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Dietary variation within species has important ecological and evolutionary
implications. While theoreticians have debated the consequences of trait var-
iance (including dietary specialization), empirical studies have yet to
examine intraspecific dietary variability across the globe and through time.
Here, we use new and published serial sampled δ13Cenamel values of herbi-
vorous mammals from the Miocene to the present (318 individuals
summarized, 4134 samples) to examine how dietary strategy (i.e. browser,
mixed-feeder, grazer) affects individual isotopic variation. We find that
almost all herbivores, regardless of dietary strategy, are composed of indi-
vidual specialists. For example, Cormohipparion emsliei (Equidae) from the
Pliocene of Florida (approx. 5 Ma) exhibits a δ13Cenamel range of 13.4‰,
but all individuals sampled have δ13Cenamel ranges of less than or equal to
2‰ (mean = 1.1‰). Most notably, this pattern holds globally and through
time, with almost all herbivorous mammal individuals exhibiting narrow
δ13Cenamel ranges (less than or equal to 3‰), demonstrating that individuals
are specialized and less representative of their overall species’ dietary
breadth. Individual specialization probably reduces intraspecific compe-
tition, increases carrying capacities, and may have stabilizing effects on
species and communities over time. Individual specialization among species
with both narrow and broad dietary niches is common over space and
time—a phenomenon not previously well recognized or documented
empirically.
1. Introduction
Food selection is a critical component of life at the individual, population and
species level, and is one of the crucial aspects that defines the ecological niche of
an organism. Diet influences an animal’s habitat choice, landscape use/
migration, how animals physically move in their environment (i.e. their biome-
chanics as pertains to food acquisition) and even reproduction [1–4]. The
dietary niche of an animal is often then inferred as broad (i.e. a generalist) or
narrow (i.e. a specialist) based on the breadth of food items consumed.
Humans are no exception, with the genus Homo recently credited as occupying
a previously empty niche—that of a ‘generalist specialist’, defined as the ability
to both generalize (as a species) and specialize (as individuals) in one’s
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Figure 1. Stable carbon isotopic breadth of grazing, mixed-feeding and browsing species. Hypothetical examples denote expected individual variability if individuals
are specialists (left) or more generalized (middle). Empirical data (right, examples of serial samples from electronic supplementary material, dataset) indicate that
the average δ13Cenamel range is 1.4‰ (1.1 s.d., n = 21; electronic supplementary material, tables S1 and S2); grazing (green), mix-feeding (orange), browsing
(blue). (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20211839

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 J

un
e 

20
22

 

environment [5]. While Homo sapiens are highly generalized in
their dietary behaviour and individually maintain specialized
diets through time, the ‘generalist specialist’ niche may be far
more widespread than our species.

The niche variation hypothesis (NVH) suggests that
populations of species with broader niches are also more
variable in a particular trait (e.g. morphological, physiologi-
cal and behavioural) than more specialized populations [6].
Increased niche breadth by a species could result
from either individuals expanding their use of available
resources or individual specialists maintaining narrow diets
but collectively resulting in a broad species niche [7,8]. While
empirical tests typically fail to support the NVH, the absence
of confirmation has largely been attributed to the use of mor-
phological traits (e.g. beak size or shape) as proxies of dietary
breadth, in contrast with more direct measures of diet [8].
When diet is examined directly or inferred via proxies such
as stable isotopes, generalist populations/species are often
found to be composed of individual specialists—though only
a handful of species have been examined [8–12]. The reason
for this phenomenon is not entirely clear, but for carnivores
it is likely to be related to tradeoffs between specializing on
one versus many prey species, with selection acting against
individual generalists [7]. For example, pursuing voles, rabbits
and deer may make an individual predator less effective at
capturing any one of these prey items, resulting in a ‘jack of
all trades and master of none’ outcome. While this phenom-
enon has been relatively well studied in carnivores [9–13],
herbivorous generalists have received less attention.

