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Abstract— Coronary artery disease (CAD) is a cardio-
vascular condition with high morbidity and mortality. In-
travascular optical coherence tomography (IVOCT) has
been considered as an optimal imagining system for the
diagnosis and treatment of CAD. Constrained by Nyquist
theorem, dense sampling in IVOCT attains high resolving
power to delineate cellular structures/features. There is a
trade-off between high spatial resolution and fast scan-
ning rate for coronary imaging. In this paper, we propose
a viable spectral-spatial acquisition method that down-
scales the sampling process in both spectral and spatial
domain while maintaining high quality in image reconstruc-
tion. The down-scaling schedule boosts data acquisition
speed without any hardware modifications. Additionally, we
propose a unified multi-scale reconstruction framework,
namely Multiscale-Spectral-Spatial-Magnification Network
(MSSMN), to resolve highly down-scaled (compressed)
OCT images with flexible magnification factors. We incor-
porate the proposed methods into Spectral Domain OCT
(SD-OCT) imaging of human coronary samples with clin-
ical features such as stent and calcified lesions. Our ex-
perimental results demonstrate that spectral-spatial down-
scaled data can be better reconstructed than data that are
down-scaled solely in either spectral or spatial domain.
Moreover, we observe better reconstruction performance
using MSSMN than using existing reconstruction meth-
ods. Our acquisition method and multi-scale reconstruction
framework, in combination, may allow faster SD-OCT in-
spection with high resolution during coronary intervention.
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[. INTRODUCTION

Coronary Artery Disease (CAD) is the narrowing of coro-
nary arteries caused by build-up of atherosclerotic plaques. It
is the most common type of heart disease, leading to 1 in
7 deaths in the U.S [1]. Percutaneous Coronary Intervention
(PCI) is one of the most common non-surgical procedures to
open clogged coronary arteries. Approximately one million
PCI are performed annually [2]. To assess PCI performance,
imaging tools are necessary before and after the procedure,
among which Intravascular Optical Coherence Tomography
(IVOCT) offers a real-time three-dimensional evaluation with
highest resolution [3]-[5].

Most commercial IVOCT is based on Swept Source Optical
Coherence Tomography (SS-OCT), which has a high scanning
rate (>100 frames/s) with a spatial resolution around 10
pm [6]. This resolution, however, is insufficient to delin-
eate key features such as endothelial lining, stent coverage,
and cholesterol crystals, at a much finer level of 2 pm
for accurate assessment of stent implantation. In contrast,
Spectral Domain Optical Coherence Tomography (SD-OCT) at
a shorter wavelength outperforms its swept source counterpart
in resolution and contrast, and has demonstrated its capability
in visualizing critical structures [7]. Nonetheless, resolving at
2 pm requires a denser sampling that inevitably leads to a
lower scanning rate of about 8 frames/s [7], insufficient for
performing catheter pullback to visualize the length of arteries
during PCI. Currently, there is no technology available to
simultaneously maintain high spatial resolution at such a 2 um
level and a fast scanning rate. A real-time visualization with
higher resolution will be desirable to better PCI outcome.

Real-time visualization requires both fast acquisition and
display. A cost-effective approach to improve scanning rate is
to sample and store less data. Spectral domain-OCT acquires
data and processes data for visualization in spectral domain.
Various methods have been proposed to down-scale OCT data
from either spatial or spectral domain [8]-[14]. For example,
low signal-to-noise ratio (SNR) OCT images from spatial
undersampling were obtained and reconstructed via sparse
representation [8]-[11]. Also, spectral raw data were under-
sampled and reconstructed using machine learning or deep
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Fig. 1. Representative of a pairwise match between coronary OCT
image (left) and its histology (right). Two regions are magnified with
different scale factors for coronary analysis. scale bar: 200 pm.

learning (DL) methods [12]-[14]. However, these methods
shared downsampling factors up to 4-fold, still insufficient to
booster acquisition and display from the level of 8 frames/s
to the level of 100 frames/s for coronary intervention [6].

Moreover, multi-scale magnification is needed during recon-
struction of down-scaled images. An example is shown in Fig.
1, where one region of fibrous cap in human coronary is shown
in an OCT cross-sectional image with its matched histology.
There are two regions of clinical interest: the endothelial layer
(gold box in (a) and green box in (b)) and the lipid pool
(white box in (a) and blue box in (b)). Based on different
needs, the two regions are magnified at different scales. As
gatekeepers for passage of lipoprotein and leukocytes into
intima, the endothelial layer needs to be magnified with a
larger scale for accurate thickness assessment. For lipid pools,
however, thickness assessment is of less interest thus a lower
magnification suffices. A binary justification of whether the
distance between pool edge to lumen is larger than 65 ym or
not suffices the evaluation of risk of rupture [15]. Resolving
images to the finest resolution, unfortunately, will increase the
total number of pixels in display and add computational burden
for visualization. As a result, a multi-scale magnification
framework would be beneficial for real-time coronary visu-
alization and analysis. At present, multi-scale magnification is
illusive for OCT image reconstruction.

Existing reconstruction methods [13], [14] treat each scale
factor as a single task and only work for scale factors that are
integers. Whenever a new scale factor is needed, a new model
is needed and requires re-training. As a result, multiple neural
networks and individual training are necessary if following
existing methods to maintain the flexibility with multi-scale
magnification. A unified neural network model with high
flexibility in magnification factors and computational cost-
effectiveness is preferable.

