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FINITE DIMENSIONAL APPROXIMATIONS OF
HAMILTON–JACOBI–BELLMAN EQUATIONS IN SPACES OF

PROBABILITY MEASURES⇤
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Abstract. We prove that viscosity solutions of Hamilton–Jacobi–Bellman (HJB) equations, cor-
responding either to deterministic optimal control problems for systems of n particles or to stochastic
optimal control problems for systems of n particles with a common noise, converge locally uniformly
to the viscosity solution of a limiting HJB equation in the space of probability measures. We prove
uniform continuity estimates for viscosity solutions of the approximating problems which may be
of independent interest. We pay special attention to the case when the Hamiltonian is convex in
the gradient variable and equations are of first order and provide a representation formula for the
solution of the limiting first order HJB equation. We also propose an intrinsic definition of viscosity
solution on the Wasserstein space.
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1. Introduction. We consider the problem of approximation of Hamilton–
Jacobi–Bellman (HJB) equations in spaces of probability measures by equations in
finite dimensional spaces. More precisely, we study if an appropriately interpreted
viscosity solution of such HJB equations can be approximated locally uniformly by
viscosity solutions of finite dimensional problems. This is related to the problem of
whether value functions of variational or optimal control problems in spaces of prob-
ability measures can be approximated by value functions corresponding to problems
for finite particle systems. Similar convergence problems have been recently studied
in the context of mean field games [15, 16, 18, 20, 21, 28, 37, 41, 50, 53]. In partic-
ular it was proved in [18] that classical solutions of finite dimensional second order
Nash systems converge, in a suitable sense, to classical solutions of the correspond-
ing master equations. Also, convergence of functionals of empirical measures of the
marginal laws of particle systems for McKean–Vlasov stochastic differential equations
was studied recently in [20, 23] using calculus in the space of measures, stochastic
analysis, and partial differential equations in the space of measures. Explicit con-
vergence estimates were obtained in [20, 23]. The problems investigated there are
different from the one here. They studied the case of independent noises and no con-
trols so they dealt with partial differential equations which are linear, have slightly
different form, and have smooth solutions. We refer to the references in [20, 23] for
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FINITE DIMENSIONAL APPROXIMATIONS OF HJB EQUATIONS 1321

the discussion of other earlier results in this direction. Regularity and convergence
problems for finite dimensional approximations of first order HJB equations in spaces
of probability measures were studied in [37, 39, 41, 52], either when solutions were
regular or when the Hamiltonian was quadratic. Some results are also mentioned in
[15] without proofs, while some results may be considered to be part of the folklore
of the theory. In this paper we want to investigate the problem rigorously from the
point of view of viscosity solutions.

We will be concerned with first and second order degenerate HJB equations of
the form

(1.1)
⇢

@tU � �wU +H(µ, µ,rµU) + F(µ) = 0 in (0, T )⇥ P2(Rd),
U(0, µ) = U0(µ) on P2(Rd),

where �wU is the partial Laplacian of U (see [24]), T > 0, � 0,P2(Rd) is the
Wasserstein space of probability measures on Rd with bounded second moments,
F : P2(Rd) ! R, and, for µ1, µ2 2 P2(Rd), ⇠ 2 L

2
µ1
(Rd;Rd), the Hamiltonian H

is defined by

H(µ1, µ2, ⇠) =

Z

Rd

H(x, µ2, ⇠(x))µ1(dx)

for some function H : Rd
⇥ P2(Rd) ⇥ Rd

! R which satisfies Hypothesis 2.1 below.
We bring to the reader’s attention the fact that the dependence of H in (1.1) on the
first µ is linear, whereas the dependence on the second µ comes from the integrand
function H. Moreover, the function F cannot be simply absorbed into H: otherwise,
the restriction of µ to averages of Dirac masses would not yield (1.2) below. Indeed,
part of the goal of this paper is to justify that the approximating finite dimensional
problems should have the form

(1.2)

8
<

:

@tun � Tr(AnD
2
un) +

1
n

P
n

i=1 H(xi,
1

n�1

P
n

j 6=i
�xj , nDxiun)

+F( 1
n

P
n

i=1 �xi) = 0 in (0, T )⇥ (Rd)n,
un(0, x1, . . . , xn) = U0(

1
n

P
n

i=1 �xi) on (Rd)n,

where for n 2 N, An is the nd⇥ nd matrix composed of n2 block matrices Id.
Equation (1.1) will be interpreted in the L

2 sense, that is, we will look at the
“lifted” version of (1.1) in the space

E := L
2(⌦;Rd),

where ⌦ is an atomless probability space. This technique was introduced in [15, 50]
and its detailed exposition and recent developments can be found in [20, 21, 43].
Without loss of generality we can assume that ⌦ = (0, 1) with the standard Lebesgue
measure L1. We denote by h·, ·i1 the inner product in L

2(⌦;R) and, for X,Y 2

L
2(⌦;Rd), we set

hX,Y id :=
�
hX1, Y1i1, . . . , hXd, Ydi1

�
,

hX,Y i := hX1, Y1i1 + · · ·+ hXd, Ydi1 and |X| =
p
hX,Xi,

where X1, . . . , Xd, Y1, . . . , Yd are the components of X and Y , respectively. We de-
note the canonical basis in Rd by {e1, . . . , ed} and consider its elements as constant
functions in E. We define the functions U0, F : E ! R by

U0(X) = U0(X]L1), F (X) = F(X]L1),
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1322 WILFRID GANGBO, SERGIO MAYORGA, AND ANDRZEJ ŚWIĘCH

where ] denotes pushforward. Thus X]L1 is the law of the random vector X and is an
element of P2(Rd). If U : E ! R is twice differentiable and such that U(µ) = U(X)
if µ is the law of X, then we have the crucial formula

�wU(µ) =
dX

k=1

hD
2
U(X)ek, eki;

see section 5.
For X,P 2 E, µ 2 P2(Rd), we define

H̃(X,µ, P ) :=

Z

⌦
H(X(!), µ, P (!))d!.

We rely on the theory of viscosity solutions in Hilbert spaces and consider func-
tions U : [0, T )⇥ E ! R which are viscosity solutions of

(1.3)

8
>><

>>:

@tU � 

dX

k=1

hD
2
Uek, eki+ H̃(X,X]L1, DU) + F (X) = 0 in (0, T )⇥ E,

U(0, X) = U0(X) on E.

Here, DU,D
2
U stand for the Fréchet derivatives of U with respect to the X variable.

We refer the readers to [29] for the theory of viscosity solutions in Hilbert spaces and
extensive references.

We have the following definition.

Definition 1.1. Let U : [0, T ) ⇥ P2(Rd) ! R and define U : [0, T ) ⇥ E ! R by

U(t,X) = U(t,X]L1).
(i) We say that U is an L-viscosity subsolution of (1.1) on the Wasserstein space

if U is a viscosity subsolution of (1.3) on [0, T )⇥ E.

(ii) We say that U is an L-viscosity supersolution of (1.1) on the Wasserstein

space if U is a viscosity supersolution of (1.3) on [0, T )⇥ E.

(ii) When U is both an L-viscosity subsolution and an L-viscosity supersolution

of (1.1) on the Wasserstein space, we say that it is an L-viscosity solution of

(1.1) on the Wasserstein space.

We remark that another definition of viscosity solution to HJB master equations
in the Wasserstein space, also called an L-viscosity solution, was introduced in [59].
The definition in [59] uses the framework of path dependent PDE and is not related
to Definition 1.1 here, even though both notions have the same name.

We also propose an intrinsic definition of viscosity solution on the Wasserstein
space and show in section 5 that the notion of L-viscosity solution provides a way to
select particular intrinsic viscosity solutions. Only when the Hamiltonian is convex
in the momentum variables and  = 0 is it known that the notions of L-viscosity
solution and intrinsic viscosity solution are equivalent [43].

The main result of the manuscript is the following convergence theorem.

Theorem 1.2. Let Hypothesis 2.1 be satisfied and let  � 0. Suppose that for

n � 1 the functions un : [0, T ) ⇥ (Rd)n ! R are the viscosity solutions of (1.2).
Then, for every bounded set B in P2(Rd),
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FINITE DIMENSIONAL APPROXIMATIONS OF HJB EQUATIONS 1323

lim
n!1

sup

(�����un(t, x1, . . . , xn)� U

 
t,
1

n

nX

i=1

�xi

!����� :

(t, x1, . . . , xn) 2 [0, T )⇥ (Rd)n,
1

n

nX

i=1

�xi 2 B

)
= 0,

where U is the unique L-viscosity solution of (1.1) on the Wasserstein space.

The assumptions of Hypothesis 2.1 will be introduced in section 2. To prove
Theorem 1.2 we first obtain appropriate uniform continuity estimates for the solutions
un of (1.2). This is done in Theorem 3.3 for a more general case when the second
order coefficients An may depend on x. Theorem 3.3 is the main technical result
of the paper and is of independent interest. We then convert the functions un into
functions of empirical measures by defining new functions

Vn(t, µx) := un(t,x), where µx :=
1

n

nX

i=1

�xi , x = (x1, . . . , xn),

which are well defined since the functions un are invariant with respect to permu-
tations of the variables of x. The estimates of Theorem 3.3 guarantee that Vn are
uniformly continuous in the topology of [0, T ] ⇥ Pr(Rd), where 1 < r < 2. We
then extend Vn to [0, T ] ⇥ P2(Rd), preserving its modulus of continuity, and then
use the Arzelà–Ascoli theorem to pass to the limit, along a subsequence, to a func-
tion V defined on [0, T ] ⇥ P2(Rd). We then prove directly that its “lifted” version
V : [0, T ]⇥E ! R is a viscosity solution of (1.3). Uniqueness of viscosity solutions of
(1.3) then guarantees that the whole sequence Vn converges to V. Thus we completely
avoid dealing with (1.1) in the space of probability measures which may not have a
unique viscosity solution in the sense of [38] (see [43]). In section 6 we show that if
 = 0 and H is convex in the gradient variable, then the functions un, which are value
functions of optimal control problems for n-particle systems, converge to the value
function of a variational problem in P2(Rd), thus giving a representation formula for
the solution of (1.1). Finally we prove a few technical results in the appendix.

Equations (1.2) correspond either to deterministic optimal control problems for
systems of n particles or to stochastic optimal control problems for systems of n

particles with a common noise. Theorem 1.2 solves the problem of convergence for a
large class of general first order HJB equations, even though the identification of the
limit as a value function is only obtained for the convex case and  = 0. However,
using the methods of this paper we were not able to obtain a result similar to Theorem
1.2 for other stochastic particle systems, for instance, systems of n particles with
nonconstant diffusion coefficients, in which case the matrices An are functions like in
Hypothesis 3.1, or for systems of n particles with independent noises, in which case
An = Ind. We also remark that some assumptions of Hypothesis 2.1 could be changed
or relaxed while some may pose a bigger problem. This is worth investigating. The
main challenge is in proving uniform continuity estimates of Theorem 3.3. We do
not consider other cases here as Hypothesis 2.1 is sufficiently general and we do not
want to overburden the presentation with too many technicalities. Our main goal is
to convey the basic ideas. The readers can explore various generalizations.

HJB equations and master equations for mean field games or mean field control
problems in spaces of probability measures have been studied a lot in recent years
using various approaches. We refer the readers to [6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18,
19, 20, 21, 22, 24, 28, 37, 38, 39, 41, 43, 45, 46, 52, 53, 54, 57, 58, 59]. Equations related
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1324 WILFRID GANGBO, SERGIO MAYORGA, AND ANDRZEJ ŚWIĘCH

to differential games were studied in [25, 47], equations related to control problems
with partial observation were studied in [4, 5], and HJB equations mostly related to
large deviations and fluid dynamics problems were investigated with slightly different
techniques in [30, 31, 32, 33, 34]. In particular an abstract method of relaxed limits
for viscosity solutions was introduced in [31] for applications in large deviations and
this technique was recently generalized in [48, 49]. HJB equations in metric spaces
were studied by various techniques in [1, 12, 13, 39, 40, 44, 51, 55, 56]. Finally we refer
the readers to [26, 35] for an introduction to the theory of viscosity solutions of partial
differential equations in Rd and to [29] and the references there for the overview of
the theory of viscosity solutions of second order HJB equations in Hilbert spaces.

2. Notation, assumptions, and definitions. We denote by Pr(Rd), r � 1,
the space of Borel probability measures on Rd with finite rth moments, equipped
with the Wasserstein r-metric

dr(µ, ⌫) := inf
�2�(µ,⌫)

✓Z

Rd⇥Rd

|x� y|
r
�(dx, dy)

◆ 1
r

,

where �(µ, ⌫) is the set of all Borel probability measures � on Rd
⇥Rd with marginals

µ, ⌫. The set of optimal measures in �(µ, ⌫) will be denoted by �0(µ, ⌫). When
x = (x1, . . . xn) 2 (Rd)n we set

µx :=
1

n

nX

i=1

�xi and |x|r =
1

n1/r

 
nX

i=1

|xi|
r

!1/r

.

We have
dr(µx, µy) = inf

�

|x� y�|r,

where the infimum is taken over all permutations � of {1, . . . n} and y� =
(y�(1), . . . y�(n)).

