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with finite duration noise are undertaken to examine how the response can be moved from one
response state to another by using noise addition to a harmonically forced system. In particular,
jumps from a high amplitude state of each oscillator to a low amplitude state of each oscillator
and the converse are demonstrated along with noise-influenced localizations. These events are
found to occur in a region of multi-stability for the system, and the corresponding noise levels
are reported. A method for recognizing how much noise is required to induce a change the
system dynamics is developed by using the response basins of attraction. The findings of this
work have implications for weakly coupled, nonlinear oscillator arrays and the manner in which
noise can be used to influence energy localization and system dynamics in these systems.

1. Introduction

In small scale devices, systems vibrate at low amplitudes, wherein any small disturbance may affect the system dynamics [1]. In
these systems, one usually encounters noise that is either derived from the surrounding environment or inherent to the system [2].
Even though the noise levels may be low, they can alter the system dynamics in a noticeable way. For instance, small fluctuations
have been shown to move systems with metastable states escape from a local stable state [3]. Also, the presence of noise may induce
a transition between a limit cycle and a fixed point of a system [4]. Moreover, noise may induce a period doubling cascade, resulting
in chaos [5]. If not designed or addressed properly, not only will the performance of these systems be affected but there may be
some undesirable consequences including system malfunction.

In recent years, researchers have investigated the influence of noise from a different perspective than done previously. Instead of
building systems that are robust to noise, researchers have considered noise as a beneficial source of energy that could be exploited
for enhancing system dynamics [6]. In particular, the phenomenon of stochastic resonance (SR) is mentioned. The presence of noise
has been shown to enhance the stability of different system responses [7-9]. For an inverted pendulum, noise in combination
with a vertical forcing has been shown to stabilize the unstable upright position [10]. In a different study, Chakraborty and
Balachandran [11] showed through experimental and numerical studies that the addition of white Gaussian noise can help the
system move from a no-contact state to a contact state, wherein the associated response is close to that of a period-doubled orbit.
With a Duffing oscillator, Agarwal and Balachandran [12] showed that addition of noise can be used to move the system away from
an aperiodic response, including the possibility to move the system from a chaotic motion to a fixed point of the unforced system.
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Furthermore, noise has been used to reduce the hysteresis region (HR) or multi-stability region by moving the jump-up and the
jump-down frequencies close to each other and reducing the HR [13].

While most of the studies in the area of mechanical systems have been to do with single and two degree of freedom systems,
there have been a few studies related to coupled, oscillator array systems. In this regard, the influence of noise on intrinsic localized
modes (ILMs) has been studied [14-18]. ILMs are spatially localized modes and time periodic solutions, which can occur in perfectly
periodic lattices due to discreteness and nonlinearity in the considered system [19,20]. The concept of ILMs has been introduced
to coupled oscillator arrays by Sato et al. [21,22]. Subsequently, different coupled oscillator models have been used to explore this
phenomenon. The source of nonlinearity in these models has been geometrical nonlinearity [23,24], clearance nonlinearity [25], or
nonlinear friction [26-28]. In these systems, each oscillator is in a motion state with either a high amplitude oscillation or a low
amplitude oscillation, depending on the corresponding response mode. For example, a localized mode (LM) is the mode at which
all of the oscillators vibrate in a state of low amplitude oscillations except one oscillator that vibrates in a state of high amplitude
oscillation. The opposite to this mode is the anti-localized mode (ALM), wherein only one oscillator is oscillating in a state of low
amplitude oscillation.

In a recent study, Papangelo et al. [29] investigated coupled oscillator arrays comprised of monostable oscillators, wherein the
system can go into spatially localized responses. The degree of localization ranges from being in one oscillator to the extreme
case, wherein all the oscillators vibrate at a high energy level. The energy state of the system can be studied with respect to
different response branches, with each branch corresponding to a particular number of high amplitude oscillators. Ramakrishnan
and Balachandran [16] investigated the influence of noise on localization in the form of ILMs. They found that noise can be used
to strengthen as well as attenuate energy localizations in coupled oscillator arrays. Also, Perkins and Balachandran [17] carried out
experimental and numerical investigations into coupled cantilever beam arrays. It was shown that localization can be destroyed,
created, or even shifted to a different spatial location under the influence of noise. While the prior results have been illuminating,
the focus of the prior studies has been mostly on the low energy, response branches. Further work is needed to understand if
noise can be used to facilitate the movements between the other response branches, as seen for example in multi-oscillator systems
(e.g., [29]), wherein jumps can occur in both upward and downward directions between response branches. As a first step to help
with developing this understanding, a set of coupled, nonlinear oscillators are considered here and studied through experiments and
numerical simulations.