In this paper, we devise an efficient spectral-spatial domain
acquisition method for SD-OCT systems. Our method reduces
data size in both spectral and spatial domains during imaging.
Additionally, we propose a unified neural network, namely
Multiscale-Spectral-Spatial-Magnification Network (MSSMN)
for image reconstruction. Inspired by super-resolution tech-
nology, MSSMN magnifies compressed information in both
spectral and spatial domains with any arbitrary magnification
factors. With extensive experiments in human coronary OCT
images, we demonstrate high accuracy, data efficiency, and
magnification flexibility of our proposed method. Our contri-
butions are as below:

o We propose a novel method to reduce data size by down-
scaling SD-OCT data in both spectral domain and spa-
tial domain. The proposed method improves acquisition
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speed. Our method does not require any additional optical
setup and can be easily integrated into existing SD-OCT
systems.

o We devise a unified network, MSSMN, to address the
issue of multi-scale magnification. To the best of our
knowledge, it is the first multi-scale OCT reconstruction
framework in spectral-spatial domain and allows for
arbitrary magnification factors.

e« We propose the first super-resolution neural network
for coronary OCT imaging with an aim to highlight
pathological features such as calcified region, stent strut,
and lipid region.

I[I. RELATED WORK
A. OCT image acquisition/compression

In SD-OCT, images can be compressed by removing part
of their spectrum data [12], [16]. Lichtenegger et al. acquired
discontinuous spectrum by modifying light source [16]; Zhang
et al. studied 2-fold and 3-fold undersampled spectral data
[12]. In spatial domain, previous research aimed to compress
OCT images without modifying the spectrum. Algorithms
based on transform coding, such as discrete cosine transform
(DCT) and discrete wavelet transform (DWT), have been
used in OCT image compression [17]. Also, algorithms based
on sparse representation were also applied to OCT image
compressing [8], [9]. The U-Net [18] structure has been
used in compressing OCT images because of their unique
bottleneck layers [19].

B. OCT image reconstruction

1) None-DL methods for OCT image reconstruction: Sparse
representation algorithms have been applied to reconstruct
OCT images [8], [9]. Recently, a nonlocal weighted sparse rep-
resentation (NWSR) method was proposed [10]. The NWSR
algorithm achieved better estimation of sparse representation
by exploiting information from noisy and denoised patches.
Very recently, a mixed low rank approximation and second-
order tensor-based total variation (LRSOTTV) approach was
presented for OCT [11]. Compared with other low-rank tensor-
based methods, the LRSOTTV achieved better results and
lower complexity by adopting a tensor prior.

2) DL-based methods for OCT image reconstruction: Vari-
ations of U-Net have been adopted in reconstructing OCT
images [12], [13], [16], [20]-[22]. Hao et al. reconstructed
high quality OCT images from their low bit-depth counterparts
using a U-Net based architecture [21]. Also with the U-Net
architecture, Liang et al. enhanced the resolution while recov-
ering realistic speckles in the OCT images [13]. Further, Qiu
et al. achieved simultaneously denoising and reconstruction of
OCT images using a U-Net based network [22]. The U-Net
based networks have been used in reconstructing OCT images
compressed in spectral domain.

Apart from the U-Net based DL models, other DL architec-
tures such as SRResNet, residual dense network, deep back-
projection network, and residual-in-residual dense network
have been used in different research of reconstructing OCT
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lllustration of the proposed spectral-spatial acquisition method and multi-scale reconstruction framework. During scanning, the A-lines are

skipped in lateral direction at factor of m. When acquiring depth information through A-lines, spectrum data are truncated at factor of 1. After IDFT,
we skip pixels in spatial domain at factor of m. The spectrum truncation and pixel skipping reduces data storage consumption; the A-line skipping
boosts image acquisition speed. The structure of MSSMN is detailed in Fig. 3.

images [14], [23], [24]. Furthermore, the Generative adver-
sarial network (GAN) based networks were also incorporated
in many OCT reconstruction research [14], [21], [23]-[26].
Among these research, Yuan et al. proposed to super-resolve
optical resolution of OCT images using DL algorithms [14];
Cao et al. increased both optical and digital resolutions of
OCT [24]. However, none of previous research managed to
develop a unified framework that was capable of reconstructing
OCT images in both spectral and spatial domains by multiple
magnification factors.

1. METHOD

In this part, we first discuss spectral-spatial OCT image ac-
quisition in detail. Then we define the problem of multi-scale
OCT reconstruction (magnification) in spectral-spatial domain.
Finally, we introduce the framework and implementations.

A. OCT acquisition in spectral-spatial domain

We collaboratively reduce the amount of data in both spatial
domain and spectral domain during OCT image acquisition
with a viable scale factor of (I, m), where [ is a acquisition
factor in spectral domain and m is a acquisition factor in
spatial domain. As shown in Fig. 2, in spectral domain, we
only collect % of the spectrum at the center of the bandwidth,
since it carries most information spectrum. In spatial domain,
we skip m — 1 A-lines per m A-lines during scanning. The
A-line skipping is carried out in lateral direction; in order
to further reduce data storage consumption and maintain the
aspect ratio of compressed OCT images in spatial domain, we
keep % pixels in axial direction after Inverse Discrete Fourier
Transform (IDFT). The proposed method can be integrated
with existing workflow of SD-OCT without any modifications
of hardware.

With less data sampled, such acquisition process could be
considered as a degradation process. The data-acquisition and
reconstruction process are degradation and super-resolution
processes [27]. In SD-OCT images, the degradation process
can be reformulated as:

Ifn =F S T) Im (1)

where IS is a OCT image compressed with a acquisition
factor (I, m) in spectral-spatial domain; F ! stands for inverse

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA.