Food selection in herbivores results from the complex
interplay between vegetation characteristics and herbivore
anatomy, physiology and behaviour, a series of ecological
and evolutionary interactions that occur at the species, popu-
lation and individual levels [14]. Herbivore food selection is
often a balancing act between the quality of digestible dry
matter (energy and macronutrients) in each bite [15] and
chemical defensives such as phenolics, terpenes and toxins
[16,17]. Individuals experience tradeoffs related to search
time, nutrient content and fitness (e.g. optimal foraging
theory [18–21]). Plant selection is further dictated by herbi-
vore body size, through characteristics such as bite size and
length of the digestive tract [17,22]. While foraging behaviour
is relatively well studied in modern systems, few empirical
studies have examined dietary variability in extant or extinct
herbivores, or addressed how food selection at the individual
level scales up to the species level. That is, are generalist
species composed of similarly generalized individuals or
specialized individuals subdividing the species’ dietary
niche axis? How general is either pattern over time?

Here, we use stable carbon isotope data from serial
samples of mammal tooth enamel (δ13Cenamel) collected
from herbivores that can be categorized into the dietary
groups of grazer, browser and mixed-feeder (i.e. eating both
grass and browse). We gathered data from the literature
dating from the Miocene to the present (298 individuals,
4013 samples) and acquired new samples of mixed-feeders
(20 individuals, 121 samples). Enamel δ13C values provide
valuable insights into herbivore ecology, including a record
of the proportions of C3 and C4 vegetation consumed, indica-
tive of trees/shrubs and warm-season grasses, respectively—
when occurring at lower latitude sites (approx. 37° and below
[23–25]). Because teeth grow incrementally, serial samples of
enamel collected perpendicular to a tooth’s growth axis
record dietary variability over the course of the tooth’s
growth which can range from a few months to over 2 years
in high-crowned teeth [26,27]. As a result, our new
dataset allows us to answer the following questions. (i) Are
herbivorous generalists (i.e. mixed-feeders) composed of indi-
vidual generalists (defined as having high isotopic variation)
or individual specialists (defined as having low isotopic vari-
ation) (figure 1)? And (ii) how do isotope values of
individuals vary within a species’s overall dietary strategy



Table 1. Summary statistics of dietary ranges for individuals and subsequent comparisons between groups using Kruskal–Wallis and Dunn’s tests. s.d., standard
deviation; n, number of individuals. Italicized p-values are significant, <0.05.

dietary category mean s.d. n comparison p-value

global dataset range

browser 1.1 0.8 48 browser versus grazer <0.001

mixed-feeder 1.4 0.9 33 mixed-feeder versus browser 0.0629

grazer 1.8 1.5 231 grazer versus mixed-feeder 0.3785

below 37˚ latitude range

browser 1 0.7 19 browser versus grazer <0.00001

mixed-feeder 1.5 1.0 32 mixed-feeder versus browser 0.0815

grazer 2.4 1.7 111 grazer versus mixed-feeder <0.01
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(i.e. browser, mixed-feeder, grazer)? These answers provide a
long-term view of herbivore-vegetation interactions critical
for understanding intra- and interspecific competition and
their ecological and evolutionary consequences [23,28].
Understanding how herbivores choose and consume veg-
etation at the individual, population, and species levels is
also fundamental for effective environmental conservation
and management [29].
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Figure 2. Carbon stable isotope values from individual specimens of Cormo-
hipparion emsliei from a 5-million-year-old fossil assemblage (Bone Valley,
Florida, USA). Bulk and mean serial values (left) along with raw serial samples
(right) exemplify broad dietary breadth as a species (range = 13.4‰), while
individuals are highly specialized (all individuals sampled have less than or
equal to 2‰ range of δ13Cenamel, with an average δ13Cenamel range of
1.1‰; electronic supplementary material, tables S2 and S3). Browsers (blue,
bottom), grazers (green, top) and all remaining mixed-feeders are indicated
with other colours (orange-purple, middle). (Online version in colour.)
2. Results
Descriptive statistics and raw data of δ13Cenamel values (4134
serial samples from 318 individuals) are noted in table 1, and
electronic supplementary material, tables S1–S11, and summar-
ized in figures 1–4 and electronic supplementary material,
figures S1–S3.