In this work, three different sets of coupled oscillators are chosen for experimental examination. These sets include identical
oscillators, nearly identical oscillators, and another one wherein one oscillator is a softening one while the other is a hardening
one. Each set of oscillators is subjected to a combined excitation including a harmonic component and a noise component, and the
frequency range of interest is based on the multi-stability region of the system. To the best of the authors’ knowledge, the experiments
with a softening, nonlinear oscillator coupled with a hardening, nonlinear oscillator is the first of its type to be conducted. The
numerical studies are restricted to weakly coupled, identical nonlinear oscillators. From the results, it is gleaned that the influence of
noise is highly dependent on the location within the considered multi-stability region. The rest of this paper is organized as follows.
In Section 2, the experimental setup is presented. Following that, in Section 3, the system model is presented and discussed. In
Section 4, the numerical scheme that is used for the simulations is shown. In Sections 6 and 7, the experimental and numerical results
are presented and discussed, along with additional studies on coupled multi-oscillators arrays. Concluding remarks are presented to
close the paper.

2. Experimental setup

In Fig. 1, the experimental setup that has been used to perform the study is shown. Inverted cantilever beams are used as building
blocks for this model. The reduced order model of each beam with magnets can be chosen as a Duffing oscillator [12,13,30]. For
that, a spring coupled set of metallic cantilever oscillators is secured to a base, which is connected to an electrodynamic shaker used
to generate the excitation. The coupling springs are attached close to the fixed end of the beams, since the deflections in this region
are smaller than the deflections near the beams’ tips. This ensures linear behavior of the coupling springs. Permanent magnets are
used to realize the nonlinear spring characteristics of each oscillator. For each cantilever oscillator, one of the magnets is located
on top of the cantilever, while the other is fixed on a plate above the free end. An oscillator has softening characteristics when the
gap between the pair of magnets is small. As the gap increases, the oscillator’s response characteristics shift to hardening behavior.
LabVIEW software is used to generate a combined excitation with harmonic and noise inputs. The excitation input is filtered by
using a low pass filter so that only frequencies that are below a chosen cutoff frequency are allowed. The transverse deflections of
the cantilevers in the excitation direction were measured by using strain gauges that are attached close to each cantilever’s base.
LabVIEW software is also used for data acquisition of the strain gauge signals. The experimental results are presented in Section 6.

3. System modeling

To compare with the experimental results obtained for coupled, identical nonlinear oscillators, a set of spring coupled, damped
Duffing oscillators are considered. The corresponding schematic is shown in Fig. 2. In terms of the model, the interconnecting spring
has a linear spring k, and the system has free boundary conditions on either side. Each oscillator has a linear stiffness k; and a cubic
stiffness k,;. The governing equation of motions for the system are written as
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Fig. 1. Experimental setup of coupled oscillators. The beam oscillator close to the shaker is referred to as the first oscillator (OS1) and the other one is referred
to as the second oscillator (0S2).
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Fig. 2. Schematic of an array with two coupled oscillators. The oscillator on the left is referred to as the first oscillator (OS1) and the other one is referred to
as the second oscillator (0S2).

Here, x; is the displacement of the i th oscillator, m is the oscillator mass, ¢ is the damping coefficient, and f; is the force acting
on the i th oscillator. This forcing is composed of a deterministic component in the form of a harmonic excitation and a stochastic
input. In the stochastic input, which is in the form of white Gaussian noise (6 W (1)), é is the noise intensity, and W (¢) is the Wiener
process. With the harmonic excitation given by dcos(wr), a is the forcing amplitude and w is the forcing frequency. Introducing the
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and assuming that the forcing is the same for the oscillators (f, = f,), Egs. (1) can be rewritten as follows:

X+ 20w, % + wﬁxl + ﬂx? + a(x; — x,) = acos(wt) + 6 W (1) @

Xy + 20w, %y + wﬁxz + ﬂx% + a(x, — x) = acos(wt) + 6 W (1)

Here, an overdot indicates the derivative with respect to time t. The parameters of the system are determined from the

experimentally obtained frequency-response curves for the system shown in Fig. 1, as done in the group’s prior studies (e.g., [13]).
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4. Numerical scheme

