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ABSTRACT

A major reason why nested or virtualized address translations are
slow is because current systems organize page tables in a multi-level
tree that is accessed in a sequential manner. A nested translation
may potentially require up to twenty-four sequential memory ac-
cesses. To address this problem, this paper presents the first page ta-
ble design that supports parallel nested address translation. The de-
sign is based on using hashed page tables (HPTs) for both guest and
host. However, directly extending a native HPT design to a nested
environment leads to minor gains. Instead, our design solves a new
set of challenges that appear in nested environments. Our scheme
eliminates all but three of the potentially twenty-four sequential
steps of a nested translation—while judiciously limiting the number
of parallel memory accesses issued to avoid over-consuming cache
bandwidth. As a result, compared to conventional nested radix ta-
bles, our design speeds-up the execution of a set of applications by
an average of 1.19x (for 4KB pages) and 1.24x (when huge pages
are used). In addition, we also show a migration path from current
nested radix page tables to our design.
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1 INTRODUCTION

Cloud computing relies on virtualization hardware to provide strong
isolation and enable server consolidation. Virtual Machines (VMs)
are multiplexed over hardware resources and offer a safe sand-
box for user services. Today, all major cloud providers use VMs,
e.g., Amazon’s EC2 [7], Microsoft’s Azure [62], and Google’s Com-
pute Engine [32]. Moreover, to reduce the overheads of VMs, light-
weight virtualization frameworks have emerged, such as AWS’s
Firecracker [2] and Google’s gVisor [33]. With these frameworks,
some of the main performance overheads of traditional VMs, such
as long boot-up times, have been successfully curbed.

However, in spite of nearly twenty years since the inception of
virtualization hardware [1, 8, 42] and extensive research [3, 6, 13, 15,
16, 25, 29, 30, 38, 39, 52-54, 66, 72, 76, 80, 89], address translation
still introduces substantial performance overhead in virtualized
systems. A major reason why address translation has high overhead
is because page tables are currently organized in a multi-level tree
that is accessed in a sequential manner. This organization is called
radix page tables.

In a native (i.e., not virtualized) environment, a virtual to physi-
cal address translation requires traversing a tree with four levels of
page tables. Such traversal potentially requires issuing up to four
sequential memory accesses. In a nested (i.e., virtualized) environ-
ment, accessing the table at each level of this tree (now called guest
page table level) itself requires performing a translation that tra-
verses four levels of pages tables (now called host page table levels).
Traversing these four levels of host page tables again potentially
requires issuing up to four sequential memory accesses. When ev-
ery step is counted, a nested address translation can require up to
twenty-four sequential memory accesses. If this is not bad enough,
this problem is likely to get worse soon: new processors such as
Intel’s Sunny Cove [44, 45] add a fifth level to the tree. As a result, a
nested translation may require up to thirty-five sequential memory
accesses.

To reduce the overhead of both native and nested address transla-
tion, current systems rely on supporting huge pages [56, 66, 67, 84]
and hardware caching of address translations. Huge pages reduce
the metadata required to support translations. Hardware caching
reduces the need to perform expensive memory accesses during
translation. Adopted solutions for hardware caching include larger
multi-level TLBs and, to reduce the cost of TLB misses, Page Walk
caches in the Memory Management Unit (MMU) of the processor.
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For the specific case of nested translation, the MMU of current sys-
tems further includes Nested TLBs [9, 16]. They cache the traversal
of the four host pages table levels needed to access each guest page
table level.

Unfortunately, these techniques are now becoming insufficient.
Even with them, nested address translation can account for more
than 50% of the execution time of applications [6, 18, 38, 52]. With
TLB access times already overtaking those of the L2 cache [87], and
the upcoming commoditization of terabytes of main memory capac-
ity [47, 48,73, 86], a redesign of the address translation mechanisms
seems inevitable.

To address this challenge, we propose to speed-up the process
of nested address translation by exploiting parallelism. For that,
we rely on hashed page tables (HPTs) [14, 49, 83, 89]. HPTs fun-
damentally eliminate the sequential steps of radix page tables. In
theory, they perform address translation in one step, by hashing a
virtual page number into a hash key, accessing the corresponding
table entry, and reading the physical page number from there. HPTs
have been implemented in the past [26, 27, 35, 40, 41, 43, 50] and
recent work [79, 89] has solved some of their traditional shortcom-
ings [14, 35, 89].

In particular, in this paper, we consider our previously-proposed
native HPT design called Elastic Cuckoo Page Tables (ECPTs) [79].
If we directly extend the ECPT design in a nested manner for both
guest and host, we find that the resulting system delivers minor
performance gains over nested radix page tables. The main rea-
son is that a nested ECPT translation sometimes results in many
parallel memory accesses, which consume too much bandwidth.
Consequently, we analyze the translation mechanisms and redesign
them so that they issue fewer parallel memory accesses.

Specifically, we focus on three aspects of a nested ECPT design.
The first one concerns misses on a key hardware cache that ECPTs
use to cache guest metadata. On a miss, to find the correct loca-
tion requested by the access, the hardware needs to first translate
the missing guest address, causing additional memory accesses. To
minimize this problem, we introduce a new hardware cache in the
MMU called the Shortcut Translation Cache (STC). The STC keeps
the mapping between missing guest addresses and their transla-
tions. Intuitively, the STC caches translations of ECPT metadata in
a manner logically similar to how the Nested TLB [16] caches trans-
lations of radix page tables. The impact of the STC is a reduction in
the number of memory accesses caused by address translation.

The second aspect of our design has to do with some metadata
that the native ECPT design kept uncached. In a nested ECPT
design, such metadata does benefit from hardware caching. Hence,
our design caches the metadata in the MMU—some of it adaptively,
depending on the locality of the application. The result is a further
reduction in the number of memory accesses caused by address
translation.

The final aspect of our design leverages the fact that the system
may know the page size used by the page tables. If it does, we can
further reduce the number of memory accesses involved in address
translation.

We call the resulting design Nested ECPTs. To our knowledge,
Nested ECPTs is the first practical design for parallel nested address
translation. It eliminates all but three of the potentially twenty-four
sequential steps of a nested radix translation. Moreover, we also
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show how industry can migrate from the current nested radix page
tables to Nested ECPTs.

We evaluate Nested ECPTs with full-system simulations. We
show that they successfully exploit parallelism during nested ad-
dress translation and deliver substantially higher performance than
nested radix page tables. Compared to nested radix tables, Nested
ECPTs speed-up the execution of a set of applications by an average
of 1.19x (for 4KB pages) and 1.24x (when huge pages are used).

Overall, our contributions are:

o Nested ECPTs, the first page table design for parallel nested ad-
dress translation.

e A migration path from current systems to Nested ECPTs.

e An evaluation of Nested ECPTs.

2 BACKGROUND
2.1 Radix Page Tables

Radix page tables, which are the design used by most current archi-
tectures, organize the translation in a multi-level tree. To translate a
memory address, the hardware walks over each level of the tree se-
quentially. Currently, the x86-64 architecture implements a 4-level
tree. In addition, x86-64 supports large pages of 2MB and 1GB. For
such pages, the translation is shortened by one or two levels.