Mammalian herbivore δ13Cenamel values spanned 23‰
(ranging from −20.3‰ to 2.7‰) across all individuals,
which includes specimens from grasslands to rainforests
across the globe (e.g. Afghanistan, China, Ethiopia, Ireland,
Panama, South Africa and USA; see dataset in
the electronic supplementary material for a full list of
countries included). The δ13Cenamel range within a given
species can be upwards of 8‰ in grazers (figure 3), or
approximately 35% of the total range represented in this
study. By contrast, the range within each individual specimen
is low (typically less than 3‰; figure 3). For example, the
total species range of the mixed-feeder Cormohipparion emsliei
from the early Pliocene (Florida, USA [30,31]) is 13.4‰, while
individuals have an average δ13Cenamel range of 1.1‰ (stan-
dard deviation, s.d. 0.5‰, n = 9; figure 2), and all
individuals vary by≤ 2‰. An additional mixed-feeder tar-
geted for sample collection (Hemiauchenia macrocephala) also
demonstrates a broad δ13Cenamel range of 13.2‰ from two
sites in Florida (Inglis 1A and Leisey 1A [32]), with an average
individual δ13Cenamel range of 1.3‰ (s.d. of 0.5‰, n = 8), and
all individuals exhibit≤ 2.4‰ variability (figure 1). All indi-
vidual generalist herbivores (i.e. mixed-feeders) have
δ13Cenamel ranges≤ 4.0‰ with average individual δ13Cenamel

ranges of less than 2‰.
Nearly all herbivorous mammalian individuals are

specialized in their diets (figure 3). Specifically, the majority
of individuals sampled with at least three serial samples
(89%, 283 of 318 individuals) or five or more serial samples
(87.9%, 246 of 280 individuals) exhibit a δ13Cenamel range of
less than or equal to 3‰ (figure 3). As body size is known
to influence diet, including an animal’s ability to eat lower
quality foliage like grass [33], relationships between
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Figure 3. The proportion of individuals within serial sample range bins per dietary group. Most serially sampled individuals (82–89%), regardless of dietary cat-
egory, have δ13Cenamel values that range less than or equal to 3‰ when calculated using the full range of statistical methods. Only a small proportion of individuals
(3.8–6%) range in δ13Cenamel values by more than 5‰, all of which are grazers. The right-skewed pattern is present whether we use (a) the entire dataset,
(b) individuals with 5 or more serial samples, or when we consider (c) all samples below 37° latitude, and (d ) individuals that have at least 5 serial samples
that are also restricted to below 37° latitude.
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Figure 4. Isotopic individuality index (III) per dietary category. (a) The overall species dietary range plotted against the average individual range for a species (one-
to-one line given, species codes are defined in the electronic supplementary material, table S9) and (b) the distribution of III within dietary categories indicate a
high degree of individual specialization (low index). Values closer to one are species in which the individuals are each more representative of the species as a whole,
while smaller values indicate that individuals are specialized and less representative of their overall species dietary breadth. (c) Below 37° latitude grazers plot near
the one-to-one line more often than other groups; (d ) the III for grazing species is higher than mixed-feeders below 37° latitude, and browsers at these lower
latitudes are uncommon in this study.
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individual breadth in δ13Cenamel and body size were exam-
ined. We tested for significant differences in the total range
of δ13Cenamel values of small (mass less than 100 kg),
medium (between 100 kg and 350 kg) and large (mass greater
than or equal to 350 kg) species, as well as the average range
exhibited by individuals across these size categories (see
Material and methods). We also reran our analyses on only
specimens found below 37° latitude, where the isotopic dis-
tinction between grasses (primarily C4) and trees/shrubs
(primarily C3) is clearest [23–25]. There are no significant
relationships between average individual ranges or of aver-
age taxon δ13Cenamel ranges across body size categories,
either globally or at low latitudes (electronic supplementary
material, table S8), contrary to expectations [34]. However,
when data were corrected with a sliding window (due to
the possibility that more serial samples could produce
larger δ13Cenamel ranges; see Material and methods), the aver-
age individual range of large taxa is significantly greater than
that of medium-sized taxa ( p < 0.05), but not of small taxa
( p > 0.42; electronic supplementary material, table S8).