We use L1 to denote the Lebesgue measure on R. If X 2 L
r(⌦;Rd), then its L

r

norm will be denoted by |X|r. If r = 2 we will just write |X| as in the introduction.
For X 2 L

r(⌦;Rd), law(X) := X]L1 denotes the measure in Pr(Rd) which is the
pushforward of L1 by X.

When µ 2 P2(Rd), we denote as L2
µ
(Rd;Rd) the set of Borel vector fields ⇠ : Rd

!

Rd such that
R
Rd |⇠|

2
µ(dx) < 1. The tangent space at µ, denoted by TµP2(Rd), is

the closure of rC
1
c
(Rd) in L

2
µ
(Rd;Rd).

For x 2 Rm we will also be using the notation |x| to denote the standard Euclidean
norm in Rm and we will write x · y for x, y 2 Rm to denote the dot product in Rm.

If A is a matrix or a bounded operator in a Hilbert space, we will write kAk to
denote the operator norm of A. We denote by S(m) the set of m ⇥ m symmetric
matrices. If A 2 S(m), Tr(A) means the trace of A.

For an open set O ⇢ Rm, we will write C
1(O), C2(O) for the standard spaces of

once and twice continuously differentiable functions on O.
If W is a Hilbert space, we denote by C

1,2((0, T ) ⇥ W ) the space of functions
' : (0, T ) ⇥ W ! R such that @t', D', D2

' are continuous on (0, T ) ⇥ W , where
D', D

2
' stand for the Fréchet derivatives of ' with respect to the Hilbert space

variable.
Throughout the paper we will always identify a Hilbert space with its dual. Thus,

with this identification, D' : (0, T )⇥W ! W and D
2
' : (0, T )⇥W ! S(W ), where

S(W ) is the space of bounded self-adjoint operators in W .
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FINITE DIMENSIONAL APPROXIMATIONS OF HJB EQUATIONS 1325

We make the following assumptions about the Hamiltonian function H.
Hypothesis 2.1. Let 1 < r < 2.
(i) The function H : Rd

⇥ Pr(Rd)⇥ Rd
! R is such that

(2.1)
|H(x, ⌫, p)�H(x, ⌫, q)|  C(1 + |p|+ |q|)|p� q| 8 p, q, x 2 Rd

, ⌫ 2 Pr(Rd),

|H(x, µ, p)�H(y, ⌫, p)|  �
�
(|x� y|+ dr(µ, ⌫))(1 + |p|)

�
8 p, x, y 2 Rd

, µ,

(2.2)

⌫ 2 Pr(Rd)

for some concave modulus of continuity �, and

(2.3) |H(x, µ, p)|  C(1 + |p|
2) 8 p, x 2 Rd

, µ 2 Pr(Rd).

(ii) The functions U0,F 2 UCb(Pr(Rd)) (the space of bounded and uniformly
continuous functions).

We notice that it easily follows from (2.1) and (2.3) that for all X,P,Q 2 E,

(2.4) |H̃(X,µ, P )� H̃(X,µ,Q)|  C(1 + |P |+ |Q|)|P �Q|

and

(2.5) |H̃(X,µ, P )|  C(1 + |P |
2).

Moreover, by the concavity of � and Jensen’s inequality, we obtain that for all
X,Y, P 2 E, µ, ⌫ 2 Pr(Rd),

|H̃(X,µ, P )� H̃(Y, ⌫, P )| 

Z

⌦
�
�
(|X(!)� Y (!)|+ dr(µ, ⌫))(1 + |P (!)|)

�
d!

 �

✓Z

⌦
(|X(!)� Y (!)|+ dr(µ, ⌫))(1 + |P (!)|)d!

◆

 � ((|X � Y |+ dr(µ, ⌫))(1 + |P |)) .(2.6)

Let m1 be a modulus of continuity for U0 and F . Since

|U0(X)� U0(Y )| = |U0(X]L1)� U0(Y]L1)|  m1 (dr(X]L1, Y]L1))  m1 (|X � Y |r)

we conclude

(2.7) |U0(X)� U0(Y )|  m1 (|X � Y |) .

Similarly,

(2.8) |F (X)� F (Y )|  m1 (|X � Y |) .

Moreover, for x,y 2 (Rd)n,

(2.9) |U0(µx)� U0(µy)|  m1 (|x� y|r) ,

(2.10) |F(µx)� F(µy)|  m1 (|x� y|r) .
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Let W be a real Hilbert space with an inner product h·, ·i and the norm | · |. We
recall the definitions of parabolic second order jets (see [26, section 8] and [27, section
3]).

Given u : (0, T ) ⇥ W ! R and (t̄, x̄) 2 (0, T ) ⇥ W , the parabolic second order
superjet of u at (t̄, x̄), P2,+

u(t̄, x̄) is defined by

P
2,+

u(t̄, x̄) :=

⇢
(a, p, S) 2 R⇥W ⇥ S(W ) :

lim sup
(s,y)!(t̄,x̄)

u(s, y)� u(t̄, x̄)� a(s� t̄)� hp, y � x̄i �
1
2 hS(y � x̄), y � x̄i

|s� t̄|+ |y � x̄|2
 0

�
.(2.11)

The parabolic second order subjet of u at (t̄, x̄), P2,�
u(t̄, x̄), is defined by reversing

the inequality and replacing lim sup by lim inf in (2.11). The closure P
2,+

u(t̄, x̄) of
P

2,+
u(t̄, x̄), is defined as follows:

P
2,+

u(t̄, x̄) :=

⇢
(a, p, S) 2 R⇥W ⇥ S(W ) : there exist (tn, xn) and

(an, pn, Sn) 2 P
2,+

u(tn, xn) s.t. (tn, xn, u(tn, xn), pn, Sn) ! (t̄, x̄, u(t̄, x̄), a, p, S)

�
.

The closure P
2,�

u(t̄, x̄) of P2,�
u(t̄, x̄) is defined similarly. We recall the definition of

viscosity solution of an equation

(2.12)
⇢

@tu+G(t, x, u,Du,D
2
u) = 0 in (0, T )⇥W,

u(0, x) = g(x) on W,

where G : (0, T )⇥W ⇥ R⇥W ⇥ S(W ) ! R is continuous.
Definition 2.2. An upper semicontinuous function u : [0, T ) ⇥ W ! R is a

viscosity subsolution of (2.12) if u(0, x)  g(x) on W and whenever ' 2 C
1,2((0, T )⇥

W ) and u� ' has a local maximum at (t, x) 2 (0, T )⇥W , then

@t'(t, x) +G(t, x, u(t, x), D'(t, x), D2
'(t, x))  0.

A lower semicontinuous function u : [0, T ) ⇥ W ! R is a viscosity supersolution of

(2.12) if u(0, x) � g(x) on W and whenever ' 2 C
1,2((0, T ) ⇥ W ) and u � ' has a

local minimum at (t, x) 2 (0, T )⇥W , then

@t'(t, x) +G(t, x, u(t, x), D'(t, x), D2
'(t, x)) � 0.

A function u is a viscosity solution of (2.12) if it is a viscosity subsolution of (2.12)
and a viscosity supersolution of (2.12).

It is easy to see that (a, p, S) 2 P
2,+

u(t̄, x̄) (respectively, (a, p, S) 2 P
2,�

u(t̄, x̄))
if and only if there exists ' 2 C

1,2((0, T )⇥W ) such that u�' has a local maximum
at (t̄, x̄) (respectively, u� ' has a local minimum at (t̄, x̄)) and

a = @t'(t̄, x̄), p = D'(t̄, x̄), S = D
2
'(t̄, x̄).

The proof when W = Rm is in [35, Lemma 4.1], and it easily generalizes to the case
of an infinite dimensional Hilbert space. Thus, since G is continuous, Definition 2.2
is equivalent to the definition using the closures of parabolic jets.
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FINITE DIMENSIONAL APPROXIMATIONS OF HJB EQUATIONS 1327

Proposition 2.3. An upper semicontinuous function u : [0, T ) ⇥ W ! R is a

viscosity subsolution of (2.12) if u(0, x)  g(x) on W and

a+G(t, x, u(t, x), p, S)  0 8 (t, x) 2 (0, T )⇥W and (a, p, S) 2 P
2,+

u(t, x).

A lower semicontinuous function u : [0, T ) ⇥ W ! R is a viscosity supersolution of

(2.12) if u(0, x) � g(x) on W and

a+G(t, x, u(t, x), p, S) � 0 8 (t, x) 2 (0, T )⇥W and (a, p, S) 2 P
2,�

u(t, x).

Remark 2.4. If (2.12) is of first order, that is, if G : (0, T )⇥W⇥R⇥W ! R, then
the test functions ' in Definition 2.2 are replaced by functions C

1((0, T ) ⇥ W ) and
the parabolic second order superjet and subjets of u, P2,+

u, and P
2,�

u are replaced
by the first order superdifferentials and subdifferentials D

+
u and D

�
u, respectively.

Proposition 2.3 is then still true if P
2,+

u(t, x) and P
2,�

u(t, x) are replaced by the
closures D

+
u(t, x) and D

�
u(t, x) which are defined similarly as the closures of the

parabolic jets.

3. Estimates for finite dimensional equations. In this section we will con-
sider a more general version of (1.2) with second order coefficients An depending on
x or being more general constant matrices.

Hypothesis 3.1. For x = (x1, . . . xn), let An(x), n = 1, 2, . . ., the nd ⇥ nd matrix
composed of n2 block matrices a(xi)a⇤(xj), i, j = 1, 2, . . . n, such that the function
a : Rd

! S(d) is bounded and there exists L � 0 such that

(3.1) ka(x)� a(y)k  L|x� y| 8 x, y 2 Rd
.

The proof of the main theorem of this section uses the following simplified version
of a well-known lemma (cf. Lemma 3.80 of [29]).

Lemma 3.2. Let � > 0, and let �1 be a modulus of continuity. Then there exists

a nondecreasing, concave, C
2

function '� on [0,+1) such that '�(0) < � and

(3.2) �1('
0
�
(s)s+ s)  '�(s) for 0  s  2.

Theorem 3.3. Let Hypothesis 2.1 be satisfied. Let An(x) satisfy Hypothesis 3.1,
or let An(x) = An, where An is any sequence of nd ⇥ nd symmetric matrices with

constant coefficients such that An � 0 and Tr(An)  L̃n for some L̃ � 0. Suppose

that for n � 1 the functions un : [0, T ]⇥ (Rd)n ! R are the viscosity solutions of

(3.3)

8
<

:

@tun � Tr
�
AnD

2
un

�
+ 1

n

P
n

i=1 H
�
xi,

1
n�1

P
n

j 6=i
�xj , nDxiun

�

+F( 1
n

P
n

i=1 �xi) = 0 in (0, T )⇥ (Rd)n,
un(0, x1, . . . , xn) = U0(

1
n

P
n

i=1 �xi) on (Rd)n.

Then there exists a modulus of continuity ⇢ such that for every n,

(3.4) |un(t,x)� un(s,y)|  ⇢(|t� s|+ |x� y|r) 8 t, s 2 [0, T ],x,y 2 (Rd)n.

Proof. We first note that if u is a bounded viscosity subsolution of (3.3) and v

is a bounded viscosity supersolution of (3.3) and if we replace un(t,x) � un(t,y) by
u(t,x)� v(t,y) in the proof of continuity estimates below, the same arguments work
and we obtain that u(t,x) � v(t,x)  0 for all (t,x). Thus the comparison theorem
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holds for bounded viscosity subsolutions and bounded viscosity supersolutions of (3.3).
Moreover, since the function

x 7�! g(x) = U0

 
1

n

nX

i=1

�xi

!

is bounded and uniformly continuous on (Rd)n, if (gm)1
m=1 ⇢ C

2((Rd)n) have bounded
first and second derivatives and 0  gm�g  am ! 0 as m ! 1, then for sufficiently
large Cm > 0 the functions gm(x) + Cmt and gm(x) � am � Cmt are respectively
viscosity supersolutions and viscosity subsolutions of (3.3) for all m = 1, 2, . . .. Thus
the functions

u(t,x) := inf
m�1

(gm(x) + Cmt), u(t,x) := sup
m�1

(gm(x)� am � Cmt)

are respectively a viscosity supersolution and viscosity subsolution of (3.3) such that
u(0,x) = u(0,x) = g(x) on (Rd)n. Therefore the unique bounded continuous viscosity
solution un of (3.3) can be constructed, for instance, by means of Perron’s method
(see [26]).

It is also easy to see that there exists M > 0 such that kunk1  M,n = 1, 2, . . ..
To show this, let K > 0 be such that kFk1  K, kU0k1  K. Recall that we have
kH(·, ·, 0)k1  C, where C is from (2.3). Then w1(t,x) := �K � (C + K)t is a
bounded viscosity subsolution of (3.3) and w2(t,x) := K + (C + K)t is a bounded
viscosity supersolution of (3.3). Therefore, by comparison we obtain that for every n

w1  un  w2 on [0, T ]⇥ (Rd)n.

This gives the required bound with M = K + (C +K)T .
For � > 0, let '� be the function from Lemma 3.2 applied to the modulus

�1(s) = (1 + T )�(3s) +m1(s) + (2dL2(1 + T ) + 2M + 1)s.