To reduce translation overhead, MMUs have small per-core

caches called Page Walk Caches (PWCs) [3, 13, 16, 17]. PWCs store
intermediate page table entries. On a TLB miss, the hardware per-
forms a page walk. The walk involves checking the PWC to obtain
the desired translation and, on a PWC miss, accessing the memory
hierarchy to get the translation.
Native Address Translation. Figure 1 shows a native x86-64
page walk to translate a virtual address (VA) to its physical address
(PA). The hardware walks through four levels of tables (L4 to L;)
called PGD, PUD, PMD, and PTE. The hardware first reads the CR3
register, which stores the base of the L4 table. By adding CR3 and
bits 47-39, the hardware obtains the L4 entry whose content is the
base of the correct L3 table. Then, by adding such content and bits
38-30, one obtains the L3 entry whose content is the base of the
correct Ly table. The process continues until the correct L; entry is
read. The L; entry stores the physical page number, which together
with the page offset (bits 11-0) is the PA. Thus, in the worst case, a
page walk requires 4 sequential memory access.

VA
VA[47:39] VAR8:30]|  VA[29:21] vARO:12]|  VA[L1:0]
Y Y '\
CR3 —>c>—>, X
PGD PUD PMD PTE

Figure 1: Native page walk in the x86-64 architecture.

For 2MB or 1GB page sizes, the page walk ends at Ly or at Ls,
respectively, resulting in up to three or two memory references.
The recently-accessed L4, L3, and Ly table entries are cached in the
PWC for future access, but L; entries are not [13, 46].
Virtualized Address Translation. Address translation in a virtu-
alized environment is more complex because the physical memory
is managed by the hypervisor and is not exposed to guest OSes. A
PA viewed by a guest OS is in fact a guest physical address (gPA),
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which needs to be further translated into a host physical address
(hPA). Hence, the nested address translation of a guest virtual ad-
dress (gVA) involves two phases: from gVA to gPA, and from gPA
to hPA.

Modern hardware-assisted virtualization implements nested pag-
ing (e.g., Intel’s EPT [46] and AMD’s nested paging [9]). Nested
paging uses two layers of page tables: each guest OS maintains
a guest page table that maps gVAs to gPAs, and the hypervisor
manages a host page table per guest that maps gPAs to hPAs.

Figure 2 shows a nested page walk in x86-64. Square boxes are
levels of the host page table (hL;) and circular boxes are levels of
the guest page table (gL;). The translation stars with a gVA and
produces an hPA.

gVA gCR3 Lemm T
GVA[47:39] é L;'/ hL, hL hL~\)
VA[47:39 gly 4 3 hL, 1
g P25 4
A
VA[38:30 igL ’/h‘L hL hL ~;£~~~)
g : f 3w 4 3 2 1
>0 6 P17 Pl s P o ->{li!'}-
A
VA[29:21] L /] ’h‘L hL hL - ;1]: >
g L1 NG N=1) 4 3 2 1
PO 11 P2 P P4 "1liEI"
A
VA[20:12] ‘LgL q ’h’L hL hL r 1:1: >
g : Y 1 4 3 2 1
>0 gPA’ 16 K 17 > s [P 19 3
A
gVA[11:0]
Data
Page\ h_L4 9 hL3 _) hL2 » hL] ¢hPA
gPA”| 21 22 23 24 To TLB
#
EPTP - =->» NTLB Caching

Figure 2: Nested page walk in x86-64. The numbers in the
squares or circles are the steps in the translation process.

In order to access each level of the guest page table (gL;), where
i ={4,3,2,1} in Steps 5, 10, 15, and 20, the hardware first needs to
translate the gPA of the gL; table to an hPA. The translation of such
gPA requires a page walk that iterates over the hL4 to hL; levels
of the host page table (Steps 1-4, 6-9, 11-14, and 16-19). At the
end, the gL; entry at Step 20 produces the gPA of the target page.
Then, a final walk is needed to translate this gPA to the hPA of the
page (Steps 21-24). Finally, the hardware adds the address obtained
from Step 24 to the page offset to obtain the final hPA. The process
potentially requires up to 24 sequential memory references (Steps
1-24).

Support for huge pages changes the page walk as follows. If the
host supports 2MB or 1GB pages, the hL; levels of the translation
or both the hL; and hL; levels, respectively, are eliminated. If, in
addition, the guest supports 2MB or 1GB pages, the gL level or
both the gL and gL levels, respectively, are eliminated.

Recently-accessed table entries of gL; for i = {4,3,2}, and of hL;
for i = {4,3,2,1} are cached in PWCs [9, 16]. Further, there are Nested
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TLBs (NTLBs) that cache the translation of the gPA of Level i guest
page table (gL;) to its hPA, as shown with dotted lines in Figure 2.
These cached translations can skip four host page table accesses.

2.2 Hashed Page Tables

Hashed page tables (HPTs) are an alternative design to radix page
tables. They have been implemented in the IBM PowerPC, HP PA-
RISC, and Intel Itanium (IA-64) [26, 40, 43, 49, 50]. In HPTs, address
translation is performed by hashing the virtual page number, in-
dexing a hash table, and reading the physical page number from
the entry. Unrealistically assuming no hash collisions, no multiple
page sizes, and no page sharing across processes, only one memory
reference is needed for address translation in the native setup.

In a virtualized environment that uses HPTs, only three memory
references are needed for a nested address translation [89]—again
unrealistically assuming no hash collisions, no multiple page sizes,
and no page sharing.

The idea is as follows. We use the gVA to access the guest HPT
and read the gPA of the target data page; this is the outcome of
Step 20 in Figure 2. However, to find the guest HPT entry in host
memory, we first need to access the host HPT. This is the equivalent
of Steps 1-19 in Figure 2. Finally, once we get the gPA of the target
data page, we need to access again the host HPT to obtain the hPA
of the target page. This is the equivalent of Steps 21-24 in Figure 2.
Overall, at most three memory accesses are needed: host HPT, guest
HPT, and host HPT.

Figure 3 shows such a nested page walk. On the right, we show
the host memory, which is real. On the left, we show in dashes the
memory as seen by the guest, which is virtualized.

Host

Memory
Real) | hpA of
Guest Data Page
- Data Page |<+—
Memory 3
! (Virtualized) !
gvVA ! ! gPA of
@ :, ,,,,,,,,, , 9 Data Page PTE
{ DataPage | ' g
NTEEEY. @
-0 : T
e O
v r
!
!
gCR3 ===t + hPTE
| gHPT |
+ hPTE @
gPA of ( : *
gHPT entry hCR3y
hHPT

Figure 3: Nested page walk with hashed page tables (HPTs)
that unrealistically assumes no hash collisions, no multiple
page sizes, and no page sharing. For simplicity, this figure
shows a contiguous gHPT in host memory.

In Step @, the hardware attempts to use the gVA to access the
guest HPT (gHPT) entry (shown in the figure as gPTE). It does
so by hashing the gVA using the guest hash function (gH) and
adding the resulting hash key to the base of the gHPT (stored in
the gCR3 register). However, the resulting gPA is virtualized and
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cannot be directly accessed (hence the question mark in the figure).
It needs to be translated to an hPA by accessing the host HPT
(hHPT). Therefore, it is hashed using the host hash function (hH)
and the resulting hash key is added to the base address of the hHPT
(stored in the hCR3 register). The resulting entry in the hHPT (an
hPTE) tells where the gPTE is.

In Step (©), the hardware uses the contents of this hPTE as a
pointer to access the desired gPTE. This gPTE contains the gPA of
the target data page.

In Step ®, the hardware translates this gPA to the hPA of the
data page. This is again done by hashing gPA using hH, adding the
resulting hash key to hCR3, and accessing the resulting entry in
the hHPT. The contents of this hPTE is a pointer to the target data
page in host memory.

HPTs have shortcomings. The first one is that hash collisions
are expensive: resolving them requires either memory accesses to
walk a collision chain [14], open-addressed hash table slots [89],
or invoking the OS [27, 35, 43]. The second shortcoming is that, to
avoid dynamic resizing of hash tables, the traditional design uses
a single HPT shared by all the processes. Such a design cannot
support multiple page sizes or page sharing between processes
without introducing additional levels of translation. For example,
the PowerPC architecture implements a two-level translation pro-
cedure for each memory reference to support huge pages and page
sharing [41]. The result is additional memory references.

