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HOMOGENIZATION OF NONDILUTE SUSPENSION OF VISCOUS
FLUID WITH MAGNETIC PARTICLES\ast 

THUYEN DANG\dagger , YULIYA GORB\ddagger , AND SILVIA JIM\'ENEZ BOLA\~NOS\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper seeks to carry out the rigorous homogenization of a particulate flow
consisting of a nondilute suspension of a viscous Newtonian fluid with magnetizable particles. The
fluid is assumed to be described by the Stokes flow, while the particles are either paramagnetic
or diamagnetic, for which the magnetization field is a linear function of the magnetic field. The
coefficients of the corresponding partial differential equations are locally periodic. A one-way coupling
between the fluid domain and the particles is also assumed. The homogenized or effective response of
such a suspension is derived, and the mathematical justification of the obtained asymptotics is carried
out. The two-scale convergence method is adopted for the latter. As a consequence, the presented
result provides a justification for the formal asymptotic analysis of L\'evy and Sanchez-Palencia [Fluid
Mech., 13 (1983), pp. 63–78] for particulate steady-state Stokes flows.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . homogenization, two-scale convergence, viscous flow, coupling, magnetic particles

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 76M50, 78M40

\bfD \bfO \bfI . 10.1137/21M1413833

1. Introduction. The past two decades have witnessed a dramatic growth of re-
search interest in the ferrofluids and magnetorheological fluids (e.g., [1, 3, 12, 16, 17]),
which found abundant technological, environmental, and medical applications. The
most salient applications are magnetic drug targeting [15, 28] and molecular communi-
cation using magnetic nanoparticles [20] for the former and noninvasive measurements
of blood pressure, prosthetic knee, and many others (see [10, 13] and the references
therein) for the latter. Both of these types of fluids are colloids consisting of a large
number of fairly small magnetizable particles dispersed/suspended in a carrier fluid,
which is itself electrically nonconducting, in the presence of strong magnetic fields or
strong magnetic gradients (a typical ferro- or magnetorheological fluid also includes
a surfactant layer that for simplicity will be ignored hereafter). Under those external
forces, the particles slip relative to the ambient fluid and, thereby, exert drag to the
latter, yielding the overall suspension to move as a whole. The most important ap-
plications of the aforementioned fluids result from the possibility of controlling their
effective viscosity with an externally applied magnetic field (e.g., magnetorheological
fluids can even solidify in the presence of a magnetic field). The major difference
between these colloids is in the size of the particles in the suspension (nanoscale for
ferrofluids and microscale for magnetorheological fluids) (see [27]), which behave as a
homogeneous continuum. Such a small diameter of the particles, therefore, calls for a
macroscopic (or effective, averaging, homogenized, upscaled, or coarse) description of
the given suspension.
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2548 T. DANG, Y. GORB, AND S. JIM\'ENEZ BOLA\~NOS

The macroscopic response of highly heterogeneous multiscale media is often mod-
eled phenomenologically, which typically does not lead to a straightforward control
over the effective properties that is essential in the case of the ferro- or magnetorhe-
ological fluids. However, if the underlying (micro)structure of heterogeneities is pe-
riodic, then the mathematical theory of homogenization, which yields a homogenized
model depending on the microstructure and properties of the constituents, can be
employed. This rigorous approach can thus lead to the design of new materials with
the desired properties.