In particular we have

(3.5) '�(1) � 2M + 1, '�(s) � m1(s).

First, we are going to show that for every � > 0

(3.6) un(t,x)� un(t,y)  '�(|x� y|r)(1 + t)

if t 2 [0, T ] and (x,y) 2 (Rd)n.
We define smooth approximations of |z|r. For � > 0, let

 �(z) =
1

n1/r

 
nX

i=1

(� + |zi|
2)

r
2

! 1
r

.

We now set
'(t,x,y) := '� ( � (x� y)) (1 + t).

Suppose that there exist �, µ > 0 such that

(3.7) sup
x,y2(Rd)n,t2[0,T )

✓
un(t,x)� un(t,y)�

µ

T � t
� '(t,x,y)

◆
> 0.
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Then, for every ↵ > 0 small enough and h(x) := (1 + |x|2)1/2,
(3.8)

sup
x,y2(Rd)n,t2[0,T )

✓
un(t,x)� un(t,y)�

µ

T � t
� '(t,x,y)� ↵(h(x) + h(y))

◆
> 0.

Moreover, since un is bounded and ↵(h(x)+h(y)) ! +1 as x, y ! 1, the supremum
of the above expression over [0, T )⇥ (Rd)n⇥ (Rd)n is attained at some point (t̄, x̄, ȳ).
Obviously t̄ < T and it follows from the definition of the function '(t,x,y) and (3.5)
that we must have 0 < t̄. It also follows from (3.5) that s̄ =  � (x̄� ȳ) < 1. Also
x̄ 6= ȳ since if x̄ = ȳ, the expression in (3.8) is negative. We compute

Dxi'(t̄, x̄, ȳ)) = '
0
�
(s̄)

(x̄i � ȳi)(� + |x̄i � ȳi|
2)

r
2�1

ns̄
r
r0

(1 + t̄),

where 1/r + 1/r0 = 1. Also, using the concavity of '�, we have

D
2
x'(t̄, x̄, ȳ)) = B1 �B2,

where B1 is a diagonal matrix composed of n diagonal d⇥ d blocks

B1i = '
0
�
(s̄)

(� + |x̄i � ȳi|
2)

r
2�1

ns̄
r
r0

(1 + t̄)Id,

and B2 � 0 is a symmetric matrix. Therefore

D = D
2
'(t̄, x̄, ȳ) =

✓
B1 �B1

�B1 B1

◆
�

✓
B2 �B2

�B2 B2

◆
=: D1 �D2,

where D
2
' above is the second derivative of ' with respect to the variables (x,y).

We now use Theorem 8.3 of [26] applied to the functions

u
1(t, x) := un(t, x)� ↵h(x), u

2(t, y) := �un(t, y)� ↵h(y).

We notice that, since un is a viscosity solution of (3.3), condition (8.5) of [26] is
satisfied. Therefore, it follows from Theorem 8.3 of [26], applied with " = 1/(kD1k+
kD2k), that there exist b1, b2 2 R and S1, S2 2 S(nd) such that

�
b1, Dx'(t̄, x̄, ȳ) + ↵Dh(x̄), S1 + ↵D

2
h(x̄)

�
2 P

2,+
un(t̄, x̄),

�
b2,�Dy'(t̄, x̄, ȳ)� ↵Dh(ȳ), S2 � ↵D

2
h(ȳ)

�
2 P

2,�
un(t̄, ȳ),

b1 � b2 = '�(s̄) +
µ

(T � t̄)2
,

where

(3.9)
✓

S1 0
0 �S2

◆
 D +

1

kD1k+ kD2k
D

2
 2D1,

where we used that
D

2
 (kD1k+ kD2k)(D1 +D2).

Inequality (3.9) in particular implies that S1  S2. Using the definition of viscosity
solution and setting

Z(x̄, ȳ) :=
1

n

nX

i=1

H

0

@x̄i,
1

n� 1

X

j 6=i

�x̄j , '
0
�(s̄)

(x̄i � ȳi)(� + |x̄i � ȳi|2)
r
2�1

s̄
r
r0

(1 + t̄) + n↵Dh(x̄)

1

A
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and

Z̃(x̄, ȳ) :=
1

n

nX

i=1

H

0

@ȳi,
1

n� 1

X

j 6=i

�ȳj , '
0
�(s̄)

(x̄i � ȳi)(� + |x̄i � ȳi|2)
r
2�1

s̄
r
r0

(1 + t̄)� n↵Dh(ȳ)

1

A

we now have

(3.10) b1 � Tr(An(x̄)(S1 + ↵D
2
h(x̄))) + Z(x̄, ȳ) + F(µx̄)  0

and

(3.11) b2 � Tr(An(ȳ)(S2 � ↵D
2
h(ȳ))) + Z̃(x̄, ȳ) + F(µȳ) � 0.

We notice that (3.1) and (3.9) imply

Tr(An(x̄)S1)� Tr(An(ȳ)S2)

 2
nX

i=1

Tr

✓
(a(xi)� a(yi))(a(xi)� a(yi))

⇤
'
0
�
(s̄)

(� + |x̄i � ȳi|
2)

r
2�1

ns̄
r
r0

(1 + t̄)Id

◆


1

n

nX

i=1

'
0
�
(s̄)

2dL2
|x̄i � ȳi|

2(� + |x̄i � ȳi|
2)

r
2�1

s̄
r
r0

(1 + t̄).

Note that if An is a constant matrix, then obviously Tr(AnS1)� Tr(AnS2)  0. Let
us use the notation

µ
i

x :=
1

n� 1

X

j 6=i

�xj , µ
i

y :=
1

n� 1

X

j 6=i

�yj .

A simple calculation shows that dr(µi

x̄, µ
i

ȳ)  2s̄. Subtracting (3.11) from (3.10) and
using Hypothesis 2.1, the concavity of �, and (2.10), we obtain

'�(s̄) +
µ

(T � t̄)2
 

n

nX

i=1

'
0
�(s̄)

2dL2|x̄i � ȳi|2(� + |x̄i � ȳi|2)
r
2�1

s̄
r
r0

(1 + t̄)

+
1
n

nX

i=1

�

✓
(|x̄i � ȳi|+ dr(µ

i
x̄, µ

i
ȳ))

⇣
1 + '

0
�(s̄)

|x̄i � ȳi|(� + |x̄i � ȳi|2)
r
2�1

s̄
r
r0

(1 + t̄)
⌘◆

+m1(s̄) + �2(↵),

where lim↵!0 �2(↵) = 0. Thus,

'�(s̄) +
µ

(T � t̄)2



n

nX

i=1

'
0
�(s̄)

2dL2|x̄i � ȳi|2(� + |x̄i � ȳi|2)
r
2�1

s̄
r
r0

(1 + t̄)

+ �

 
1

n

nX

i=1

(|x̄i � ȳi|+ 2s̄)

 
1 + '

0
�(s̄)

|x̄i � ȳi|(� + |x̄i � ȳi|2)
r
2�1

s̄
r
r0

(1 + t̄)

!!

+m1(s̄) + �2(↵).

By Jensen’s inequality
|x̄� ȳ|1  |x̄� ȳ|r  s̄

and also

1

n

nX

i=1

'
0
�
(s̄)

|x̄i � ȳi|
2(� + |x̄i � ȳi|

2)
r
2�1

s̄
r
r0

 '
0
�
(s̄)s̄.

D
ow

nl
oa

de
d 

06
/1

3/
22

 to
 1

28
.9

7.
19

.1
63

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Using Schwarz’s inequality, one verifies that

1

n

nX

i=1

2s̄'0
�
(s̄)

|x̄i � ȳi|(� + |x̄i � ȳi|
2)

r
2�1

s̄
r
r0


1

n

nX

i=1

2'0
�
(s̄)s̄1�r/r

0
(� + |x̄i � ȳi|

2)
r�1
2

 2'0
�
(s̄)s1�

r
r0

 
1

n

nX

i=1

(�+|x̄i � ȳi|
2)

r
2

! r�1
r

= 2'0
�
(s̄)s1�r/r

0
s̄
r�1 = 2'0

�
(s̄)s̄.

Collecting these bounds into the inequality obtained for '�(s̄) + µ

(T�t̄)2 above, and
using the subadditivity of � and the definition of �1, we get

'�(s̄) +
µ

T 2
 2dL2(1 + T )'0

�
(s̄)s̄+ (1 + T )�(3'0

�
(s̄)s̄+ 3s̄) +m1(s̄) + �2(↵)

 �1('
0
�
(s̄)s̄+ s̄) + �2(↵).

This gives a contradiction when we let ↵ ! 0, due to (3.2). Consequently, for all
positive � and µ, (3.7) is false. Letting �, µ ! 0, we obtain (3.6). Thus we have
proved that for all t 2 [0, T ], (x,y) 2 (Rd)n,

(3.12) |un(t,x)� un(t,y)|  inf
�>0

'�(|x� y|r)(1 + T ).

We will now obtain the continuity estimate with respect to t. We know by (2.9)
that

|un(0,x)� un(0,y)|  m1 (|x� y|2) .

Setting vn(x) = un(0,
p
nx) we thus have

|vn(x)� vn(y)|  m1 (|x� y|) .

Approximating the functions vn(x) by supinf-convolutions and then mollifying them,
there exist constants Lm,m = 1, 2, · · · (independent of n), and C

2 functions '̃n

m
such

that 0  '̃
n

m
(x)� vn(x) 

1
m

on (Rd)n and

|D'̃
n

m
|  Lm, kD

2
'̃
n

m
k  Lm.

Then if 'n

m
(x) = '̃

n

m
( 1p

n
x), we have

(3.13) 0  '
n

m
(x)� un(0,x) 

1

m
on (Rd)n

and

|D'
n

m
| 

Lm
p
n
, kD

2
'
n

m
k 

Lm

n
.

Recall that K is such that kFk1  K. We set Cm = L̃Lm+C+CL
2
m
+K, where L̃

is such that Tr(An(x))  L̃n and C is from Hypothesis 2.1. We define the functions

 
n

m
(t,x) := '

n

m
(x) + Cmt.
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Then

@t 
n

m
(t,x)� Tr(An(x)D

2
 
n

m
(t,x)) +

1

n

nX

i=1

H(xi, µ
i

x, nDxi 
n

m
(t,x)) + F(µx)

� Cm �


n
Tr

✓
An(x)D

2
'̃
n

m

✓
1
p
n
x

◆◆
+

1

n

nX

i=1

H

✓
xi, µ

i

x,
p
nDxi '̃

n

m

✓
1
p
n
x

◆◆
�K

� Cm �


n
Tr(An(x))

����D
2
'̃
n

m

✓
1
p
n
x

◆�����
1

n

nX

i=1

C

 
1 + n

����Dxi '̃
n

m

✓
1
p
n
x

◆����
2
!

�K

� Cm � L̃Lm � C � C

nX

i=1

����Dxi '̃
n

m

✓
1
p
n
x

◆����
2

�K

� Cm � L̃Lm � C � CL
2
m
�K = 0.

Therefore the functions  n

m
are viscosity supersolutions of (3.3). Similarly, the func-

tions
 ̃
n

m
(t,x) := '

n

m
(x)�

1

m
� Cmt

are viscosity subsolutions of (3.3). Therefore, by comparison, we have for every n,m �

1,
'
n

m
(x)�

1

m
� Cmt  un(t,x)  '

n

m
(x) + Cmt.

Using (3.13), this implies that

�
1

m
� Cmt  '

n

m
(x)�

1

m
� Cmt� un(0,x)  un(t,x)� un(0,x)

 '
n

m
(x) + Cmt� un(0,x)

 Cmt+
1

m
.

Therefore we obtain

|un(t,x)� un(0,x)|  ⇢̃(t) := inf

⇢
1

m
+ Cmt : m = 1, 2, · · ·

�

for all (t,x) 2 [0, T ] ⇥ (Rd)n, n = 1, 2, · · · . The function ⇢̃ is independent of n. We
then define for every h 2 (0, T ) the functions

v
h

n
(t,x) = un(t+ h,x), (t,x) 2 [0, T � h]⇥ (Rd)n.

The functions v
h

n
are viscosity solutions of (3.3) on (0, T � h)⇥ (Rd)n and

|v
h

n
(0,x)� un(0,x)|  ⇢̃(h).

By comparison we thus obtain

(3.14) |un(t+ h,x)� un(t,x)| = |v
h

n
(t,x)� un(t,x)|  ⇢̃(h)

for (t,x) 2 (0, T � h)⇥ (Rd)n. We now let

⇢(s) = ⇢̃(s) + inf
�>0

'�(s)(1 + T ).

Combining (3.14) with (3.12), we obtain (3.4) for this modulus ⇢, uniformly with
respect to n 2 N.
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4. Proof of Theorem 1.2.
Proof of Theorem 1.2. Step 1. We define the functions

Vn(t, µx) := un(t,x), where µx =
1

n

nX

i=1

�xi .

