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Abstract. We prove that viscosity solutions of Hamilton—Jacobi-Bellman (HJB) equations, cor-
responding either to deterministic optimal control problems for systems of n particles or to stochastic
optimal control problems for systems of n particles with a common noise, converge locally uniformly
to the viscosity solution of a limiting HJB equation in the space of probability measures. We prove
uniform continuity estimates for viscosity solutions of the approximating problems which may be
of independent interest. We pay special attention to the case when the Hamiltonian is convex in
the gradient variable and equations are of first order and provide a representation formula for the
solution of the limiting first order HJB equation. We also propose an intrinsic definition of viscosity
solution on the Wasserstein space.
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1. Introduction. We consider the problem of approximation of Hamilton—
Jacobi-Bellman (HJB) equations in spaces of probability measures by equations in
finite dimensional spaces. More precisely, we study if an appropriately interpreted
viscosity solution of such HJB equations can be approximated locally uniformly by
viscosity solutions of finite dimensional problems. This is related to the problem of
whether value functions of variational or optimal control problems in spaces of prob-
ability measures can be approximated by value functions corresponding to problems
for finite particle systems. Similar convergence problems have been recently studied
in the context of mean field games [15, 16, 18, 20, 21, 28, 37, 41, 50, 53]. In partic-
ular it was proved in [18] that classical solutions of finite dimensional second order
Nash systems converge, in a suitable sense, to classical solutions of the correspond-
ing master equations. Also, convergence of functionals of empirical measures of the
marginal laws of particle systems for McKean—Vlasov stochastic differential equations
was studied recently in [20, 23] using calculus in the space of measures, stochastic
analysis, and partial differential equations in the space of measures. Explicit con-
vergence estimates were obtained in [20, 23]. The problems investigated there are
different from the one here. They studied the case of independent noises and no con-
trols so they dealt with partial differential equations which are linear, have slightly
different form, and have smooth solutions. We refer to the references in [20, 23] for
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the discussion of other earlier results in this direction. Regularity and convergence
problems for finite dimensional approximations of first order HJB equations in spaces
of probability measures were studied in [37, 39, 41, 52|, either when solutions were
regular or when the Hamiltonian was quadratic. Some results are also mentioned in
[15] without proofs, while some results may be considered to be part of the folklore
of the theory. In this paper we want to investigate the problem rigorously from the
point of view of viscosity solutions.

We will be concerned with first and second order degenerate HJB equations of
the form

(1.1) { U — KALU + H(pty i, Vo U) + F(p) =0 in (0,T) x Pa(RY),

U0, 1) =Uo(p) on Pa(R?),

where A, is the partial Laplacian of U (see [24]), T > 0,5 > 0,P2(R?) is the
Wasserstein space of probability measures on R? with bounded second moments,
F : Pa(R?) — R, and, for py,pe € Po(R?), € € L2 (R4 R?), the Hamiltonian H

is defined by
H(/‘Ll, M2, g) = \/Rd H(xv M2, f(x)),ul(dw)

for some function H : R? x Py(R?) x R? — R which satisfies Hypothesis 2.1 below.
We bring to the reader’s attention the fact that the dependence of A in (1.1) on the
first p is linear, whereas the dependence on the second p comes from the integrand
function H. Moreover, the function F cannot be simply absorbed into : otherwise,
the restriction of y to averages of Dirac masses would not yield (1.2) below. Indeed,
part of the goal of this paper is to justify that the approximating finite dimensional
problems should have the form

Oy, — KTr(A, D%uy,) + % S H(wy, ﬁ Z};i Oz nDyup)
un(oa T1y--- ,.Tn) = Z/{O(% Z?:l

where for n € N, A,, is the nd x nd matrix composed of n? block matrices I,.
Equation (1.1) will be interpreted in the L? sense, that is, we will look at the
“lifted” version of (1.1) in the space

E:= L?(Q;RY),

where € is an atomless probability space. This technique was introduced in [15, 50]
and its detailed exposition and recent developments can be found in [20, 21, 43].
Without loss of generality we can assume that Q = (0, 1) with the standard Lebesgue
measure £;. We denote by (-,-); the inner product in L2(;R) and, for X,Y €
L2(;RY), we set

<X, Y>d = (<X1, Y1>1, cey <Xd,Yd>1),

<XaY> = <X1,Y1>1 +eee <Xd7Yd>1 and |X| =V <X’X>7

where X1,..., Xy, Y1,...,Yy are the components of X and Y, respectively. We de-
note the canonical basis in R? by {e1,...,eq} and consider its elements as constant
functions in F. We define the functions Uy, F': E — R by

Up(X) = Uo(XyL1), F(X)=F(XsLr),
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where 4 denotes pushforward. Thus Xy £, is the law of the random vector X and is an
element of Py(R?). If U : E — R is twice differentiable and such that U(u) = U(X)
if p is the law of X, then we have the crucial formula

d
ApU(p) =Y (DU (X)ex, ex);
k=1

see section 5.
For X, P € E, u € Po(R%), we define

(X0 P) = [ HX(@)op Ple))do

We rely on the theory of viscosity solutions in Hilbert spaces and consider func-
tions U : [0,T) x E — R which are viscosity solutions of

d
U — kY (D?Ueg,ex) + H(X,X;£,,DU) + F(X) =0 in (0,7) x E,
k=1
U(0,X) =Uy(X) on E.

(1.3)

Here, DU, D?U stand for the Fréchet derivatives of U with respect to the X variable.
We refer the readers to [29] for the theory of viscosity solutions in Hilbert spaces and
extensive references.

We have the following definition.

DEFINITION 1.1. Let U : [0,T) x P2(R%) — R and define U : [0,T) x E — R by
U(t,X)=U(t, X4L1).

(i) We say that U is an L-viscosity subsolution of (1.1) on the Wasserstein space
if U is a viscosity subsolution of (1.3) on [0,T) x E.

(ii) We say that U is an L-viscosity supersolution of (1.1) on the Wasserstein
space if U is a viscosity supersolution of (1.3) on [0,T) x E.

(ii) When U is both an L-viscosity subsolution and an L-viscosity supersolution
of (1.1) on the Wasserstein space, we say that it is an L-viscosity solution of
(1.1) on the Wasserstein space.

We remark that another definition of viscosity solution to HJB master equations
in the Wasserstein space, also called an L-viscosity solution, was introduced in [59].
The definition in [59] uses the framework of path dependent PDE and is not related
to Definition 1.1 here, even though both notions have the same name.

We also propose an intrinsic definition of viscosity solution on the Wasserstein
space and show in section 5 that the notion of L-viscosity solution provides a way to
select particular intrinsic viscosity solutions. Only when the Hamiltonian is convex
in the momentum variables and x = 0 is it known that the notions of L-viscosity
solution and intrinsic viscosity solution are equivalent [43].

The main result of the manuscript is the following convergence theorem.

THEOREM 1.2. Let Hypothesis 2.1 be satisfied and let k > 0. Suppose that for
n > 1 the functions u, : [0,T) x (R})™ — R are the viscosity solutions of (1.2).
Then, for every bounded set B in Pa(R?),
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1 n
Un(t,$17...,ﬂjn)—u (tan;6$l>‘ .
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t ey Ty ,T Rdn,* 6:17 B =Y
) €01 Y S5 e} -

lim sup {
n—oo

where U is the unique L-viscosity solution of (1.1) on the Wasserstein space.

The assumptions of Hypothesis 2.1 will be introduced in section 2. To prove
Theorem 1.2 we first obtain appropriate uniform continuity estimates for the solutions
up of (1.2). This is done in Theorem 3.3 for a more general case when the second
order coefficients A,, may depend on z. Theorem 3.3 is the main technical result
of the paper and is of independent interest. We then convert the functions w, into
functions of empirical measures by defining new functions

1
Vi (t, ix) == un(t, ; h x = 6:1:-7 = sy dn)y
() = (130, whene 1= S = (o)

which are well defined since the functions wu,, are invariant with respect to permu-
tations of the variables of x. The estimates of Theorem 3.3 guarantee that V), are
uniformly continuous in the topology of [0,7] x P.(R%), where 1 < r < 2. We
then extend V,, to [0,T] x P2(R?), preserving its modulus of continuity, and then
use the Arzela—Ascoli theorem to pass to the limit, along a subsequence, to a func-
tion V defined on [0,7] x P2(R%). We then prove directly that its “lifted” version
V :[0,T] x E — R is a viscosity solution of (1.3). Uniqueness of viscosity solutions of
(1.3) then guarantees that the whole sequence V,, converges to V. Thus we completely
avoid dealing with (1.1) in the space of probability measures which may not have a
unique viscosity solution in the sense of [38] (see [43]). In section 6 we show that if
x = 0 and H is convex in the gradient variable, then the functions w,,, which are value
functions of optimal control problems for n-particle systems, converge to the value
function of a variational problem in P, (R?), thus giving a representation formula for
the solution of (1.1). Finally we prove a few technical results in the appendix.

Equations (1.2) correspond either to deterministic optimal control problems for
systems of n particles or to stochastic optimal control problems for systems of n
particles with a common noise. Theorem 1.2 solves the problem of convergence for a
large class of general first order HJB equations, even though the identification of the
limit as a value function is only obtained for the convex case and x = 0. However,
using the methods of this paper we were not able to obtain a result similar to Theorem
1.2 for other stochastic particle systems, for instance, systems of n particles with
nonconstant diffusion coefficients, in which case the matrices A,, are functions like in
Hypothesis 3.1, or for systems of n particles with independent noises, in which case
A, = I,4. We also remark that some assumptions of Hypothesis 2.1 could be changed
or relaxed while some may pose a bigger problem. This is worth investigating. The
main challenge is in proving uniform continuity estimates of Theorem 3.3. We do
not consider other cases here as Hypothesis 2.1 is sufficiently general and we do not
want to overburden the presentation with too many technicalities. Our main goal is
to convey the basic ideas. The readers can explore various generalizations.