The isotopic individuality index (III) for a given species,
as defined here, is the ratio of the average individual
δ13Cenamel range to the total δ13Cenamel range of a species.
This proportion is low (near 0) when individuals are special-
ized within isotopically generalized species; the III
approaches 1 when an individual’s isotopic breadth
approaches the overall species breadth (figure 4). The average
IIIs calculated for mixed-feeding species (0.18 ± 0.11, n = 4),
browsers (0.35 ± 0.17, n = 7) and grazers (0.39 ± 0.17, n = 10)
are all closer to 0 than 1, with only grazers having signifi-
cantly higher III values than mixed-feeders when including
the global dataset ( p < 0.05) (figure 4; electronic supplemen-
tary material, tables S2 and S7). Below 37° latitude, the III
of grazers is significantly higher than both mixed-feeders
( p < 0.05) and browsers ( p < 0.05). It should be noted that
sampling standardization (i.e. the sliding window analysis)
of the global dataset results in significantly lower III values
in mixed-feeders as compared to browsers (p < 0.01; elec-
tronic supplementary material, tables S8 and S9). Variance
partitioning analyses (where the proportion of δ13Cenamel var-
iance is partitioned across three nested scales: between
species, between individuals and within individuals) [35]
similarly found that, across dietary groups, individuals
within species tend to be specialized (electronic supplemen-
tary material, table S1). Lower variance is consistently
found within individuals as opposed to among individuals
in a species, or across species: depending on the specific analy-
sis used, the proportion of variance ranges from 0.34 to 0.64
between species, 0.32–0.61 between individuals within a
species and 0.05–0.06 between serial samples within
individuals (electronic supplementary material, table S1).

Across the global dataset, the average individual
δ13Cenamel range is highest among grazers, significantly
higher than browsers (table 1). Below 37° latitude, the aver-
age individual δ13Cenamel range remains highest among
grazers and is significantly higher than both browsers and
mixed-feeders (table 1). All dietary categories have mean
δ13Cenamel ranges of less than 3‰, grazers yielded a maxi-
mum individual range of 8‰, while the individual
δ13Cenamel ranges of browsers and mixed-feeders in the data-
set never exceeded 3.3‰ and 3.9‰, respectively (figure 3).
When we standardize the number of analysed serial samples
per tooth using a five-sample sliding window approach (see
Material and methods), we find similar results to the raw
data analysis (electronic supplementary material, figure S1
and table S7). Most individual ranges (92–94%) are less
than or equal to 2‰ when standardized, and nearly all
(97–100%) are less than or equal to 3‰ across dietary
groups (i.e. global average; electronic supplementary
material, figure S1 and table S7).
3. Discussion
(a) Effects of dietary behaviour on individual

specialization
Herbivores that are classified as grazers vary their diet the
most individually, more so than herbivores classified as
browsers and mixed-feeders. Some of the largest individual
δ13Cenamel ranges are exhibited by grazers (e.g. bison,
horses, mammoths and wombats can exhibit individual
δ13Cenamel ranges of 6.7‰, 6.7‰, 7.6‰ and 8.0‰, respectively;
electronic supplementary material, figure S3); however, their
mean is still fairly constrained (�x ¼ 1:8‰ ± 1.5 s.d.). As graz-
ing morphologies permit (but do not exclusively prescribe)
grass consumption [36], dietary variability of individuals is
likely to be broader when a given taxon is capable of eating
grass as well as browse. Browsing species are morphologically
and nutritionally constrained to diets that exclude grasses [37]
and exhibit the lowest δ13Cenamel ranges (figure 3 and table 1),
which could explain the broader δ13Cenamel ranges of grazers
as compared to browsers (approx. 1.6 to 2.4 times that of
browsers; table 1).