This function is well defined since the functions un are invariant with respect to
permutations of the variables in x. This follows from uniqueness of viscosity solutions
of (1.2) as these equations are invariant with respect to permutations of the variables
in x. The function Vn(t, ·) is now defined on the subset of P2(Rd) that consists of
averages of n Dirac point masses. It follows from (3.4) that

|Vn(t, µx)� Vn(s, µy)|  ⇢(|t� s|+ dr(µx, µy)) 8 t, s 2 [0, T ],x,y 2 (Rd)n.

For each fixed n, we can extend the function Vn to a function on [0, T ]⇥Pr(Rd), still
denoted by Vn, satisfying

(4.1) |Vn(t, µ)� Vn(s, ⌫)|  ⇢(|t� s|+ dr(µ, ⌫)) 8 t, s 2 [0, T ], µ, ⌫ 2 Pr(Rd).

Since sets
M

2
R
=

⇢
µ 2 Pr(Rd) :

Z

Rd

|x|
2
µ(dx)  R

�

are relatively compact in Pr(Rd), up to a subsequence (still denoted by Vn), Vn

converges uniformly on every set [0, T ] ⇥M
2
R

to a function V : [0, T ] ⇥ P2(Rd) ! R
which satisfies the same estimate (4.1). Define now

V : [0, T ]⇥ E �! R,
(t,X) 7�! V (t,X) := V(t, law(X)).

We will show that V is a viscosity solution of (1.3). Since (1.3) has a unique bounded
viscosity solution U , we can then conclude that V = U . This will prove the theorem
since the argument can be done for any subsequence of Vn. The proof that (1.3) has
a unique bounded viscosity solution is included in the appendix, Theorem 7.4.

Step 2. Let then ' 2 C
1,2((0, T )⇥E) and suppose that V �' has a local maximum

at (t0, X0) 2 (0, T )⇥E. By considering '(t,X)+ (t� t0)2+ |X�X0|
2 and modifying

it outside of a neighborhood of (t0, X0) we can assume with no loss of generality that
the maximum at (t0, X0) is strict and global. Being a strict maximum means that
if V (ti, Xi) � '(ti, Xi) ! V (t0, X0) � '(t0, X0), then (ti, Xi) ! (t0, X0). Denote
P0 = D'(t0, X0). For each ✏ > 0 let X✏, P✏ 2 E be such that X✏, P✏ are continuous
on [0, 1] and |X0 �X✏|+ |P0 � P✏| < ✏.

For every n we denote A
n

i
= ( i�1

n
,
i

n
), i = 1, . . . , n. We then consider the function

'n : (0, T )⇥ (Rd)n ! R defined by

'n(t,x) := '

 
t,

nX

i=1

xi1A
n
i

!
,

where 1A
n
i

is the characteristic function of the set A
n

i
.

Since the original maximum at (t0, X0) was strict it is easy to see that the func-
tions un � 'n must have local maxima at points (tn,xn) = (tn, xn

1 , . . . , x
n

n
) such that

tn ! t0 and X
n =

nX

i=1

x
n

i
1A

n
i
! X0.
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In particular for sufficiently big n,

|tn � t0|+ |X0 �X
n
|  ✏.

Now, by the chain rule,

Dxi'n(tn,x
n) =

*
D'

 
tn,

nX

i=1

x
n

i
1A

n
i

!
,1A

n
i
e

+

d

=

Z

A
n
i

D'

 
tn,

nX

i=1

x
n

i
1A

n
i

!
,

where e = (1, . . . , 1) 2 Rd. If x = (x1, . . . , xn), we will denote xi = (xi1, . . . , xid).
Then

Tr(AnD
2
'n) =

nX

i,j=1

Tr(D2
xixj

'n) =
nX

i,j=1

dX

k=1

@
2
'n

@xik@xjk

.

Now
@
2
'n

@xik@xjk

(tn,x
n) =

Z

A
n
i

 
D

2
'

 
tn,

nX

i=1

x
n

i
1A

n
i

!
1A

n
j
ek

!
· ek

so

Tr(AnD
2
'n) =

nX

i,j=1

dX

k=1

Z

A
n
i

 
D

2
'

 
tn,

nX

i=1

x
n

i
1A

n
i

!
1A

n
j
ek

!
· ek

=
dX

k=1

*
D

2
'

 
tn,

nX

i=1

x
n

i
1A

n
i

!
ek, ek

+
.

We note that if

x,y 2 (Rd)n, X =
nX

i=1

xi1A
n
i

and Y =
nX

i=1

yi1A
n
i
,

then

|X � Y |
2 = n

�1
nX

i=1

|xi � yi|
2
, |X � Y |

r

r
= n

�1
nX

i=1

|xi � yi|
r
.

Furthermore, choosing ⇠, ⌘ 2 E, we have
�����

nX

i=1

H

 
xi, µ

i
x, n

Z

An
i

⇠

!
�

nX

i=1

H

 
yi, µ

i
y, n

Z

An
i

⌘

!����� 
nX

i=1

�����H
 
xi, µ

i
x, n

Z

An
i

⇠

!
� H

 
yi, µ

i
y, n

Z

An
i

⌘

!�����

 C

nX

i=1

 
1 +

�����n
Z

An
i

⇠

�����+

�����n
Z

An
i

⌘

�����

! Z

An
i

n|⇠ � ⌘|

+
nX

i=1

�

 
(|xi � yi| + dr(µ

i
x, µ

i
y))

 
1+

�����n
Z

An
i

⇠

�����

!!
.

Thus,

n
�1

�����

nX

i=1

H

 
xi, µ

i
x, n

Z

A
n
i

⇠

!
�

nX

i=1

H

 
yi, µ

i
y, n

Z

A
n
i

⌘

!�����

 C

Z

⌦
|⇠ � ⌘|+ C

0

B@

0

@
nX

i=1

n

�����

Z

A
n
i

⇠

�����

2
1

A

1
2

+

0

@
nX

i=1

n

�����

Z

A
n
i

⌘

�����

2
1

A

1
2

1

CA

0

@
nX

i=1

n

�����

Z

A
n
i

|⇠ � ⌘|

�����

2
1

A

1
2

+ �

 
1
n

nX

i=1

✓
|xi � yi|+

⇣
n

n� 1

⌘ 1
r |X � Y |r

◆ 
1 +

�����n
Z

A
n
i

⇠

�����

!!
.
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We conclude

n
�1

�����

nX

i=1

H

⇣
xi, µ

i

x, n

Z

A
n
i

⇠

⌘
�

nX

i=1

H

⇣
yi, µ

i

y, n

Z

A
n
i

⌘

⌘�����

 C

✓Z

⌦
|⇠ � ⌘|

2

◆ 1
2

+C

0

@
 

nX

i=1

Z

A
n
i

|⇠|
2

! 1
2

+

 
nX

i=1

Z

A
n
i

|⌘|
2

! 1
2

1

A
 

nX

i=1

Z

A
n
i

|⇠ � ⌘|
2

! 1
2

+ �

0

B@

0

@
 
1

n

nX

i=1

|xi � yi|
2

! 1
2

+ 2|X � Y |r

1

A

0

B@1 +

0

@
nX

i=1

n

�����

Z

A
n
i

⌘

�����

2
1

A

1
2

1

CA

1

CA .

Finally, we have
(4.2)

n
�1

�����

nX

i=1

H

⇣
xi, µ

i
x, n

Z

An
i

⇠

⌘ nX

i=1

H

⇣
yi, µ

i
y, n

Z

An
i

⌘

⌘�����  C

⇣
1+|⇠|+|⌘|

⌘
|⇠�⌘|+�

⇣
3|X�Y | (1 + |⇠|)

⌘
.

Set

X
n

✏
=

nX

i=1

X✏

✓
i

n

◆
1A

n
i
, xn

✏
= (X✏(1/n), X✏(2/n), . . . , X✏(1)).

Using the definition of viscosity subsolution and (4.2) we now have, for every ✏ > 0,

0 � @t'(tn, X
n)�

dX

k=1

D
D

2
'

 
tn,

nX

i=1

x
n
i 1An

i

!
ek, ek

E
+

1

n

nX

i=1

H

 
x
n
i , µ

i
xn , n

Z

An
i

D'(tn, X
n)

!
+F(µxn ).

Hence, for large n,

0 � @t'(t0, X0)� 

dX

k=1

hD2
'(t0, X0)ek, eki+

1

n

nX

i=1

H

 
X✏

✓
i

n

◆
, µ

i
xn
✏
, n

Z

An
i

P✏

!
+ F (Xn)

� ⇢0(n)� C(1 + |D'(tn, Xn)|+ |P✏|)|D'(tn, Xn)� P✏|� � (3|Xn
✏ �X

n| (1 + |P✏|))

� @t'(t0, X0)� 

dX

k=1

hD2
'(t0, X0)ek, eki+

1

n

nX

i=1

H

 
X✏

✓
i

n

◆
, µ

i
xn
✏
, n

Z

An
i

P✏

!
+ F (X0)

�m1(✏)� ⇢0(n)� C(1 + 2|P0|+ 2✏)2✏� � ((3|Xn
✏ �X✏|+ 3✏) | (1 + |P0|+ ✏)) ,

where limn!1 ⇢0(n) = 0. Since X✏, P✏ are continuous on ⌦, it follows that

lim
n!1

1

n

nX

i=1

H

 
X✏

✓
i

n

◆
, µ

i

xn
✏
, n

Z

A
n
i

P✏

!
= H̃(X✏, law(X✏), P✏).

Thus, letting n ! 1 above we obtain

@t'(t0, X0)� 

dX

k=1

hD
2
'(t0, X0)ek, eki+ H̃(X✏, law(X✏), P✏)

 m1(✏) + C(1 + 2|P0|+ 2✏)2✏+ 2� (3✏ (1 + |P0|+ ✏)) .

Finally, letting ✏! 0 we conclude that

@t'(t0, X0)� 

dX

k=1

hD
2
'(t0, X0)ek, eki+ H̃(X0, law(X0), D'(t0, X0)) + F (X0)  0.

Thus V is a viscosity subsolution of (1.3). Reasoning in the same way, we can prove
that V is a supersolution of (1.3).
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Example 4.1. The following is an example of a typical particle system that leads

to simple equations of type (1.2). Let G : Rd
! Rd

be a bounded even function such

that

|G(x)�G(y)|  L|x� y| 8x, y 2 Rd

and let W be a standard Wiener process in Rd
. Let T > 0. We consider a system of

n particles whose states are given by the SDE with common noise

⇢
dXi(s) =

1
n�1

P
j 6=i

G(Xi(s)�Xj(s))ds+
p
2dW (s), t  s  T,

Xi(t) = xi.

If we define

un(t,x) = E
"
�

Z
T

t

F

 
1

n

nX

i=1

�Xi(s)

!
ds+ U0

 
1

n

nX

i=1

�Xi(T )

!#

(where E above is the expectation with respect to a probability measure on some refer-

ence probability space), then the function un is the viscosity solution of the terminal

value problem

8
<

:

�@tun � Tr(AnD
2
un)�

1
n�1

P
n

i=1

P
j 6=i

G(xi � xj) ·Dxiun

+F( 1
n

P
n

i=1 �xi) = 0 in (0, T )⇥ (Rd)n,
un(T, x1, . . . , xn) = U0(

1
n

P
n

i=1 �xi) on (Rd)n,

where An is as in (1.2). In this example the Hamiltonian H is defined by

H(x, ⌫, p) = �p ·

Z

Rd

G(x� y)⌫(dy).

It is obvious that H satisfies (2.1) and (2.3). We point out that the boundedness of

G is needed here to guarantee (2.3). Regarding (2.2), let x, y, p 2 Rd
, µ, ⌫ 2 Pr(Rd),

and let � be a Borel probability measure on Rd
⇥ Rd

with marginals µ, ⌫. Then

|H(x, µ, p)�H(y, ⌫, p)|  L|x� y||p|+
����
Z

Rd

G(x� z)µ(dy) · p�
Z

Rd

G(x� w)⌫(dw) · p
����

 L|x� y||p|+
����
Z

Rd

(G(x� z)�G(x� w))�(dz, dw)

���� |p|

 L|x� y||p|+ L|p|
Z

Rd

|z � w|�(dz, dw)

 L|p|

 
|x� y|+

✓Z

Rd

|z � w|r�(dz, dw)

◆ 1
r

!
.

Since this holds for every � we thus obtain

|H(x, µ, p)�H(y, ⌫, p)|  L|p| (|x� y|+ dr(µ, ⌫)) .

5. L-viscosity solutions versus viscosity solutions on the Wasserstein
space. In this section, we consider either

U : [0, T )⇥ P2(Rd) ! R or U : P2(Rd) ! R

and
U : [0, T )⇥ E ! R or U : E ! R
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such that U(t,X) = U(t,X]L1) or U(X) = U(X]L1). Recall

E := L
2((0, 1),Rd).

When U is differentiable at µ 2 P2(Rd), rµU(µ), the Wasserstein gradient of U
at µ satisfies

(5.1) rµU(µ) 2 TµP2(Rd).

Assume next that rµU is differentiable at (q, µ) in the sense of [37] and rµµU(µ)(q, ·),
the Wasserstein gradient of rµU(µ) at µ belongs to L

1
µ⌦µ

(R2d
,Rd⇥d). We have

(5.2)
�
rµµU(µ)

�T
(q, x) =

�
rµµU(µ)

�
(x, q) 8q, x 2 Rd

.