HJB equations and master equations for mean field games or mean field control
problems in spaces of probability measures have been studied a lot in recent years
using various approaches. We refer the readers to [6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18,
19, 20, 21, 22, 24, 28, 37, 38, 39, 41, 43, 45, 46, 52, 53, 54, 57, 58, 59]. Equations related
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to differential games were studied in [25, 47], equations related to control problems
with partial observation were studied in [4, 5], and HJB equations mostly related to
large deviations and fluid dynamics problems were investigated with slightly different
techniques in [30, 31, 32, 33, 34]. In particular an abstract method of relaxed limits
for viscosity solutions was introduced in [31] for applications in large deviations and
this technique was recently generalized in [48, 49]. HJB equations in metric spaces
were studied by various techniques in [1, 12, 13, 39, 40, 44, 51, 55, 56]. Finally we refer
the readers to [26, 35] for an introduction to the theory of viscosity solutions of partial
differential equations in R? and to [29] and the references there for the overview of
the theory of viscosity solutions of second order HJB equations in Hilbert spaces.

2. Notation, assumptions, and definitions. We denote by P,.(R%),r > 1,
the space of Borel probability measures on R? with finite rth moments, equipped
with the Wasserstein r-metric

1
dwr)i= it ([ feeylaedy)
YEL(1v) \JRd xR4

where I'(p1, v) is the set of all Borel probability measures v on R? x R? with marginals
w,v. The set of optimal measures in I'(g,v) will be denoted by T'g(p,v). When
x = (21,...2,) € (RY)" we set

n 1/r
1 1
px = 261 and |x|, = 7 <Zl mi|r> .

We have
dr(//fxa ,U/y) = igf |X - y0|r7

where the infimum is taken over all permutations o of {1,...n} and y, =
(%(1)7 - ~ya(n))~

We use £; to denote the Lebesgue measure on R. If X € L"(Q;R?), then its L"
norm will be denoted by | X|,.. If r = 2 we will just write | X| as in the introduction.
For X € L"(4RY), law(X) := X;£; denotes the measure in P,(R?) which is the
pushforward of £ by X.

When 1 € Py(R?), we denote as Li(Rd; R?) the set of Borel vector fields & : RY —
R? such that [y, |{|?u(dz) < co. The tangent space at u, denoted by T, P2(R?), is
the closure of VC°(R?) in L2 (R4 RY).

For x € R™ we will also be using the notation |z| to denote the standard Euclidean
norm in R™ and we will write x - y for z,y € R™ to denote the dot product in R™.

If A is a matrix or a bounded operator in a Hilbert space, we will write ||A]| to
denote the operator norm of A. We denote by S(m) the set of m x m symmetric
matrices. If A € S(m), Tr(A) means the trace of A.

For an open set ¢ C R™, we will write C1(&), C?(0) for the standard spaces of
once and twice continuously differentiable functions on &.

If W is a Hilbert space, we denote by C12((0,T) x W) the space of functions
¢ (0,T) x W — R such that d,p, Dy, D?¢ are continuous on (0,7) x W, where
Dy, D%y stand for the Fréchet derivatives of ¢ with respect to the Hilbert space
variable.

Throughout the paper we will always identify a Hilbert space with its dual. Thus,
with this identification, Dy : (0,T) x W — W and D?p : (0,T) x W — S(W), where
S(W) is the space of bounded self-adjoint operators in .
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We make the following assumptions about the Hamiltonian function H.

Hypothesis 2.1. Let 1 <r < 2.
(i) The function H : R? x P,.(R%) x R? — R is such that
(2.1)
|H(z,v,p) — H(z,v,q)| <C(1+[p| + la])lp —q| ¥ p,g,z€R,veP(RY),

(2.2)
|H(£L’,M,p) - H(yvyvp)| < 0((|1’ - y| + dT(IU‘VV))(]' + |p|)) Vp,l',y € Rda;“’v
v € P(RY)

for some concave modulus of continuity o, and
(2:3) |H(x, p1,p)| < C(L+p|*) Vp,z € RY, pe Pr(RY).

(ii) The functions Uy, F € UCy(P,(R?)) (the space of bounded and uniformly
continuous functions).

We notice that it easily follows from (2.1) and (2.3) that for all X, P,Q € E,

(2.4) |H(X,p, P) — H(X,1,Q)| < C(1+|P|+|Q)|P - Q|
and
(2.5) |H (X, p, P)| < C(1+|PJ?).

Moreover, by the concavity of o and Jensen’s inequality, we obtain that for all
X,Y,P € E, u,v € P.(RY),

[H(X,p, P) = H(Y,v, P)| < /QU((IX(w) = Y(w)|+dr(p,v))(1 + [P(w)])) dw

<o ([ (X6 - Y@+ 4.1 + )i
(2.6) <o ((|IX = Y[ +dr(p,v) A+ |P])).
Let m, be a modulus of continuity for Uy and F. Since
Uo(X) = Up(¥)] = Wo(X,£1) = Uo(YiLy)| < muy (dy(XyLr, VeLr)) < my (X — Y,)

we conclude

(2.7) Uo(X) = Up(Y)] < ma (|X — Y).
Similarly,
(2.8) [F(X) = FY)| <mi (X -Y]).

Moreover, for x,y € (R%)",

(2.9) [Uo(pxe) — Uo(py)| < ma (Ix = ylr),

(2.10) [ F () = Flpy)l < ma (Ix = ylr) -
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Let W be a real Hilbert space with an inner product (-, -) and the norm |- |. We
recall the definitions of parabolic second order jets (see [26, section 8] and [27, section

3]).
Given w : (0,7) x W — R and (¢,z) € (0,T) x W, the parabolic second order
superjet of u at (£,%), P> u(t, z) is defined by

P2t u(f, z) = {(a,p, S) ERx W x S(W) :

—u(E7) —als — 1) — (py — ) — 2 (S(y — &),y —
(211)  limsup u(s,y) —ult,@) —a(s —1) — (p,y _xg 3 (Sly—2),y —7) SO}.
(5.9)—(5.2) s =t + [y —

The parabolic second order subjet of u at (£,z), P*~u(t, ), is defined by reversing
the inequality and replacing limsup by liminf in (2.11). The closure 52’+u(ﬂ Z) of
P2Hu(t, z), is defined as follows:

u(t,T) = {(a,p, S) e Rx W x S(W) : there exist (t,,x,) and
(@nsPn,Sn) € P2’+U(tn;$n) s.t. (tns T, Utn, Tn), Pny Sn) — (L, 2, u(t, 7), a, p, S)}

The closure 52’_u(t_7 z) of P>~ u(t, ) is defined similarly. We recall the definition of
viscosity solution of an equation

(2.12) Ou+ G(t,z,u, Du, D*>u) = 0 in (0,T) x W,
’ u(0,2) = g(x) on W,
where G : (0,T) x W x Rx W x S(W) — R is continuous.

DEFINITION 2.2. An upper semicontinuous function w : [0,T) x W — R is a
viscosity subsolution of (2.12) if u(0,x) < g(z) on W and whenever o € C*2((0,T) x
W) and u — ¢ has a local mazimum at (t,x) € (0,T) x W, then

dup(t,x) + G(t, z,u(t,z), Dp(t, x), D*p(t,x)) < 0.

A lower semicontinuous function u : [0,T) x W — R is a viscosity supersolution of
(2.12) if u(0,z) > g(x) on W and whenever o € C2((0,T) x W) and u — ¢ has a
local minimum at (t,x) € (0,T) x W, then

dup(t,x) + G(t, z,u(t,z), Dp(t, x), D*p(t,x)) > 0.

A function u is a viscosity solution of (2.12) if it is a viscosity subsolution of (2.12)
and a viscosity supersolution of (2.12).

It is easy to see that (a,p,S) € P?>Tu(t,z) (respectively, (a,p,S) € P>~ u(t,z))
if and only if there exists o € C*2((0,T) x W) such that u — ¢ has a local maximum
at (t,%) (respectively, u — ¢ has a local minimum at (¢, %)) and

a=0p(t,Z), p=De(t,z), S=Dt1).

The proof when W = R™ is in [35, Lemma 4.1], and it easily generalizes to the case
of an infinite dimensional Hilbert space. Thus, since G is continuous, Definition 2.2
is equivalent to the definition using the closures of parabolic jets.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/13/22 to 128.97.19.163 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

FINITE DIMENSIONAL APPROXIMATIONS OF HJB EQUATIONS 1327

PROPOSITION 2.3. An upper semicontinuous function u : [0,T) x W — R is a
viscosity subsolution of (2.12) if u(0,z) < g(x) on W and

a+ Gt z,u(t,x),p,S) <0 V(t,x) € (0,T) x W and (a,p,S) € 52’+u(t,x).

A lower semicontinuous function u : [0,T) x W — R is a viscosity supersolution of
(2.12) if u(0,2) > g(x) on W and

a+ Gtz ult,z),p,S) >0 ¥ (tz)e (0,T)x W and (a,p,S) € P> ult,z).

Remark 2.4. If (2.12) is of first order, that is, if G : (0,7) x W xRxW — R, then
the test functions ¢ in Definition 2.2 are replaced by functions C*((0,7) x W) and
the parabolic second order superjet and subjets of u, P?>tu, and P?~u are replaced
by the first order superdifferentials and subdifferentials D u and D~ u, respectively.
Proposition 2.3 is then still true if 52’+u(t,3:) and fz’iu(t,x) are replaced by the
closures D u(t,z) and D u(t,z) which are defined similarly as the closures of the
parabolic jets.

3. Estimates for finite dimensional equations. In this section we will con-
sider a more general version of (1.2) with second order coeflicients A,, depending on
X or being more general constant matrices.

Hypothesis 3.1. For x = (x1,...x,), let A,(x),n =1,2,..., the nd X nd matrix
composed of n? block matrices a(z;)a*(x;), i,j = 1,2,...n, such that the function
a:R? — S(d) is bounded and there exists L > 0 such that

(3.1) la(z) —a(y)ll < Llz —y| ¥ 2,y € R™.
The proof of the main theorem of this section uses the following simplified version

of a well-known lemma (cf. Lemma 3.80 of [29]).

LEMMA 3.2. Let § > 0, and let o1 be a modulus of continuity. Then there exists
a nondecreasing, concave, C? function s on [0,+00) such that ¢5(0) < § and

(3.2) o1(p5(s)s + s) < ps(s) for0<s<2.