2.3 Elastic Cuckoo Page Tables (ECPTs)

A design that addresses the shortcomings of HPTs is Elastic Cuckoo
Page Tables (ECPTs) [79]. ECPTs resolve hash collisions by using
cuckoo hashing [28, 65]. A target entry can be in one of d locations
in a d-way (or d-ary) cuckoo hash table. Insertions always find
space by evicting existing entries and rehashing them in the other
ways until, in practically all cases, all entries find a slot [28, 65].

ECPTs use process-private HPTs and, hence, support both multi-
ple page sizes and page sharing without introducing any additional
level of translation. ECPTs scale the hash tables on demand accord-
ing to the memory requirements of the process. Hash table resizing
is performed while the process is running.

With this design, a translation is found by looking-up all d ways
of an ECPT in parallel. If the system has multiple page sizes, each
size has an ECPT. Accesses to the different ECPTs and to their
different ways are in parallel. An ECPT entry contains a virtual
page number (VPN) tag and multiple consecutive page translation
entries packed together to exploit spatial locality. For example, in
systems with 64B cache lines, eight consecutive translation entries
are stored in a cache line and utilize a single tag.

Issuing many ECPT accesses in parallel can consume substantial
bandwidth. To minimize this problem, ECPTs are augmented with
Cuckoo Walk Tables (CWTs). CWTs record which ECPT and which
way in that ECPT store a given translation. CWTs are cached in
a Cuckoo Walk Cache (CWC) in the MMU. Before the hardware
attempts to access the ECPTs, it first checks the CWC and, on a hit,
prunes the number of parallel accesses issued to the ECPTs.
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3 PARALLEL NESTED TRANSLATION: PLAIN
DESIGN

Our goal is to support high-performance parallel nested address
translation. For that, we explore using HPTs for both guest and
host, which fundamentally eliminate the sequential steps of radix
page tables. We base our design on ECPTs, since past work has
shown that they are a competitive design in a native environment.

In this section, we build a design that directly incorporates the
ECPT structures from [79] into host and guest HPTs. We call the
design Plain Nested ECPTs. As the evaluation will show, this design
leads to minor performance gains over nested radix page tables. In
Section 4, we discuss the reasons for the small gains and modify
the design to address the challenges of a nested environment. We
call the modified design Advanced Nested ECPTs. Our evaluation
section shows the performance of both designs.

Our Plain Nested ECPT design can be understood by examining
Figure 3. The hHPT and gHPT are implemented as host ECPTs
(hECPTs) and guest ECPTs (gECPTs). There are as many hECPTs
(and gECPTs) as page sizes are supported by the host (and guest).
To be compatible with the x86 architecture, we assume three page
sizes: 1GB, 2MB, and 4KB. Correspondingly, we name the three
hECPTs as PUD-, PMD-, and PTE-hECPT, respectively, and the
three gECPTs as PUD-, PMD-, and PTE-gECPT, respectively. Note
that we are not limited to these specific page sizes, as ECPTs can
support any page sizes. Each hECPT and gECPT is organized in d
ways.

We describe the Plain Nested ECPT design in two steps. First, we
do not limit the number of parallel memory accesses issued. Then,
we augment the design with special caches [79] to minimize the
number of parallel memory accesses. We use the term Nested ECPT
Walk to refer to a nested page walk.

3.1 Design without Limiting Memory Accesses

Figure 4 shows how the design supports the three steps of a nested
translation from Figure 3. We assume that each ECPT has 3 ways.
We now discuss each step.

Step (D: From gVA to hPTE. This step takes the Virtual Page
Number (VPN) of the gVA and obtains potentially multiple hRECPT
entries that may contain a pointer to the gECPT entry with the
gPA. The entries in hECPTs are referred to as hPTEs.

The process is shown in Figure 4. Given that the gVA can reside
in guest pages of n = 3 different sizes, potentially all the three
gECPTs are looked-up (PUD-, PMD-, and PTE-gECPT). Each of
these gECPTs has d = 3 ways which, potentially, also need to be
looked-up. Each way of each gECPT is pointed to by a gCR3; ;
register, where i is the page size and j is the way ID. Note that each
gECPT and way can potentially use a different guest hash function
(gH) but, for simplicity, Figure 4 shows a single gH for all the ways
and all the gECPTs. Overall, in summary, the VPN of the gVA is
first hashed with the corresponding gH for each gECPT and way,
and then added to the corresponding gCR3; ;. The result is n X d
addresses which are gPAs of gECPT entries.

Each of these addresses needs to be translated to host physical.
Since the desired translation can reside in host pages of different
sizes, the hardware needs to check potentially all n hECPTs (i.e.,
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Figure 4: Nested ECPT walk with worst-case number of memory accesses.
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PUD-, PMD-, and PTE-hECPT) and, in each one, potentially all d
ways. Hence, for each hECPT and way, the address is first hashed
with the corresponding hH, and then added to the corresponding
hCR3; ;. Overall, the total number of parallel accesses to hECPTs
in Step () is potentially n? x d?.

In practice, the number of accesses is much smaller thanks to the
caching structures that will be described later. Section 9 evaluates
several applications with n = 3 and d = 3 and shows that the
average number of parallel hECPT accesses in Step (D is 2.8.

Figure 5 shows again the worst-case Step @ with n = 3 and
d = 3. The three ways of the three gECPTs are looked up using
the correct gVA bits, assuming that each table entry contains eight
consecutive translation entries with a single tag. In each case, the
correct gH; ; and gCR3; j are used. For each of the resulting n X d
gPAs, the process is repeated in the hECPTs, creating a worst-case
n? x d? hPAs.

At this point, each of these hECPT accesses will read an hPTE
and check the tag for a match. Note that the hPTEs are tagged with
host VPN, not with guest VPN. For each gPA; obtained in the first
step of Figure 5, at most only one of the n X d hECPT accesses will
declare a tag match. But, since the hardware is looking for a guest
VPN, the hardware will not know at the end of Step D which of
these potential n X d tag-hitting hPTEs is the one that contains a
pointer to the desired gECPT entry. For that, it will need to execute
Step @.

Step @): From hPTE to gPA of the data page. This step uses the
pointers in the (at most) n X d matching hPTEs to access gECPT
entries. Then, the hardware checks the tags of these gECPT entries
for a match with the original gVA VPN. At most one gECPT entry
succeeds. The contents of this gPTE has the gPA of the data page.

While, in the worst case, n X d parallel accesses are needed in
Step @), in practice, our experiments with n = 3 and d = 3 show an
average of 2.8 parallel accesses in Step .

Step 3): From gPA to hPA of the data page. This final step finds
the hPA as shown in Figure 4. In the worst case, it has to access
each of the n hECPTs and, in an hECPT, each of its d ways. For
each hECPT and way, the gPA is hashed with the corresponding

V7
Step@

hPA1 ... hPAn?xd?

Figure 5: Worst-case Step (D in Figure 4.

hH, and then added to the corresponding hCR3; ;. Of the resulting
accesses to the hECPTs, at most one finds an hPTE with matching
gPA VPN. That hPTE contains the hPA of the data page (Figure 3).

In the worst case, this step involves n X d parallel accesses to the
hECPTs. In practice, our experiments with n = 3 and d = 3 show
an average of 1.6 parallel accesses in Step (3.