If we assume that U is twice differentiable in the sense of [37], then the map
(q, µ) 7! rµU(µ)(q) has a first order Taylor expansion on an appropriate set [24].
Furthermore, rµU(µ) is Lipschitz on the support of µ and there exists a symmetric
matrix A1(µ) 2 L

1
µ
(Rd

,Rd⇥d) which coincides almost everywhere with rq

�
rµU(µ)

�
.

In this manuscript, we adopt the notation and terminology of [37] by defining r
2
w
U(µ),

the Wasserstein second differential of U at µ, as

r2
wU(µ)(⇠, ⇠⇤) =

Z

Rd
A1(µ)(q)⇠(q) · ⇠⇤(q)µ(dq) +

Z

R2d
rµµU(µ)(q⇤, q)⇠(q) · ⇠⇤(q⇤)µ(dq)µ(dq⇤)

if ⇠, ⇠⇤ 2 L
2
µ
(Rd

,Rd). Note that the ordering (q⇤, q) in the last integral is not a typo.
By abuse of notation, we identify the bilinear forms r

2
w
U(µ) with the operators

⇠ 7�! A1(µ)⇠ +

Z

Rd

rµµU(µ)(·, q)⇠(q)µ(dq)

which, by (5.2) and the fact that A1 is symmetric µ-almost everywhere, turns out to
be self-adjoint on L

2
µ
(Rd

,Rd).
The relation U(X) = U(X]L1) expresses the fact that U is invariant under the set

of maps which preserve Lebesgue measure. This is what imposes a special structure
on the second differential of U at X when it exists. When U is twice differentiable at
X then for any ⇣ 2 E, D

2
U(X)(⇣)(·) belongs to E and

D
2
U(X)(⇣)(·) = A1(X]L1)(X) ⇣ +

Z

(0,1)
rµµU(X]L1)

�
X,X(!)

�
⇣(!)d!.

Given an arbitrary orthonormal basis {e1, . . . , ed} of Rd, we identify each ek with
the constant function which assumes the value ek everywhere. Abusing notation we
write ek : Rd

! Rd
. Note that if X 2 E, then ek�X ⌘ ek, and so we may also consider

ek to be the constant function ek : (0, 1) ! Rd
. If E0 is the finite dimensional space

spanned by {e1, . . . , ed}, we have the orthogonal decomposition

E = E0 � E
?
0 .

The partial trace of the operator ⇣ ! D
2
U(X)(⇣) on E0 is

4RdU(X) =
dX

k=1

hD
2
U(X)ek, eki.

We have the relation
4RdU(X) = �wU(µ),

where �w is the partial Wasserstein Laplacian [24]. This relation will allow us to
compare viscosity solutions on the Wasserstein space and the Hilbert space.
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5.1. Domain of definition of Wasserstein Hessian. In this section, we de-
note by ⇡

1
,⇡

2 : R2d
! Rd the coordinate projection maps of R2d onto Rd

. Given a
positive integer D, we denote by C

3
b
(RD) the set of f 2 C

3(RD) that have bounded
second and third order derivatives.

We start by recalling a few facts about the Wasserstein tangent spaces TµP2(Rd).
Let ⇠0 2 L

2
µ
(Rd

,Rd). Note that ⇠0 2 TµP2(Rd) if and only if

lim
r!0+

inf
�

sup
(⌫,�)

⇢�� R
R2d

�
⇠0(q1)�r�(q1)

�
· (q2 � q1)�(dq1, q2)

��

k⇡2 � ⇡1kL2(�)

: 0 < k⇡2 � ⇡
1kL2(�)  r, � 2 �(µ, ⌫)

�

= 0.

Here, the infimum is performed over the set C
1
c
(Rd) or equivalently over the set

C
3
b
(Rd). The space TµP2(Rd), being a Hilbert space, can be identified with the co–

tangent space. The Wasserstein gradient of a function U : P2(Rd) ! R at µ is the
element of minimal norm in the subdifferential of U at µ and so it belongs to TµP2(Rd).

We would like to propose an analogous characterization for all Wasserstein de-
rivatives of order less than or equal to 2. We say that f : R2d

! R is symmetric if
f(q1, q2) = f(q2, q1) for all q1, q2 2 Rd

.

Given  2 C
3
b
(R2d) which is symmetric and � 2 C

3
b
(Rd), we define

V
µ

(�, )(⌫) :=

Z

Rd

�(q)(⌫ � µ)(dq) +
1

2

Z

R2d

 (q1, q2)(⌫ � µ)(dq1)(⌫ � µ)(dq2)

for µ, ⌫ 2 P2(Rd). The function V
µ

(�, ) is twice differentiable in the sense of [37],

rµV
µ

(�, )(⌫)(q1) = r�(q1) +

Z

Rd

rq1 (q1, b)(⌫ � µ)(db),

and so

rq1

⇣
rµV

µ

(�, )(⌫)(q1)
⌘
= r

2
�(q1) +

Z

Rd

rq1q1 (q1, b)(⌫ � µ)(db).

We conclude
rµµV

µ

(�, )(⌫)(q) = rq2q1 (q1, q2).

Note that if X,Y 2 E are such that X]L
1
(0,1) = µ and Y]L

1
(0,1) = ⌫, then

(5.3) V
µ

(�, )(⌫) = V
X

(�, )(Y ),

where we have set

V
X

(�, )(Y ) =

Z

(0,1)

⇣
�(Y (!))� �(X(!))

⌘
d!

+
1

2

Z

(0,1)2

⇣
 
�
Y (!), Y (o)

�
+  

�
X(!), X(o)

�
� 2 

�
Y (!), X(o)

�⌘
d!do.

Remark 5.1. Let X 2 E, let � 2 C
3
b
(Rd), let  2 C

3
b
(R2d) be symmetric, and set

V := V
X

(�, ).

(i) Note that if X⇤
, Y, Y

⇤
2 E are such that X and X

⇤ have the same law and
Y and Y

⇤ have the same law, then (5.3) implies V
X

(�, )(Y ) = V
X

⇤

(�, )(Y
⇤).
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FINITE DIMENSIONAL APPROXIMATIONS OF HJB EQUATIONS 1339

(ii) The function V is Fréchet differentiable everywhere on E and for any Y 2 E

we have

DV (Y )(!) = r�
�
Y (!)

�
+

Z

(0,1)

⇣
rq1 

�
Y (!), Y (o)

�
�rq1 

�
Y (!), X(o)

�⌘
do.

(iii) The subset of E where the function DV is Fréchet differentiable may not be
E (cf. [37]) unless � and  are polynomials of degree 2. However, DV is
Gateaux differentiable everywhere on E and for any Y 2 E we have

D
2
V (Y )(⇣, ⇣) =

Z

(0,1)
r2

�(X)⇣ · ⇣d! +

Z

(0,1)2
rq2q1 

�
Y (!), Y (o)

�
⇣(!) · ⇣(o)d!do

+

Z

(0,1)2

⇣
rq1q1 

�
Y (!), Y (o)

�
�rq1q1 

�
Y (!), X(o)

�⌘
⇣(!) · ⇣(!)d!do

for any ⇣ 2 E. In particular, DV (X) = r� �X and the operator D
2
V (X) is

given by

D
2
V (X) ⇣ = r

2
�(X) ⇣ +

Z

(0,1)
rq2q1 

�
X,X(!)

�
⇣(!)d!

for ⇣ 2 E.
Lemma 5.2. Let X,X

⇤
2 E, let � 2 C

3
b
(Rd), and let  2 C

3
b
(R2d) be symmetric.

If X]L
1
(0,1) = X

⇤
]
L
1
(0,1), then V

X := V
X

(�, ) is twice Fréchet differentiable at X if and

only if V
X

⇤
:= V

X
⇤

(�, ) is twice Fréchet differentiable at X
⇤
.

Proof. We only need to prove one direction of the lemma since the converse di-
rection could be obtained by symmetry. Assume V

X is twice Fréchet differentiable
at X. By assumption, there exists a function ✏ : R ! R, monotone nondecreasing,
continuous at 0, and such that ✏(0) = 0 and there exists a function ✏0 : E ! R such
that |✏0(h)|  ✏(|h|) and

V
X(X + h) =

Z

(0,1)
r�(X) · hd! +

1

2

Z

(0,1)
r

2
�(X)h · hd!

+
1

2

Z

(0,1)2
rq2q1 

�
X(o), X(!)

�
h(!) · h(o)d!do+ |h|

2
✏0(h).(5.4)

Since X and X
⇤ have the same laws, it is well known that we can choose a sequence of

Borel functions Sn : [0, 1] ! [0, 1] which are one-to-one, onto, such that Sn ]L
1
(0,1) =

L
1
(0,1) and such that

lim
n

|X
⇤
�X � Sn| = 0.

In light of Remark 5.1(i), (5.4) implies

V
X�Sn(X � Sn + h) = V

X(X + h � S
�1
n

)

=

Z

(0,1)
r�(X) · h � S

�1
n

d! +
1

2

Z

(0,1)
r

2
�(X)h � S

�1
n

· h � S
�1
n

d!

+
1

2

Z

(0,1)2
rq2q1 

�
X(o), X(!)

�
h � S

�1
n

(!) · h � S
�1
n

(o)d!do+|h � S
�1
n

|
2
✏0(h � S

�1
n

)

=

Z

(0,1)
r�(X � Sn) · hd! +

1

2

Z

(0,1)
r

2
�(X � Sn)h · hd!

+
1

2

Z

(0,1)2
rq2q1 

�
X � Sn(o), X � Sn(!)

�
h(!) · h(o)d!do+ |h|

2
✏0(h � S

�1
n

).
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We use again Remark 5.1(i) to conclude that

V
X⇤

(X � Sn + h) =

Z

(0,1)

r�(X � Sn) · hd! +
1
2

Z

(0,1)

r2
�(X � Sn)h · hd!

+
1
2

Z

(0,1)2
rq2q1 

�
X � Sn(o), X � Sn(!)

�
h(!) · h(o)d!do+|h|2✏0(h � S�1

n ).

We let n tend to 1 to obtain

V
X⇤

(X⇤ + h) =

Z

(0,1)

r�(X⇤) · hd! +
1
2

Z

(0,1)

r2
�(X⇤)h · hd!

+
1
2

Z

(0,1)2
rq2q1 

�
X

⇤(o), X⇤(!)
�
h(!) · h(o)d!do+ |h|2 lim

n!1
✏0(h � S�1

n ).

We use the fact that limn!1 |✏0(h � S
�1
n

)|  ✏(|h|) to conclude that V
X

⇤
is twice

Fréchet differentiable at X
⇤.

Definition 5.3. Let µ 2 P2(Rd), ⇠0 2 TµP2(Rd), let A1 2 L
1
µ
(Rd

,Rd⇥d) be sym-

metric µ–almost everywhere, and let A2 2 L
1
µ⌦µ

(R2d
,Rd⇥d) be such that A2(q1, q2) =

A
T

2 (q2, q1), µ⌦ µ–almost everywhere. We say that (⇠0, A1, A2) belongs to T
⇤,2
µ

P2(Rd)
if

lim
r!0+

inf
(�, )

sup
(⌫,�)

⇢��e0
�
µ, �, ⇠0 � r�, A1 � r2

�, A2 � rq2q1 
���

k⇡2 � ⇡1k2
L2(�)

: 0 < k⇡2�⇡1kL2(�)  r, � 2 �(µ, ⌫)

�
=0,

where the infimum is performed over the set of pairs (�, ) such that � 2 C
3
b
(Rd),  2

C
3
b
(R2d) is symmetric, and V

X

(�, ) is twice Fréchet differentiable at X with law(X) = µ.

Here we have set

e0(µ, �, ⇠0, A1, A2) :=

Z

R2d

⇣
⇠0(q1) +

1

2
A1(q1)(q2 � q1)

⌘
· (q2 � q1)�(dq1, q2)

+
1

2

Z

R2d⇥R2d

A2(q1, z)(w � z) · (q2 � q1)�(dq1, q2)�(dz, dw).

We shall later use the expression

E(r, µ, ⇠0, A1, A2) := sup
⌫

sup
�

⇢
|e0

�
µ, �, ⇠0, A1, A2

�
|

k⇡2 � ⇡1k2
L2(�)

�
,

where the supremum is performed over the set of pairs (⌫, �) such that 0 < W
2
2 (⌫, µ) 

r and � 2 �(µ, ⌫).

5.2. Specific expression for superjets/subjets. For µ, ⌫, �, ⇠0, A1, A2 as in
Definition 5.3 and t, s 2 (0, T ), a 2 R, we set

e(U , s, t, a, µ, ⌫, �, ⇠0, A1, A2) := U(s, ⌫)� U(t, µ)� a(s� t)�
Z

R2d
⇠0(q1) · (q2 � q1)�(dq1, dq2)

�
1

2

Z

R2d
A1(q1)(q2 � q1) · (q2 � q1)�(dx, dy)

�
1

2

Z

R2d⇥R2d
A2(q1, z)(w � z) · (q2 � q1)�(dz, dw)�(dq1, dq2).