Fourier transform operator; S is the raw spectrum acquired
by SD-OCT systems; 7; is a truncating kernel which keeps
% of the spectrum in spectral domain; J.,,, stands for skipping
operation in both axial and lateral directions in spatial domain,
keeping % pixels in each direction. Note that the truncating
operation in the spectral domain is equivalent to the convolu-
tion in the spatial domain because of the convolution theorem.
T, and |,,, are simple operations with time complexity of O(1).
We refer to OCT images acquired by (I, m) with [ > 1 and
m > 1 as low resolution (LR) image.

B. Multi-scale magnification of compressed OCT images

The acquisition process of compressed OCT images is
deterministic; once the acquisition factors [ and m are fixed, a
unique 7, fm is generated. Reconstruction of OCT images can
be considered as a reversing process of compression, which
provides high quality images given [ Em' Ideally, the output
after reconstruction should be I%¢f = F~1(S). However,
reconstruction is a ill-posed inverse problem since multiple
solutions may exist for a single fm. The DL-based algorithm
learns a single non-linear mapping from 1, fm to I7e_ In this
paper, we rather propose a novel reconstruction framework for
resolving compressed OCT images by multiple magnification
factors: .

1750 = Gy (imi 91,) 2

m\*l,m>
here G; . is a unified neural network which has input of LR

image and two magnification factors: magnification factor [in
spectral domain and magnification factor 7 in spatial domains;
0;  stands for parameters in G; . .

C. Unified deep learning framework for OCT image
magnification

Our framework of MSSMN consists of the following mod-
ules: feature extractor, meta-upscaling and meta-restoration
modules [20], and loss function.

1) Feature extractor: The feature map F' is extracted from
If, . using feature extractor E which contains parameters
0];1 We choose to use Residual Channel Attention Network
(RCAN) for feature extraction, which adopts the Residual-
In-Residual (RIR) structure [28]. The RCAN achieves much
deeper network structure [29].
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Fig. 3. Scheme of the proposed Multiscale-Spectral-Spatial-Magnification Network (MSSMN) using Residual Channel Attention Network (RCAN)
as feature extractor. Residual Channel Attention Blocks (RCAB) are the building block of RCAN. The key components of our framework are feature
extractor, meta-upscale module, and meta-restoration module. The feature map F' is extracted by feature extractor, then processed by meta-
restoration (generating Fr) and meta-upscaling modules (generating IReC) Magnification factors (i, 72) determine the reconstruction weights.

The width and helght of reconstructed OCT images are magnified by spatlal magnification factor 7i2. Number of feature channels fC = 64 and

convolution kernel size k = 3.

2) Meta-upscaling and meta-restoration modules for multiple
degradation parameters: The IZRec is reconstructed from the
feature map F. We develop a unified framework that resolves
compressed OCT images in multiple magnification factors. For
this purpose, we adopt the meta-upscaling module [30] and
meta-restoration module [31]. The magnification factors (f ,m)
are used to determine the weights of the convolution kernels
in meta-learning modules. The meta-restoration module pg
dynamically predicts weights Wg of a regular convolution
layer based on magnification factors (I,71). Wx possesses
a dimension k%x fC. The convolution layer restores F' and
generates restored feature map Fr. Two feature maps, F' and
F'r, have the same dimension of BxfCx{fW xfH, where B is
the number of patches. 6, denotes parameters in ¢r. The
meta-upscaling module ¢y dynamically predicts weights of
kernels K o given magnification factors (I,7). K i has a
shape of k2xfCx (m-inW) X (m-inH). With Fg and K i the

I ZR;C is reconstructed by a feature mapping function ®:

Ki g (w, h) = ou (v 55001
Ifiec(w, h) = ®(Fr(w', 1), K; ;, (w, b)) 3)
(W) = (2], 15 )

where 6, denotes parameters in ¢/, (w, k) denotes locations
of pixels in IC Lo (w',h’) denotes locations of pixels in Fg,
Vj 7, is the input vector relating to magnification factors (Z m)
and size of IC I-m> L] stands for floor operator. The K; . (w, h)
is a kx k kernel with its center at (w’, h'). Note that for a single
(w’,h') in Fg, there will be multiple kernels K; . (w,h)
for reconstructing the feature map with varying magﬁiﬁcation
factors (I, 77). We set number of feature channels fC = 64 and
convolution kernel size k = 3.

ublication/redistribution requires IEEE

ermission. See http://www.ieee.o

The (T and ® are defined as:

w w, h h -
vﬁm(wvh) - (% - L%Ja % - L%Jal) )
O(Fr(w',h'), K; = Fr(w', 1) ® Ki,m(w7 h)

Based on this meta-learning scheme, we magnify com-
pressed OCT images by multiple scale factors with a unified
network.

3) Loss function: Mean squared error (MSE) is widely used
loss function for general image restoration. However, the L1
(Mean absolute error) has demonstrated potential of achieving
better convergence [32]. We adopted the L1 loss for training
all models.

IV. EXPERIMENTS AND RESULTS
A. Experimental dataset

Human coronary samples were collected from the School of
Medicine at the University of Alabama at Birmingham (UAB)
and delivered to the University of Alabama for imaging. The
autopsy specimens were de-identified and not considered as
human subjects, in compliance with UAB’s Institutional Re-
view Board (IRB). Specimens were imaged via a commercial
OCT system (Thorlabs Ganymede, Newton, NJ) [24]. We
collected 2996 OCT images (B-scans) from 23 specimens. The
depth of OCT images were 2.56 mm. The width of the images
ranged from 2 mm to 4 mm depending on actual sample size.
Among all images, the pixel size remained 2 ym X 2 pm
within a B-scan. Samples were processed for Hematoxylin-
Eosin (H&E) histology after imaging.