Overall, a Nested ECPT walk requires, in the very worst case,
n? x d? parallel memory accesses, then n x d parallel memory
accesses, and then n X d parallel accesses. In practice, using the
caching structures described next, the average number of accesses
observed are 2.8, then 2.8, and then 1.6.

3.2 Augmenting the Design with Caches

The ECPT design for native translations [79] includes Cuckoo Walk
Tables (CWTs), which are software structures that help reduce the
number of parallel look-ups in a page table walk. There is one
CWT for each page size (i.e., PUD-CWT, PMD-CWT, and PTE-
CWT), which contains information about which way of the ECPT
(if any) has a given translation. Further, entries from these CWTs
are cached in a special hardware Cuckoo Walk Cache (CWC) in the
MMU. After a TLB miss, the hardware first accesses the CWC and,
on a hit, learns the subset of ECPTs (i.e., PUD, PMD, or PTE) and of
ways in these ECPTs that it needs to access. In the best case, the
hardware only needs to access one way of one ECPT.

In this paper, we propose to have both guest and host Cuckoo
Walk Tables (gCWTs and hCWTs), and one guest and one host
Cuckoo Walk Cache (gCWC and hCWC). The guest OS manages
gCWTs, while the hypervisor manages hCWTs. The hardware au-
tomatically accesses the gCWC and hCWC during translation.

Figure 6 shows the Nested ECPT walk from Figure 4 optimized
with CWCs. It shows the best case, where each look-up of gCWC
and hCWC determines that a single memory access is needed. For
this reason, the figure shows a single arrow coming out of every
CWC, and the use of only one CR3 (generically represented by
CR3;, j0).
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Figure 6: Nested ECPT walk with Cuckoo Walk Caches (CWCs). The figure shows the best-case memory accesses.

In this case, the walk requires only three memory accesses, which
are shown with an asterisk where they occur. After the walk com-
pletes, the hPA is loaded into the TLB.

4 PARALLEL NESTED TRANSLATION:
ADVANCED DESIGN

Unfortunately, as we will see in the evaluation, the Plain Nested
ECPT design delivers only about 5% average performance gains over
nested radix page tables. The reason is that an ECPT design that
worked well in a native environment sometimes results in many
parallel memory accesses in a nested ECPT walk, and consumes
substantial bandwidth. Consequently, to improve the nested ECPT
design, we analyze the translation mechanisms and redesign some
of them so that fewer parallel memory accesses are issued.

Specifically, we focus on three aspects of the Nested ECPT de-
sign. The first one concerns misses in the gCWC. After a miss, as
the hardware attempts to load the corresponding entry into the
gCWC in the background, the hardware needs to find the correct
memory location to load from. For that, it needs to first translate
the missing guest address into a host address, causing additional
IMemory accesses.

The second issue has to do with PTE hCWT data. The native
ECPT design did not cache PTE CWT data in the CWC due to
insufficient locality. In a nested ECPT design, the PTE hCWT data
does benefit from being cached—in some cases adaptively.

The final issue is that a nested environment can leverage system
knowledge of the page size used by the page tables.

In this section, we modify the Plain Nested ECPT design to
address these issues. We call the new design Advanced Nested ECPTs.
We consider each of the three issues in turn.

4.1 Translating Guest Cuckoo Walk Tables

During a walk, when a CWC misses, the hardware has no choice but
to continue the translation by issuing the n X d accesses in that step.
Then, in the background, the hardware accesses the corresponding
CWT and loads the missing entry into the CWC.

If the miss occurred in the hCWC and, therefore, an hCWT
entry needs to be accessed, the hardware directly accesses the
hCWT. However, if the miss occurred in the gCWC, as the hardware
tries to access the corresponding gCWT entry, it finds that it only
knows the guest PA of it. Therefore, it first needs to go through
a translation step to locate the host PA of the gCWT entry. After
that, the hardware can proceed with the access to the gCWT as in
the case of the hCWT.

Locating the host PA of a gCWT entry involves a process similar
to the translation of a gPA to an hPA shown in Step 3 of Figure 6.

Unfortunately, this translation process introduces operations and
memory traffic in the background that hurt system performance
and can also potentially slow down subsequent accesses to the
gCWC.

To eliminate these problems, we consider two possible approaches.
One is for the hypervisor to map the gCWTs to a known, contigu-
ous region in the host physical memory. In this way, the hardware
can directly access the gCWTs without the need for any additional
translation. This design is simple and feasible because gCWTs are
very small in size. However, it would require that the guest OS
communicate the allocation of the gCWTs to the hypervisor, and
thus makes the virtualization process less transparent.

The second approach is to cache the gPA to hPA translations of
gCWT entries in a very small MMU cache. We call this new cache
the Shortcut Translation Cache (STC). This is a more virtualization-
friendly approach. Our Advanced design uses this approach. With
the STC, we remove the operations and memory traffic involved
in translating gCWT accesses, improving system performance. We
will see in Section 9.4 that a 10-entry STC achieves a hit rate close
to 100%.

Intuitively, the STC caches the translations of gCWT data in a
manner logically similar to how the Nested TLB [16] caches the
translations of radix page tables. Both structures cache translations
of guest PAs to host PAs, although the addresses correspond to
completely different data structures.

4.2 Caching PTE hCWT Entries

In a native ECPT design, when accessing PTE-ECPTs, caching PTE
CWT entries in the CWC could reduce the number of memory
accesses. Unfortunately, since the CWC is small, applications with
highly-random access patterns can lead to CWC thrashing. The
result is increased memory accesses due to subsequent fetches of the
needed PTE CWT entries. As a result, the native ECPT design [79]
opted not to use a PTE CWT. Similarly, the Plain Nested ECPT
design uses no PTE gCWT or PTE hCWT.

In the Advanced design, we again do not use a PTE gCWT for
the guest due to poor locality, and also due to a new optimization
that we introduce in Section 4.3. However, we find that using this
structure for the host (PTE hCWT) and caching it in the hCWC can
be beneficial. There are two opportunities to use the hCWC, shown
in Steps D and @ in Figure 6. We consider each case in turn.
Caching PTE hCWT Entries in Step (D. This step probes the
hECPTs to identify the location of gECPT entries. Due to the small
size of the gECPTs (especially compared to the address space of the
application and its data), and due to the large coverage per entry,
this step enjoys very high locality. As a result, in our Advanced
design, in Step (D, we use a PTE hCWT and cache it in the h(CWC.
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Adaptive Caching of PTE hCWT Entries in Step 3). This step
probes the hECPTs to identify the location of the requested data
pages. The locality of such accesses is very application dependent.
Some applications exhibit page locality, while others do not. There-
fore, in our Advanced design, we use Adaptive Caching of PTE
hCWT entries to a different hCWC in Step (3. Specifically, we start
by enabling the caching of PTE hCWT entries and, as the applica-
tion runs, monitor the hit rate of such entries in the hCWC. If their
hit rate is low, then PTE hCWT caching is disabled. Then, the hard-
ware monitors the hit rate of the PMD hCWT entries (the next level
of cuckoo walk tables) in the hCWC. If the hit rate of PMD hCWT
entries in the hCWC is very high, the caching of PTE hCWT entries
is re-enabled. By monitoring both hit rates, individual applications
typically converge soon to one of the two states.

4.3 Leveraging Page Sizes Used by Page Tables

In a nested environment, if we know that page tables use pages of
only a single size, we can optimize page walks. For example, assume
that we know that page tables use only 4KB pages. We can then
trim the number of parallel memory accesses performed during
the second part of Step (D in Figure 4. At that time, the hardware
looks-up the hECPTs, looking for an hPTE entry that points to the
gECPTs (Figure 3). We know that the gECPTs are allocated in 4KB
pages. Hence, only the PTE-hECPT needs to be looked-up, and the
PUD-hECPT and PMD-hECPT can be skipped.