Similarly, for

t, s 2 (0, T ), a 2 R, X, Y, ⇣0 2 E, A1 2 L
1�

(0, 1),Rd⇥d
�
, A2 2 L

1((0, 1)2,Rd⇥d
�
,
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we set

e(U, s, t, a,X, Y, ⇣0, A1, A2) := U(s, Y )� U(t,X)� a(s� t)�

Z

(0,1)
⇣0 · (Y �X)d!

�
1

2

Z

(0,1)
A1(Y �X) · (Y �X)d!

�
1

2

Z

(0,1)2
A2(!, o)(Y (o)�X(o)) · (Y (!)�X(!))dod!.

If the functions U and U are independent of t, the right-hand sides of the above
expressions do not have the a(s� t) term and we will write e(U , µ, ⌫, �, ⇠0, A1, A2) and
e(U,X, Y, ⇣0, A1, A2).

Definition 5.4. Let t 2 (0, T ) and µ 2 P2(Rd) and let U : [0, T )⇥ P2(Rd) ! R.

(i) We define the parabolic second order subjet of U at (t, µ) to be the set

P
2,�

U(t, µ), which consists of (a, ⇠0, A1, A2) 2 R⇥ T
⇤,2
µ

P2(Rd) such that

lim inf
(s,⌫)!(t,µ)

inf
�2�(µ,⌫)

e(U , s, t, µ, ⌫, �, ⇠0, A1, A2)

|s� t|+W
2
2 (⌫, µ)

� 0.

(ii) We define the parabolic second order superjet of U at (t, µ) to be the set

P
2,+

U(t, µ), of (a, ⇠0, A1, A2) 2 R⇥ T
⇤,2
µ

P2(Rd) such that

lim sup
(s,⌫)!(t,µ)

inf
�2�(µ,⌫)

e(U , s, t, µ, ⌫, �, ⇠0, A1, A2)

|s� t|+W
2
2 (⌫, µ)

 0.

We set

S(A1,A2)(X)(h) = A1(X) h+

Z

(0,1)
A2

�
X,X(!)

�
h(!)d! for h 2 E.

Owing to the properties of A1 and A2 in Definition 5.3, S(A1,A2)(X) is a self-adjoint
operator on E.

Lemma 5.5. Let µ 2 P2(Rd) and let X 2 E be such that X]L
1
(0,1) = µ.

(i) If (a, ⇠0, A1, A2) 2 P
2,�

U(t, µ), then

⇣
a, ⇠0(X), S(A1,A2)(X)

⌘
2 P

2,�
U(t,X).

(ii) If (a, ⇠0, A1, A2) 2 P
2,+

U(t, µ), then

⇣
a, ⇠0(X), S(A1,A2)(X)

⌘
2 P

2,+
U(t,X).

Proof. It suffices to prove (i). Let us assume that (a, ⇠0, A1, A2) 2 P
2,�

U(t, µ).
Let Y 2 E and set Y]L1

(0,1) = ⌫. Choose first � 2 �0(µ, ⌫) and then choose X⇤
, Y

⇤
2 E

such that
� := (X⇤

⇥ Y
⇤)]L

1
(0,1).

Note
p := (X ⇥ Y )]L

1
(0,1) 2 �(µ, ⌫)
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and

e(U, s, t, a,X, Y, ⇠0 �X,A1 �X,A2 � (X ⇥X)) = U(s, Y )� U(t,X)� a(s� t)

� e0(µ, p, ⇠0, A1, A2).

Hence,

e(U, s, t, a,X, Y, ⇠0 �X,A1 �X,A2 � (X ⇥X)) = U(s, ⌫)� U(t, µ)� a(s� t)

� e0(µ, p, ⇠0, A1, A2),(5.5)

where A2 � (X ⇥X) denotes the function A2 � (X ⇥X)(!, o) = A2(X(!), X(o)).
Fix for a moment a symmetric function  2 C

3
b
(R2d) and � 2 C

3
b
(Rd) such that

V
X

(�, ) is twice Fréchet differentiable at X. Recall that by (5.4)

(5.6) V
X

(�, )(Y )� e0

⇣
µ, p,r�,r

2
�,rq2q1 

⌘
= o

�
kY �Xk

2
�
.

Since the first marginal of � is µ, X and X
⇤ have the same laws, and so, by Lemma

5.2, V X
⇤

(�, ) is twice Fréchet differentiable at X
⇤, and so,

(5.7) V
X

⇤

(�, )(Y
⇤)� e0

⇣
µ, �,r�,r

2
�,rq2q1 

⌘
= o

�
kY

⇤
�X

⇤
k
2
�
.

Using (5.5), we have the decomposition

e

⇣
U, s, t, a,X, Y, ⇠0 �X,A1 �X,A2 � (X ⇥X)

⌘

= U(s, ⌫)� U(t, µ)� a(s� t)� e0

⇣
µ, p, ⇠0 �r�, A1 �r

2
�, A2 �rq2q1 

⌘

� e0

⇣
µ, p,r�,r

2
�,rq2q1 

⌘
.

Thus,

e

⇣
U, s, t, a,X, Y, ⇠0 �X,A1 �X,A2 � (X ⇥X)

⌘

= U(s, ⌫)� U(t, µ)� a(s� t)� e0

⇣
µ, p, ⇠0 �r�, A1 �r

2
�, A2 �rq2q1 

⌘

� e0

⇣
µ, p,r�,r

2
�,rq2q1 

⌘
� e0

⇣
µ, �, ⇠0, A1, A2

⌘

+ e0

⇣
µ, �, ⇠0 �r�, A1 �r

2
�, A2 �rq2q1 

⌘

+ e0

⇣
µ, �,r�,r

2
�,rq2q1 

⌘
.

Rearranging, we obtain

e

⇣
U, s, t, a,X, Y, ⇠0 �X,A1 �X,A2 � (X ⇥X)

⌘
= U(s, ⌫)� U(t, µ)� a(s� t)� e0

⇣
µ, �, ⇠0, A1, A2

⌘

� e0

⇣
µ, p, ⇠0 �r�, A1 �r2

�, A2 �rq2q1 

⌘

� e0

⇣
µ, p,r�,r2

�,rq2q1 

⌘

+ e0

⇣
µ, �,r�,r2

�,rq2q1 

⌘

+ e0

⇣
µ, �, ⇠0 �r�, A1 �r2

�, A2 �rq2q1 

⌘
.
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Using Remark 5.1(i) we conclude that

e

⇣
U, s, t, a,X, Y, ⇠0 �X,A1 �X,A2 � (X ⇥X)

⌘
= U(s, ⌫)� U(t, µ)� a(s� t)� e0

⇣
µ, �, ⇠0, A1, A2

⌘

� e0

⇣
µ, p, ⇠0 �r�, A1 �r2

�, A2 �rq2q1 

⌘

V
X⇤
(�, )(Y

⇤)� e0

⇣
µ, p,r�,r2

�,rq2q1 

⌘

+ e0

⇣
µ, �,r�,r2

�,rq2q1 

⌘
� V

X
(�, )(Y )

+ e0

⇣
µ, �, ⇠0 �r�, A1 �r2

�, A2 �rq2q1 

⌘
.

We first use the fact that (a, ⇠0, A1, A2) 2 P
�
U(t, µ), second use (5.6) and (5.7), and

third use the fact that (⇠0, A1, A2) 2 T
⇤,2
µ

P2(Rd) to conclude that

e

⇣
U, s, t, a,X, Y, ⇠0 �X,A1 �X,A2 � (X ⇥X)

⌘

� o
�
W

2
2 (⌫, µ)

�
+ o(|s� t|)� o

�
kY �Xk

2
�
� o

�
kY

⇤
�X

⇤
k
2
�

� E

⇣
k⇡

1
� ⇡

2
kL2(�), ⇠0 �r�, A1 �r

2
�, A2 �rq2q1 

⌘
k⇡

1
� ⇡

2
k
2
L2(�)

� E

⇣
k⇡

1
� ⇡

2
kL2(p), ⇠0 �r�, A1 �r

2
�, A2 �rq2q1 

⌘
k⇡

1
� ⇡

2
k
2
L2(p).

Since
kY �Xk = k⇡

1
� ⇡

2
k
2
L2(p) � kY

⇤
�X

⇤
k = k⇡

1
� ⇡

2
k
2
L2(�)

we conclude that for any r > 0

lim inf
(s,Y )!(t,X)

e(U, s, t, a,X, Y, ⇠0 � X,A1 � X,A2 � (X ⇥ X))

|s � t| + kY � Xk2
� �E

⇣
r, ⇠0 � r�, A1 � r2

�, A2 � rq2q1 

⌘

� E

⇣
r, ⇠0 � r�, A1 � r2

�, A2 � rq2q1 

⌘
.(5.8)

Maximizing �E, which means minimizing E over (r,�, ) and using the fact that
(⇠0, A1, A2) 2 T

⇤,2
µ

P2(Rd) we conclude

lim inf
(s,Y )!(t,X)

e(U, s, t, a,X, Y, ⇠0 �X,A1 �X,A2 � (X ⇥X))

|s� t|+ kY �Xk2
� 0,

which proves (i).
Definition 5.6. Suppose  > 0. An upper semicontinuous function U : [0, T ) ⇥

P2(Rd) ! R is an intrinsic viscosity subsolution of (1.1) on the Wasserstein space if

U(0, ·)  U0 on P2(Rd) and

a�

✓Z

Rd

Tr(A1(q))µ(dq)+

Z

R2d

Tr(A2(q1, q2))µ(dq1)µ(dq2)

◆
+H(µ, µ, ⇠0)+F(µ)  0

for all (t, µ) 2 (0, T )⇥ P2(Rd) and (a, ⇠0, A1, A2) 2 P
2,+

U(t, µ).
A lower semicontinuous function U : [0, T )⇥P2(Rd) ! R is an intrinsic viscosity

supersolution of (1.1) on the Wasserstein space if U(0, ·) � U0 on P2(Rd) and

(5.9)

a�

✓Z

Rd

Tr(A1(q))µ(dq)+

Z

R2d

Tr(A2(q1, q2))µ(dq1)µ(dq2)

◆
+H(µ, µ, ⇠0)+F(µ) � 0

for all (t, µ) 2 (0, T )⇥ P2(Rd) and (a, ⇠0, A1, A2) 2 P
2,�

U(t, µ).
If U is both an intrinsic viscosity subsolution and an intrinsic viscosity superso-

lution of (1.1) on the Wasserstein space, we say it is an intrinsic viscosity solution of

(1.1) on the Wasserstein space.
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1344 WILFRID GANGBO, SERGIO MAYORGA, AND ANDRZEJ ŚWIĘCH

Theorem 5.7. Let U : [0, T )⇥ P2(Rd) ! R.

(i) If U is an L-viscosity subsolution of (1.1) on the Wasserstein space, then it

is an intrinsic viscosity subsolution of (1.1).
(ii) If U is an L-viscosity supersolution of (1.1) on the Wasserstein space, then

it is an intrinsic viscosity supersolution of (1.1).
(iii) If U is an L-viscosity solution of (1.1) on the Wasserstein space, then it is

an intrinsic viscosity solution of (1.1).
Proof. It suffices to prove (ii). Assume U is an L-viscosity supersolution of (1.1)

on the Wasserstein space.
Let µ 2 P2(Rd) and t 2 [0, T ). Choose X 2 E such that X]L1 = µ. We have

U(0, µ) = U(0, X) � U0(X) = U0(µ).
In order to show that U is upper semicontinuous at (t, µ), we choose an arbitrary

sequence (µn)n ⇢ P2(Rd) converging to µ and an arbitrary sequence (tn)n ⇢ [0, T )
converging to t. Let (Xn)n ⇢ E such that Xn]L1 = µn and (Xn)n converges to X.
We have

lim
n!1

U(tn, µn) = lim
n!1

U(tn, Xn) � U(t,X) = U(t, µ).

Thus, U is lower semicontinuous at (t, µ).
Let now t > 0 and (a, ⇠0, A1, A2) 2 P

2,�
U(t, µ). We would like to show that (5.9)

holds. Let X 2 E be such that X]L
1
(0,1) = µ. By Lemma 5.5,

⇣
a, ⇠0(X), S(A1,A2)

⌘
2 P

�
U(t,X).

Since U is an L-viscosity supersolution of (1.1) on the Wasserstein space, we use
Proposition 2.3 to infer

a� 

 
dX

k=1

Z

(0,1)
A1(X(!))ek · ekd! +

Z

(0,1)2
A2(X(!), X(o))ek · ekd!do

!

+ H̃
�
X,X]L1, ⇠0(X)

�
+ F (X) � 0.

This gives (5.9).
Remark 5.8. Let U : [0, T ) ⇥ E ! R and let U : [0, T ) ⇥ P2(Rd) ! R be such

that U(t, µ) = U(t,X) whenever X 2 E is the law of µ. In [43], it was proved that if
U is a viscosity solution of the first order equation

(5.10)

(
@tU + H̃(X,X]L1, DU) + F (X) = 0 in (0, T )⇥ E,

U(0, X) = U0(X) on E,

then U is an intrinsic viscosity solution of the first order equation

(5.11)
⇢

@tU +H(µ, µ,rµU) + F(µ) = 0 in (0, T )⇥ P2(Rd),
U(0, µ) = U0(µ) on P2(Rd),

according to the definition proposed in [43]. Therefore, Theorem 5.7 is an extension
of the results of [43] from the case  = 0 to the case  > 0.