We acquired the OCT images using the proposed spectral-
spatial acquisition method. In spectral domain, we used 1, %
and % of spectrum data (denoted as | = 2, 3, 4 respectively). In
the spatial domain, we used m = 2, 3,4 for A-line skipping
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Fig. 4. Representative loss function plots and validation PSNR and SSIM scores. (a) Training and validation loss values over epochs. (b) PSNR
scores over epochs in validation dataset. (c) SSIM scores over epochs in validation dataset.

TABLE |
RESULTS OF RECONSTRUCTION FROM OCT IMAGE OF ACQUISITION
FACTOR (I, m) GIVEN A COMPRESSION RATE OF 25%. ALL RESULTS
ARE AVERAGED BASED ON FIVE-FOLD CROSS-VALIDATION. RED
INDICATES THE BEST PERFORMANCE.

(I,m)

Metrics 1.4) @1 @2
PSNR 25.8183 | 26.6053 | 29.1390
SSIM 0.4860 0.4622 0.7570

during scanning and pixel skipping after IDFT. The experi-
mental dataset was divided into 5 folds by ID of specimen for
cross-validation.

B. Network implementation

We use RCAN as the feature extractor to implement
MSSMN. As a comparative study, we implemented recon-
struction networks with other feature extractors, including
Multi-Scale Residual Network (MSRN) [33], Residual Dense
Network (RDN) [34], and Residual Dense Unet (RDU) [35].
For the network implementations, we used 8 multi-scale
residual blocks for MSRN; 10 residual dense blocks (RDB)
for RDN, with each RDB containing 6 convolution layers;
7 levels for RDU, with each level containing 1 denoising
block; 10 residual groups (RG) for RCAN, with each RG
containing 20 residual channel attention blocks (RCAB). We
implemented the sub-pixel upsampling module [36] for each
features extractors. In comparison with the abovementioned
network structure, RCAN achieves deep trainable network
structure and is capable of adaptively learn useful channel-
wise features [28].

C. Training details

The intensities were scaled to [0,1]. For each network,
the training procedure was repeated 5 times on different
data folds. During the training, we randomly extract 16 non-
overlapped patches with the size of 64 x 64. Those patches
are the input of the model. We augment the patches by
randomly flipping to prevent overfitting. Within each batch,
magnification factors (/,77) for MSSMN remained the same.
We used Adam optimizer [37] for training. The learning rate
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was initialized as 10~%, following by a half decay for every
200 epochs. In total the networks were trained 1000 epochs
to ensure convergence. The experiments were carried out in
parallel on three RTX A6000 GPUs. Training on each data
fold take around 10 hours.

D. Evaluation metrics

We used peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) [38] to measure the quality of image magni-
fication. The PSNR calculates pixel-wise differences between
the reconstructed image and the reference image; the SSIM
focuses on structural similarly between reconstructed image
and the reference image.

E. Network convergence

For each fold, we trained the MSSMN for 1000 epochs
to ensure convergence. Fig. 4 shows representative plots of
training loss and validation loss, PSNR and SSIM scores, all
from one fold of validation dataset. The MSSMN is capable
of multi-scale reconstruction. We calculated validation loss
values and PSNR and SSIM scores for each magnification
factor. Within 1000 epochs, the MSSMN converges for each
magnification factor.

F. The efficiency of spectral-spatial compression

We fixed a compression ratio of 25% and compared the
reconstruction performance from OCT images among three
schemes: i) solely in spectral domain (I = 4, m = 1); ii) solely
in spatial domain (I = 1, m = 4); iii) jointly in spectral and
spatial domains (I = 2, m = 2). In Table I, we show the PNSR
and SSIM of magnifying OCT images of acquisition factors
(1,4), (4,1) and (2,2) using MSSMN. The joint acquisition,
with a factor of (2,2), provides much higher scores after
reconstruction, comparing to that of (1,4) and (4, 1). Thus,
acquiring OCT images in the spectral-spatial domain is a better
strategy than pushing the compression limit in a single domain.

When acquiring spectrum data, there are two possible
approaches: truncating the spectrum from center and dropping
spectral data uniformly. We compared the two strategies by
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TABLE Il
RESULTS OF RECONSTRUCTION FROM OCT IMAGES OF ACQUISITION FACTOR (I, m) USING VARIOUS FEATURE EXTRACTORS (MSRN, RDN,
RDU, RCAN) AND META LEARNING (MSSMN wiTH RCAN). ALL RESULTS ARE AVERAGED BASED ON FIVE-FOLD CROSS-VALIDATION.
MAGNIFICATION FACTORS (I, 772) ARE THE SAME AS ACQUISTION FACTORS (I, ). RED AND BLUE INDICATE THE BEST AND THE SECOND BEST
PERFORMANCE, RESPECTIVELY.