While this optimization may not apply in the future, it is applica-
ble to today’s state-of-the-art systems. Specifically, in hypervisors
such as KVM, host page tables are limited to using only 4KB page
allocations [55]. Similarly, OS kernels only use 4KB pages for native
page tables and, in virtualized environments, for guest page tables.
One reason for this choice is the fact that the page tables for most
processes are relatively small and, hence, using large pages would
lead to significant memory waste. In addition, 4KB pages provide
flexibility when main memory is fragmented, and can be allocated
and initialized quickly. Finally and perhaps as importantly, legacy
reasons have resulted in popular processors using only 4KB pages
for page tables.

In our Advanced design, we assume that page tables use only
4KB pages and apply this optimization. As we will see in Section 9.1,
this improvement has a minor impact.

4.4 Avoiding Stale hECPT Entries in the Plain
and Advanced Designs

We point out a design decision that, because of its basic importance,
we apply to both the Plain and the Advanced Nested ECPT designs.
To understand it, consider nested radix page tables (Figure 2). There,
caching the address translation of a level of the guest page table
(gL;) in the NTLB is beneficial. The closest parallel to NTLBs in
Nested ECPTs would be to cache in the MMU the translation of
hPTEs-to-gPTEs in Step @ of Figure 6. If this worked, one would
eliminate one of the three sequential memory access steps of Nested
ECPTs.

However, we find that this approach is not desirable. The reason
is that, in Nested ECPT systems, the hPA of a gPTE changes often,
for two reasons. First, due to cuckoo rehashing, inserting an entry in
a gECPT may shuflle other gPTEs between the d ways of the gECPT.
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Second, due to the dynamic resizing of a gECPT, entries from the old
gECPT are migrated to the new one. In either case, when the hPA
of a gPTE changes, the hPTE that maintained the original pointer
to the gPTE becomes stale. To avoid flushing such translations,
neither the Plain nor the Advanced Nested ECPT design caches the
mapping of hPTEs-to-gPTEs in Step .

5 OVERALL DESIGN

From now on, we refer to the Advanced design as simply the Nested
ECPT design. Figure 7 shows the complete layout of the guest and
host memories, and the modules in the MMU in Nested ECPTs.
For simplicity, the three gECPTs, three hECPTs, three gCWTs, and
three hCWTs are each combined into a single box. Further, in host
memory, we only show the single relevant entry of the gECPTs
(called gPTE in the figure) and of the gCWTs (called gCWT entry
in the figure). This is because such tables may not be contiguous in
host memory.
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Figure 7: Layout of the guest and host memory, and the mod-
ules in the MMU with Nested ECPTs.

The solid arrows show the steps of a nested translation after a
TLB miss. The steps are numbered as in Figure 6. In Step D, the
hardware takes the gVA, looks-up the gCWC and hCWC and, in
the best case, issues a single memory access that reads an hPTE.
In Step (@), the hardware uses the contents of the hPTE to issue a
memory access that reads the gPTE with the target gPA. Finally,
in Step (®), the hardware takes the gPA, looks-up the hCWC and,
in the best case, issues a single memory access to read the hPTE
that contains the target hPA. The pair {gVA, hPA} is loaded into the
TLB.

The dashed arrows show the operations when CWCs miss. On
an hCWC miss, an entry from the corresponding hCWT is loaded
into the hCWC. On a gCWC miss, as described in Section 4.1, the
hardware first finds the hPTE that contains the host physical address
of the corresponding gCWT entry. Assume that this hPTE is the
bottom-most hPTE in the figure. Then, the hardware loads this
hPTE into the STC for fast translation in the future. Finally, the
hardware uses this hPTE to access the target gCWT entry, which it
loads into the gCWC.
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6 MIGRATION PATH TO NESTED ECPTS

Nested ECPTs are a radical redesign of the page tables. To move
current nested radix page table systems to Nested ECPTs, we pro-
pose two possible migration paths. One is for the machine to fully
support both nested radix page tables and Nested ECPTs. At ma-
chine boot-up, a control register selects one of the two page table
designs. This approach provides flexibility. However, it is clumsy
and requires the hardware logic and MMU caching structures of
the two approaches.

A more reasonable migration path is to use radix page tables in
the guest OS and ECPTs in the host. This hybrid design supports
legacy OS kernels. Thanks to the VM abstraction, the guest OS
does not need changes, while the hypervisor is modified to support
ECPTs for high performance.

Figure 8 shows a nested page walk in this Hybrid Design. We
start from the design in Figure 2 and replace the four hL; steps in
each level of guest radix page table with Step @ in Figure 4. This
step translates the gPA of an entry in Level i of the guest radix page
table to its hPA. As discussed in Section 3.2, this step tries to use
the hCWC to obtain the target hPTE in a single memory access, as
shown in Step ® of Figure 6. Finally, once the gPA of the target
data page is found in Step 8, a final Step 3 from Figure 4 is used to
locate its hPA. A nested page walk now involves 9 sequential steps.
As in the nested radix design, NTLBs can be used to eliminate these
look-ups. NTLBs’ operation is shown with dashed lines.
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Figure 8: Nested Hybrid page walk: the guest OS uses radix
page tables and the host uses ECPTs.

The hCWC used in each row of the walk is slightly different
because the data locality of PTE-CWTs decreases as we move from
top to bottom. Specifically, based on our experiments, the hCWC
in the first and second rows from the top cache PUD-, PMD-, and
PTE-CWTs. The hCWC in the third row caches PUD- and PMD-
CWTs and, adaptively, PTE-CWTs. The hCWC in the fourth and
fifth row only cache PUD- and PMD-CWTs.
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This hybrid design replaces some of the sequential steps of radix
page tables with the parallel steps of ECPTs. It is a design point that
sits in between the two approaches. While this design is easy to
use, it still largely requires the hardware resources of the two prior
approaches: hCWCs, radix page walk caches, and NTLB caches.
They all co-exist in the MMU.

7 OS/HYPERVISOR SUPPORT

This paper focuses on the architecture design of Nested ECPTs.
Nested translations spend practically all of their time in hardware-
assisted translation in user space, not in the OS or hypervisor soft-
ware. The OS is invoked only in page faults, which are rare in the
steady state of our applications.

For this reason, we can model and evaluate Nested ECPTs with
a full-system simulator running KVM-based full-featured VMs on
simulated hardware—without implementing ECPTs in Linux or
KVM. Specifically, we use the Simics [59] full-system simulator and
instrument the OS with the Intel SAE [22]. The simulator intercepts
on-the-fly all the virtual memory operations of the KVM and guest
OS (plus all the instructions executed). These operations are then
processed by our back-end cycle-level processor/memory simulator.
We leverage Simics to provide the actual memory and page table
contents to the timing backend for each memory address of both
the host and the guest. With modest modifications to Linux and
KVM, this methodology allows us to implement and evaluate any
page table organization in the simulator, while using the actual page
table entries, support THP, and reflect any updates by guest and
host. The high-level OS- and hypervisor-level memory management
operations remain the same, as they are unaware of the underlying
page table structures.

Our future work is to implement ECPTs in Linux and KVM.
In this case, the ECPT designs, including both native and Nested
ECPTs, will maintain the same interfaces as the radix page tables in
the virtual memory system. Their support in the OS and hypervisor
isrelatively easy. Conceptually, only the page table implementations
need to be replaced to support ECPTs.