Here, the scheme used for numerical simulations is described. As the derivative of Wiener process does not exist, Egs. (2) are
converted to a Langevin form, which has an incremental noise dW with zero mean and a standard deviation v/dr. The result is

dz, = z,dt
dzy = (28w, zy — 02z; — Bz3 — a(z) — z3) + acos(wn)dt + o AW (1)
n c11 _ B (3)
23 = z4dt

dzy = (20w, 24 — @23 — P23 — a(z3 — 2;) + acos(wn)dt + o AW (1)

The solution is obtained by numerically integrating equations (3) with the Euler-Maruyama scheme [31]. To obtain the localized
modes, the authors have used the anti-continuous limit based method (e.g., [32]). With this method, the uncoupled system is
considered first and the initial conditions are determined for the high amplitude and the low amplitude responses of an individual
oscillator. Then, after introducing coupling and increasing the coupling strength gradually, and using the shooting method with an
initial guess based on the response of the uncoupled system, periodic solutions for the coupled system are found.

5. Effects of coupling strength on system response

In this work, the authors are interested in the case with low coupling strength between the oscillators. For this case, the Van der
Pol method is used to investigate the steady state solutions for different coupling values [33]. To begin with, the solution of Eq. (2)
for a set of two coupled oscillators is assumed to have the following form:

x; = u; coswt — v; sinot  for i=1and?2 4

Here, u; and v; are unknown variables of time. The amplitude and phase of each oscillator are represented by A; = 4 /u,.2 + u,.2 and
0 = v, /u;, respectively. The system parameters are scaled by using a book keeping parameter e as follows:

u;,v; ¢+ O(1), CBoa: 0,00 O@E?), i, b, 0(e™) (5)

After substituting Eq. (4) into Eq. (2) with consideration of the scaling provided in Eq. (5), the governing equation for the
approximate steady solutions can be found, up to the accuracy of O(e2), as follows:
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To obtain the solutions for the different response branches from Eq. (6), the initial condition of (1,0) is first assigned for each
oscillator based on the high amplitude or low amplitude assumptions. These solutions are then used in Auto software to continue
the solution along each branch. For parameters similar to that of the first oscillator in the experimental arrangement described in
Section 5, the solution of Eq. (6) is shown in Fig. 3(a)-(d) for different coupling parameters « = 1, = 3, « = 5, and a = 15,
respectively. For low coupling (« = 1), the ends of the two LMs are just before the ends for the unison modes, wherein all oscillators
have the same response amplitudes. The unison modes are designated as high amplitude-high amplitude (high-high or H-H) or low
amplitude-low amplitude (low-low or L-L) modes. As the coupling strength is increased, the amplitude gap between the LMs and
the unison modes is found to increase. With further increase of the coupling strength, this gap is found to become larger with the
inducement of a Hopf bifurcation as shown for a« = 15. Here, the focus of the work has been on low coupling strength, in particular,
a = 1 is considered. This coupling strength is considered to be relatively small. In Fig. 4, the bifurcation sets are shown in the «
- o space. The solid thick lines are the boundary of the unison mode with the region for the high-high and the low-low modes
illustrated by the thick black arrow. These modes are not affected by the increase in the coupling strength. The LMs are bounded
by the solid light curves, which is illustrated by the light arrow. For a high coupling strength, a Hopf bifurcation is induced, and
the loci of the Hopf instability points is shown by using the dotted-dashed curve.