(I, m)

Method Metrics  (2,2) (2,3) 24 (32) (3.3) 34 4.2) 4.3) 44
MSRN PSNR 29.1191 | 27.3316 | 26.3894 | 26.8260 | 26.2016 | 25.7575 | 25.8892 | 25.6713 | 25.3854
SSIM 0.7566 0.6018 0.4866 0.5996 0.5061 0.4288 0.4964 0.4456 0.3941
RDN PSNR 29.1173 | 27.3165 | 26.4040 | 26.8226 | 26.2199 | 25.7389 | 25.9015 | 25.6276 | 25.3776
SSIM 0.7569 0.6023 0.4874 0.5967 0.5046 0.4302 0.4952 0.4477 0.3941
RDU PSNR 28.9336 | 27.3247 | 26.4121 | 26.3479 | 26.2179 | 25.7630 | 25.6872 | 25.5999 | 25.4010
SSIM 0.7526 0.5999 0.4870 0.5796 0.5065 0.4295 0.4827 0.4443 0.3932
RCAN PSNR 29.1395 | 27.3534 | 26.4421 | 26.9176 | 26.2668 | 25.7503 | 25.9547 | 25.7287 | 25.4509
SSIM 0.7570 0.6024 0.4876 0.6023 0.5082 0.4326 0.4973 0.4486 0.3947
MSSMN PSNR 29.1789 | 27.3914 | 26.4562 | 27.0109 | 26.3555 | 25.8655 | 26.0577 | 25.7946 | 25.4995
SSIM 0.7578 0.6040 0.4876 0.6031 0.5104 0.4333 0.4993 0.4507 0.3978
m Center muniom] (D) = Center sxUnform|  magnification factors ([, 7h) equal to acquistion factors (I,mn)
0.5 for MSSMN. The MSSMN achieves the highest PSNR and
= SSIM scores among all acquisition factors. Using the same fea-
& ture extractor, meta-learning brings an average improvement
of 0.0674 in PSNR and an average improvement of 0.0015 in
SSIM towards all acquisition factors from RCAN to MSSMN.
2 3 4 0 2 3 4 For larger acquisition factors (less data acquired), the improve-

Spectral acquistion factors

Fig. 5. Results of acquiring OCT images using different strategies: trun-
cating the spectrum from center and dropping spectral data uniformly.
(a): PSNR. (b): SSIM.

fixing the spatial acquisition factor m to 1 and varying spectral
acquisition factor [. For the uniform acquisition, we drop
every | — 1 points in the A-line spectrum data to achieve an
acquisition factor of [/ as the same sampling strategy in [12].
We calculated PSNR and SSIM scores for OCT images within
the whole dataset acquired from both strategies. As shown in
Fig. 5, truncating the spectrum from center provides higher
PSNR and SSIM scores when [ = 3 and | = 4.

G. Performance comparison among feature extractors
and meta-learning

We compare the performance of RCAN as a feature extrac-
tor with that of MSRN, RDN and RDU, as shown in Table II.
The feature extractors were separately-trained for OCT images
of each acquisition factor (I, m). Among the separately-trained
models, the RCAN method reports the best PSNR and SSIM
scores comparing to other methods for most of acquisition
factors. Additionally, the MSRN method reports comparatively
high PSNR and SSIM scores against RDN and RDU, whereas
the number of trainable parameters in MSRN is significantly
less than other methods. The RDU model does not excel in
our OCT dataset even if it has more trainable parameters than
RCAN. One possible explanation is that variations of U-Net
have bottleneck layers, which might restrain the information
flow in reconstruction tasks for OCT images [39].

In Table II, we also report performance of meta-learning
integrated with the best feature extractor RCAN (referred as
MSSMN). To make a fair comparison, we consistently set the

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA.

ments are more significant. Overall, the combination of RCAN
and meta-learning framework achieves the best performance
for OCT image reconstruction in our dataset.

We observe that the SSIM scores for reconstructed OCT
images are lower compared to that of nature images [30],
[31]. This is consistent with existing reports on OCT image
reconstruction ([12], [13], [14], [16]) due to the comparatively
low image quality. The high resolution OCT has lower image
quality than high resolution natural images in terms of signal
to noise ratio and image contrast. As the high resolution OCT
image is with lower image quality than natural image as a
reference to calculate SSIM and PSNR, we expect the SSIM
and PSNR are lower in OCT-related tasks than those in natural
image-related tasks. In addition, our acquisition strategy on
both spatial and spectral domain brings extra challenges for
MSSMN compared to downsampling OCT data in a single
domain.

H. Performance comparison using a unified network on
different acquisition factors

We tested the flexibility of using a unified network to
reconstruct images when magnification factors (ﬁ m) were
different from acquisition factors (I,m). We compared the
performance of using MSSMN with other RCAN models that
were trained for single magnification factors. The RCAN(Z , M)
stands for a RCAN model that is trained for magnification
factor of ([,7). The output images of RCAN(I,7) were
resized to the reference OCT images in order to calculate the
PSNR and SSIM scores. The magnification factors (,77) for
MSSMN were equal to acquisition factors (I, m).

As shown in Table III, the MSSMN reports higher PSNR
and SSIM scores for resolving OCT images of most acquisi-
tion factors. We find that the best performance of RCAN(, 1i2)
generally occurs when ideally [ = [ and m = 7. Also, the
second best PSNR and SSIM scores for a RCAN(/, 7i1) model
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TABLE Ill
PSNR AND SSIM RESULTS OF RECONSTRUCTION FROM OCT IMAGES OF ACQUISITION FACTOR (I, m) USING RCAN(i, m). ALL RESULTS
ARE AVERAGED BASED ON FIVE-FOLD CROSS-VALIDATION. RED AND BLUE INDICATE THE BEST AND THE SECOND BEST PERFORMANCE,
RESPECTIVELY.