6. First order convex HJB equations and value functions. In this section
we show that if  = 0 and H does not depend on µ and is convex in the gradient
variable, then the solutions un of (1.2), which are value functions of optimal con-
trol problems for n-particle systems, converge to the value function of a variational
problem in P2(Rd). Thus we obtain a representation formula for the solution of (1.1).
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FINITE DIMENSIONAL APPROXIMATIONS OF HJB EQUATIONS 1345

Hypothesis 6.1. The function H = H(x, p), in addition to satisfying Hypotheses
2.1 in the x and p variables, is convex in the p variable and

(6.1) H(x, p) � C1 + C2|p|
2

8 x, p 2 Rd

for some constants C1, C2, where C2 > 0.
We define L(x, v) to be the Legendre transform of H(x, p), that is,

L(x, v) := sup
p2Rd

(p · v �H(x, p)), x, v 2 Rd
.

This implies, by (2.3) and (6.1),

(6.2) C3+C4|v|
2
 L(x, v)  C5+C6|v|

2 for some C3, C4, C5, C6 with C4, C6 > 0.

Given µ 2 P2(Rd), ⇠ 2 L
2
µ
(Rd;Rd), we define

L(µ, ⇠) :=

Z

Rd

L(x, ⇠(x))µ(dx)� F(µ).

For 0  t  T, we define the action

Ā(�, v) :=

Z
t

0
L(�⌧ , v⌧ )d⌧ + U0(�0).

Let un : [0, T ]⇥ (Rd)n be, as before, the viscosity solution to (1.2), for n = 1, . . . .
For µ 2 P2(Rd), let

(6.3) Ū(t, µ) := inf
(�,v)

�
Ā(�, v)

�� �t = µ
 

with the infimum taken over all the pairs (�, v), where1
� = �⌧ 2 AC

2(0, t;P2(Rd)),
v = v⌧ is a velocity vector field for �⌧ , and �t = µ. Here AC

2(0, t;P2(Rd)) is the space
of absolutely continuous curves in P2(Rd) with square-integrable metric derivative; see
[3, Definition 1.1.1]. Define

ūn(t,x) = Ū

0

@t,
1

n

nX

j=1

�xj

1

A , x = (x1, . . . , xn) 2 (Rd)n.

We want to investigate the asymptotic relationship between ūn and un.

Set

f(x) = F

0

@ 1

n

nX

j=1

�xj

1

A , u0(x) = U0

0

@ 1

n

nX

j=1

�xj

1

A ,

and

ln(x,v) = �f(x) +
1

n

nX

j=1

L(xj , vj).

Define
Cn(t,x) := {x(·) 2 AC

2(0, t; (Rd)n)
�� x(t) = x}.

1We use the subindex notation �⌧ or �(⌧) interchangeably to mean the value of the path at time
⌧.
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1346 WILFRID GANGBO, SERGIO MAYORGA, AND ANDRZEJ ŚWIĘCH

With the conditions on H listed in Hypothesis 2.1, the solution un to (1.2) has the
value function representation

(6.4) un(t,x) = inf
⇠

⇢Z
t

0
ln(⇠(⌧), ⇠̇(⌧))d⌧ + u0(⇠(0))

�� ⇠(·) 2 Cn(t,x)

�
.

Denote by A the functional that is minimized in (6.4), i.e.,

A(⇠(·)) :=

Z
t

0
ln(⇠(⌧), ⇠̇(⌧))d⌧ + u0(⇠(0)).

Observe that when �⌧ = 1
n

P
n

j=1 �xj(⌧) for x(·) 2 AC
2(0, t; (Rd)n), then

v⌧ (x) =
nX

j=1

1xj(⌧)ẋj(⌧) for a.e. ⌧ 2 (0, t) and Ā(�, v) = A(x(·)).

We will make use of the following lemma.
Lemma 6.2. Let µ 2 P2(Rd), and let � 2 AC

2(0, t;P2(Rd)) be a path of velocity

w such that �t = µ. There exist sequences {y
m
}
1
m=1, y

m
2 (Rd)m, {�

m
}
1
m=1, �

m
2

Cm(t, ym) with corresponding velocity vector fields w
m
, and {rm}

1
1 , rm & 0, such that

(6.5) sup
0⌧t

d2(�⌧ ,�
m

⌧
)  rm,

(6.6) Ā(�m
, w

m)  Ā(�, w) + rm.

Proof. We are first going to prove the existence of such sequences as in the state-
ment, for which

(6.7)
Z

t

0

Z

Rd

L(x,wm

⌧
(x))�m

⌧
(dx)d⌧ 

Z
t

0

Z

Rd

L(x,w⌧ (x))�⌧ (dx)d⌧ + rm.

Step 1. We start with a standard mollification procedure by setting

⌘(x) :=
1

(4⇡)d/2
exp(�|x|

2
/4), ⌘

"(x) :=
1

"d
⌘(x/"), �

"

⌧
= �⌧ ⇤ ⌘

"
,

w
"

⌧
=

w⌧�⌧ ⇤ ⌘
"

�"
⌧

, j
"(x, y) :=

⌘
"(x� y)R

Rd ⌘
"(x� y)�⌧ (dy)

.

By Lemma 7.1.10 of [3],

(6.8) d
2
2(�

"

⌧
,�⌧ )  "

Z

Rd

|x|
2
⌘(x)dx 8 0  ⌧  t.

Let us now prove that

(6.9) lim sup
"!0

Z
t

0

Z

Rd

L(x,w"
⌧
)�"
⌧
(dx)d⌧ 

Z
t

0

Z

Rd

L(x,w⌧ (x))�⌧ (dx)d⌧.

Note for any arbitrary fixed ⌧,

w
"

⌧
(x) =

Z

Rd

w⌧ (y)j
"(x, y)�⌧ (dy).
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FINITE DIMENSIONAL APPROXIMATIONS OF HJB EQUATIONS 1347

Since for every x 2 Rd
,
R
Rd j

"(x, y)�⌧ (dy) = 1 and L(x, ·) is convex, we use
Jensen’s inequality to infer
(6.10)

L(·, w"
⌧
) = L

✓
·,

Z

Rd

w⌧ (y)j
"(·, y)�⌧ (dy)

◆


Z

Rd

L(·, w⌧ (y))j
"(·, y)�⌧ (dy) < 1.

We have obtained the finiteness of the expression at the right-hand side of (6.10) since

|L(·, w⌧ (y))|  C(1 + |w⌧ (y)|
2), j

"
2 L

1(R2d), w⌧ 2 L
2(�⌧ ).

Observe that the function x 7!
R
Rd L(x,w⌧ (y))j"(x, y)�⌧ (dy) belongs to L

1(�"
⌧
). In-

deed,
Z

Rd

Z

Rd
|L(x,w⌧ (y))|j"(x, y)�⌧ (dy)�"⌧ (dx) 

Z

Rd

Z

Rd
C(1 + |w⌧ (y)|2)j"(x, y)�⌧ (dy)�"⌧ (dx)

= C +

Z

Rd
|w⌧ (y)|2

✓Z

Rd
⌘
"(x� y)dx

◆
�⌧ (dy)

 C(1 + kw⌧k2L2(�⌧ )).

Similarly,
Z

Rd

Z

Rd

L(x,w⌧ (y))j
"(x, y)�⌧ (dy)�

"

⌧
(dx) =

Z

Rd

Z

Rd

L(x,w⌧ (y))j
"(x, y)�"

⌧
(dx)�⌧ (dy)

=

Z

Rd

Z

Rd

L(x,w⌧ (y))⌘
"(x� y)dx�⌧ (dy).

Thus, integrating (6.10) on both sides with respect to �"
⌧
, we get

(6.11)
Z

Rd

L(x,w"
⌧
(x))�"

⌧
(dx) 

Z

Rd

Z

Rd

L(x,w⌧ (y))⌘
"(x� y)dx�⌧ (dy).

Classic arguments show that

lim
"!0

Z

Rd

Z

Rd

L(x,w⌧ (y))⌘
"(x� y)dx�⌧ (dy) =

Z

Rd

L(y, w⌧ (y))�⌧ (dy).

From this, together with (6.11), it follows that

lim sup
"!0

Z

Rd

L(x,w"
⌧
)�"
⌧
(dx) 

Z

Rd

L(x,w⌧ (x))�⌧ (dx).

An application of Fatou’s lemma now yields (6.9).
Step 2. Notice that the constructed �"

⌧
solve the continuity equation

@⌧�
"

⌧
+ div(w"

⌧
�
"

⌧
) = 0 in (0, t)⇥ Rd

,

because

div(w"
⌧
�
"

⌧
) = div((w⌧�⌧ ) ⇤ ⌘") = (div(w⌧�⌧ )) ⇤ ⌘" and @⌧�

"

⌧
= (@⌧�⌧ ) ⇤ ⌘

"
.
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Since w
"

⌧
�
"

⌧
is smooth, for arbitrary � > 0 we can find �

",N

⌧
2 CN (t, yN ) for some

N 2 N and y
N

2 (Rd)N , satisfying

sup
0⌧t

d2(�
"

⌧
,�
",N

⌧
)  �,

Z
t

0

Z

Rd

L(x,w",N
⌧

(x))�",N
⌧

(dx)d⌧ 

Z
t

0

Z

Rd

L(x,w"
⌧
(x))�"

⌧
(dx)d⌧ + �.

It is clear that combining the latter inequalities, together with (6.9) and (6.8), gives
the desired sequence rm such that inequalities (6.7) and (6.5) hold.

To finish the proof, note that by (6.5) and the uniform continuity of F , U0, there
exists a sequence sm & 0 such that

U0(�
m

0 )  U0(�0) + sm, �

Z
t

0
F(�m

⌧
)d⌧  �

Z
t

0
F(�⌧ )d⌧ + sm.

Denoting rm + 2sm still by rm, we obtain (6.6).

Lemma 6.3. For any 0  t  T, the value function Ū(t, ·) is lower semicontinuous

on P2(Rd).

Proof. Let µ
n
! µ be such that

lim
n!1

Ū(t, µn) = lim inf
⌫!µ

Ū(t, ⌫).

Let " > 0 and let �n
2 AC

2(0, t;P2(Rd)) be paths of velocity v
n such that �n

t
= µ

n

and Z
t

0
L(�n

⌧
, v

n

⌧
)d⌧ + U0(µ

n) < Ū(t, µn) + ".

It follows from (6.2) that

(6.12)
Z

t

0
kv

n

⌧
k
2
L2(�n

⌧ )
d⌧ < C

for some C independent of n. Therefore, by Proposition 7.1 in the appendix, we
have the existence of a subsequence (still denoted by �n) and � 2 AC

2(0, t;P2(Rd)),
with �t = µ, such that for every s 2 [0, t], �n

s
converges narrowly to �s. Denote the

product measures on Rd
⇥ [0, t] by �n

s
ds. These converge narrowly to �sds. Further-

more, denote by v
n

s
�
n

s
ds the vector measure whose density with respect to �n

s
ds is the

time-dependent vector field v
n

s
= v

n(s, x).
We then obtain from (6.12) that there exists a subsequence of (�n

, v
n), still in-

dexed by n, such that �n

s
ds converge narrowly to �sds while vn

s
�
n

s
ds converge narrowly

to a vector measure w on Rd
⇥ [0, t].

Let ' 2 C
1
c
((0, t)⇥ Rd). Then

0 = lim
n!1

✓Z
t

0

Z

Rd

@s'(s, x)�
n

s
(dx)ds+

Z
t

0

Z

Rd

D'(s, x) · vn
s
(x)�n

s
(dx)ds

◆

=

Z
t

0

Z

Rd

'(s, x)�s(dx)ds+

Z

[0,t]⇥Rd

D'(s, x) · w(dx, ds).(6.13)
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By Proposition 7.2 in the appendix, w ⌧ �sds, so there is an L
1(�sds) vector field

v(s, x) such that w = vs�sds, and, by the same proposition,
Z

t

0

Z

Rd

L(x, v⌧ )�⌧ (dx)d⌧  lim inf
n!1

Z
t

0

Z

Rd

L(x, vn
⌧
)�n

⌧
(dx)d⌧.

However, by (6.2) and (6.12), we actually obtain
Z

t

0
kv⌧k

2
L2(�⌧ )

d⌧ < C

for some constant C which, together with (6.13), means that v is a velocity vector
field for �. Therefore, since F is narrowly continuous, it follows that

Ū(t, µ)  lim inf
⌫!µ

Ū(t, ⌫).

Theorem 6.4. Given µ 2 P2(Rd), 0  t  T, there exists a sequence {x(n)}1
n=1,

x(n) 2 (Rd)n, such that d2(
1
n

P
n

j=1 �xj(n), µ) ! 0 as n ! 0 and

Ū(t, µ) = lim
n!1

inf
⇠(·)2Cn(t,x(n))

⇢Z
t

0
ln(⇠(⌧), ⇠̇(⌧))d⌧ + u0(⇠(0))

�� ⇠(t) = x(n)

�
,

i.e.,

lim
n!1

un(t,x(n)) = Ū(t, µ).