In the Linux kernel, the majority of the changes required to
support ECPTs are in the memory management code and under
the page table handling [57]. Most of the page table functionality
is handled in the kernel through a set of macros and functions
that assist in allocating page tables and locating page table entries.
Supporting ECPTs requires modifications to these functions. How-
ever, page table usage (e.g., checking the dirty bit) and modification
operations (e.g., setting the present bit) remain the same. This is
because these functions operate on a per page-table entry basis,
which remains practically the same with ECPTs. Furthermore, since
this functionality is reused by KVM and the guest OS, the support
of ECPTs is naturally reused in Nested ECPTs. Overall, the changes
added for ECPTs and Nested ECPTs are likely to be hidden behind
a relatively small interface.

8 EVALUATION METHODOLOGY

Modeled Architectures. We use the Simics [59] full-system sim-
ulator integrated with the SST framework [10, 74] and the DRAM-
Sim2 [75] memory simulator to model a server architecture with
8 cores and 80GB of main memory. We model the ten page table
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architecture configurations shown in Table 1. For both native and
nested page tables, we model a system with radix page tables and a
system with our Advanced ECPT design. We also model the Nested
Hybrid Design of Section 6. In all cases, we model environments
that only use 4KB pages and environments that also use 2MB pages,
by enabling Transparent Huge Pages (THP) in Linux [84]. For the
nested environments, we deploy a KVM VM that runs on the 8
cores of the host and can utilize 80GB of memory. The nested THP
enables THP for both the host and the guest.

Table 1: Modeled page table architecture configurations.

[ Page Table Architecture [ Description
| Native [ Nested | P
Radix Nested Radix Radix page tables with only 4KB pages
Radix THP | Nested Radix THP Radix page tables with 4KB+huge pages
ECPTs Nested ECPTs Advanced ECPTs with only 4KB pages
ECPTs THP | Nested ECPTs THP | Advanced ECPTs with 4KB + huge pages
- Nested Hybrid Hybrid Design with only 4KB pages
— Nested Hybrid THP | Hybrid Design with 4KB + huge pages

The architecture parameters are shown in Table 2. Each core has
private L1 and L2 caches. The L3 cache is shared and physically
distributed. Cache misses are handled through Miss Status Handling
Registers (MSHRs). Each core has private L1 and L2 TLBs, and 4
page table walkers. The radix page tables have a per-core page walk
cache (PWC) and, when nested, they additionally have a per-core
nested PWC (NPWC) and a per-core Nested TLB (NTLB). Table 2
shows the sizes of the guest and host structures in all the nested
designs; the sizes in the native designs are the same as the guest
ones in the nested designs. There is no PTE-gCWT in the nested
design and no PTE-CWT in the native one because of the low
locality of the data. Note that, in Nested ECPTs, we use separate
hCWCs for Step D and Step 3.

To be conservative, we sized the structures in the ECPT designs

to make their total size strictly smaller than those in the radix
designs. The MMU caches in Radix, ECPTs, Nested Radix, Nested
ECPTs, and Nested Hybrid use 768, 672, 1680, 1488, and 1408 bytes,
respectively. Table 3 reports the estimated area and power of these
structures. For the measurements, we use Cacti [12] with 22nm
technology. From the table, we see that these structures consume
little area and power in all the designs.
Applications. We evaluate a variety of applications with different
levels of TLB pressure. Table 4 shows the domain, the suite, the
name, and the memory footprint for each application. For each
application, we perform full-system simulations of all the different
configurations evaluated. We instrument the applications to identify
the region of interest. In that region, we warm-up the architectural
state for 50M instructions, and then measure 500M instructions.
Our simulation methodology is deterministic, producing the same
result for every run that we start from a given checkpoint. For this
reason, our plots in the next section do not show any error bars.

9 EVALUATION
9.1 Performance of Nested ECPTs

Figure 9 shows the speedup of the different architecture configu-
rations of Table 1 over the Nested Radix configuration. The figure
shows the results for each application and the geometric mean of
all the applications. The native configurations are only shown in
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Table 2: Architectural parameters used in the evaluation.

[ Processor Parameters ]
8 4-issue 00O cores, 128-entry ROB, 2GHz

Multicore chip

L1 cache 32KB, 8-way, 2 cyc. round trip (RT), 64B line
L2 cache 512KB, 8-way, 16 cycles RT, 20 MSHRs
L3 cache Slice: 2MB, 16-way, 56 cycles RT, 20 MSHRs

[ Per-Core MMU Parameters ]

L1 DTLB (4KB pages)
L1 DTLB (2MB pages)
L1 DTLB (1GB pages)
L2 DTLB (4KB pages)
(
(

64 entries, 4-way, 2 cycles RT

32 entries, 4-way, 2 cycles RT

4 entries, 2 cycles RT

1024 entries, 12-way, 12 cycles RT
1024 entries, 12-way, 12 cycles RT
16 entries, 4-way, 12 cycles RT

L2 DTLB (2MB pages)
L2 DTLB (1GB pages)

[ Radix Page Table Parameters ]
Nested TLB (NTLB)

24 entries, fully associative (FA), 4 cycles RT
Page Walk Cache (PWC) 3 levels, 32 entries/level, FA, 4 cycles RT
Nested PWC (NPWC) 5 levels, 16 entries/level, FA, 4 cycles RT

[ Elastic Cuckoo Page Table (ECPT) Parameters ]

Initial PTE gECPT/hECPT size 16384 entries X 3 ways

Initial PMD gECPT/hECPT size | 16384 entries X 3 ways

Initial PUD gECPT/hECPT size | 8192 entries X 3 ways

Initial PTE hCWT size 4096 entries X 2 ways

Initial PMD gCWT/hCWT size | 4096 entries X 2 ways

Initial PUD gCWT/hCWT size 2048 entries X 2 ways

gCWC 16PMD + 2PUD entries, FA, 4 cycles RT
hCWC (in Step 1) 4PTE entries, FA, 4 cycles RT

hCWC (in Step 3) 16PTE + 4PMD + 2PUD, FA, 4 cycles RT
Shortcut Trans. Cache (STC) 10 entries, FA, 4 cycles RT

Hash functions: CRC Latency: 2 cycles

[ Hybrid Design Parameters ]

Initial PTE hECPT size 16384 entries X 3 ways
Initial PMD hECPT size 16384 entries X 3 ways
Initial PUD hECPT size 8192 entries X 3 ways
Initial PTE hCWT size 4096 entries X 2 ways
Initial PMD hCWT size 4096 entries X 2 ways
Initial PUD hCWT size 2048 entries X 2 ways
hCwWC 16PTE(Rows 1-3)+16PMD+2PUD, FA, 4 RT
Page Walk Cache (PWC) 16 entries, FA, 4 cycles RT
Nested TLB (NTLB) 24 entries, FA, 4 cycles RT
[ Main-Memory Parameters ]
Capacity; #Channels; #Banks 80GB; 4; 8
trRp-tcAs-tRCD-tRAS 11-11-11-28
Frequency; Data rate 1GHz; DDR

[ Host and VM Parameters ]

Host OS; Guest OS Ubuntu Server 16.04; Ubuntu Cloud 16.04
Hypervisor QEMU-KVM

Table 3: Area and power of the hardware caches in the MMU.

[ Configuration [ Size (B) [ Area (mm?) [ Power (mW) ]

Nested Radix 1680 0.01 2.9
Nested ECPTs 1488 0.03 5.2
Nested Hybrid 1408 0.02 2.8

the mean bars. Recall that the Nested ECPTs and Nested ECPTs
THP configurations are the Advanced design. To understand the
performance contributions of our new techniques of Section 4, their
bars are broken down into the effects of (i) STC, (ii) Step-@ PTE-
hCWT Caching, (iii) Step-@ PTE-hCWT Adaptive Caching, and
(iv) Page Table Allocation in 4KB Pages. The rest of the bar is the
speedup of the Plain Nested ECPT design of Section 3.