The manner in which grass and browse resources are
exploited by herbivores can affect δ13Cenamel ranges among
grazer and browser species. Specifically, mammalian herbi-
vores broadly record δ13Cenamel variability of plants on the
landscape; depending on the size of their home range, this
could introduce spatial variability in δ13Cenamel that may be
expected to increase with body size. While many large herbi-
vores are classified as grazers, and body size of the individual
also impacts the plant types, parts and volume that can be
ingested [34,37], a range of body sizes are represented in
each dietary category. Further, our results suggest that body
size alone is not significantly influencing individual specializ-
ation. While small herbivores were analysed (less than
100 kg), the smallest mammals (less than 10 kg; e.g. most
rodents) are not included in this analysis due to the size
required for serial sampling of individual teeth. While more
work is needed on small mammals, modern mark–recapture
studies suggests that small mammals can also be individually
specialized [38].

Fundamental physiological differences between grasses
and browse, and their distribution across the landscape,
may influence spatial heterogeneity and variation in
δ13Cenamel values. Grasses typically exhibit fewer secondary
plant chemicals (such as tannins and alkaloids) that can
change more seasonally than leaves and buds [17], contribut-
ing few tradeoffs for their consumption if herbivores can
compensate for their typically lower nutritional content and
abrasive nature (i.e. the presence of phytoliths which can
wear down teeth [39]). C4 grasses that are better adapted to
aridity and use the PEP-CK sub-pathway can also have
more negative values than grasses that use the classic
NADP sub-pathway, though differences are small (approx.
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1‰) [38]. From an ungulate perspective, the architectural
arrangement of grass cannot be as easily differentiated via
dietary selection as can browse—grasses are composed of
leaves, sheaths and fruit that differ only at the very fine
scale, they have a low growth form, and grow in continuous
dispersion on the landscape [17], making it less likely that
individual grazers (typically with broad muzzles) can more
finely select grass forage. In contrast, browse consists of a het-
erogeneous mix of leaves, buds, and woody stems that are
irregularly distributed over the plant [17]. Therefore, active
food selection of browse resources can lead to narrower diet-
ary niches in browsing and mixed-feeding taxa [37] but is
unlikely to be the source of higher δ13Cenamel variation in
species consuming primarily grasses. The higher individual-
ity indices of taxa classified as grazers as compared to other
dietary groups likely stems from their ability to eat diverse
food types in addition to grasses (with few consequences).

Mixed-feeders, despite eating the broadest mix of food
types, have the lowest III values (significantly less than
grazers; electronic supplementary material, table S2).
We would expect lower III values for mixed-feeders if indi-
vidual variation is comparable to grazers or browsers, due
to the overall larger breadth represented by mixed-
feeding species. However, individual specialization of
mixed-feeders is far below that represented by the species
and does not indicate examples of switching between the
consumption of primarily grass at one interval to the con-
sumption of primarily browse at another. Lastly, while III
values of fossil taxa could be lower than extant taxa due to
time averaging that contributes to species breadth calcu-
lations (i.e. the denominator), the vast majority of all
specimens included (approx. 96%) are from fossil specimens
and are relatively comparable to one another (electronic
supplementary material, dataset SD1).