THEOREM 3.3. Let Hypothesis 2.1 be satisfied. Let A, (x) satisfy Hypothesis 3.1,
or let A,(x) = A,, where A, is any sequence of nd x nd symmetric matrices with
constant coefficients such that A, > 0 and Tr(A,) < Ln for some L > 0. Suppose
that for n > 1 the functions u,, : [0,T] x (RY)™ — R are the viscosity solutions of

Oun — KTr (A, D%uy) + 2370 H (z, Z;;Z 6z,, 1Dy, ty)
(3.3) +F(EYT 6,)=0 in (0,T) x (R,
Un (0,21, ..., 2p) = 1/10(7l Sy 0z,) on (RY™.

Then there exists a modulus of continuity p such that for every n,
(34)  Jun(t,x) —un(s,y)| < p(|t = sl + [x —yl,) ¥ t,s€[0,T],x,y € R)"

Proof. We first note that if u is a bounded viscosity subsolution of (3.3) and v
is a bounded viscosity supersolution of (3.3) and if we replace uy,(t,x) — u,(t,y) by
u(t,x) — v(t,y) in the proof of continuity estimates below, the same arguments work
and we obtain that u(t,x) — v(t,x) < 0 for all (¢,x). Thus the comparison theorem
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holds for bounded viscosity subsolutions and bounded viscosity supersolutions of (3.3).
Moreover, since the function

x — g(x) = Uy (:L Z%)

is bounded and uniformly continuous on (R4)™, if (¢,,)%°_; C C?((R%)™) have bounded
first and second derivatives and 0 < g, —g < a,,, — 0 as m — oo, then for sufficiently
large C,, > 0 the functions g¢,,(x) + Cp,t and g, (X) — a, — Ciut are respectively
viscosity supersolutions and viscosity subsolutions of (3.3) for all m =1,2,.... Thus
the functions

u(t,x) = in>f1(gm(x) +Cmt),  ult,x) 1= sup (gm(x) — am — Cit)
m> m>1

are respectively a viscosity supersolution and viscosity subsolution of (3.3) such that
(0,x) = u(0,x) = g(x) on (R?)™. Therefore the unique bounded continuous viscosity
solution u, of (3.3) can be constructed, for instance, by means of Perron’s method
(see [26]).

It is also easy to see that there exists M > 0 such that ||un|lec < M,n=1,2,....
To show this, let K > 0 be such that || F|lecc < K, ||[Unlleo < K. Recall that we have

|H(-,-,0)]|co < C, where C is from (2.3). Then w;(t,x) := —K — (C + K)t is a
bounded viscosity subsolution of (3.3) and wq(t,x) = K + (C + K)t is a bounded
viscosity supersolution of (3.3). Therefore, by comparison we obtain that for every n

w1 <u, <ws on [0,T] X (Rd)”.

This gives the required bound with M = K + (C' + K)T.
For § > 0, let @5 be the function from Lemma 3.2 applied to the modulus

o1(s) = (1 +T)o(3s) +my(s) + (2kdL*(1 +T) + 2M + 1)s.
In particular we have
(3.5) @s(1) >2M +1,  ps5(s) > ma(s).
First, we are going to show that for every § > 0

(3.6) un(t,%) —un(t,y) < ws(|x —ylr)(1+1)
if t €[0,7T] and (x,y) € (RY)™.
We define smooth approximations of |z|,.. For v > 0, let
1
1 n - T
Uy (z) = i (2@‘*’ |Z¢2)2> :
We now set
o(t,x,y) =5 (Vy (x —y)) (1 +1).
Suppose that there exist 7, u > 0 such that

(37) sup (un(t7 X) - un(t7 y) - L - (,D(t, X, y)) > 0.
x,y€(®RD)" t €[0,T) T—t
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Then, for every o > 0 small enough and h(x) := (1 + |x|?)'/2,
(3.8)
"
p (e = 6) — 7~ pltxy) — i)+ ) ) 0.
x,y€(R4)™,te[0,T) -

Moreover, since u, is bounded and a(h(x)+h(y)) — 400 as z,y — 00, the supremum
of the above expression over [0, 7)) x (R%)"™ x (R4)" is attained at some point (%,%,y).
Obviously ¢ < T and it follows from the definition of the function (¢, x,y) and (3.5)
that we must have 0 < ¢. It also follows from (3.5) that 5 = ¢, (x —y) < 1. Also
X # y since if X =y, the expression in (3.8) is negative. We compute

(& =g v+ |z —gP)E Tt

where 1/r + 1/r' = 1. Also, using the concavity of s, we have
D?{@(E) 5(’ y)) = Bl - BQ?
where B; is a diagonal matrix composed of n diagonal d x d blocks

Oyt lE —m) !
By = ¢5(5) eha Ly| ) (1+1t)1qg,

ngw

and By > 0 is a symmetric matrix. Therefore

- B -B B -B
_ 2 - o\ 1 1 o 2 2 _. o
D=D QD( ) X, y) - < _Bl B1 ) ( _B2 32 > : .Dl D27

where D%y above is the second derivative of ¢ with respect to the variables (x,y).
We now use Theorem 8.3 of [26] applied to the functions

ul(t,2) == up(t,2) — ah(z), ui(t,y) = —un(t,y) — ah(y).

We notice that, since wu, is a viscosity solution of (3.3), condition (8.5) of [26] is
satisfied. Therefore, it follows from Theorem 8.3 of [26], applied with e = 1/(||D1|| +
I D2]]), that there exist b1, be € R and S1, .52 € S(nd) such that

(by, Dxp(£,%,¥) + aDh(R), Sy + aD*h(R)) € P up (E, %),

(an _Dy(p<f7 X, y) - OéDh(y)’ 52 - OzDQh(y)) € ﬁZiun(t_) y)7
_ _ H
bl b2_¢6(8)+(T7£>27

where

Si1 0 > 1 5
3.9 <D+ ——— _D*<2D,
(3.9 ( 0 -5 EAEIEN :

where we used that
D? < (|| D1l + | D2|) (D1 + Da).

Inequality (3.9) in particular implies that S; < S5. Using the definition of viscosity
solution and setting

- - 1 - 1 @ g+ E gD -
Z(%,y) = ;ZH (xi, HZE@, gog(s)( )0y lL/ vil”) (1+ﬂ+naDh(x)>
i=1

J#i sr
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i s

Z&W*iE:H<%,54§Z%W%s%@ DERS RS i u+a—mwmm>

we now have

(3.10) by — KTr(A,(X)(S1 + aD?*h(X))) + Z(X,¥) + F(uxz) <0
and
(3.11) by — KTr(An(9)(S2 — aD*h(y))) + Z(%,§) + Flpg) > 0.

We notice that (3.1) and (3.9) imply
Tr(An(%)51) — Tr(An(¥)S2)

< 2ZTY(  atu) ol — alw) o) I 1y )

ns-’

I, 2dL2 | — Gl (v + |7 — 5i]?) 2 71
< 23 (s M WD R B
i=1

Note that if A, is a constant matrix, then obviously Tr(A,S1) — Tr(A,S2) < 0. Let
us use the notation

. 1 : 1
My = n—lzéxj’ fy = EZ(SM.

X
J#i J#i

A simple calculation shows that d,.(u%, ub) < 25. Subtracting (3.11) from (3.10) and
using Hypothesis 2.1, the concavity of o, and (2.10), we obtain

" 2dL%|T; — i T — g}
#5(9) + ¢ < B3 g2l y“ﬁ” LR

i=1 §r

(s = 3+ de i) (1 + (@) B EIO L= BDE 4 ) )

+
S|
Q
/N

where lim, 0 02(c) = 0. Thus,

es(3) +

7

n _ _onT 1
2dL2|z; — i —Yil?)2
EZW |z — gil? (vr{r\xz il*) 1+

nz:l S

r

1 _ B = Gl (v + 17— 522!
<n2maymw$0+%@' OB -0 (49
i=1

(T - E)2_

sr’

By Jensen’s inequality

and also
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Using Schwarz’s inequality, one verifies that

IN

L~ oz =gl + s —ml)e 1 L __jgyr=t
1 2 2595(9) =3 20508 (y+ | — )
=1

_
ST’ n “

Collecting these bounds into the inequality obtained for ¢s(5) + ﬁ above, and
using the subadditivity of o and the definition of o1, we get

#5(5) + 5 < 20dLA(1+ T)h(5)5 + (1 + T)o(3¢5(5)5 + 35) + ma(5) + 02(a)

< 01(p5(5)5 + 5) + o2().

This gives a contradiction when we let o — 0, due to (3.2). Consequently, for all
positive v and p, (3.7) is false. Letting v, — 0, we obtain (3.6). Thus we have
proved that for all ¢ € [0,77, (x,y) € (R%)",

(3.12) (%) = wn(t,3)] < nf @5((x = y1,)(1+ 7).

We will now obtain the continuity estimate with respect to t. We know by (2.9)
that

[ (0,%) = un (0, y)] <1 (Jx = yla).-

Setting v, (x) = un (0, v/nx) we thus have

vn (%) —on(y)] < ma (Ix —yl).
Approximating the functions v, (x) by supinf-convolutions and then mollifying them,
there exist constants L,,,m = 1,2,--- (independent of n), and C? functions @?, such
that 0 < @ (x) — v, (x) < = on (RY)" and

DGRl < Lin,  |1D*@p,]| < L.

Then if ¢ (x) = @fn(ﬁx), we have

1
(3.13) 0 < " (x) —u,(0,x) < — on (RY)"
m
and
L L
Dol | < ==, |D*en | < 2.
Dyl < T2, ID%eh] < =

Recall that K is such that ||F|o < K. We set C, = KLL,, +C +CL2, + K, where L
is such that Tr(A,(x)) < Ln and C is from Hypothesis 2.1. We define the functions

P (t,%) = @7, (x) + Ot
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Then

D (1, %) — KTr(An (x) D20 (1, %)) + ~ oy D2 H i D 0:3) + P

e i () Lo 3
ZCW—ZTT(A())HDQ "( NG )H ZC(l—i-n chpm(\/lﬁX) 2>—K

oo ) -+

>C,, —kLL,, —C — CL2 =

> C, —/<;LL

Therefore the functions 7, are viscosity supersolutions of (3.3). Similarly, the func-
tions

. 1
(%) = @l (%) — — — Cipt
P (%) i= () = - = C

are viscosity subsolutions of (3.3). Therefore, by comparison, we have for every n,m >
L

Om(x) — m Cmt < un(t,x) < o, (%) + Cint.
Using (3.13), this implies that
1 1
_**Cmt< e ***Cmt* TL07 g nt; - nOa
MY un(0,5) < un(£,%) = (0,%)
< o (x) + Ot — un(0,%)
1
<Cpt+ —.
m
Therefore we obtain

1
[tn (t,x) — un (0,%x)] < p(t) := inf{m +Cpt:m = 1,2,---}

for all (t,x) € [0,T] x (R)",n = 1,2,---. The function j is independent of n. We
then define for every h € (0,T) the functions
ol (t,x) = un(t + h,x),  (t,x) € [0,T — h] x (RH)™.
h-are viscosity solutions of (3.3) on (0,7 — h) x (R%)™ and
[07:(0,%) — (0, %)| < A(h).