We focus first on the two nested configurations with only 4KB
pages: Nested Radix (first bars) and Nested ECPTs (fifth bars).
Nested ECPTs speeds-up the applications over Nested Radix by
1.04x-1.33x, with an average of 1.19x. The applications with the
most speedup, like DC, MUMmer and SysBench, are typically those
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Figure 9: Speedup of the different architecture configurations over the Nested Radix configuration.

Table 4: Applications evaluated.

[ Application ] Memory
| Domain [ Suite [ Name | Footpr.
Betweenness Centrality (BC) 17.3 GB
Breadth-First Search (BES) 9.3 GB
Connected Components (CC) 9.3GB
Degree Centrality (DC) 9.3 GB
Graph analytics | GraphBIG [64] | Depth-First Search (DFS) 9.0 GB
PageRank (PR) 9.3 GB
Shortest Path (SSSP) 9.3GB
Triangle Count (TC) 11.9 GB
HPC Challenge [58] | GUPS 64.0 GB
Bioinformatics BioBench [5] MUMmer 6.9 GB
Systems SysBench [82] | SysBench 64.0 GB

where Nested Radix services relatively more page walk accesses
from main memory compared to Nested ECPTs.

Consider now the two nested configurations with huge pages:
Nested ECPTs THP (second bars) and Nested Radix THP (sixth bars).
Huge pages improve performance significantly. This is especially
the case for GUPS, which can exploit huge pages for the whole
dataset, and SysBench. With huge pages, Nested ECPTs THP speeds-
up the applications over Nested Radix THP even more: 1.05x-1.59x,
with an average of 1.24x.

Overall, replacing radix page tables with ECPTs in a nested
environment improves the performance across the board for all
programs, often substantially.

Consider now the new techniques. Without any new technique,
the average speedup of Nested ECPTs over Nested Radix is only 3%
and 5% without and with THP, respectively. Hence, the new tech-
niques are responsible for most of the speedups of Nested ECPTs.
From Figure 9, without THP, the average speedup contributions of
STC, Step-D Caching, Step-3 Adaptive Caching, and 4KB Page
Allocation are 6.8%, 4.6%, 4.2%, and 0.4%, respectively. With THP,
the speedup contributions are 7.9%, 6.5%, 4.1%, and 0.5%. Clearly,
the first three techniques have a substantial impact. The high effec-
tiveness of STC is due, in part, to the fact that it reduces the number
of MMU-initiated L2 misses by 17%.

The fourth technique does not help the steady-state of the appli-
cations much. However, it speeds-up page walks during the warm-
up, when walks are more expensive: the lack of cached information
causes a walk to access ECPTs for all page sizes. Our technique
minimizes this effect. While not shown in the figure, if we include
the warm-up period, 4KB Page Table Allocation speeds-up the 95th
percentile tail latency of the page walks for the whole application

by an average of 9.4% (no THP) and 8.9% (with THP). So, it is also
important.

Consider now the Nested Hybrid design. For all the applications,
Nested Hybrid performs better than Nested Radix but worse than
Nested ECPTs. On average, Nested ECPTs is 7% and 11% faster
than Nested Hybrid for 4KB pages and THP, respectively. Still, on
average, Nested Hybrid outperforms Nested Radix by 12% and 13%
for 4KB pages and THP, respectively. The results highlight the
significant performance improvement attained by only migrating
the host to ECPTs.

For reference, the figure also shows the speedups of the native
configurations, relative to Nested Radix. As expected, the native
configurations are generally faster than the nested ones, since they
do less work. However, there are a few exceptions where the nested
designs with huge pages deliver higher speedups than the native
ones without huge pages. This effect occurs in applications where
huge pages are highly useful, such as in GUPS, SysBench, and DC.
We have verified some of this behavior with real-systems measure-
ments. Due to these applications, we see that the average speedup
of Nested ECPTs THP over Radix is 1.11x.

To gain further insight, Figure 10 shows the number of MMU
busy cycles in Nested Radix and Nested ECPTs, normalized to
Nested Radix. These are cycles when the MMU is busy servicing L2
TLB misses, including when the MMU is waiting for its outstanding
memory requests. The figure shows that Nested ECPTs designs uni-
formly spend substantially fewer cycles in translation than Nested
Radix designs. On average, Nested ECPTs use 25% and 31% fewer
MMU busy cycles than Nested Radix for 4KB-only and THP. The
per-application results in Figure 10 are only weakly correlated with
Figure 9, since Figure 10 shows normalized cycle counts.
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Figure 10: MMU busy cycles in nested configurations.
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Figure 11: Histogram of the latency of the nested page walks in the MUMmer application.

9.2 Impact of Adaptive PTE hCWT Caching

Recall that, to support adaptive caching of PTE hCWT entries in
Step @ of Figure 6, we measure the hit rates of both PMD hCWT
and PTE hCWT entries in the hCWC. Figure 12 shows these values
for our applications. The left chart shows that, in all the applications
except GUPS and SysBench, PTE hCWT entries enjoy a very high
hit rate in the hCWC. Therefore, the applications can benefit from
enabling PTE hCWT caching. The right chart shows that, in GUPS
and SysBench, PMD hCWT entries have a lower hit rate in the
hCWTC than in other applications. Based on this analysis, we define
two thresholds (the dashed lines): if the hit rate of PTE hCWT
entries is below 0.5, we disable PTE hCWT caching; when PTE
hCWT caching is disabled and the hit rate of PMD hCWT entries
is above 0.85, we enable PTE hCWT caching.
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Figure 12: Hit rate of the PTE hCWT entries (left) and PMD
hCWT entries (right) in the hCWC. An interval is 5M cycles.

9.3 MMU and Cache Characterization

The performance gains provided by Nested ECPTs are due to two
effects. The first one is its ability to issue memory accesses in parallel
when performing the nested page translation—even if it issues more
accesses than Nested Radix. The second effect is that Nested ECPTs
only fetch into the caches actual translations, building-up useful
state in the memory hierarchy. This is in contrast to Nested Radix,
which fetches many intermediate translation entries during a walk.
These entries cause pollution in the memory hierarchy.

To understand these effects, Fig. 13 characterizes the behavior
of the MMU, L2 cache, and L3 cache for the nested environments.
Starting from the top, Figure 13(a), shows the number of requests
that the MMU issues to the cache hierarchy per Kilo instruction
(RPKI). In Nested Radix, these requests are those issued to obtain
a translation, while in Nested ECPTs, they are those that request
translations and those that request hCWT/gCWT entries. We can
see that the ECPT configurations issue more requests—on average
13% and 15% more for 4KB pages and THP, respectively. However,
many of these accesses are issued in parallel.
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Figure 13: Characterizing the MMU and cache subsystem.

Figures 13(b) and 13(c) show the normalized misses PKI (MPKI)
in the L2 and L3 caches, respectively, for the same configurations.
These misses are initiated by both the MMU and the processor.
Across configurations, the differences are mostly caused by the
requests issued by the MMU. We see that the requests issued by
the MMU in Nested ECPT designs enjoy higher cache locality than
those in Nested Radix: in the L2, both designs have similar average
MPKT; in the L3, Nested ECPTs has a 10% and 11% lower MPKI than
Nested Radix for 4KB-only pages and THP, respectively. Therefore,
while Nested ECPTs issue more MMU requests, they end up issuing
fewer main memory accesses. As indicated above, a major reason
is that they only fetch actual translations, while Nested Radix fetch
intermediate translations, polluting caches.