6. Results and discussions
6.1. Array of similar oscillators: Experimental and numerical results

To begin with, the two oscillators are assumed to have identical properties. In the experiment, the two beam oscillators have been
tuned to have an identical multi-stability frequency range ranging from » = 33.81 rad/s to 35.22 rad/s. This is illustrated by the
responses observed for a quasi-static frequency sweep for the coupled oscillator, as shown in Fig. 5(a). The amplitude of each beam
oscillator has been normalized by the corresponding maximum amplitude value. The multi-stability region (MR) is divided into six
sections. The sections A, B, and C, which are on the upper branch, correspond to the left, middle and right regions, respectively.
The corresponding sections on the lower branch are D, E, and F, respectively. Within this MR, localized modes (LMs) exist for the
coupled oscillators; that is, modes in which one of the two beam oscillators is in the high branch while the other one is in the
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Fig. 3. Effects of coupling increase on the four response branches of the set of two coupled oscillators for the parameters obtained from the experiment in
Fig. 5(a) for the first oscillator; that is ¢ = 0.0079, w, = 32.79 rad/s, f = 225.5 N/kg m*, « = 1 N/kg m and a = 17.95 N/kg. The black curves correspond to
the unison modes (high amplitude-high amplitude and low amplitude-low amplitude) and the gray curves correspond to the LMs. The coupling coefficient is as
follows: (a) =1, (b) a=3, (¢c) a=35, and (d) « =15.
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Fig. 4. Bifurcation sets in the (w,a) plane for the system of two coupled oscillators with the parameters of Fig. 3. The thick black lines are the boundaries of
the MR, the light black curves are the boundaries of the LMs, the dashed-dotted line is the loci of Hopf bifurcation points and the black dashed curves are
unstable saddle points. The thick and light black arrows are used to represent the MR range and LM range, respectively.

low branch. The localized responses could not be found while performing the frequency sweep, and perturbations were applied to
realize a localized mode. In the method used in the experiments, first, both oscillators are set to oscillate in a state of high amplitude
oscillations in the middle of the MR. Next, a small disturbance is manually applied to one of the oscillators to move it from the high
amplitude oscillation state to the low amplitude oscillation state. For numerical studies with the corresponding system, both of the
two oscillators are assumed to have the properties of the first beam oscillator. The comparison between the experimental results
and the numerical results of the first beam oscillator is shown in Fig. 5(b); good agreement is noted. Next, the influence of noise on
system response is explored, with the possibility for jumps between different solution branches. In particular, harmonic excitations
are considered with the excitation frequency being close to either end of the MR.
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Fig. 5. Frequency responses of each of the two coupled oscillators: (a) Experimental results for the first oscillator (the dark curves in which points are shown
with circles) and the second oscillator (the light curve in which points are shown with asterisk) of Fig. 1. (b) Comparison between experimental results (circles)
with numerical results (solid line for the stable branch and dashed line for the unstable branch) of the first oscillator. While the experimental results are for the
case of the coupled oscillators, the numerical results are for the uncoupled first oscillator. The corresponding system parameter values are as follow: ¢ = 0.0079,
®, =32.79 rad/s, p =2255N/kgm?, « =1 N/kgm and a = 17.95 N/kg.
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Fig. 6. Experimental results for the effects of finite duration noise in region D of Fig. 5. In this plot and all other similar plots, the RMS value of the displacements
of the oscillators are shown, wherein the white region corresponds to the low amplitude state and the black region corresponds to the high amplitude state as
shown in the vertical scale bar on the right. To determine the RMS values for this plot and others, the period of excitation is used, and this value is averaged
over the different experiments considered for the chosen excitation frequency. In each time response plot, this RMS value is shown over the corresponding
period. The horizontal black scale bar on the top is used to show the time windows over which noise is applied. In the present cases, noise has been applied
over the whole interval shown. In each case, the RMS average over 12 experimental runs is plotted for each oscillator.

When the harmonic excitation frequency is set in region D of Fig. 5, the corresponding experimental results obtained are shown
in Fig. 6. At each frequency, the experiment has been run twelve times over 100 s time windows for different noise intensities,
starting from the low-low mode, a mode in which both beam oscillators have a low response amplitude when noise is not present.
The root mean square (RMS) value over each period in each run is calculated for the whole interval. For the chosen noise input
and excitation frequency, considering the 12 runs, the RMS value is then averaged and plotted. The averaged RMS value for each

oscillator’s response is represented in color over the corresponding time window with the white color corresponding to low amplitude
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Fig. 7. Numerical results for the effects of finite duration noise in region D of Fig. 5. For each case, the RMS average over 50 numerical simulations is plotted
for each oscillator.

oscillations and the black color corresponding to high amplitude oscillations. The horizontal black and white bar on the top is used
to show the time windows over which noise is applied. In the present case, noise has been applied over the whole interval shown.