By comparison we thus obtain

The functions v,/

(3.14) 4y ) — ()] = o1, 5) — a1, )] < A(R)
for (t,x) € (0,7 — h) x (RY)™. We now let
p(s) = p(s) + inf s(s)(1 +T).

Combining (3.14) with (3.12), we obtain (3.4) for this modulus p, uniformly with
respect to n € N. ]
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4. Proof of Theorem 1.2.
Proof of Theorem 1.2. Step 1. We define the functions

n

1
Vn t7 x) = nt7 3 h x — — 6w
(t, px) := un(t,x), where p n; ;

This function is well defined since the functions w, are invariant with respect to
permutations of the variables in x. This follows from uniqueness of viscosity solutions
of (1.2) as these equations are invariant with respect to permutations of the variables
in x. The function V,(t,-) is now defined on the subset of Py(RY) that consists of
averages of n Dirac point masses. It follows from (3.4) that

[Vn(t, px) — Vn(smuy” < p(lt —s|+ dr(#x”uy)) Vit,sel0,T],x,y € (Rd)n-

For each fixed n, we can extend the function V,, to a function on [0, 7] x P,.(R?), still
denoted by V), satisfying

(41)  Valto) = Vals, )| < pllt — 5| + dy (1,0)) ¥ £, € [0, T), v € Pr(RY).

Since sets
M3 = {,i € P.(RY) : / |22 pu(da) < R}
]Rd

are relatively compact in P.(R?), up to a subsequence (still denoted by V,), V,
converges uniformly on every set [0, 7] x M2 to a function V : [0,T] x P2(R?) — R
which satisfies the same estimate (4.1). Define now

V:[0,T|xE —R,
(t,X) — V(t,X) = V(¢ law(X)).

We will show that V' is a viscosity solution of (1.3). Since (1.3) has a unique bounded
viscosity solution U, we can then conclude that V' = U. This will prove the theorem
since the argument can be done for any subsequence of V,,. The proof that (1.3) has
a unique bounded viscosity solution is included in the appendix, Theorem 7.4.

Step 2. Let then ¢ € C12((0,T)x E) and suppose that V —¢ has a local maximum
at (to, Xo) € (0,T) x E. By considering ¢(t, X) + (t —t0)? +|X — Xo|? and modifying
it outside of a neighborhood of (tg, Xy) we can assume with no loss of generality that
the maximum at (¢o, Xo) is strict and global. Being a strict maximum means that
if V(ti,Xi) — (p(ti,Xi) — V(to,Xo) — (p(to,Xo), then (ti,Xi) — (to,Xo). Denote
Py = Dy(tg, Xp). For each € > 0 let X, P. € E be such that X, P. are continuous
on [0,1] and | X — X+ |Py — P.| <.

For every n we denote A = (%, %

©n 1 (0,T) x (RY)™ — R defined by

n
on(t,x) == <t, Z%M;z) :
=1

where 147 is the characteristic function of the set A7

Since the original maximum at (¢g, Xo) was strict it is easy to see that the func-

tions u, — ¢, must have local maxima at points (t,,x"™) = (t,,z¥,...,z}) such that

),i=1,...,n. We then consider the function

n
t, >ty and X" = szllA? — Xo.

i=1
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In particular for sufficiently big n,
|tn *t0| + |X0 — Xn‘ S €.
Now, by the chain rule,

Dmi(pn(t’ﬂ7xn> = <D90 (tn7zx:71147”> ’1A;Le> :/ D‘P <tnazx?1A;L> 9
: d n ,

i=1 i=1

where e = (1,...,1) € R If x = (x1,...,2,), we will denote x; = (41, ...,Tiq)-
Then
2 2 Py
Te(A, Do, Tr( n
HALDYe) = 30 (D ) = 30 3 50 T
1,7=1 1,7=1k=1
Now

82(,0” n 2 S n
m(tmx )Z/" D¢ tnazxi Tap | Lapey | e

=1

( <n,Z~’C 1A”> 1A”6k>'6,
ij=1k=1"A7

d n
:Z D2<p <tn,2x?1,47> €k7€k>-
=1

SO

We note that if
XyG(]Rd , X = ZmzlA" and Y = ZyzlAn

then . .
X =YP=n""Y |wi—ul, (X =Y[=n"") |o—ul"

Furthermore, choosing £, € E, we have

Z

(Il oo /A" 5) - <y”yn/A" n)
;( n/;?n>/14?n|£—n\

((\% = yil + dr(pi, 1y)) (

K

Thus,

n n
ZH xhlgmn/ 'g _ZH yiaﬂglvn/ n
i=1 A ; Ap

=1
1
2 n "
| nlf
i=1 AP

2

[ ¢

AT

)?\X—Y\,-> <1+ n/ ¢

-1
n

1
2\ 2

))

n

SC/ E—nl+C||{d n
Q

i=1

n

Zn

i=1

2
/ €~
Al

-I—o(ibzn;(a: wil + (-2

1=
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We conclude

S t(spion [ €)= m{wsion [

—1

IA
Q
N\
—
T~
|
=
—
_l_
Q
POUER
[
—
3
Ay
\_M/
[N
Jr
[
—
=
s
POUER
[
—
T~
|
=
\_M/
Nl

Finally, we have

(42)
n! szH(xun/A ¢) ;H(yi,u;,n/A? n)| < o (1+lel+nl)le—nl+o (3% Y11+ Ie]) ).
Set

Xn = ZX ( ) Lar, xI'=(Xc(1/n),Xc(2/n),...,X(1)).
Using the definition of viscosity subsolution and (4.2) we now have, for every ¢ > 0,

d n n
1 )
n 2 n n 7 n
0> 8rp(tn, X™)—k ,; 1 <D p (tn,; <} 1A?> ek,ek>+ﬁ ? 1H<:L’i ,uxn,n/An Dy(tn, X )) FF ().
- - = r

Hence, for large n,

d
0> Orp(to, Xo) — K E <D2 (to, Xo)ek, ex) + — ZH <X5 (*) Mer, / Pe) + F(X™)
AT

= po(n) = C(L+ |Do(tn, X")| + |Pe))|[Dp(tn, X") = Pe| — o 3|X" — X[ (1 + [Pel))

d
Zat‘ﬂ(tmxo)—'ﬂz:(sz (to, Xo)er, ex) + — ZH<X6 (*) Mxny / Pe>+F(Xo)
An

—mi(€) = po(n) — 0(1 +2[Po| +2€)2e — o (3] X" — Xe| +3¢) [ (1 + | Po[ + ),

where lim,,_, o po(n) = 0. Since X, P, are continuous on 2, it follows that

1 i A .
lim — H| X | =), p5n, P. | = H( X, law(X,), P.).
Thus, letting n — oo above we obtain
d
Orp(to, Xo) — £ Y _(D¢(to, Xo)ex, ex) + H (X, law(X,), P.)
k=1

<my(e) + C(1 + 2|Py| +2€)2e + 20 (3e (1 + | Po| +¢€)) .
Finally, letting € — 0 we conclude that
Dep(to, Xo) — Y _(D*p(to, Xo)ew, ex) + H(Xo,law(Xo), Dg(to, Xo)) + F(Xo) < 0.
k=1

Thus V is a viscosity subsolution of (1.3). Reasoning in the same way, we can prove
that V' is a supersolution of (1.3). d
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ExampLE 4.1. The following is an example of a typical particle system that leads
to simple equations of type (1.2). Let G : R* — RY be a bounded even function such
that

G(z) = Gy)| < Lz —y| Va,y e R?

and let W be a standard Wiener process in RY. Let T > 0. We consider a system of
n particles whose states are given by the SDE with common noise

{ dXi(s) = > G(Xi(s) — X;(s))ds + V26dW (s), t<s<T,

Xi(t) =X
If we define
T 1 n 1 n
un(t,x):E —/ F gZéxi(s) ds + Uy 525)(1.(71)
t i=1 i=1

(where B above is the expectation with respect to a probability measure on some refer-
ence probability space), then the function w, is the viscosity solution of the terminal
value problem

—Oyup — KTr(ApD?up) — 725 300 Y05 G — ) - Dyyun
+F (53001 00,) =0 in (0,T) x (RY)",
un(Ty 1, .., ) :UO(% i 0a) on (RH)",
where A, is as in (1.2). In this example the Hamiltonian H is defined by
Havp)=-p- [ Gla—yldy)
R
It is obvious that H satisfies (2.1) and (2.3). We point out that the boundedness of

G is needed here to guarantee (2.3). Regarding (2.2), let z,y,p € R, u, v € P.(R?),
and let  be a Borel probability measure on R? x R with marginals pu,v. Then

|H (x, p, p) — H(y,v,p)| < Llz — y||p| + ‘/Rd Gz — z)u(dy) - p— /}Rd Gz —w)v(dw) -p
< Lie - yllpl + \ / (Gl — =) — Cla — w)(dz, dw)] o
Rd

< io = yllpl + Ll [ 12 = wh(dz.dw)
R

< Lip| (fr —yl+ (/Rd \z—wlrv(dadw)) > :

Since this holds for every v we thus obtain

|H (x, pu,p) — H(y,v,p)| < Lp| (|z — y| + dr(p,v)) .

5. L-viscosity solutions versus viscosity solutions on the Wasserstein
space. In this section, we consider either

U:[0,T) x Po(RY) =R or U:Py(RY) =R

and
U:[0,T)xE—-R or U:E—R
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such that U(t, X) = U(t, XyL1) or U(X) = U(XyL1). Recall
E = L*((0,1),R%).

