accessed
on 07.01.2020.

51. Arm, “Arm Architecture Reference Manual Supplement Memory System Resource
Partitioning and Monitoring(MPAM), for Armv8-A,” 2018-2020, accessed on 10.16.2020.

52. S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B.
Taylor, “SD-VBS: The San Diego vision benchmark suite,” in 2009 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 2009, pp. 55–64.

53. M. Hassan, “Reduced latency DRAM for multi-core safety-critical real-time systems,”
Real-Time Systems, pp. 1–36, 2019.

54. C. Dall, S.-W. Li, J. T. Lim, J. Nieh, and G. Koloventzos, “ARM Virtualization: Perfor-
mance and Architectural Implications,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2016, pp. 304–316.