At the beginning of the experiments, the two oscillators are set to vibrate in the low-low mode in region D. Subsequently, noise
has been applied and the responses of the two oscillators are found to move toward the high-high mode in region A, which is a
mode in which each of the beam oscillators have a high amplitude response in the absence of noise. Close to the left boundary of
region D (w = 33.82 rad/s), for ¢ = 0.5 units, the oscillator responses jumped to the high-high mode eight times with the average
time for transition being 77.5 s. In Fig. 6(a), the authors show the experimental results for this case. As can be seen, the color
gradient for both oscillators tend to the black color at the end of the time interval. However, the responses still do not clearly reach
a black color, indicating that jumps did not occur in all runs. At the same frequency value, when the noise intensity is increased to
o = 0.8 units, the responses in all of the cases were found to have moved to the high-high mode except in one occasion with the
average time for transition being 50.5 s. The results are plotted in Fig. 6(b), and it is clearly evident that the response gradient color
for both oscillators becomes black indicating in almost all of the runs, noise induced the jump. As the noise intensity is increased,
it is observed that the time required to induce jumps is reduced. While the change in the response color gradient for ¢ = 0.5 units
is limited in the first 50 s, there is a significant change for ¢ = 0.8 units.

Another experiment was conducted at w = 33.84 rad/s for two different noise intensities, namely, ¢ = 0.8 units and ¢ = 1.2 units,
and the results obtained are shown in Fig. 6(c) and (d), respectively. While for the noise intensity ofc = 0.8 units, noise is found
to have a pronounced impact on the response for w = 33.82 rad/s, there is almost no impact on the response for w = 33.84 rad/s.
Only in two out of the 12 runs, the introduction of noise is found to induce jumps. However, for ¢ = 1.2 units, the responses of the
oscillators are found to jump to the high-high mode in 8 cases, indicating a noticeable effect of noise on the low-low mode. The
experiments were also run further with w = 33.86 rad/s for two noise intensities ¢ = 1.2 units and ¢ = 1.5 units. The corresponding
results are shown in Fig. 6(e) and (f), respectively. For ¢ = 1.2 units, as can be discerned from the response color gradient, only a
small number of responses (4) moved into the high-high mode. On the other hand, for ¢ = 1.5 units, in a relatively higher number
of runs, a change in the system response dynamics (7 in this case) was observed.

The numerical results are obtained by solving Eq. (3) using Euler-Maruyama simulations. The average RMS value for the
numerical simulation is obtained by considering the RMS average over 50 runs by using a different noise vector for each run.
The results are plotted in Fig. 7. Similar @ values to those in the experiments were considered (w = 33.82, 33.84, and 3.86 rad/s).
For each w value. three different noise intensities (¢ = 0.5, 1.0, and 1.5 units)were used. In the case of the first frequency » = 33.82
rad/s, successful jumps are observed to be induced for all noise intensities with the differences in the time required to induce that
jump decreasing as the noise intensity was increased. For o = 33.84 rad/s, a low noise intensity almost has no impact on the system
dynamics, but the intermediate and high noise levels are found to be sufficient to induce a mode change with a transition time for
the high noise level case being less than that for the medium level. For the last w value (w = 33.86 rad/s), again no effect on the
response was observed when a low noise level was used. With the medium noise level, the change in responses occurred in less
number of runs than those observed for the previous w value. Only the high noise level was found to have a discernible impact on
the low-low mode at this excitation frequency.

From the presented experimental and numerical results, one can note that the level of noise and the required time to move the
system from the low-low mode to the high-high mode depend on the excitation frequency. Close to the left boundary of the MR
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Fig. 8. Experimental results for the effects of finite duration noise in region C of Fig. 5. In each case, the RMS average over 12 experimental runs is plotted
for each oscillator.

(boundary of region D), the low-low mode is sensitive to disturbances. Small disturbances are found to move the system response
from the low-low mode to the high-high mode in a relatively small amount of time. When the harmonic excitation frequency
is moved toward the center of the MR, the low-low mode is found to become robust to disturbances. High noise intensities are
found to be needed to induce a response jump. The average time to induce a jump was found to increase as one moves toward the
center of the MR and this time needed is found to decrease when the noise intensity is increased. It is clear that there is qualitative
agreement amongst the experimental and numerical results. It is worth mentioning that when the system response is initiated in from
the high-high mode, no change was observed in the system response dynamics under application of comparable noise intensities.

In Fig. 8, the authors have shown the experimental results obtained when the harmonic excitation frequency is close to right
end of the MR. For this study, three different » values are chosen and these values are 35.2, 35.12, and 35.0 rad/s. Similar to the
previous experimental studies, for each parameter set, each test was run for twelve times in 100 s time windows and the average of
the RMS value over the 12 runs is plotted. All runs are set to start from the high-high mode in region C to explore the possibility
for changing the system dynamics to the low-low mode in region F.