When U is differentiable at p € Pa2(R?), V,U (1), the Wasserstein gradient of U
at u satisfies

(5.1) V,U() € T, Pa(RY).

Assume next that VU is differentiable at (¢, 1) in the sense of [37] and V..U (1)(q, -),

the Wasserstein gradient of V,U(u) at p belongs to Lo2, , (R?*, R*?). We have

(5:2) (Vi) (@, 2) = (Yl () (2,9) Vg, € R

If we assume that U is twice differentiable in the sense of [37], then the map
(g, 1) = V,U(1)(¢q) has a first order Taylor expansion on an appropriate set [24].
Furthermore, V,U(u) is Lipschitz on the support of y and there exists a symmetric
matrix A;(u) € LZO(Rd, R%*?) which coincides almost everywhere with V4 (V,U(1)).

In this manuscript, we adopt the notation and terminology of [37] by defining V2 U (1),
the Wasserstein second differential of U at p, as

Vo U()(€,Ex) = /Rd A1 ()(9)€(q) - &« (q)u(dq) +/de VU (1) (g 0)€(q) - €+ (g+) u(dq) p(dgs)

if €&, € Li (R, RY). Note that the ordering (g.,q) in the last integral is not a typo.
By abuse of notation, we identify the bilinear forms V21 (1) with the operators

€— M+ [ VUl as(an(da)

which, by (5.2) and the fact that A; is symmetric p-almost everywhere, turns out to
be self-adjoint on L2 (R%, R?).

The relation U(X) = U(XyL1) expresses the fact that U is invariant under the set
of maps which preserve Lebesgue measure. This is what imposes a special structure
on the second differential of U at X when it exists. When U is twice differentiable at
X then for any ¢ € E, D*U(X)(¢)(-) belongs to E and

DAU(X)(Q)() = Ay(X2L1)(X) C + /( | VOG0 (X, X))

Given an arbitrary orthonormal basis {e;, ..., eq} of R, we identify each e;, with
the constant function which assumes the value e everywhere. Abusing notation we
write e, : R — R?. Note that if X € E, then eyoX = ek, and so we may also consider
e, to be the constant function ey : (0,1) — R?. If Ej is the finite dimensional space
spanned by {e1,...,eq}, we have the orthogonal decomposition

E=Ey®Ejy.
The partial trace of the operator ¢ — D?U(X)(¢) on Ep is

d
ApalU(X) = (D’U(X)ex, ex).
k=1

We have the relation
AralU(X) = AuU(p1),

where A,, is the partial Wasserstein Laplacian [24]. This relation will allow us to
compare viscosity solutions on the Wasserstein space and the Hilbert space.
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5.1. Domain of definition of Wasserstein Hessian. In this section, we de-
note by 7!, 7% : R?¢ — R? the coordinate projection maps of R?? onto R?. Given a
positive integer D, we denote by C7(RP) the set of f € C3(RP”) that have bounded

second and third order derivatives.
We start by recalling a few facts about the Wasserstein tangent spaces T, P2(R?).

Let & € Li(]Rd, R9). Note that & € T,,P2(R?) if and only if

S {| Jrza (So(@1) — V(q1)) - (¢2 — q1)v(dq1, g2)|
im inf sup 5 n
=0t ¢ (1,9) w2 =7t L2y,

=0.

10 < |72 — 771HL2(7) <rvyeTl(y, V)}

Here, the infimum is performed over the set C2°(R?) or equivalently over the set
C3(R?). The space T,,P2(R?), being a Hilbert space, can be identified with the co-
tangent space. The Wasserstein gradient of a function U : Po(R?) — R at u is the
element of minimal norm in the subdifferential of & at x and so it belongs to T, Py (R?).

We would like to propose an analogous characterization for all Wasserstein de-
rivatives of order less than or equal to 2. We say that f : R?* — R is symmetric if

flar,a2) = f(a2, qu) for all g1, g2 € R™.
Given 1 € C3(R??) which is symmetric and ¢ € C3(R?), we define

V)= [ o=+ [ lana)—n)dn)e - ()

for p, v € Po(R?). The function V(” 4,4 15 twice differentiable in the sense of [37],

VuV(M¢,¢) (W)(q1) = Vo(q1) + /Rd Vo ¥(q1,b)(v — p)(db),
and so
Vg, (VW(“W) (V)(QI)) =V%(q1) + /R . Vaa?(q,b) (v — u)(db).

We conclude
ViVl (@) = Vara ¥(a1, 42)-

Note that if X, Y € E are such that Xﬁﬁ%o,l) = p and }QC%OJ) = v, then

(5.3) Vs @) = Vg ) (V)

where we have set

Va0 = [ (00 - 60X o

(0,1)
1
+ 2/( : (UJ(Y(w), Y (0)) +¢(X(w), X(0)) — Qw(Y(w),X(o))>dwd0.
0,1)?
Remark 5.1. Let X € E, let ¢ € C3(R?), let ¢ € C3(R??) be symmetric, and set
V= Vi)

(i) Note that if X*Y,Y™* € E are such that X and X* have the same law and

Y and Y* have the same law, then (5.3) implies V(f;,w)(Y) = V(f;w)(Y*)
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(ii) The function V is Fréchet differentiable everywhere on E and for any Y € E
we have

DV(Y)(e) = Vo(¥ (@) + [

(0,1)

(Vo (Y (@), Y (0)) = Vi (Y (), X(0)) ) do.

(iii) The subset of E where the function DV is Fréchet differentiable may not be
E (cf. [37]) unless ¢ and 1 are polynomials of degree 2. However, DV is
Gateaux differentiable everywhere on E and for any Y € F we have

DM = [ T ot [ a0 Y (00)¢00) (o)
(T (V@)Y (0) = Targ 0¥ (), X(0)))6(w) - )l
(0,1)2

for any ¢ € E. In particular, DV (X) = V¢ o X and the operator D2V (X) is
given by

DV(X)C = V20(X) [ Ty (X, X)) ()

)

for ( € E.

LEMMA 5.2. Let X, X* € E, let ¢ € C}(R?), and let ¢ € C3(R??) be symmetric.
If Xﬁc%o,l)*: X&"E%*O’l), then VX = V(f;w) 1s twice Fréchet differentiable at X if and
only if VX" = V(f#id)) is twice Fréchet differentiable at X*.

Proof. We only need to prove one direction of the lemma since the converse di-
rection could be obtained by symmetry. Assume VX is twice Fréchet differentiable
at X. By assumption, there exists a function ¢ : R — R, monotone nondecreasing,
continuous at 0, and such that €(0) = 0 and there exists a function ey : E — R such
that |eg(h)| < e(]h|) and

1
VX(X +h) = Vé(X) - hdw + = V24(X)h - hdw
(0,1) 2 Jon
1
(5.4) +3 / Vs (X (0), X (@) h(w) - h(0)duwdo + [|eo ().
(0,1)2
Since X and X* have the same laws, it is well known that we can choose a sequence of
Borel functions S, : [0, 1] — [0, 1] which are one-to-one, onto, such that S, ﬁﬁ%o,l) =
5%0,1) and such that
lim [ X* — X 0 S,| = 0.
n

In light of Remark 5.1(i), (5.4) implies
VXSn(X 08, +h)=VX(X +hoS;h)

1
- Vo(X) - hoSytdw + 5 V2p(X)ho Syt ho Sy dw

(0,1) (0,1)
1
5 )y Ve VX X@)ho STHw) - ho Sy 0)dudor|h o 57 Peoho 57)
0,1)2

= V(X 08,) - hdw+ 1 V24(X 0 Sp)h - hdw
(0.1) 2 Jon
1

+ 2 /(0 e quqﬂ/’(X 0 S,(0),X o Sn(W))h(w) h(o)dwdo + |h|%eo(h o STY).
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We use again Remark 5.1(i) to conclude that

VX (X 08, +h) :/ V(X 0S,) - hdw + - V2$(X 0 Sp)h - hdw
0,1) 2 Jo,)
+%/ Vo1 ¥ (X 0.5,(0), X 0 Sn(w))h(w) - h(0)dwdo+|h[*eo(h o S, ).
(0,1)2

We let n tend to co to obtain

V(X +h) = V(X™) - hdw + % V2H(X*)h - hdw
(0,1) (0,1)
1

by [ V(X7 0), X (@) h(w) - ho)dado + 1 lim eo(ho ;)
2 (0’1)2 n— oo

We use the fact that lim, o |eo(h o S;1)| < €(|h]) to conclude that VX' is twice
Fréchet differentiable at X*. d

DEFINITION 5.3. Let ju € Po(R?), & € T, P2(R?), let Ay € Li° (R, RY?) be sym-
metric p—almost everywhere, and let Ay € L;'LO@“(RM, RI*4) be such that As(q1,q2) =
Ag(qz, q1), 1 ® p—almost everywhere. We say that (§o, A1, A2) belongs to T;’2732(Rd)

if

Y €0 — Vb, Al — V3¢, Ay — V
lim inf sup { }GO(M 7, €0 ¢2 L T2 ¢ Az quIw” 10 < H7T2—7r1HL2(7) <r~E€ F(H»”)}:Ov
r—0F (6.9 (v,5) 2 =77

where the infimum is performed over the set of pairs (¢,1) such that ¢ € C}(R?), ¢ €
C3(R?d) is symmetric, and V(f;w) is twice Fréchet differentiable at X with law(X) = p.
Here we have set

eo(p,7, &0, A1, Az) == / (fo(ql) + %Al(QI)(QQ - QI)) (g2 — q1)v(dq1, q2)

R2d

1

3 Lo A 2w = 2) - (a2~ 001 (das, aa) (d, ).
R2d x R2d

We shall later use the expression

E(r, i, &0, A1, Az) := supsup

v ol

{ |60 (u,'y,fo, A17A2)| }

7 =)

where the supremum is performed over the set of pairs (v,v) such that 0 < W2(v, u) <
rand vy € I'(u, v).