In the framework of a homogenization method, the studies most directly related
to this current contribution are [18, 19, 23]. More specifically, in [19], the behavior of
nondilute suspensions of rigid particles in a Newtonian fluid was studied in the case
where the magnetic field was neglected, assuming a locally periodic array of particles.
The fluid was described by the stationary Navier--Stokes flow equations, and the mo-
tion of particles of an arbitrary shape followed the rigid body motion. Using the formal
asymptotics expansion procedure, it was obtained that the homogenized medium was
given by a viscous fluid, in general anisotropic, predictably depending on the local
microstructure. The evolution equations for the microstructure were also obtained.
A similar asymptotic study was developed in [18], where a suspension of magnetized
particles in a Newtonian fluid was considered. As in the previous study, rigid parti-
cles of an arbitrary shape were coupled with the stationary Navier--Stokes equation of
the carrier fluid with coupling between the fluid flow and the magnetic field imposed
through the balances of linear and angular momenta equations rather than in the
fluid or solid phase equations. The method of asymptotic expansions employed in [18]
resulted in a set of homogenized equations revealing that, even though the fluid where
the magnetized particles were suspended was Newtonian, the effective medium was, in
general, non-Newtonian. Note that in [18, 19], the effect of the external magnetic field
was imposed as a volume density force acting on each particle and as a surface density
force acting on the boundary of each particle, respectively. Later, in [23], the formal
method of asymptotic expansions was applied to the quasi-static Maxwell equations
coupled with the Stokes equations to capture the effective magnetorheological behav-
ior given by effective viscosity and three effective magnetic permeabilities, which all
depend on the geometry of the suspension, the volume fraction, the original magnetic
permeability of particles, the Alfven number, and the distribution of the particles. A
numerical study, based on the obtained homogenized system, was also developed for
a suspension of iron particles in a viscous nonconducting fluid to capture the effect of
the chain structures present in the microstructure.

As mentioned above, the approaches adopted in previous homogenization contri-
butions [18, 19, 23] were formal. The goal of the present study is to carry out the
rigorous homogenization analysis for a suspension of magnetized particles in a slow,
viscous flow. To that end, we adopt the method of two-scale convergence; see, e.g.,
[2, 22]. Since the analysis for the full coupling of the Navier--Stokes equations with
the Maxwell equations becomes increasingly involved---in terms of necessary existence,
regularity, and other kinds of results---this paper deals with a simplified model of para-
magnetic or diamagnetic particles in a viscous fluid with a one-way coupling between
them. The paramagnetic model is introduced in [21] (see also [25, section 7.2] or [29,
Chapter 13]) and assumes that the magnetic flux density B is linearly proportional to
the magnetic field strength H; i.e., there exists a function \mu (\bfitx ) of the spatial variable
\bfitx such that B = \mu (\bfitx )H, where the function \mu (\bfitx ) is called the magnetic permeability.
A similar linear relation holds for diamagnetic particles; see [29]. For the microscopic
or fine-scale description of the coupled system, we have adopted the set of equations
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HOMOGENIZATION OF NONDILUTE MAGNETIC SUSPENSIONS 2549

derived in [1, 17]. Thereby, the fluid is assumed to be electrically nonconducting, the
particles are inertialess, and the contribution from Brownian motions is negligible.
The Stokes law governs the motion of the ambient fluid, while the particles exhibit
rigid body motion, and the magnetic force, exerted on the particles due to magnetic
fields, is represented by the divergence of the Maxwell stress tensor, which acts as a
body force added to the momentum balance equation. The above implies a one-way
coupled system of hydrodynamic and magnetic interactions, where the magnetic field
alters the fluid flow. Clearly, the present simplified model is an initial step in the me-
thodical investigation of the homogenized description of hydrodynamic and magnetic
coupling, where the two-way coupling as well as other descriptions of the particles,
such as nonlinear ferromagnetic ones (see [25, 29]), are intended to be studied.

Finally, the main result of this paper consists of the derivation of the homogenized
or effective response of the suspension described above and the rigorous justification of
the obtained asymptotics. The novelty of the results of this paper is that, to the best
of our knowledge, a rigorous analytical justification for this type of homogenization
has not been obtained yet.

This paper is organized as follows. In section 2, the formulation of the problem
under consideration is given, including the coupling of rigid body motion of paramag-
netic particles with a viscous fluid at the fine (micro) scale. The dimensional analysis
is carried out in this section as well. The main results, which include the homogenized
equation, the cell problems, and the corrector result, will be given in section 3. Our
concluding remarks and comments are summarized in section 4.