(I, m)

Mothod Metrics  (2.2) 2.3) 2.4) (3.2) (3.3) (.4) @.2) 3) @4

RCAN (— 2.m—2  PSNR 291305 [1267070 [ 259195 [ 260177 | 252471 | 248725 [ 24.1563 | 242241 | 24.1444
: SSIM 07570 | 05586 | 04510 | 0.6018 | 04829 | 0.4100 | 04858 | 0.4274 | 03794

RCAN (— 2. —3  PNSR 282387 | 273534 | 261379 | 254245 | 24.5441 | 251339 | 235747 | 236788 | 24.3677
’ SSIM  0.6848 | 0.6024 | 0.4639 | 05404 | 04210 | 0.4203 | 04388 | 03771 | 0.3874

RCAN (1= 2.7 — 4y PNSR 281176 | 257341 | 264421 | 25.1130 | 245077 | 25.2193 | 234057 | 23.5806 | 24.3706
’ SSIM  0.6579 | 04659 | 04876 | 05202 | 0.4099 | 04319 | 04294 | 03692 | 0.3952

RCAN (—3.m—2  PNSR 283208 | 262502 | 253176 | 269176 | 257484 | 25.1228 | 254813 | 252145 | 24.8207
’ SSIM 07006 | 0.5066 | 0.4033 | 0.6023 | 0.4670 | 03879 | 0.5065 | 0.4334 | 03740

RCAN (—3.m—3  PNSR 279758 | 257518 | 25.8236 | 262365 | 262668 | 254906 | 24.5388 | 24.6297 | 250996
’ SSIM  0.6534 | 04610 | 0.4345 | 05472 | 0.5082 | 04108 | 0.4591 | 03931 | 0.3903

RCAN (1= 3.1 — 4y  PNSR 276449 | 258364 | 26.0717 | 25.5899 | 251103 | 257503 | 23.8753 | 243177 | 250535
’ SSIM  0.6235 | 04552 | 04522 | 05239 | 04189 | 04326 | 0.4464 | 03864 | 0.3999

RCAN (= 4.m—3  PNSR 263729 | 249097 | 242386 | 263620 | 250821 | 244809 | 259547 | 250280 | 24.5449
’ SSIM 05671 | 04074 | 0.3392 | 05373 | 04005 | 03390 | 04973 | 0.3922 | 0.3400

RCAN (= 4.m—3  PNSR 274361 | 256006 | 254481 | 264774 | 253258 | 253649 | 253811 | 257287 | 25.1836
: SSIM  0.6086 | 04377 | 04052 | 05318 | 04132 | 03913 | 04617 | 04486 | 03793

RCAN (= 4.m—4)  PNSR 273637 | 257250 | 257403 | 261471 | 254230 | 256337 | 24.6886 | 250076 | 254509
’ SSIM 05875 | 04350 | 04216 | 05135 | 0.4120 | 0.4054 | 04489 | 03901 | 0.3947

MSSMN (= L. —my PNSR 291789 | 27.3014 | 264562 | 270109 | 263555 | 258655 | 26.0577 | 257946 | 254995
: SSIM 07578 | 0.6040 | 0.4876 | 0.6031 | 0.5104 | 04333 | 04993 | 0.4507 | 0.3978

TABLE IV

RESULTS OF RECONSTRUCTED OCT IMAGES BY MAGNIFICATION FACTOR (Ll], |7 ]) UsSING RCAN AND MAGNIFICATION FACTOR ([, m) USING
MSSMN. ALL RESULTS ARE AVERAGED BASED ON FIVE-FOLD CROSS-VALIDATION. RED AND BLUE INDICATE THE BEST AND THE SECOND
BEST PERFORMANCE, RESPECTIVELY.

Method @, m) Metrics  (2.5,2.5) (2.53.5) (254.5) (3.525) (3535) (3545 (4525) (4535) (4.545)

RCAN PSNR  26.3234 | 25.4072 | 25.2823 | 25.6820 | 25.1737 | 25.0225 | 25.3419 | 25.0736 | 25.0012
SSIM 0.5760 0.4441 0.4011 0.4899 0.4034 0.3735 0.4284 0.3797 0.3559

MSSMN PSNR  27.2603 | 26.3926 | 25.8637 | 26.1884 | 25.7945 | 25.4855 | 25.6679 | 25.4557 | 25.2380
SSIM 0.6123 0.5005 0.4236 0.5103 0.4398 0.3887 0.4469 0.4047 0.3677

are more likely to occur where at least one of the acquisition
factors (either in spatial or spectral domain) matches (Z, m).
For acquisition factor (4,4), among RCAN(, 7i2) models, the
best PSNR (25.4509) is achieved by RCAN(4, 4), and the best
SSIM (0.5095) is achieved by RCAN(4, 3). For acquisition
factor (4,2), among RCAN(I,77) models, the best PSNR
(25.9547) is achieved by RCAN(4,2), and the best SSIM
(0.5065) is achieved by RCAN(3, 2). Overall, Table III also
supports our argument that the output of RCAN(/, 77) models
will be deteriorated if applied to OCT images of different ac-
quisition factors (I, m). In contrast, training a unified network,
MSSMN, generally achieves better performance than training
each RCAN-based model to handle various magnification
factors due to the nature of multi-task learning. Reconstructing
OCT using multiple magnification factors can be considered as
solving multiple tasks. Useful information is exploited from re-
lated tasks during multi-task learning, which in turn improves
learning procedure for each task [40]. The meta-upscaling
and meta-restoration modules in MSSMN provide platforms
for multi-task learning, which leads to the improvements in
each magnification factor compared to baseline RCAN models
trained for specific acquisition factors.

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA.