5.2. Specific expression for superjets/subjets. For u,v,v,&o, A1, A3 as in
Definition 5.3 and ¢,s € (0,7),a € R, we set

e, s,t,a,p,v,7,€0, A1, A2) :=U(s,v) —U(t, 1) —a(s — 1) — /]1;211 o(q1) - (g2 — q1)v(dq1, dgz)
N %/R?d A1(q1)(g2 — q1) - (92 — q1)v(d, dy)

1

! / Aa(gr, 2)(w — 2) - (g2 — g1)Y(dz, dw)y(dar, daa)-
2 Jr2d xr2d

Similarly, for

t,s€(0,T),a€R, X,Y,(o€E, A €L>((0,1),R™), A, e L>((0,1)%,R™%),
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we set
e(U,s,t,a,X,Y, (o, A1, Ag) :=U(s,Y) = U(t, X) —a(s — t) — Co- (Y — X)dw
(0,1)
1 _
o AW -X) (Y - X)dw
2 Jo
1 _

~3 / As(w,0)(Y(0) — X(0)) - (Y(w) — X(w))dodw.
(0,1)2

If the functions U and U are independent of ¢, the right-hand sides of the above

expressions do not have the a(s —t) term and we will write e(U, 1, v,7, o, A1, A2) and

e(U, X, Y, Co, A1, A2).

DEFINITION 5.4. Let t € (0,T) and i € Po(RY) and let U : [0,T) x Po(RY) — R.
(i) We define the parabolic second order subjet of U at (t,pu) to be the set
P27U(t, 1), which consists of (a, &, A1, A3) € R x T;’QPQ(Rd) such that

A A
liminf inf e(u?s?t7u7y777§07 17 2) 2 0
(s,0)— (t, 1) YET (1) |s —t| + W5 (v, 1)

(ii) We define the parabolic second order superjet of U at (t,u) to be the set
P>TU(L, ), of (a,&0, A1, Az) € R x T:’QPQ(RCZ) such that

limsup inf e(u357t7ﬂ7V377§O>A1,A2) <0
(sw)—(t) 1€ () |8 =t + W5 (v, p) =

We set

S(ar,a,)(X)(h) = A1(X) h+ /(0 Y A (X, X (w))h(w)dw for h € E.

Owing to the properties of A; and Ay in Definition 5.3, S(4,, 4,)(X) is a self-adjoint
operator on F.

LEMMA 5.5. Let i € Po(R%) and let X € E be such that Xﬁﬁ(lo’l) = [i.
(i) If (a,&, A1, As) € P2U(t, 1), then

(0 €0(X), Sa,,4,) (X)) € PEU(E, X)),
(i) If (a,&, A1, A2) € P2TU(t, u), then
(@,60(X), Sar,a0) (X)) € PEHU(R, X).
Proof. Tt suffices to prove (i). Let us assume that (a,&y, Ay, Az) € P>~U(t, p).

Let Y € E and set Yﬂﬁ%o 1) = V- Choose first v € I'g(u, v) and then choose X*, Y™ € E
such that

7= (X7 x Y*)ﬁ£%0,1)-

Note
pi= (X xY):Liy € (p,v)
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and

e(U, s, t,a, X, Y, §p0 X, A0 X, Ay 0 (X x X)) =U(s,Y) = U(t, X) —a(s — 1)
- 60(/1’7177 EOvAlaAQ)'

Hence,

eU, s,t,a,X,Y,&po X, A1 0 X, Ag 0 (X X X)) =U(s,v) —U(t, 1) —a(s — )
(55) - 60(M7p7§07A13A2),
where As o (X x X) denotes the function As o (X x X)(w,0) = A2(X (w), X(0)).

Fix for a moment a symmetric function ¢ € C3(R??) and ¢ € C3(R?) such that
V()é ») is twice Fréchet differentiable at X. Recall that by (5.4)

(56) V(?g,w)(y) — €0 (Mapa Vd)v V2¢’ quﬂhw) = O(HY - XH2)

Since the first marginal of v is p, X and X* have the same laws, and so, by Lemma

5.2, V(f; L)) is twice Fréchet differentiable at X*, and so,

(5.7) Vi (V) = eo (17,99, V20, Vg, ) = o[Y* = X*2).
Using (5.5), we have the decomposition
é(U,s,t,a,X,Y,go 0 X, A1 0X,As0 (X x X))
=U(s,v) Ut p) —a(s—t) —eo (N7P7 §0— Vo, A1 — V3¢, Ay — quqlw)
— o (1,2, V6, V20, V010
Thus,
E(U, s,t,a,X,Y, 600X, A 0 X, Ay o (X x X))
=U(s,v) —U(t,u) —a(s —t) — e (u,p, Eo— Vo, Al — V2, Ay — Vq2q1w>
— € (lhp, V¢, V3, Vq2q11/1> — € (Ma 7,0, A1, Az)
+ o170 = Vo, A1 = V26, Ay = Vg, ¥)
+ e (117 V6, V26, Vs ).
Rearranging, we obtain

(Uis,t,a,X,Y,60 0 X, A1 0 X, A2 0 (X x X)) = U(s,v) = U(t, 1) = a(s — t) = eo (11,7, €0, A1, A2 )
— €0 (1,060 = Vo, A1 = V26, As = Vo ¥)
— €0 (My P, Vo, V2¢, Vara ¢)
+ €0 (1,7, V6, V26, Vg )
(

+e0 (1,70 — Vo, A1 — V2, Az = Vpq, ).
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Using Remark 5.1(i) we conclude that
E(U,s,t a,X,Y, & 0 X, A1 0 X, Az 0 (X x X)) = U(s,v) —U(t, 1) — a(s — t) — eo (u,y,go,Al,AQ)
—co(p,€0 = V6, A1 = V76, A2 = Vo)
V(zf;/,)(Y*) —€o (IMIL V¢, V3¢, Varaq 1!’)
+ 0 (1,7, V6, V20, Vazar ) = V1) (V)
+ e0 (11760 — Vo A1 = V26, Az — Vigq, ¥).

We first use the fact that (a, &, A1, As) € P~U(t, u), second use (5.6) and (5.7), and
third use the fact that (€0, A1, A2) € TP (R?) to conclude that

E(U,s,t,a,X,Y,gooX,AloX,Ago(X ><X)>

> o(W3(v,p) +ol]s — 1) = o(|[Y = X[I*) —o(Y* = X*|?)
— Bl = 512y €0 — V6, A1 — V2, As = Vi 0) I — w1220,
— Bl 2l 2, 0 — Vo, A1 — V20, Ay~ Vo) [~ 72

Since
IV = X[l = [lm* = 72|32 2 1Y = X7 = [|7! = 7?22,
we conclude that for any » > 0

L. e(U,s,t,a,X,Y, g0 X, A1 0X,A20 (X X X))
lim inf > —
(5,Y)=(t,X) s —t|+ Y — X|]?

(5.8) — B(r,60 = Vo, A1 — V26, A2 = Vopuy ).

B(r,60 — Vo, A1 — V36, A2 — Yy, )

Maximizing —F, which means minimizing F over (r,¢,) and using the fact that
(&0, A1, A9) € T;’QPg(Rd) we conclude

lim inf E(Uvsvtaa7XaK€OOX7AlOX7A2O(XXX)) 207
(5.Y) = (£,X) ls —t[ + IV — X2

which proves (i). |

DEFINITION 5.6. Suppose k > 0. An upper semicontinuous function U : [0,T) x

Po(R?) — R is an intrinsic viscosity subsolution of (1.1) on the Wasserstein space if
U0,-) <Uy on P2(RY) and

H( [ s @pwtao+ | Tr<A2<q1,q2>>u<dq1>u<dqz>) A1, o)+ F() < 0
Rd R2d

for all (t, 1) € (0,T) x Po(RY) and (a, &, A1, As) € P2HYU(L, ).

A lower semicontinuous function U : [0,T) x P2(R%) — R is an intrinsic viscosity
supersolution of (1.1) on the Wasserstein space if U(0,-) > Uy on Pa(R?) and
(5.9)

on( [ @t [

for all (t, ;1) € (0,T) x P2(RY) and (a, &, A1, As) € PEU(t, ).

If U is both an intrinsic viscosity subsolution and an intrinsic viscosity superso-
lution of (1.1) on the Wasserstein space, we say it is an intrinsic viscosity solution of
(1.1) on the Wasserstein space.

Tr<A2<q1,q2>>u<dql>u<dq2>) A1, o)+ F() 2 0

2d
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THEOREM 5.7. Let U : [0,T) x Po(R?) — R.
(i) If U is an L-viscosity subsolution of (1.1) on the Wasserstein space, then it
is an intrinsic wviscosity subsolution of (1.1).
(ii) If U is an L-viscosity supersolution of (1.1) on the Wasserstein space, then
it is an intrinsic viscosity supersolution of (1.1).
(iii) If U is an L-viscosity solution of (1.1) on the Wasserstein space, then it is
an intrinsic viscosity solution of (1.1).

Proof. It suffices to prove (ii). Assume U is an L-viscosity supersolution of (1.1)
on the Wasserstein space.

Let g € P2(R?) and ¢ € [0,T). Choose X € E such that X;£; = u. We have
Z/{(O,/.L) = U(O’X) > UO(X) = Z’{O(,u)'

In order to show that U is upper semicontinuous at (¢, i), we choose an arbitrary
sequence (i,), C Po(R?%) converging to u and an arbitrary sequence (t,), C [0,7)
converging to t. Let (X,), C F such that X4 = p, and (X,), converges to X.
We have

Hm U(t,, i) = lim U(ty, X,) > U(t, X) = U(t, p).
n—oo

n—oQ

Thus, U is lower semicontinuous at (, u).
Let now t > 0 and (a, &, A1, Az) € PZ~U(t, ). We would like to show that (5.9)
holds. Let X € E be such that Xﬁﬁ%o,l) = u. By Lemma 5.5,

(60X, Staran ) € PTU-X).

Since U is an L-viscosity supersolution of (1.1) on the Wasserstein space, we use
Proposition 2.3 to infer

d
a—kK (Z A (X (w))eg - epdw + / Az (X (w), X(0))ex - ekdwdo>

1 (0,1) (0,1)2

+ H(X, X3L1,60(X)) + F(X) > 0.