2. Formulation. Throughout this paper, the scalar-valued quantities, such as
the pressure p, are written in usual typefaces, while vector-valued or tensor-valued
fields, such as the velocity \bfitu and the Cauchy stress tensor \bfitsigma , are written in bold.
A special case that does not follow this rule is the effective tensor, which is always
written in normal font. Sequences are indexed by numeric superscripts (\phi i), while
elements of vectors or tensors are indexed by numeric subscripts (xi). Finally, the
Einstein summation convention is used whenever applicable.

Let Y := (0, 1)d be the unit cell in Rd for d = 2 or 3. The unit cell Y is
decomposed into Y = Ys \cup Yf \cup \Gamma , where Ys, representing the magnetic inclusion, and
Yf , representing the fluid domain, are open sets in Rd and \Gamma is the smooth, closed
interface that separates them.

Furthermore, let i = (i1, . . . , id) \in Zd be a vector of indices and \bfite 1, . . . , \bfite d be
canonical basis of Rd. For a fixed small \varepsilon > 0, define the dilated sets:

Y \varepsilon 
i := \varepsilon (Y + i), Y \varepsilon 

i,s := \varepsilon (Ys + i), Y \varepsilon 
i,f := \varepsilon (Yf + i), \Gamma \varepsilon 

i := \partial Y \varepsilon 
i,s.

Let \bfitn i, \bfitn \Gamma , and \bfitn \partial \Omega be unit normal vectors on \Gamma \varepsilon 
i pointing outward Y

\varepsilon 
i,s, on \Gamma pointing

outward Ys, and on \partial \Omega pointing outward, respectively.
We assume that the magnetic permeability is a Y -periodic function \mu \in L\infty (Rd):

\mu (\bfitz +m\bfite k) = \mu (\bfitz ) \forall \bfitz \in Rd, \forall m \in Z, \forall k \in \{ 1, . . . , d\} .

Let \Omega \subset Rd be a simply connected and bounded domain of class C3, so that the
effective velocity \bfitu 0 derived below will be from C1(\Omega )d, as claimed in Lemma 3.13.
We define

I\varepsilon := \{ i \in Zd : Y \varepsilon 
i \subset \Omega \} , \Omega \varepsilon 

s :=
\bigcup 
i\in I\varepsilon 

Y \varepsilon 
i,s, \Omega \varepsilon 

f := \Omega \setminus \Omega \varepsilon 
s, \Gamma \varepsilon :=

\bigcup 
i\in I\varepsilon 

\Gamma \varepsilon 
i .
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2550 T. DANG, Y. GORB, AND S. JIM\'ENEZ BOLA\~NOS

Moreover, ds and d\Gamma \varepsilon denote the surface measure on \partial \Omega and \Gamma \varepsilon , respectively. We
assume further that \Lambda  - 1 \leq \mu (\bfitx ) \leq \Lambda , for all \bfitx \in \Omega and some \Lambda > 0.

Suppose that \bfitg \in H1(\Omega )d, which can be regarded as an external force. As men-
tioned in the introduction, the carrier fluid is described by the Stokes equation. To
that end, denote by \eta > 0 and \rho f > 0 the fluid viscosity and the fluid density, re-
spectively. Let \bfitu \varepsilon and p\varepsilon be the fluid velocity and the fluid pressure, respectively.
Also, in a space free of current, the magnetic field strength is given by H\varepsilon = \nabla \varphi \varepsilon 

for some magnetic potential \varphi \varepsilon (\bfitx ). We are looking for the functions \bfitu \varepsilon \in H1
0 (\Omega )

d,
p\varepsilon \in L2(\Omega )/R, and \varphi \varepsilon \in H1(\Omega )/R satisfying the following boundary value problem:

 - div [\bfitsigma (\bfitu \varepsilon , p\varepsilon ) + \bfitT (\varphi \varepsilon )] = \rho f \bfitg in \Omega \varepsilon 
f ,(2.1a)

div\bfitu \varepsilon = 0 in \Omega \varepsilon 
f ,(2.1b)

\bfitD (\bfitu \varepsilon ) = 0 in \Omega \varepsilon 
s,(2.1c)