I. Performance comparison on OCT images of untrained
acquisition factors

The choice of acquisition factors (I, m) should be adjustable
based on needs in coronary analysis. However, it is technically
impossible to train the reconstruction framework for OCT
images of all possible acquisition factors, especially the non-
integer factors. Thus, it is desirable to propose a framework
that is robust and able to generalize for untrained magnification
factors, especially the factors which are non-integers.

We used the MSSMN to reconstruct OCT images of un-
trained acquisition factors (I,m), here | = 2.5,3.5,4.5 and
m = 2.5,3.5,4.5. The floor operation is used to achieve non-
integer spatial acquisition factor m. Using floor operation,
the A-lines indexes are adjusted while the desired spatial
acquisition factor m can be achieved. To compare the per-
formances, we also calculated the PSNR and SSIM scores of
reconstruction using RCAN(|/], |m ). For example, we used
the RCAN model trained for magnification factor (2,2) to
resolve OCT images of acquisition factor (2.5,2.5) if [ = 2.5
and m = 2.5.

With the meta-upscaling and meta-restoration modules, our
MSSMN is capable of magnifying OCT images of untrained
acquisition factors. In Table IV, MSSMN method reports
higher PSNR and SSIM scores compared to the baseline
RCAN(|!], |[m]) models. The differences of scores between
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Fig. 6.

Multi-scale image reconstruction of drug-eluting stents. (a) The reference OCT image. (b) The LR OCT image is down-scaled with an

acquisition factor of (4, 4). (c)-(f) The reconstructed images using different magnification factors (2, 2), (2,4), (4, 2) and (4, 4). Scale bar: 200
pm. Stent alloy, polymer coating and boundary between media and adventitia can be resolved using different magnification factors.

Fig. 7.

Calcified lesion _Histology
2 - Endothelial layer
h K

Reference

Multi-scale image reconstruction of two ROls. (a) The LR OCT image is down-scaled with an acquisition factor of (4, 4). (b) Histology

image, (c1-c¢3,d1-d3) ROIs. (c4,d4) The reference OCT images. Scale bar: 200 um. ROls are marked by red and blue rectangles respectively. ROIs
are magnified by MSSMN using magnification factors of (2, 2) and (4, 4). For ROI1, a magnification factor of (2, 2) resolves general shape of
calcified lesion; For ROI2, a magnification factor of (4, 4) provides better assessment of the thickness of endothelial layer.

RCAN and MSSMN are larger in resolving OCT images
of untrained acquisition factors compared to that of trained
factors (shown in Table II), which means our framework is
generalizable.

J. Visualization of drug-eluting stents in coronary
imaging

Imaging microstructures and tissues adjacent to stent struts
is crucial in clinic. It is critical provides accurate morpholog-
ical information of interactions between the stent and vessel
wall. With drug-eluting stents (DESs), polymer coatings elute
drugs, which prevents intimal proliferation as well as reduces
the risk of restenosis after stent implantation. Polymer coating

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA.

on DESs usually appears as clear rims of material around the
metallic struts [7]. After image down-scaling, such information
might be compromised in LR OCT images.

In Fig. 6(a), we demonstrate the appearance of polymer
coating on a stent captured by OCT. However, the polymer
coating and stent alloy are hardly visible in compressed OCT
image with a acquisition factor of (4, 4) as shown in Fig. 6(b).
We applied our framework to the compressed OCT image,
magnifying them by different factors in both spectral and
spatial domains. With a magnification factor of (2,2), the
structure of stent alloy was restored as shown in Fig. 6(c).
However, polymer coating on the stent was still blurry. Thus,
we used a higher magnification factor in spatial domain in
order to mitigate the blurring artifacts, as shown in Fig. 6(d).
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Fig. 8. Spatial frequency analysis of the reference, LR and reconstructed OCT images. (a) Log-scaled spatial frequency spectra of the reference
zoomed ROI1 in Fig. 7. (b)-(d) First row: Log-scaled spatial frequency spectra of OCT images compressed by factors (2, 2), (3,3) and (4, 4).

Second row: outcome from MSSMN. Third row to Fifth row: outcome from RCAN(2, 2), RCAN(3, 3), and RCAN(4, 4). (e)-(9)

Averaged intensity

of spectral profiles in (b)-(d). Our framework, MSSMN, generates OCT images that better match the spectrum of the reference image.

With the magnification factor of (2,4), blurry artifacts were
removed thus the polymer coating can be better visualized.
In this case, a magnification factor (2,4) should be enough
if we are interested in the stent and polymer coating. But for
more detailed textures such as boundary between media and
adventitia (highlighted by yellow arrows), a higher magnifi-
cation factor in spatial domain is required. In Fig. 6(e), we
used a magnification factor (4,2) to resolve the compressed
OCT image, which provided information about stent, polymer
coating, and the boundary between media and adventitia.
Further with a magnification factor of (4,4), the detailed
textures were better recovered with a higher magnification
factor in terms of digital resolution as shown in Fig. 6(f).

In Fig. 6, we demonstrated performance of our framework
using multiple magnification factors to resolve a compressed
OCT image containing important features including stent,
polymer coating, and boundary between media and adventitia.
The result suggests that resolving compressed OCT images
with multiple magnification factors in both spectral and spatial
domain provides flexibility which suits structures with various
sizes.

K. Visual inspection and assessment with H&E stained
histological micrographs

To demonstrate flexibility of our framework in magnify-
ing pathological features, we applied our framework to two

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA.

magnified regions of interests (ROIs), ROI1 and ROI2, in an
example of low resolution (LR) OCT image acquired using a
factor of (4,4).