At w = 35.2 rad/s, the high-high mode was found to be quite sensitive for a low level noise disturbance. For a low noise intensity
(o = 0.25 units), in eleven of the twelve cases, the system response collapsed to the low-low mode with the average transition time
being 44.17 s. The associated dynamics is illustrated in Fig. 8(a). When the noise intensity is increased to ¢ = 0.5 units, in all of the
twelve cases, the system response collapsed within an average time of only 5.17 s, as illustrated in Fig. 8(b). Moving toward the
center of the MR, the effects of two noise intensities are explored at w = 35.12 rad/s. These intensities are ¢ = 0.5 units and ¢ = 0.8
units, and the corresponding results are depicted in Fig. 8(c) and (d), respectively. For ¢ = 0.5 units, only in two of the twelve cases,
the chosen noise input is found to induce a transition from the high-high mode to the low-low mode. By increasing the intensity
further to ¢ = 0.8 units, in all of the twelve cases, the response is found to collapse to the low-low mode within an average time
of 14.67 s. At the last chosen w value of (w = 35.0 rad/s), the high-high mode is found to become robust to noise. When applying
noise with ¢ = 0.8 units, almost no effect on the response mode was observed. In none of the twelve cases, there was a change in
the system dynamics, as shown in Fig. 8(e). For response jump downs to occur, a higher noise intensity is needed, as discernible
from Fig. 8(f) for ¢ = 1.2 units.

In Fig. 9, the average RMS value of the numerical simulation for 50 different noise vectors is plotted. There are differences
between the excitation frequency values considered in the experiments and simulations, as there are differences in the manner in
which the noise addition is carried out. In the experiments, bandlimited noise is applied while with the simulations, this restriction
does not apply. Furthermore, in the experiments, apart from the spring coupling, there is coupling between the oscillators through
the base. Due to these reasons, the authors only make qualitative comparisons. The numerical results are in good agreement with the
experimental results. Close to edge of region C, small noise intensity is found to be sufficient to induce a jump from the high-high
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Fig. 9. Numerical results for the effects of noise in region C of Fig. 5. In each case, the RMS average over 50 experimental runs is plotted for each oscillator.

mode to the low-low mode. As one moves toward the center of region C, the required noise intensity to induce a jump is found to
become higher. It is also noted that in the experiments and the simulations, no change in system response is found to occur when
using comparable noise intensities as before to induce a jump from the low-low mode to the high-high mode.

Another remark is made with regard to the sensitivity of the response movement to the noise addition. It is found that when
one is region C, a relatively low noise intensity is needed to realize a response movement or a jump down in this case to a low-low
mode. However, at the end of region D, a relatively higher level of noise intensity is needed to realize a jump up from a low-low
mode to a high-high mode. This can be explained by considering the basins of attraction of the responses of an uncoupled oscillator.
It is known that the basin of attraction of the high amplitude response is smaller than that of the low amplitude response close to
the jump down frequency. The relative ratio of the basins of attraction at the jump up frequency is different.

6.2. Arrays of near-identical and non-identical oscillators: Experimental results

Here, the findings from two different experimental studies are discussed. In one study, the experimental system consists of two
nearly identical oscillators, both of which are of the hardening type. In the other study, the oscillators are different from each other,
with one being a hardening oscillator and the other being a softening oscillator. The hardening and softening characteristics were
realized by adjusting the spacing of magnets, shown in Fig. 1. These studies are expected to provide further insights into noise
influenced dynamics of coupled oscillator arrays.