It is compelling that the vast majority of mammals exhibit
narrow isotopic variability for comparable durations
(months/seasons) of an individual’s life (figure 3 and
table 1). We can’t discount the possibility that herbivores
change their diet later in life or over the course of multiple
years to decades; however, serial sampling of multiple teeth
per individual (i.e. spanning years, though not decades)
reveals the absence of significant dietary variability in the
majority of specimens (though this has only been documented
in a handful of studies [40–42]). Although stable isotopes in
teeth are known to be dampened compared to the isotopic
composition of diet or water consumed [26,43,44], high varia-
bility is still possible (electronic supplementary material,
figure S3). That being said, serial samples represent an aver-
aged diet over the period of time sampled and do not
represent the full isotopic range of plants consumed by the
individual during this period of time, especially if mixed-fee-
ders are consistently consuming the same proportions of
mixed vegetation. While the total δ13Cenamel range from an
individual tooth is only a minimum estimate of total plant iso-
topic variability, it does provide important insight into dietary
variability of individuals and is a useful tool for comparing
taxa with different dietary preferences as dampening is
likely to affect herbivorous mammals to a similar degree.
Mixed-feeders with broad isotopic ranges (e.g. Hemiauchenia
macrocephala, Platygonus vetus and Diprotodon optatum [32,45])
individually exhibit only a fraction of the isotopic variability
of a given taxon (figure 4). Most notably, very few individuals
(1.2%) exhibit a broad isotopic range (i.e. individual δ13Cenamel
range greater than 7‰), demonstrating both the possibility of
high δ13C variability in an individual, but also the rarity of
such occurrences.
(b) Dietary specialists across space and time
Our results suggest that herbivorous mammals are primarily
individual specialists regardless of dietary category, similar to
observations noted for carnivorous taxa [9–13]. The individ-
ual variation we observe in herbivorous mammals across
the globe and through time have important ecological and
evolutionary implications [8,28,46,47]. Fundamentally, trait
variation among individuals is the raw material natural selec-
tion acts upon [48]. Individual foraging behaviour can
determine how other members of a foraging group behave,
a group’s choice of where to forage, and foraging methods
and their successes [49–52], while individual temperament
can affect predator–prey interactions [53]. An animal’s tem-
perament and the individual dietary choices it makes
(including high degrees of individual dietary specialization)
are often associated with ecological interactions that promote
food web stability in diverse communities [53]. Specialization
of individuals on disparate foods within a given location can
reduce competition among conspecifics [54], while also
potentially promoting predator–prey stability for high
carrying capacities of prey [55]. Specifically, individual
specialization may allow for a higher carrying capacity than
otherwise possible due to the reduction in competition both
among and between species (niche complementarity) [56].
Alternatively, trait heterogeneity may be a consequence of a
release of intraspecific competition resulting in increased
niche widths in populations that are decoupled from
individual niche width [57].

Generalist herbivore species are mostly composed of indi-
vidual specialists and not individual generalists (figure 1). If
generalists were composed of individual generalists, one
might expect fitness tradeoffs with the ‘jack of all trades but
master of none’ strategy. Analogously, foraging behaviour
among herbivores may have similar tradeoffs pertaining to
an individual animal’s ability to search for and digest dispa-
rate food types [58]. Generalist populations or species
composed of individual specialists may have overall
increased resilience against extinction if vegetation, patch
size and conditions affecting foraging behaviour change dra-
matically over time. Notably, species with high functional
heterogeneity of dietary behaviour and/or other functional
traits have a higher probability of persisting as environmental
conditions change—having a stabilizing effect that may result
in increased species longevity [28,59]. These observations
have important conservation implications, as species survival
for threatened herbivores may hinge on managing popu-
lations and landscapes in ways that place dietary
specialized individuals in different habitats in order to
preserve species-level generalization—an urgent mandate,
given the existential threats facing many mammalian
herbivores around the world [60].

Herbivores select food in a hierarchical fashion, with indi-
viduals and populations making decisions at different spatial
scales. At the individual level, this relates to the size of the
bite and the plant part exploited, and extends to the land-
scape and regional scale for populations [17,37]. Our data
extends this spatial perspective to include specimens from
the Miocene to the present. Individual foraging decisions in
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herbivores are largely consistent through the time of tooth
mineralization but are not representative of the realized
niche of the species (figure 4). This suggests that individual
temperament and/or learned behaviour may have contribu-
ted to the way herbivores exploit plants throughout the
geological record, and that ecological processes similar to
those at play today (e.g. intraspecific competition, tradeoffs
in resource exploitation) have fostered individual specializ-
ation within generalist species through millions of years, a
pattern with profound evolutionary implications. Across
time and space, generalist herbivore populations are not
‘jacks of all trades and masters of none’; because each indi-
vidual ‘jack’ specializes in a dietary ‘trade,’ populations can
become ‘jacks of all trades and masters of all’. Individual
specialization is not limited to generalist species but instead
occurs in the vast majority of extant and extinct mammals
examined here, suggesting there is a selective benefit of indi-
vidual specialization. Far from being a characteristic unique
to Homo sapiens, the ‘generalist specialist’ niche can be
viewed as a ubiquitous characteristic of generalists that may
help promote the stability of complex and diverse commu-
nities and have the potential to contribute to species
longevity.
4. Material and methods
(a) Stable isotope analyses
Published data were obtained through a literature search of the
topics of ‘isotop* AND fossil’ or ‘isotop* AND tooth’ through
Web of Science. Publications with serial sample data (δ13Cenamel