In particular, Ū = U from Theorem 1.2 and Ū is continuous and satisfies the continuity

estimate (4.1).
Proof. Let {�k, vk}1k=1 be a minimizing sequence of paths and velocities for U(t, µ)

such that

(6.14) Ā(�k, vk)  Ū(t, µ) + 1/k.

By Lemma 6.2, for each k 2 N there exists a sequence {�
m

k
, v

m

k
}
1
m=1, with the mth

term in Cm(t,�m

k
(t)), such that

(6.15)
um(t,�m

k
(t))  A(�m

k
)  Ā(�k, vk) + 1/m and �

m

k
(t) �!

m!1
�k(t) = µ in d2.

Then,

um(t,�m

k
(t))  Ū(t, µ) + 1/k + 1/m;

consequently,

lim sup
m!1

um(t,�m

m
(t))  Ū(t, µ).

Hence, since d2(�m

m
(t), µ) �!

m!1
0, this, together with the lower semicontinuity of

Ū(t, ·) proved in Lemma 6.3, gives

lim
m!1

um(t,�m

m
(t)) = Ū(t, µ).

Putting x(n) := �
n

n
(t), n = 1, . . ., proves the statement.
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7. Appendix.
Proposition 7.1. Let µ 2 P2(Rd) and let (�n

, v
n)1

n=1 be a sequence such that

for each n 2 N, �
n
2 AC

2(0, t;P2(Rd)) and v
n

is a velocity vector field for �
n
. If

lim
n!1

d2(�
n

t
, µ) = 0 and

Z
t

0
kv

n

⌧
k
2
L2(�n

⌧ )
d⌧ < C 8n 2 N,

then there exists a subsequence (�nk)1
k=1 and � 2 AC

2(0, t;P2(Rd)), with �t = µ, such

that for a.e. ⌧ 2 [0, t], �nk
⌧

! �⌧ narrowly.

Proof. Note that if 0  s1 < s2  t, by Hölder’s inequality we get

(7.1) d2(�
n

s1
,�

n

s2
) 

Z
s2

s1

kv
n

⌧
kL2(�n

⌧ )
d⌧ 

p

C
p
s2 � s1.

In particular, (�n)n is bounded and equicontinuous in P2(Rd). We apply the re-
fined version of the Ascoli–Arzelà theorem in Proposition 3.3.1 of [3] to conclude the
proof.

Proposition 7.2. Let L be as in section 6. Consider a sequence {⌫n}
1
1 [ {⌫} of

finite, positive Borel measures on [0, T ] ⇥ Rd
that converges narrowly to ⌫. Suppose

we have a sequence gn : [0, T ]⇥ Rd
! Rd

of vector fields such that

(7.2)
Z

[0,T ]⇥Rd

|gn(t, x)|
2
⌫n(dt, dx) < 1

and (gn⌫n)n converges narrowly to a vector-valued Borel measure � on [0, T ] ⇥ Rd
.

Then,

(i) there exists a Borel vector field v : [0, T ]⇥ Rd
! Rd

such that � = v⌫;

(ii) we have

Z

[0,T ]⇥Rd

L
�
x, v(t, x)

�
⌫(dt, dx)  lim inf

n!1

Z

[0,T ]⇥Rd

L(x, gn(t, x))⌫n(dt, dx).

Proof. We define on [0, T ]⇥ R2d the measures fn by

(7.3)
Z

[0,T ]⇥R2d

�(t, x, w)fn(dx, dw) =

Z

[0,T ]⇥Rd

�(t, x, gn(t, x))⌫n(t, dx)

for � 2 Cb([0, T ]⇥ R2d).
(i) We use (7.2) and the fact that (⌫n)n is precompact for the narrow convergence

topology to conclude that (fn)n is precompact for the narrow convergence topology.
Therefore, without loss of generality, we may assume that (fn)n converges narrowly
to some Borel measure on [0, T ]⇥R2d which we denote by f1. When � depends only
on the (t, x) variables, passing to the limit in (7.3), we conclude that the first marginal
of f1 is ⌫. Hence, there exists a Borel map (t, x) ! f

(t,x)
1 of probability measures

(cf. [3, subsection 5.3]) such that we have the disintegration
Z

[0,T ]⇥R2d

�(t, x, w)f1(dt, dx, dw) =

Z

[0,T ]⇥Rd

✓Z

Rd

�(t, x, w)f (t,x)
1 (dw)

◆
⌫(dt, dx)

for all � 2 Cb([0, T ]⇥ R2d).
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Let ' 2 C([0, T ] ⇥ Rd
,Rd) be a bounded function. Although (t, x, w) 2 [0, T ] ⇥

R2d
7! '(t, x) · w is not bounded, (7.2) allows us to assert that (setting z = (t, x))

Z

[0,T ]⇥R2d

'(z) · wf1(dz, dw) = lim
n!1

Z

[0,T ]⇥R2d

'(z) · wfn(dz, dw)

= lim
n!1

Z

[0,T ]⇥Rd

'(z) · gn(z)⌫n(dz).

We now use the fact that � is a point of accumulation of (gn⌫n) to conclude that
Z

[0,T ]⇥Rd

✓Z

Rd

'(t, x) · wf (t,x)
1 (dw)

◆
⌫(dt, dx) =

Z

[0,T ]⇥Rd

'(t, x) · �(dt, dx).

We conclude the proof of (i) by setting v(t, x) :=
R
Rd wf

(t,x)
1 (dw).

(ii) Since L is bounded below by the hypotheses, we may suppose without loss
of generality that L � 0. For each r > 0 let �r 2 C(R2d) be a function which is
identically 1 on the ball of radius r, is zero outside of the ball of radius r + 1, but
remains between 0 and 1 everywhere. We have
Z

[0,T ]⇥R2d
L(x,w)�r(x,w)f1(dt, dx, dw) = lim inf

n!1

Z

[0,T ]⇥R2d
L(x,w)�r(x,w)fn(dt, dx, dw)

 lim inf
n!1

Z

[0,T ]⇥R2d
L(x,w)fn(dt, dx, dw)

and so, letting r ! 1, we conclude
Z

[0,T ]⇥R2d

L(x,w)f1(dt, dx, dw)  lim inf
n!1

Z

[0,T ]⇥R2d

L(x,w)fn(dt, dx, dw).

Thus,
Z

[0,T ]⇥Rd

⇣Z

Rd

L(x,w)f (t,x)
1 (dw)

⌘
⌫(dt, dx)  lim

n!1

Z

[0,T ]⇥R2d

L(x,w)fn(dt, dx, dw).

Since L(x, ·) is convex, we apply Jensen’s inequality and use the fact that f
(t,x)
1

is a Borel probability measure to conclude the proof.
We conclude the appendix with a proof of comparison for viscosity solutions of a

class of equations that includes (1.3). Let W be a real separable Hilbert space. We
assume the following hypothesis.

Hypothesis 7.3.
(i) The function Ĥ : W ⇥W ! R satisfies

(7.4) |Ĥ(X,P )� Ĥ(X,Q)|  C(1 + |P |+ |Q|)|P �Q| 8 P,Q,X 2 W

and

(7.5) |Ĥ(X,P )� Ĥ(Y, P )|  �
�
|X � Y |(1 + |P |)

�
8 P,X, Y 2 W

for some modulus of continuity �.
(ii) The function U0 : W ! R is such that

(7.6) |U0(X)� U0(Y )|  m1 (|X � Y |) 8 X,Y 2 W

for some modulus of continuity m1.
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We note that if Ĥ(X,P ) = H̃(X, law(X), P ) + F (X) and Hypothesis 2.1 is sat-
isfied, then Hypothesis 7.3 holds. Thus comparison for viscosity solutions of (1.3)
follows from the more general theorem below.

Theorem 7.4. Let Hypothesis 7.3 be satisfied and let  � 0. Let u be a viscosity

subsolution of

(7.7)

8
>><

>>:

@tu� 

dX

k=1

hD
2
uek, eki+ Ĥ(X,Du) = 0 in (0, T )⇥W,

u(0, X) = U0(X) on W,

let v be a viscosity supersolution of (7.7), and suppose that there exists M � 0 such

that

sup
(t,X)2[0,T )⇥W

u(t,X)  M, sup
(t,X)2[0,T )⇥W

�v(t,X)  M.

Then u  v on [0, T )⇥W .

Proof. The proof is similar to the proof of Theorem 3.3. The main difference
is that we have to use a Hilbert space version of the maximum principle for semi-
continuous functions, Theorem 3.2 of [27], instead of Theorem 8.3 of [26]. For
� > 0, let '� be the function from Lemma 3.2 applied to the modulus �1(s) =
(1 + T )�(s) +m1(s) + (2M + 1)s. In particular we have

(7.8) '�(1) � 2M + 1, '�(s) � m1(s).

If u 6 v, then there is ⌫ > 0 such that

(7.9) sup
(t,X)2[0,T )⇥E

(u� v) � ⌫.

We will show that this leads to a contradiction.
Let {⌘1, ⌘2, . . .} be an orthonormal basis of W . For N = 1, 2, . . ., we denote by

PN the orthogonal projection in W onto span{⌘1, . . . , ⌘N}, and we set QN = I �PN .
Denote h(X) := (1 + |X|

2)1/2. If (7.9) is true, then for sufficiently small µ, �,↵ > 0

sup
X,Y 2W,t2[0,T ]

✓
u(t,X)� un(t, Y )�

µ

T � t
� '�((� + |X � Y |2)

1
2 )(1 + t)� ↵(h(X) + h(Y ))

◆
> 0.

We also notice that the expression above goes to �1 as |X|+ |Y | ! +1. Therefore,
by the perturbed optimization result of Ekeland and Lebourg (see, for instance, [29,
Theorem 3.25]), for every n � 1 there exist an 2 R, pn, qn 2 W such that |an|+ |pn|+
|qn| <

1
n

and

u(t,X)� un(t, Y )�
µ

T � t
� '�((� + |X � Y |

2)
1
2 )(1 + t)� ↵(h(X) + h(Y ))

+ ant+ hpn, Xi+ hqn, Y i

attains a strict maximum at some point (t̄, X̄, Ȳ ). By the construction of '� we have
0 < t̄ < T and |X̄ � Ȳ | < 1. It now follows from Theorem 3.2 of [27], together with
Remarks 2.3 and 3.1 there, that for every N � 1 there exist b1, b2 2 R, SN , RN 2 S(W )
and C > 0 independent of N such that SN = PNSNPN , RN = PNRNPN , SN  RN

and such that, denoting s̄ = (� + |X̄ � Ȳ |
2)

1
2 ,

✓
b1,'

0
�
(s̄)

X̄ � Ȳ

s̄
(1 + t̄) + ↵Dh(X̄)� pn, SN + CQN + ↵D

2
h(X̄)

◆
2 P

2,+
u(t̄, X̄),
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✓
b2,'

0
�
(s̄)

X̄ � Ȳ

s̄
(1 + t̄)� ↵Dh(X̄) + pn, RN � CQN � ↵D

2
h(X̄)

◆
2 P

2,�
v(t̄, Ȳ ),

b1 � b2 = '�(s̄) +
µ

(T � t̄)2
� an.

Using the definition of viscosity subsolution we now have

b1 � 

dX

k=1

h(SN + CQN + ↵D
2
h(X̄))ek, eki

+ Ĥ

✓
X̄,'

0
�
(s̄)

X̄ � Ȳ

s̄
(1 + t̄) + ↵Dh(X̄)� pn

◆
 0,

which implies, by (7.4),

b1 � 

dX

k=1

hSNek, eki+ Ĥ

✓
X̄,'

0
�
(s̄)

X̄ � Ȳ

s̄
(1 + t̄)

◆

 �2

✓
1

N

◆
+ �3

✓
1

n

◆
+ �4(↵)

(7.10)

for some moduli �2,�3,�4. Similarly we have

b2 � 

dX

k=1

hRNek, eki+ Ĥ

✓
Ȳ ,'

0
�
(s̄)

X̄ � Ȳ

s̄
(1 + t̄)

◆

� �2

✓
1

N

◆
+ �3

✓
1

n

◆
+ �4(↵).

(7.11)

Subtracting (7.11) from (7.10) and using SN  RN , (7.5), we obtain

�2

✓
1

N

◆
+ �3

✓
1

n

◆
+ �4(↵) � '�(s̄) +

µ

(T � t̄)2

+ Ĥ

✓
X̄,'

0
�
(s̄)

X̄ � Ȳ

s̄
(1 + t̄)

◆
� Ĥ

✓
Ȳ ,'

0
�
(s̄)

X̄ � Ȳ

s̄
(1 + t̄)

◆

� '�(s̄) +
µ

(T � t̄)2
� � (s̄(1 + '

0
�
(s̄)(1 + T )))

�
µ

(T � t̄)2
+ '�(s̄)� �1('

0
�
(s̄)s̄+ s̄) �

µ

T 2
,

(7.12)

where we have used the definition of �1 and Lemma 3.2 to justify the last two inequal-
ities. Inequality (7.12) yields a contradiction after we send N ! +1, then n ! +1,
and finally ↵! 0.
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