In the first case, the two beam oscillators are re-tuned so that a small mode localization window is realized in the system frequency
response. A quasi-static frequency sweep is used to construct the frequency response curves first for the two coupled oscillators. These
responses are shown in Fig. 10(a). The localization window of interest for the system is bracketed with two vertical lines (from w =
34.2 rad/s to w = 34.24 rad/s). In this window, each coupled oscillator’s frequency response has two stable response branches, one
with a relatively high amplitude and the other with a relatively low amplitude. One can have system modes with different response
state combinations or modes, here, the high (0OS1)-high (0S2) and high (OS1)-low (0S2) mode. At w = 34.26 rad/s, the branches
for the localized modes exist but do not appear, when one conducts a frequency sweep. First, movement of the system response to
the high (OS1)-low (0S2) mode is considered. Close to the jump point, by adding noise with intensity ¢ = 0.8 for 14 s, the system
response is steered to this LM, as shown in Fig. 10(b). To show that this mode is present, the noise addition is ceased after this 14 s
of addition, and it is noted that this LM is present. To study a response movement to the high (0S1)-high (0S2) LM, noise addition
is started at about 208 s and maintained for a longer duration of 190 s. The result is a movement to this LM of interest. Efforts to
move the system response from a high (0S1)-high (0S2) LM to a high (OS1)-low (0S2) LM were not successful, and in these cases,
the system response transitioned to a low (OS1)-low (0S2) mode. Overall, this set of experiments are illustrative of the use of finite
duration noise to move the system response from one branch to another.

Similar qualitative results are also observed in the numerical studies. The oscillator in the arrays are assumed to have properties
close to that of first oscillator in Fig. 10(a) with the natural frequencies being the only difference between the two oscillators. The
analytical approximations for the responses of the uncoupled oscillators are shown in Fig. 10(c). Similar to the experiments, finite
duration noise is used to induce response transition from the L-L response mode to the H-L response mode and then to the H-H
response mode, as shown in Fig. 10(d).
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For the second study, the second oscillator OS2 was not changed from the previous case and remained as a hardening oscillator,
but the first oscillator OS1 is modified to be a softening oscillator as illustrated by the frequency response curves of Fig. 11(a). The
region of interest is close to @ = 34.87 rad/s, wherein a vertical black line is shown. At w = 34.88 rad/s, a jump down occurs in the
response of the oscillator OS1 from the high amplitude branch to the low amplitude branch. At w = 34.86 rad/s, a jump up occurs
in the response of the oscillator OS2 from the low amplitude branch to the high amplitude branch. At w = 34.87 rad/s, a branch of
the high (0OS1)-low (0S2) localized mode is initiated. Since this frequency is close to the jump down frequency of the first oscillator
0S1, the localized mode is destroyed when noise is added to the coupled system. If one continues to apply noise to the system, a
different localized mode is created, namely, the low (OS1)-high (0S2) mode. This noise influenced response movement is illustrated
in Fig. 11(b). Again, this set of experimental results are illustrative of response movement that can be realized in coupled oscillator
arrays with addition of noise of finite duration.

Similar results were obtained during numerical simulations. The properties of the first oscillator and the second oscillator are
first obtained from the frequency response curve of Fig. 11(a). The analytical approximations for the responses of the uncoupled
oscillators are shown in Fig. 11(c). The oscillator responses are first set to have a localization in the first oscillator. The application
of noise results in a change in the spatial location of the localization to the second oscillator, as shown in Fig. 11(d).

6.3. Beyond an array of two coupled identical oscillators: Numerical results

Here, the authors extend their findings to multi-oscillator arrays. A set of 21 homogeneous oscillators with the same properties
as the first oscillator OS1 in Fig. 5 are assumed to be coupled in a linear fashion with linear springs, so that each oscillator away
from the boundary is coupled to its two adjacent neighbors. Each of the two boundary oscillators is only coupled on one side and
free on the other side. Two cases of numerical simulations are considered. In the first case, a localized mode is considered at the
excitation frequency w = 33.87 rad/s, which is near the left end of the multi-stability region. At this value, all of the oscillators have
low amplitude responses except the middle one, which has a high amplitude response, as shown in Fig. 12(a). When noise is applied
at ¢ = 0.75 units, the energy of the system is found to increase gradually with the oscillators on either side of the middle oscillator
moving to their respective high amplitude states, as shown in Fig. 12(b). In the second case, an anti-localized mode is considered
close to the right end of the multi-stability region; that is, @ =35.17 rad/s. In this anti-localization state, all of the oscillators have
high amplitude responses except the middle one, which has a low amplitude response, as shown in Fig. 12(c). In Fig. 12(d), the
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result is shown when noise is added with an intensity of ¢ = 2.00 units. All of oscillators with high amplitude responses move to
their respective low amplitude states at the same time.