 - div
\Bigl[ 
\mu 
\Bigl( \bfitx 
\varepsilon 

\Bigr) 
\nabla \varphi \varepsilon 

\Bigr] 
= 0 in \Omega ,(2.1d)

where

\bfitD (\bfitu \varepsilon ) :=
\nabla \bfitu +\nabla \top \bfitu 

2
, \bfitsigma (\bfitu \varepsilon , p\varepsilon ) := 2\eta \bfitD (\bfitu \varepsilon ) - p\varepsilon \bfitI ,

\bfitT (\varphi \varepsilon ) := \mu 
\Bigl( \bfitx 
\varepsilon 

\Bigr) \biggl( 
\nabla \varphi \varepsilon \otimes \nabla \varphi \varepsilon  - 1

2
| \nabla \varphi \varepsilon | 2 \bfitI 

\biggr) 
are the rate of strain, the Cauchy stress, and the Maxwell stress tensors, respectively.
We briefly explain the physics behind (2.1):

\bullet Equation (2.1a) is the conservation of momentum, and \bfitg in the right-hand side
of the equation can be regarded as the gravity force.

\bullet Equation (2.1d) carries out information of no magnetic monopoles (divB = 0)
and the linear constitutive relation (B = \mu H).

\bullet Equation (2.1c) establishes that \Omega \varepsilon 
s is a rigid region, which is equivalent (see

[24, Theorem 3.2]) to \bfitu \varepsilon | Y \varepsilon 
i,s

= Ui +Ri \times (\bfitx  - Ci), where Ci is the center of mass
of particle Y \varepsilon 

i,s and the constant translational velocity Ui and rotational velocity Ri

are Lagrange multipliers associated to the constraints:\int 
\Gamma \varepsilon 
i

[\bfitsigma (\bfitu \varepsilon , p\varepsilon ) + \bfitT (\varphi \varepsilon )]\bfitn i d\Gamma 
\varepsilon = 0;

\int 
\Gamma \varepsilon 
i

[\bfitsigma (\bfitu \varepsilon , p\varepsilon ) + \bfitT (\varphi \varepsilon )]\bfitn i \times \bfitn i d\Gamma 
\varepsilon = 0.(2.2)

The constraints above are the balance equations for drag forces and torques on the
particle boundaries, respectively.

Finally, for a given divergence-free \bfitk \in H1(\Omega )d, satisfying the compatibility con-
dition

\int 
\partial \Omega 
\bfitk \cdot \bfitn \partial \Omega ds = 0, we consider the following boundary conditions:

\bfitu \varepsilon = 0 on \partial \Omega and (\mu \nabla \varphi \varepsilon ) \cdot \bfitn \partial \Omega = \bfitk \cdot \bfitn \partial \Omega on \partial \Omega .(2.3)

To write the variational formulation of problem (2.1)--(2.3), we introduce the
following space:

\scrU \varepsilon :=
\bigl\{ 
\bfitv \in H1

0 (\Omega )
d : \bfitD (\bfitv ) = 0 in \Omega \varepsilon 

s, div \bfitv = 0 in \Omega \varepsilon 
f

\bigr\} 
.(2.4)

It can be shown that the space \scrU \varepsilon is a Hilbert space. Equation (2.1) is derived from
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HOMOGENIZATION OF NONDILUTE MAGNETIC SUSPENSIONS 2551

the variational problem

\bfitu \varepsilon = argmin
\bfitv \varepsilon \in \scrU \varepsilon 

\varphi \varepsilon \in argmin \scrE 2

\scrE 1(\bfitv \varepsilon ), where

\scrE 1(\bfitu \varepsilon ) := \eta 

\int 
\Omega \varepsilon 

f

\bfitD (\bfitu \varepsilon ) :\bfitD (\bfitu \varepsilon ) d\bfitx  - 
\int 
\Omega \varepsilon 

f

\rho f\bfitg \cdot \bfitu \varepsilon d\bfitx +

\int 
\Omega \varepsilon 

f

\bfitT (\varphi \varepsilon ) :\bfitD (\bfitu \varepsilon ) d\bfitx ,

\scrE 2(\varphi \varepsilon ) :=
1

2

\int 
\Omega 

\mu \nabla \varphi \varepsilon \cdot \nabla \varphi \varepsilon d\bfitx  - 
\int 
\partial \Omega 

(\bfitk \cdot \bfitn \partial \Omega )\varphi 
\varepsilon d\bfitx .