This gives (5.9). d

Remark 5.8. Let U : [0,T) x E — R and let U : [0,T) x P2(R?) — R be such
that U(t, u) = U(t, X) whenever X € E is the law of u. In [43], it was proved that if
U is a viscosity solution of the first order equation

(5.10) U+ H(X,XyL,,DU)+F(X)=0 in (0,T) x E,
' U(0,X) =Uy(X) onE,

then U is an intrinsic viscosity solution of the first order equation

(5.11) { U + H(p, 1, V,U) + F(p) = 0 in (0,T) x Po(R?),
. Z/{(O, :u) =Up (u“) on P (Rd)7

according to the definition proposed in [43]. Therefore, Theorem 5.7 is an extension
of the results of [43] from the case x = 0 to the case k > 0.

6. First order convex HJB equations and value functions. In this section
we show that if Kk = 0 and H does not depend on u and is convex in the gradient
variable, then the solutions w, of (1.2), which are value functions of optimal con-
trol problems for n-particle systems, converge to the value function of a variational
problem in Py (R4). Thus we obtain a representation formula for the solution of (1.1).
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Hypothesis 6.1. The function H = H(z,p), in addition to satisfying Hypotheses
2.1 in the x and p variables, is convex in the p variable and

(6.1) H(z,p) > Cy + Cylp]* Y az,peR?

for some constants C4, Csy, where Cy > 0.

We define L(z,v) to be the Legendre transform of H(z,p), that is,

L(z,v) := sup (p-v — H(x,p)), z,vecR%
pER?

This implies, by (2.3) and (6.1),
(6.2) C3+Cylv]* < L(x,v) < C5+Cgslv]*  for some Cs, Cy,Cs, Cs with Cy, Cg > 0.

Given p € Po(RY), € € L2(R%RY), we define

£(,€) == / L, &) uld) — F ().

For 0 <t < T, we define the action

A(o,v) ::/0 L(or,v:)dT 4+ Uy(00).

Let u, : [0,T] x (RY)™ be, as before, the viscosity solution to (1.2), forn =1,....
For p € P2(R?), let

(6.3) Ut p) := (i;}f){fl(a,v) ‘ o =p}

with the infimum taken over all the pairs (o, v), where! o = o, € AC?(0,t; P2(R9)),
v = v, is a velocity vector field for o, and oy = pu. Here AC2(0,t; P2(R?)) is the space
of absolutely continuous curves in Py(R?) with square-integrable metric derivative; see
[3, Definition 1.1.1]. Define

_ 1 &
ﬂn(t7x) =U tv ; 215m7 ) X = (‘rla s 7xn) € (Rd)n
j=

We want to investigate the asymptotic relationship between u,, and u,,.
Set

1 n 1 n
= - 0y |, = - 6q |,
f(x)=F - ; z; ug(x) = Up " ]; ;

and
n

l(x,v)=—f(x)+ % ZL(:Ej,vj).
j=1

Define
Cu(t,x) := {z(-) € AC?(0,t; (Rd)”) | x(t) = x}.

I'We use the subindex notation o, or o(7) interchangeably to mean the value of the path at time
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With the conditions on H listed in Hypothesis 2.1, the solution u, to (1.2) has the
value function representation

(6.4) un (t,x) = irflf {/0 L (E(7), (7)) dT 4 uo(£(0)) | &() € Cn(t,x)} .

Denote by A the functional that is minimized in (6.4), i.e

AE()) = / L (E(7), (7)) dr + o (€(0)).

Observe that when o, = %Z?:l 0z, (r) for z(-) € AC?(0,t; (R?)"), then

Z 1o, (rij(r) for ae. 7€ (0,t) and  A(o,v) = A(z(")).
j=1
We will make use of the following lemma.

LEMMA 6.2. Let u € P2(R9), and let o € AC?(0,t; P2(R?)) be a path of velocity
w such that o, = p. There exist sequences {y™}°_;, y™ € (RH)™, {o™}_,, o™ €
Cin(t, y™) with corresponding velocity vector fields w™, and {r,}5°, rm ¢ 0, such that

(6.5) sup da(07,07") < Ty,
0<r<t
(6.6) A(e™,w™) < Ao, w) + 7.

Proof. We are first going to prove the existence of such sequences as in the state-
ment, for which

(6.7) //R (&, W™ (2))o™ (dx) d7</ /R (@, 105 (2)) 0 (d2)dT + .

Step 1. We start with a standard mollification procedure by setting

W) = ee(la /), @)= gala/e). ot =or

we = W ey 77 “(z—y)
T or Jra 7 (x = y)o-(dy)
By Lemma 7.1.10 of [3],
(6.8) da(of,0,) < 5/ |z|?n(z)dx vV 0<71<Ht.
R4

Let us now prove that

(69)  limsup /O t /R e, wf)o? (de)dr < /O t /IR L, we (2))o (dr)dr.

Note for any arbitrary fixed T,
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Since for every z € RY, [o,7%(x,y)o,(dy) = 1 and L(z,-) is convex, we use
Jensen’s inequality to infer
(6.10)

L(vwf-) =L <'7 /]Rd wT<y)jE(ay)o-T<dy>> < Ad L(,U)-,—(:l/))jg(, y)O'-,—(d:l/) < 0.
We have obtained the finiteness of the expression at the right-hand side of (6.10) since
L wr )] < COA+ we(y)),  j° € LX(R*),  w, € L*(o7).

Observe that the function = — [, L(z, w,(y))j*(x, y)o-(dy) belongs to L'(c%). In-
deed,

/Rd /Rd|L(x,wr(y))|j5(x,y)UT(dy)Ui(dx) g/ /d CL + [wr (0)2)7* (2, 9)o (d)o (d)

- + / )l ([ (e = it ) o (a)

< CAH |lwrlZ2g)-

Similarly,

/Rd /Rd L(z,w-(y))j(z,y)o,(dy)os(dz) = /Rd /Rd Lz, wr (y))° (2, )0 (da)or (dy)
= / / L(z, wr (y))n"(z — y)dzo(dy).
R4 JRA

Thus, integrating (6.10) on both sides with respect to o2, we get

(6.11) / L(z,wi(z))os(dz) < / / L(z,w, (y))n° (xz — y)dzo,(dy).
Rd Rd JRd
Classic arguments show that

lim /Rd /Rd L(z,w,(y))n°(x — y)dxo, (dy) = /Rd L(y, w,(y))o-(dy).

e—0

From this, together with (6.11), it follows that

lim sup /Rd L(z,w)os(dx) §/ L(z,w,(x))o,(dx).

e—0 R4

An application of Fatou’s lemma now yields (6.9).
Step 2. Notice that the constructed o2 solve the continuity equation

00 +div(wios) =0 in (0,t) x RY,
because

div(wios) = div((wro,) *n°) = (div(w,0,)) *n° and 0,0 = (0r0,) *1°.
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Since wioZ 1s smooth, for arbitrary 6 > 0 we can find o=V € Cy(¢,y") for some

NeN and yN € (RHN, satisfying

sup da(0f,05™) <6,
0<r<t

¢
/ / L(z,wsN (2))oo™N (da)dr < / / (z,ws(x))os(dx)dr + 0.
0 JRd Rd

It is clear that combining the latter inequalities, together with (6.9) and (6.8), gives
the desired sequence 7y, such that inequalities (6.7) and (6.5) hold.

To finish the proof, note that by (6.5) and the uniform continuity of F, Uy, there
exists a sequence s,, \, 0 such that

Uo(og") < Uo(o0) + Sim, /]: )dr < — /]—'JT dr + sp.

Denoting 7., + 28, still by r,,, we obtain (6.6). 0

LEMMA 6.3. For any 0 <t < T, the value functionU(t,-) is lower semicontinuous
on Pa(RY).

Proof. Let u™ — p be such that

lim U(t, u") = liminfU(t,v).

n— 00 V=

Let e > 0 and let 0™ € AC?(0,t; P2(R?)) be paths of velocity v™ such that o = u»
and

/Otﬁ( o7, vR)dr +Up(u™) <UL, u™) +e.

It follows from (6.2) that

t
(6.12) /O 07 (122 (mydT < C

for some C' independent of n. Therefore, by Proposition 7.1 in the appendix, we
have the existence of a subsequence (still denoted by ¢”) and o € AC?(0,t; P2 (R%)),
with ¢ = p, such that for every s € [0,¢], o2 converges narrowly to os. Denote the
product measures on R? x [0,¢] by 0%ds. These converge narrowly to o,ds. Further-
more, denote by v2olds the vector measure whose density with respect to o7 ds is the
time-dependent vector field v = v"(s, z).

We then obtain from (6.12) that there exists a subsequence of (¢, v™), still in-
dexed by n, such that o'ds converge narrowly to osds while v7' o7 ds converge narrowly
to a vector measure w on R? x [0, ¢].

Let ¢ € C}((0,t) x R?). Then

n—oo

0= lim ( /0 t [ Dot )0 (da)is + /0 t | Dgp(s,x)m?(x)a?(da:)ds)
(6.13) :/(: /Rd gp(s,x)as(dm)ds—i—/ Dp(s,z) - w(dz, ds).

[0,¢] xRd
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By Proposition 7.2 in the appendix, w < o4ds, so there is an L!(ods) vector field
v(s,x) such that w = vs04ds, and, by the same proposition,

t
/ / L(z,v; )0 (dx)dr < hmmf/ / ol (dx)dr.
0 JR4 oo R4

However, by (6.2) and (6.12), we actually obtain

t
/0 o120 dr < C

for some constant C' which, together with (6.13), means that v is a velocity vector
field for o. Therefore, since F is narrowly continuous, it follows that

U(t, ) < liminfU(t,v). |

Vv

THEOREM 6.4. Given pu € Po(R?), 0 <t < T, there evists a sequence {x(n)}>,,
x(n) € (RN, such that dy (5 Y271 62 (n)s 1) = 0 as n — 0 and

) = i nt S [ (e, E)d+ uole0) | €0 =xn)

lim w,(t,x(n)) = U(t, ).

n—oo

In particular, U = U from Theorem 1.2 and U is continuous and satisfies the continuity
estimate (4.1).

Proof. Let {ok, v }32; be a minimizing sequence of paths and velocities for U (¢, i)
such that

(6.14) Alow,vr) Ut p) + 1/k.