from the carbonate portion of tooth enamel hydroxylapatite)
from mammal teeth around the globe and across the Neogene
were curated in a database (electronic supplementary material,
dataset SD1, referred to as the ISOSERIAL 1.1 database). The iden-
tity of the sample (including the published taxonomy along with
any revisions), measured δ13Cenamel values, the distance each
sample was taken along with the growth axis of the tooth, and
the publication reference were recorded, when available.
Additional metadata, including the museum collection ID and
specimen number, the absolute or relative age of the specimen
and location data (name, country, and state of the site the speci-
men originated from) were collected. Some publications only
reported summary statistics from the isotope values for a given
study (e.g. minimum, maximum, mean, standard deviation and
range); these were recorded and indicated separately, along with
their correspondingmetadata (electronic supplementarymaterial,
dataset SD1). Original data, specific to this publication, are indi-
cated as such (electronic supplementary material, dataset SD1,
ISOSERIAL 1.1 database). Domesticated and zoo specimens,
marine mammals and xenarthrans were excluded from data col-
lection (the latter which lacks tooth enamel). A total of 3330 raw
serial samples are included in the database with summary
values recorded for 332 individuals (4134 serial samples), includ-
ing 121 new stable isotope serial samples from 20 individual
mixed-feeders (electronic supplementary material, tables S3–S5
and dataset SD1, ISOSERIAL 1.1 database). The focus of this data-
set is medium- to large-sized herbivores (i.e. ungulates and
proboscideans). The majority of all data included in this database
are from herbivores that occur during or after the expansion of C4

grasses in their region, with only approximately 7% of data occur-
ring in low-latitude regions prior to the expansion of C4 grasses, in
the early–middle Miocene (based on [23]).

Of the new data collected for this publication, mixed-feeding
taxa were targeted for serial sample analysis as they were rare in
published literature and are of particular relevance to the
research questions. All newly sampled specimens are noted in
the electronic supplementary material, tables S3–S5 and
dataset SD1, and are housed in publicly accessible collections
in the Florida Museum of Natural History (Gainesville, FL,
USA). Enamel powder (approx. 1–2 mg) was sampled perpen-
dicular to the growth axis of the tooth with spacing indicated
in the electronic supplementary material, dataset SD1 and table
S4. Enamel powder was treated with 30% hydrogen peroxide,
rinsed, reacted with 0.1 N acetic acid and rinsed again after
18 h (per [32]). The treated and dried enamel powder was ana-
lysed using a VG Prism stable isotope ratio mass spectrometer
with an in-line ISOCARB automatic sampler in the Department
of Geological Sciences at the University of Florida. The analytical
precision is ± 0.1‰, based on replicate analyses of samples and
standards (NBS-19). Stable isotope data are reported in conven-
tional delta (δ) notation for carbon (δ13C), where δ13C (parts
per mil, ‰) = ((Rsample/Rstandard)−1) × 1000, R = 13C/12C, and
the standard is VPDB (Pee Dee Belemnite, Vienna Convention)
[61]. All stable carbon isotopes are from the carbonate portion
of tooth enamel hydroxylapatite.

(b) Dietary classification
Each taxon was categorized as a browser, grazer or mixed-feeder
according to literature consensus. For extant species, this was
determined by the observed diet of wild-caught specimens
(note, only wild-caught specimens were included in the data-
base; hence, no domesticated species were included from
modern or archeological sites). For extinct species, these determi-
nations were made based on studies of analogous morphology
with living species. Taxon names, diets and the references used
to justify the assignments for extinct taxa are given in the
electronic supplementary material, table S12.