The L2 and L3 miss patterns in Nested ECPTs are not any more
bursty or demanding than in Nested Radix. On average, with Nested
ECPTs, the L2 and L3 use 4.4 and 3.8 MSHRSs, respectively, at a time.
The same numbers for Nested ECPTs THP are 4.2 and 3.6. The
maximum number of MSHRs in use in L2 or L3 is 12.

To shed additional light, Figure 11 shows a histogram of the
latency of the nested page walks in the MUMmer application for
Nested Radix THP and Nested ECPTs THP. For each page walk, we
measure the latency in cycles from when the L2 TLB miss occurs
until the page walk completes. Then, we group the page walks in
bins according to their latency. The figure is annotated with the
ranges of latencies for caches, 1st DRAM access, 2nd, 3rd, and so
on. We see from the figure that Nested Radix THP exhibits a long
tail of page walks of several hundreds of cycles. This is because of
the sequential pointer chasing process that Nested Radix imposes.
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In contrast, Nested ECPTs THP page walks are typically over with
a latency equivalent to about four DRAM accesses.

9.4 Characterizing Nested ECPT Walks

When the hardware accesses the hCWC or gCWC in a nested ECPT
walk (Figure 6), it may issue from 1 to n X d accesses. The paper
that introduced ECPTs for native environments [79] used a naming
convention to refer to the different possible outcomes: Direct Walk
if it issues 1 memory access, Size Walk if it accesses all the d ways
of one ECPT, Partial Walk if it accesses at worst all the ways of two
ECPTs, and Complete Walk if it accesses all the d ways of all the n
ECPTs. Outcomes with few accesses are preferred.

Figure 14 shows the relative frequency of these types of out-
comes for Nested ECPTs THP using the complete mappings of the
applications. For each application, the left bar is the information
provided by the hCWT, while the right bar is the information pro-
vided by the gCWT. The gCWT aims to trim the first part of Step
@ of the walk as shown in Figure 4. The hCWT prunes the second
part of Step D as well as Step 3.

1 Complete I Partial [ Size [ Direct

@
)

IS
S

Guest

o
o
ey

N
o

Cuckoo Walks breakdown
o
S

)

BC BFS cc DC DFS GUPS MUMmer PR SSSP SysBench TC GeoMean

Figure 14: Breakdown of the types of host (left bar) and guest
walks (right bar) for each application in Nested ECPTs THP.

Figure 14 shows that, in the host, the majority of the walks are
the very cheap direct walks (90% on average). Direct walks are
common because the hypervisor frequently uses huge pages. In the
guest, the majority of the walks are size walks (82% on average). The
exceptions are GUPS, SysBench and MUMmer, where huge pages
are very effective and, therefore, direct walks dominate. Complete
walks are negligible for both guest and host.

Overall, most of the information obtained from CWTs results in
outcomes with few accesses. It can be shown that, on average for
our applications, a Nested ECPT walk (Figure 4) with THP issues
2.8 parallel memory accesses in Step (D, 2.8 in Step (2), and 1.6 in
Step ®. Without THP, only Step 3 changes: it has slightly more
accesses on average, namely 1.7.

Finally, we measure the average hit rates of MMU caches for
Nested ECPT THP. The hit rate of our 10-entry STC is 99%. If we
reduced its size to 8 and 4 entries, its hit rate would be %90% and
~50%, respectively, which are too low. In the gCWC, the hit rates
are 99% for its PUD entries and 86% for its PMD entries. In the
hCWC, the hit rates are 99% for its PUD entries, 80% for its PMD
entries and, for its PTE entries, 99% in Step (D and 67% in Step
®. Overall, gCWC and hCWC effectively reduce the number of
accesses issued by nested ECPTs walks.

9.5 Memory Consumption

On average across all the applications, the memory required to
hold all the page table entries is 60MB. This number is computed
by multiplying the number of page table entries by 8 bytes, and
therefore is independent of the page table organization chosen.

Jovan Stojkovic, Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas

However, when we measure the memory used by all the virtual
memory structures, the number is higher, due to various structure
overheads: 84MB for Nested Radix (of which 56MB are for host and
28MB for guest structures) and 97MB for Nested ECPTs (of which
61MB are for host and 36MB for guest structures). Overall, Nested
ECPTs only use slightly more memory than Nested Radix.

9.6 Comparison to Other Advanced Designs

Agile Paging [30] combines nested and shadow paging [85] by
leveraging the idea that the page table entries of upper levels in the
radix tree are unlikely to be changed. However, Agile Paging still
requires 4 sequential memory accesses in the best case scenario, as
well as some hypervisor intervention cost. We simulate an ideal
Agile implementation with at most 4 sequential memory requests,
all the caching structures of radix, and no hypervisor costs. Nested
ECPTs outperform this ideal Agile Paging design by 16% on average.

POM-TLB [76] is a large TLB that is part of memory. Although
the design eliminates a significant portion of page table walks, an
L2 TLB miss may be propagated to the POM-TLB in DRAM and,
on a miss, still require a page walk. We simulate the POM-TLB
design with a perfect page size predictor. On average, nested ECPTs
outperform POM-TLB by 14%.

Flat nested page tables [3] combine a guest radix page table with
a host flat page table. The design reduces the maximum number
of sequential memory references from 24 to 9. We simulate this
design and find that Nested ECPTs outperforms flat nested page
tables by 12% (no THP) and 15% (THP) on average. The limitation of
flat nested page tables is the potentially up to 9 sequential memory
accesses.

10 OTHER RELATED WORK

A number of studies have measured the overhead of nested page ta-
ble walks for virtualized memory translation [4, 6, 21, 29, 38, 72, 76].
To reduce TLB misses, prior work has proposed new TLB designs
with support for clustering, coalescing, entry-sharing, speculation,
multiple page sizes, and prefetching [11, 14, 19, 20, 24, 34, 37, 51, 61,
63, 68-71, 77, 78, 81, 88]. Furthermore, a few virtualization-specific
TLB designs have been proposed, including large part-of-memory
TLBs [76], context-aware TLBs [60], and TLB designs with virtual-
ization support [23].

To reduce nested page walk overhead, MMU caches [9, 16], devir-
tualized memory [39], application-managed memory translation [4],
and optimized huge page support [56, 66, 67] have been proposed.

Moreover, other designs have been proposed to reduce the mem-
ory references required for nested page walks by exploiting virtual
and physical address space contiguity [6, 15, 29, 30, 52, 53]. These
approaches create translations that map very large contiguous re-
gions of virtual memory to contiguous physical memory. As a
result, the number of required translation entries reduces, poten-
tially lowering overhead. While promising, these approaches face
the challenge that creating very large contiguous physical address
spaces in actively-used cloud platforms is hard. Indeed, even finding
the more modest 2MB-sized pages supported by Linux Transparent
Huge Pages (THP) is often hard [31, 36, 56]. Going beyond them
is harder. One important characteristic of Nested ECPTs is that it
does not rely on the need for physical memory contiguity.
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11 CONCLUSION

This paper presented the first page table design for parallel nested
address translation. The design, called Nested Elastic Cuckoo Page
Tables (Nested ECPTs), eliminates all but three of the potentially
twenty-four sequential steps of a nested radix page table translation—
while judiciously limiting the number of parallel memory accesses
issued to avoid over-consuming cache hierarchy bandwidth. As a
result, compared to conventional nested radix tables, Nested ECPTs
speed-up the average execution time of a set of applications by
1.19x (for 4KB pages) and by 1.24x (when huge pages are used).
In addition, we described a possible migration path from current
systems to Nested ECPTs.
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