Dimensional analysis. Let L,U,B, \mu c be our characteristic scales correspond-
ing to length, velocity, magnetic field, and magnetic permeability, respectively. Let
\bfitx \ast := \bfitx 

L ,\bfitu 
\ast := \bfitu 

U , p
\ast := pL

\eta U , \bfitg 
\ast := \bfitg L

U2 , \mu 
\ast := \mu 

\mu c
, and \varphi \varepsilon \ast := \varphi \varepsilon 

BL . The dimensionless

quantities that appear are the (hydrodynamic) Reynolds number Re =
\rho fUL

\eta and the

Alfven number S = B2L
\eta \mu cU

. The nondimensional version of (2.1a) is

 - div\ast [\bfitsigma \ast (\bfitu \varepsilon \ast , p\varepsilon \ast ) + \bfitT \ast (\varphi \varepsilon \ast )] = Re\bfitg 
\ast .(2.5)

In the Stokes regime, we have Re \ll 1, so for simplicity, we assume that the right-hand
side of (2.5) vanishes (see also Remark 2.1). We obtain the nondimensional version
of (2.1) (dropping the \ast for clarity of exposition),

 - div [\bfitsigma (\bfitu \varepsilon , p\varepsilon ) + \bfitT (\varphi \varepsilon )] = 0 in \Omega \varepsilon 
f ,(2.6a)

div\bfitu \varepsilon = 0 in \Omega \varepsilon 
f ,(2.6b)

\bfitD (\bfitu \varepsilon ) = 0 in \Omega \varepsilon 
s,(2.6c)

 - div
\Bigl[ 
\mu 
\Bigl( \bfitx 
\varepsilon 

\Bigr) 
\nabla \varphi \varepsilon 

\Bigr] 
= 0 in \Omega ,(2.6d)

together with the balance equations\int 
\Gamma \varepsilon 
i

[\bfitsigma (\bfitu \varepsilon , p\varepsilon ) + \bfitT (\varphi \varepsilon )]\bfitn i d\Gamma 
\varepsilon = 0 =

\int 
\Gamma \varepsilon 
i

([\bfitsigma (\bfitu \varepsilon , p\varepsilon ) + \bfitT (\varphi \varepsilon )]\bfitn i)\times \bfitn i d\Gamma 
\varepsilon (2.7)

and boundary conditions

\bfitu \varepsilon = 0 on \partial \Omega ,(2.8a)

(\mu \nabla \varphi \varepsilon ) \cdot \bfitn \partial \Omega = \bfitk \cdot \bfitn \partial \Omega on \partial \Omega ,(2.8b)

where

\bfitsigma (\bfitu \varepsilon , p\varepsilon ) := 2\bfitD (\bfitu \varepsilon ) - p\varepsilon \bfitI , \bfitT (\varphi \varepsilon ) := S\mu 

\biggl( 
\nabla \varphi \varepsilon \otimes \nabla \varphi \varepsilon  - 1

2
| \nabla \varphi \varepsilon | 2 \bfitI 

\biggr) 
.(2.9)

Remark 2.1. If the Reynolds number is not small, then one has to keep Re\bfitg on
the right-hand side of (2.5). During the homogenization process, one would need to
consider at least three cases, corresponding to the weak limits of subsequences of 1\Omega \varepsilon 

f
.