(c) Statistical analyses
The minimum, maximum, range, mean and standard deviation
of the measured δ13Cenamel serial samples were calculated for
each individual (electronic supplementary material, dataset S1).
When serial samples were from multiple teeth from the same
individual, summary statistics were calculated from the com-
bined serial samples. Individuals were analysed if they had at
least three serial samples for a given tooth.

To explore whether diet type influences individual δ13Cenamel

breadth, individual range was categorized into 1‰ bins (i.e. 0 <
x≤ 1‰, 1 < x ≤ 2‰, etc.), and the proportion of individuals occu-
pying each dietary type was calculated. To assess the influence of
body size on individual breadth in δ13Cenamel, we tested for sig-
nificant differences in the range of δ13Cenamel for species of small
(mass less than 100 kg), medium (100 kg≤mass less than
350 kg), and large (mass greater than or equal to 350 kg) body
size as well as the average range of individuals across these
size categories. These categories are based on the commonly
used and well-established body size categories of herbivorous
mammals, based in part on dietary differences and the prey
sizes readily consumed by African predators [62,63]. Body size
estimates were made from the published literature, or new esti-
mates were made based on allometries (electronic
supplementary material, table S13). The potential influence of
body size was assessed for the global dataset, the global dataset
corrected for serial sampling bias, the dataset restricted to low
latitudes (less than 37°) and the low-latitude dataset corrected
for serial sampling bias. Significant differences between average
individual ranges according to dietary type was tested using
Dunn’s test of non-parametric pairwise multiple comparisons.

Grazers tend to have higher crowned teeth than browsers and
mixed-feeders and therefore tend to have more serial samples per
tooth. As sampling more serial samples might produce a larger
range of δ13Cenamel values, we performed a moving window
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analysis for each tooth, where we iteratively calculated the
δ13Cenamel range for five consecutive samples, as denoted by
each sample’s distance from root along the tooth’s growth axis.

An isotopic individuality index (III) was calculated for each
taxon, as follows: average individual range of δ13Cenamel (for a
given taxon)/Total δ13Cenamel range of the taxon. Average IIIs
for dietary categories were calculated using only species-level
data, unless it could be reasonably inferred that a genus was rep-
resented in the database by only one species. Average IIIs were
calculated at two scales: (i) at the global scale and (ii) restricted
to individuals collected below 37° latitude (where C4 resources
are primarily warm-season grasses and C3 resources are primar-
ily trees and shrubs, in contrast with C3 ecosystems above 37°
latitude, where grass and browse cannot be discerned from iso-
topes alone [24,25]). While we recognize that the latitudinal
gradient in C3 and C4 grasses is likely to be a recent phenom-
enon, since approximately 5–7 Ma [23,64], there is no evidence
from our analysis that any taxon is switching from C3 to C4

grass, seasonally or during the period of time during which
their teeth mineralize (i.e. no teeth vary by approximately
14‰, the mean difference between C3 and C4 grasses [23]).
Thus, the analysis of δ13Cenamel values of individuals collected
below 37° latitude is a reasonable proxy for inferring individual
dietary variability.

We conducted variance partitioning analyses to quantify the
proportion of δ13Cenamel variance that can be found between
species, between individuals and within individuals. We only
analysed those teeth with at least five serial samples. Individuals
identified to the genus level were lumped with congener individ-
uals identified to the species level only when it could be
reasonably inferred based on location and geological time-
period that they belonged to the same species. Variance parti-
tioning was done in two ways using R v. 4.0.2 [65]. (i) We
fitted via restricted maximum likelihood an intercept-only,
nested ANOVA with δ13Cenamel as the dependent variable and
individuals nested within species as random effects. This was
done using the lme() function in the ‘nlme’ R package [64], and
the varcomp() function in the ‘ape’ package [66] was used to
extract the variance components. (ii) We also partitioned var-
iance (sum of squares) in δ13Cenamel using two-level, nested
ANOVAs for unbalanced data following [35] (their box 10.6,
pp. 294–298).
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