By Lemma 6.2, for each k € N there exists a sequence {o}*,v}"}°°_;, with the mth
term in C,, (¢, 07*(t)), such that

(6'153n<t,az"<t>> < Ao) < Alow,v) +1/m and o' (t) — on(t) =t in dy.
Then,

U (t, 0 (1) Ut p) + 1/k + 1/m;
consequently,

lim sup uy, (t, o (t)) < U(t, p).

m—r o0
Hence, since da(o7(t),) — 0, this, together with the lower semicontinuity of
m—r oo

U(t,-) proved in Lemma 6.3, gives

lim wy, (t, 0 (t)) = U(t, ).

m—r o0

Putting x(n) := o2(t), n = 1,..., proves the statement. d
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7. Appendix.

PROPOSITION 7.1. Let p € Pao(R?) and let (0™,v™)3%, be a sequence such that
for each n € N, o™ € AC?(0,t; P2(R?)) and v™ is a velocity vector field for o™. If

t
ILm da(of, ) =0 and / ||Uf||%2(gn)d7' <C VneN,
n o0 0 T

then there exists a subsequence (0™*)2, and o € AC%(0,t; Pa(RY)), with oy = p, such
that for a.e. 7 € [0,t], o™ — o, narrowly.

Proof. Note that if 0 < 51 < s <'t, by Hélder’s inequality we get
S2
(7.1) do(oy ,00,) < / o7 ||L2(onydT < VCV/sy — 51

In particular, (¢™), is bounded and equicontinuous in Pg(Rd). We apply the re-
fined version of the Ascoli-Arzela theorem in Proposition 3.3.1 of [3] to conclude the
proof. 0

PROPOSITION 7.2. Let L be as in section 6. Consider a sequence {v,}5° U{v} of
finite, positive Borel measures on [0,T] x R? that converges narrowly to v. Suppose
we have a sequence g, : [0,T] x RY — Re of vector fields such that

(7.2) / lgn (b, 2) v (dt, dz) < 00
[0,T]x R4

and (gnVn)n converges narrowly to a vector-valued Borel measure A on [0,T] x R%.
Then,

(i) there exists a Borel vector field v : [0,T] x RY — R? such that A = vv;

(ii) we have

/ L(z,v(t,z))v(dt,dx) < liminf/ L(z, gn(t, x))v,(dt, dz).
(0,T] xR4 [0,T] xR¢

n—oo

Proof. We define on [0, T] x R?? the measures f,, by

(7.3) / B(t, 2, w) fo (de, dw) = / B(t, 2, gu(t, ) n(t, do)
[0,T]xR24 [0,T]xR4

for ® € C,([0,T] x R??).

(i) We use (7.2) and the fact that (v, ), is precompact for the narrow convergence
topology to conclude that (f,), is precompact for the narrow convergence topology.
Therefore, without loss of generality, we may assume that (f,), converges narrowly
to some Borel measure on [0, T] x R2? which we denote by f,. When ® depends only
on the (¢, z) variables, passing to the limit in (7.3), we conclude that the first marginal
of fs is v. Hence, there exists a Borel map (¢,z) — éﬁ’x) of probability measures
(cf. [3, subsection 5.3]) such that we have the disintegration

/ B(t, 2, w) foo (dt, da, du) = / ( / @(t,x,w)fggm(dw)) v(dt, dz)
[0, T xR2d [0, 7] xRd R4

for all ® € Cy(]0, 7] x R2%).
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Let ¢ € O([0,T] x R?, R?) be a bounded function. Although (¢,z,w) € [0,T] x
R24 s (¢, ) - w is not bounded, (7.2) allows us to assert that (setting z = (¢, ))

/[0 TIxR ©(2) - wfs(dz,dw) = lim ©(2) - wfn(dz, dw)

n—oo [O,T]X]RZd

= lim ©(2) - gn(z)vn(dz).

n=00 J10,T] xR

We now use the fact that X is a point of accumulation of (g,vy,) to conclude that

/[0 T]xRd <~/]Rd QD(t, x) ’ U)féé’w)(dw)) V(dta d:t) = /[0 TIxRe (P(tv x) : )\(dif7 dx).

We conclude the proof of (i) by setting v(t,z) := 5. wféé’w) (dw).

(ii) Since L is bounded below by the hypotheses, we may suppose without loss
of generality that L > 0. For each r > 0 let ®, € C(R??) be a function which is
identically 1 on the ball of radius r, is zero outside of the ball of radius r 4+ 1, but
remains between 0 and 1 everywhere. We have

/ L(z,w)®,(z,w) foo (dt, dz, dw) = lim inf/ L(z,w)®,(z,w) fn(dt, dz, dw)
[0,T] xR2d [0,T] xR2d

n— 00

< lim inf/ L(z,w) frn(dt, dz, dw)
[0,T]xR2d

n— 00

and so, letting r — oo, we conclude

/ L(z,w) foo(dt, dx, dw) < liminf/ L(z,w) fn(dt, dz, dw).
[0,T] xR2d 0,T] xR2d

n— oo

Thus,

/ (/ L(:v,w)féé’”“')(dw))u(dt,dx) < lim L(z,w) fr(dt, dz, dw).
[0,T]xR¢ N JRe

0 J10,T] xR24

Since L(x,-) is convex, we apply Jensen’s inequality and use the fact that féi””)
is a Borel probability measure to conclude the proof. 0

We conclude the appendix with a proof of comparison for viscosity solutions of a
class of equations that includes (1.3). Let W be a real separable Hilbert space. We
assume the following hypothesis.

Hypothesis 7.3.
(i) The function H : W x W — R satisfies

(74) |H(X,P)- H(X,Q)| <C+|P|+|Q)IP-Q| VPQXeW
and
(7.5) \H(X,P)— H(Y,P)|<o(|X —Y|(1+]|P])) VPX,YeW

for some modulus of continuity o.
(ii) The function Uy : W — R is such that

(7.6) [Uo(X) =Uo(V)| <my (X =Y]) VXY eW

for some modulus of continuity m;.
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We note that if H(X,P) = H(X,law(X), P) + F(X) and Hypothesis 2.1 is sat-
isfied, then Hypothesis 7.3 holds. Thus comparison for viscosity solutions of (1.3)
follows from the more general theorem below.

THEOREM 7.4. Let Hypothesis 7.3 be satisfied and let k > 0. Let u be a viscosity
subsolution of

d
Ou — /-@Z(DQuek,ek) +H(X,Du)=0 in(0,T)x W,
k=1
u(0,X) =Up(X) onW,

(7.7)

let v be a viscosity supersolution of (7.7), and suppose that there exists M > 0 such
that
sup u(t,X) < M, sup —ou(t, X) < M.
(t,X)€l0,T)xW (t,X)€[0,T)x W
Then u <wv on [0,T) x W.

Proof. The proof is similar to the proof of Theorem 3.3. The main difference
is that we have to use a Hilbert space version of the maximum principle for semi-
continuous functions, Theorem 3.2 of [27], instead of Theorem 8.3 of [26]. For
d > 0, let ps be the function from Lemma 3.2 applied to the modulus o1(s) =
(1+T)o(s) +mi(s)+ (2M + 1)s. In particular we have

(7.8) @s(1) Z2M +1,  ps(s) = mu(s).
If u £ v, then there is v > 0 such that

(7.9) sup (u—v)>w.
(t,X)€[0,T)xXE

We will show that this leads to a contradiction.
Let {n1,7m2,...} be an orthonormal basis of W. For N = 1,2,..., we denote by
Py the orthogonal projection in W onto span{n,...,nn}, and we set Qn = I — Py.

Denote h(X) := (1 + |X|?)}/2. If (7.9) is true, then for sufficiently small p,~,a > 0

sup (u(t, X) = un(t,Y) — —E— — os((y + |X = Y[2)2)(1 + t) — a(h(X) + h(Y))) > 0.
X,Y €EW,te[0,T] T—1

We also notice that the expression above goes to —oco as | X|+|Y| — +oo. Therefore,
by the perturbed optimization result of Ekeland and Lebourg (see, for instance, [29,
Theorem 3.25]), for every n > 1 there exist a,, € R, p,,, ¢, € W such that |a, |+ |pn| +
lgn| < % and

ult, X) = un(t,Y) = = = os((r -+ 1X = YR (1 +) = alh(X) + h(Y))

+ apt + <pn7X> + <Qnay>

attains a strict maximum at some point (£, X,Y). By the construction of @5 we have
0<t<Tand|X —Y|<1. It now follows from Theorem 3.2 of [27], together with
Remarks 2.3 and 3.1 there, that for every N > 1 there exist b1,bs € R, Sy, Ry € S(W)
and C > 0 independent of N such that Sy = PySnPn, Ry = PvRnPn,Sy < Ry
and such that, denoting 5 = (y + |X — Y[?)2,

X-Y

(bl, 25(5)

s

(1+4%) + aDh(X) = pu, Sx + CQu + aD2h<X>) e PP u(f, X),
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-y ] N e
(bg,(pg(s) S (14+1t) — aDh(X) + pp, Ry — CQnN — aDQh(X)> eP> v(t,Y),
— o (5 r_
by — by = @5(3) + (T — 52 Ay,
Using the definition of viscosity subsolution we now have
d —
by — mZ((SN +CQnN + aD*h(X))ey, ex)
k=1
. X-Y _
L (X,sog@) L1+ + aDh(X) —pn) <o,
which implies, by (7.4),
d . X-v
bl—KZ<SN€k,€k>+H(X,QDg(S) 3 (1+E)>
(7.10) k=1
1 1
<o (N) + 03 (n) + o4(a)
for some moduli o9, 03,04. Similarly we have
2 . X-v
by — HZ(RNek, ex) + H (Y, ©5(3) S (1+ f))
(7.11) k=1
S 1 + 1
) N g3 E —+ 04(&).
Subtracting (7.11) from (7.10) and using Sy < Ry, (7.5), we obtain
1 1 B "
_ - > 7
w2 () +on () o) = esl9) + 7
- X-Y ~ X-Y
i (X 00 - A (Voo )
(7.12) 5 5
_ ,u/ _ ! /=
> —_— — 1 1+T
> ps5(5) + T2 o (5(1+¢5(5)(1+1T1)))

> ot o)~ PhET ) 2

where we have used the definition of o7 and Lemma 3.2 to justify the last two inequal-
ities. Inequality (7.12) yields a contradiction after we send N — +o0, then n — +o00,
and finally o — 0. ]
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