In some cases, one may encounter a strange term coming from nowhere ; see [9].
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2552 T. DANG, Y. GORB, AND S. JIM\'ENEZ BOLA\~NOS

3. Main results. Before formulating the main theorem, we will discuss regu-
larity, which is essential for the existence of solutions. First of all, the existence of
the magnetic potential \varphi \varepsilon is straightforward via the Lax--Milgram theorem (see sub-
section 3.1). However, to prove the existence of the velocity \bfitu \varepsilon , we need some extra
technical assumptions on the regularity of the permeability \mu and the domain \Omega . To
that end, we note that \bfitk \in H1(\Omega )d \subset L6(\Omega )d. Now, from [6, Theorem 2] (see also [7,
Theorem 1.2]), we have the following regularity result.

Lemma 3.1. Let \Omega be a given domain in Rd with a smooth boundary, and suppose
s \in (4, 6]. Then there exists a small number \delta = \delta (\Lambda , s,\Omega ) > 0 so that, if ess sup\mu  - 
ess inf \mu \leq \delta , one has \int 

\Omega 

| \nabla \varphi \varepsilon | s d\bfitx \leq C

\int 
\Omega 

| \bfitk | s d\bfitx ,(3.1)

where the constant C > 0 is independent of \varepsilon , \varphi \varepsilon , and \bfitk .

Remark 3.2. The above result also holds when \Omega is only Lipschitz with a small
Lipschitz constant (see [26] for an estimate). In the most general setting, we only
need to assume \mu is (\delta ,R)-vanishing and \Omega is (\delta ,R)-Reifenberg flat; for more details,
we refer the reader to [6, 26].

Remark 3.3. Although s = 4 is enough for the existence of \bfitu \varepsilon , as one can see in
subsection 3.2, the higher regularity, namely, s > 4, is needed in order to prove the
corrector result in Lemma 3.14.

In the following, we will use the following functional spaces:
\bullet Cper(Y )---the subspace of C(Rd) of Y -periodic functions;
\bullet C\infty 

per(Y )---the subspace of C\infty (Rd) of Y -periodic functions;
\bullet H1

per(Y )---the closure of C\infty 
per(Y ) in the H1-norm;

\bullet \scrD (\Omega , C\infty 
per(Y ))---the space infinitely differentiable functions from \Omega to C\infty 

per(Y ),

whose support is a compact set of Rd contained in \Omega ;
\bullet L2

per

\bigl( 
Y,C(\=\Omega )

\bigr) 
---the space of measurable functions w : \bfity \in Y \mapsto \rightarrow w(\cdot ,\bfity ) \in C(\=\Omega )

such that w is periodic with respect to \bfity and
\int 
Y
(sup\bfitx \in \=\Omega | w(\bfitx ,\bfity )| )2 d\bfity <\infty ;

\bullet Lp(\Omega , X)---where X is a Banach space and 1 \leq p \leq \infty the space of measurable

functions w : \bfitx \in \Omega \mapsto \rightarrow w(\bfitx ) \in X such that \| w\| Lp(\Omega ,X) :=
\bigl( \int 

\Omega 
\| w(\bfitx )\| pX d\bfitx 

\bigr) 1
p <\infty .

Definition 3.4. A sequence \{ v\varepsilon \} \varepsilon >0 in L2(\Omega ) is said to two-scale converge to

v = v(\bfitx ,\bfity ), with v \in L2(\Omega \times Y ), and we write v\varepsilon 
2 -  - \rightharpoonup v if and only if

lim
\varepsilon \rightarrow 0

\int 
\Omega 

v\varepsilon (\bfitx )\psi 
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) 
d\bfitx =

1

| Y | 

\int 
\Omega 

\int 
Y

v(\bfitx ,\bfity )\psi (\bfitx ,\bfity ) d\bfity d\bfitx (3.2)

for any test function \psi = \psi (\bfitx ,\bfity ) with \psi \in \scrD (\Omega , C\infty 
per(Y )); see [2, 8, 22].

Note that, by density, if v\varepsilon 
2 -  - \rightharpoonup v, then (3.2) holds for any \psi in L2

per

\bigl( 
Y,C(\=\Omega )

\bigr) 
or

L2 (\Omega , Cper(Y )); see, e.g., [2]. In the following, we will use the subscript \cdot \bfity to denote
the derivative with respect to the second variable \bfity . We now state our main result in
Theorem 3.5, whose proof will rely on several lemmas discussed over the next sections.