It is noted that the effects of noise on multi-oscillator arrays with more than two identical oscillators are similar to those noted
with an array of two coupled, identical oscillators. This observation was also made in another recent study of the group [34]. On
the left boundary of the system’s multi-stability region in the frequency response, the oscillators tend to move to the high amplitude
responses. Finite duration noise can be used to move all of the oscillators to a high amplitude state. However, at the right boundary
of the multi-stability region of the frequency response, the oscillators tend to move to the low amplitude responses. A noise enabled
response movement to a state of low amplitude can be accomplished.

7. Basins of attraction

To better understand the influence of disturbances on the system, the basins of attraction in region D are obtained and shown
in Fig. 13. While the basins of attraction can be found for a four-dimensional system such as those considered here for two coupled
oscillators, one often looks at a two-dimensional basin projection. The procedure used here to obtain this two-dimensional view is
similar to the one used in the work of Ikeda et al. [33]. To find the basins, the initial conditions for a mode of interest (L-L, H-L,
L-H, and H-H) is selected as the starting point for the numerical integration of the governing equations by using the ode45 solver
in Matlab [35]. Next, a grid of 250*250 with (0,0) as the center point (black point in Fig. 13) is defined as a disturbance for the
system. At the (0,0) point, no disturbance or deviation has been applied. For any other point, the first or x value is added to each
displacement state (x; and x,) and the second or x value is added to each velocity state (x; and %,) to represent deviations from
the initial state of the system. System (2) is then solved for two oscillators for each point and the solution is traced after reaching
the steady state solutions. Depending on the final state, each point is colored with either gray color (H-H) or white color (L-L).

In Fig. 13(a)-(c), the basins of attraction corresponding to region C are shown for the three previously considered w values; that
is, w = 33.82, 33,84, and 33.86 rad/s. The initial state for the system is in the L-L mode, and it is represented by the black point
and this is the state at which no deviations have been applied. For w = 33.82 rad/s, when small deviations are applied, the system
response is found to return to the original state of the L-L mode, and this falls within the white region. However, if the deviation
is relatively large, the response no longer returns to the L-L mode but is drawn to the H-H mode. This falls within the gray region.
When one moves toward the center of region C, the white region is found to expand further and the black dot is found to move
more inside of the L-L mode, as shown in Fig. 13(b) and (c). The previous results might give an indication for what to expect in
the response change after application of noise to the coupled oscillator arrays. For w values close to the edge of region C, the L-L
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mode region is small in size indicating how sensitive this mode is to a noise disturbance. As a result, small disturbances might be
enough to move the response mode into the H-H response mode. As one moves toward the center, the white region expands in size
and higher noise intensities would be needed to induce a change in the system dynamics.

For region C, the following three w values are considered: 35.2, 35.12, and 35.0 rad/s. The basins of attraction for this region
are shown in Fig. 14(a)-(c). For = 35.2 rad/s, the H-H mode has a small basin that is shown as a small gray stripe in Fig. 14(a).
When one moves toward the center of the MR region, the gray area expands in size as shown in Fig. 14(b) and (c). These plots
might be used to understand how robust the H-H mode is to a disturbance in this region. When the gray area is small in size, it is
expected that the H-H mode is vulnerable to a disturbance and the system response can be changed with a low intensity disturbance.
However, as one moves toward the center, the gray region is found to expand in size, and high noise intensities are needed to alter
the system dynamics. In the considered basin sets, there is no presence of basins of the localized mode responses. As a result, for
the chosen initial conditions, it is less likely that one will obtain localized modes by subjecting the system to a noise addition.

8. Conclusion

In this work, the authors have shown how finite duration noise can be used to move the response of a harmonically excited
oscillator array from one state to another. Particular attention was paid to the frequency region in which the system has a multi-
stability response. As a basic setup to explore, the authors started with two spring coupled, nonlinear oscillators and showed through
experiments that this response movement is possible from low amplitude states to high amplitude states and vice versa, depending
on the excitation frequency relative to the multi-stability region. As noted previously, the experimental results obtained with a
combination of hardening and softening oscillators is the first of its type. The experimental findings are also supported by the
numerical results obtained with Euler-Maruyama simulations. The extension of the numerical studies to a high number of oscillators
(more than 10) also brings forth the promise of using noise to engineer response movement in harmonically forced, coupled oscillator
arrays. The studies with the high number of oscillators also confirm that a subset of his system can be used to capture the localization
phenomenon, as also discussed in the context of circular oscillator arrays (e.g., [34]). For coupled oscillator systems, the results on
the basins of attraction can be used as a tool to predict the behavior of the system dynamics under the influence of noise.
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