We applied magnification factors of (2,2) and (4,4) to
magnify two ROIs. The visual inspections are shown in Fig.
7. In ROIl, a calcified lesion is highlighted. For ROI1, a
magnification factor (2,2) is clear enough to draw the general
shape of calcified region. In ROI2, the thickness of endothelial
layer needs to be precisely assessed. For ROI2, a magnifi-
cation factor (4,4) is necessary for an accurate assessment
of the thickness of endothelium. In conventional setup, two
networks need to be separately trained to magnify two scales.
On the contrary, our framework can freely switch between
magnification factors using a unified network. We thus provide
flexibility for analyzing pathological features within coronary
OCT images.

L. Comparison of output spectrum

To further quantify our network inference results against the
ground truth images, we performed spatial frequency analysis
to the reference OCT image, LR OCT images, reconstruction
results from MSSMN and RCAN models. The reference image
is a zoomed ROI, the same on as shown in the red box
of Fig. 7(a). We magnified each LR image using MSSMN,
RCAN(2,2), RCAN(3, 3) and RCAN(4, 4). The magnification
factor of MSSMN is equal to the acquisition factor of LR.
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The LR OCT images were acquired using acquisition factors
of (2,2), (3,3) and (4,4). We converted the images into the
spatial frequency domain using 1D Fourier transform for each
A-line (along the vertical axis). Results of spatial frequency
analysis are shown in Fig. 8. The results of spatial frequency
comparison for each A-line, as shown in Fig. 8(b)-(d), demon-
strate that our framework is capable of providing OCT images
that closely match the reference in the spectral domain. The
detailed quantitative comparison of spectrum are given in Fig.
8(e)-(g). Moreover, the separately trained RCAN models with
fixed magnification factor ([,7h), if applied to compressed
OCT image of different acquisition factors, outcomes diverged
spectrum. The spatial frequency analysis supports our argu-
ment that the separately-trained RCAN models are less robust
and can hardly be applied to compressed OCT images of
different factors.

V. DISCUSSION

We propose a new image acquisition method and a re-
construction framework to achieve fast image visualization
at flexible magnification factors. We devise a new image
acquisition method in spectral-spatial domain for SD-OCT
systems, which improves acquisition speed and reduces data
storage consumption while maintaining high image quality in
reconstruction. To reconstruct the compressed OCT images of
different acquisition factors, we develop a multi-scale frame-
work which functions in both spectral and spatial domains.
Our framework, MSSMN, achieves better PSNR and SSIM
scores comparing to that of separately-trained MSRN, RDN,
RDU and RCAN models. Experimental results suggest that
separately-trained RCAN models report deteriorated PSNR
and SSIM scores if applied to OCT images of different
acquisition factors. We confirm that the proposed multi-scale
reconstruction framework is beneficial for supporting our
acquisition method. Moreover, our framework achieves higher
PSNR and SSIM scores when adopting untrained magnifica-
tion factors comparing to that of RCAN models. Our viable
acquisition method and multi-scale reconstruction framework
are particularly valuable to the development of catheter based
IVOCT systems. The image acquisition speed of SD-OCT
systems can be improved without any hardware modifications
using our acquisition method, which makes it more suit-
able to be applied in intravascular applications. Meanwhile,
the resolving power of SD-OCT systems is maintained by
adopting our multi-scale reconstruction framework. We have
demonstrated the flexibility of our multi-scale framework in
resolving pathological features.

We compare our work with existing OCT reconstruction
works from three aspects: data acquisition strategy, neuron net-
work, and data size. We present a unique spectral-spatial OCT
data acquisition method which modifies OCT images in both
spectral and spatial domains. According to our experiment,
our acquisition method outperforms uniform sampling when
the spectral acquisition [ factor is larger than 2. Moreover, we
have performed extensive reconstruction experiments on four
feature extractors for comparison: MSRN, RDN, RDU, and
RCAN. We demonstrated RCAN is the optimal selection of

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA.

feature extractor for MSSMN. Lastly, our research is carried
out on a reasonably large dataset. In terms of deep learning-
based OCT super-resolution or enhancement, the training data
size used in our work is larger than that of [14] (100 images),
[20] (320 images), [21] (1388 images), [22] (128 images), [23]
(25 images), [25] (280 images) and [26] (429 images).

There are a few directions to further extend our framework
in the future. First, our data acquisition method and multi-
scale reconstruction network can be easily adopted in SS-
OCT systems. SS-OCT and SD-OCT share similar principle in
acquiring spectral data and use Fourier Transform for image
reconstruction. Second, the image reconstruction framework
can be integrated in a GAN structure. There is a potential
to further improve image quality by adding a discriminator
in current neural network. Third, we plan to incorporate de-
blurring and de-noising modules in MSSMN with special
considerations on blurring and noise corruption. Finally, we
will extend the study from benchtop OCT data acquisition to
catheter-based OCT data acquisition.

VI. CONCLUSION

In this paper, we propose a spectral-spatial based sampling
method to boost efficiency of image acquisition while main-
taining high performance and flexibility in reconstruction. We
develop a multi-scale reconstruction framework, MSSMN, for
compressed OCT images. Our experimental results suggest
that the framework outperforms separately-trained networks.
We demonstrate that our framework is capable of reconstruct-
ing OCT images and magnifying pathological structures with
flexible magnification factors as determined by clinical needs.
With extensive experiments in human coronary OCT images,
we demonstrate high accuracy, data efficiency, and magni-
fication flexibility. Our work may allow for faster SD-OCT
inspection with high resolution during coronary intervention.
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