Theorem 3.5 (main theorem). Suppose that \mu and \Omega satisfy the assumptions
in section 2 and Lemma 3.1. Then the solution triple (\varphi \varepsilon ,\bfitu \varepsilon , p\varepsilon ) \in (H1(\Omega )/R) \times 
H1

0 (\Omega )
d\times (L2(\Omega )/R) of (2.6) two-scale converges to the unique solution (\varphi 0,\bfitu 0, p0) \in 
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(H1(\Omega )/R)\times H1
0 (\Omega )

d \times L2(\Omega \times Y )/R of the ``two-scale homogenized problem""

 - div

\biggl[ 
1

| Y | 

\int 
Y

\mu (\bfity )
\bigl( 
\nabla \varphi 0 +\nabla \bfity \varphi 

1
\bigr) 
d\bfity 

\biggr] 
= 0 in \Omega ,(3.3a)

 - div\bfity 
\bigl[ 
\mu (\bfity )

\bigl( 
\nabla \varphi 0 +\nabla \bfity \varphi 

1
\bigr) \bigr] 

= 0 in \Omega \times Y,(3.3b) \biggl[ 
1

| Y | 

\int 
Y

\mu (\bfity )
\bigl( 
\nabla \varphi 0 +\nabla \bfity \varphi 

1
\bigr) 
d\bfity 

\biggr] 
\cdot \bfitn \partial \Omega = \bfitk \cdot \bfitn \partial \Omega on \partial \Omega ,(3.3c)

 - div

\biggl[ 
1

| Y | 

\int 
Y

\bigl( 
\bfitsigma 0 + \bfitT 0

\bigr) 
d\bfity 

\biggr] 
= 0 in \Omega ,(3.3d)

div\bfity 
\bigl( 
\bfitsigma 0 + \bfitT 0

\bigr) 
= 0 in \Omega \times Yf ,(3.3e)

div\bfitu 0 = 0 in \Omega ,(3.3f)

div\bfity \bfitu 
1 = 0 in \Omega \times Y,(3.3g)

\bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 
1) = 0 in \Omega \times Ys,(3.3h) \int 

\Omega 

\int 
\Gamma 

\bigl( 
\bfitsigma 0 + \bfitT 0

\bigr) 
\bfitn \Gamma d\Gamma \bfity d\bfitx = 0,(3.3i) \int 

\Omega 

\int 
\Gamma 

\bigl[ \bigl( 
\bfitsigma 0 + \bfitT 0

\bigr) 
\bfitn \Gamma 

\bigr] 
\times \bfitn \Gamma d\Gamma \bfity d\bfitx = 0,(3.3j)

with the constitutive laws

\bfitsigma 0 := 2
\bigl[ 
\bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 

1)
\bigr] 
 - p0\bfitI in \Omega ,(3.4)

\bfitT 0 := S\mu 

\biggl( \bigl[ 
\nabla \varphi 0 +\nabla \bfity \varphi 

1
\bigr] 
\otimes 
\bigl[ 
\nabla \varphi 0 +\nabla \bfity \varphi 

1
\bigr] 
 - 1

2

\bigm| \bigm| \nabla \varphi 0 +\nabla \bfity \varphi 
1
\bigm| \bigm| 2 \bfitI \biggr) in \Omega ,(3.5)

where \bfitu 1 \in L2(\Omega , H1
per(Y )d/R), \varphi 1 \in L2(\Omega , H1

per(Y )/R) are given by the two-scale

limits \nabla \bfitu \varepsilon 2 -  - \rightharpoonup \nabla \bfitu 0 +\nabla \bfity \bfitu 
1 and \nabla \varphi \varepsilon 2 -  - \rightharpoonup \nabla \varphi 0 +\nabla \bfity \varphi 

1.

We adopt the following lemma several times throughout the paper.

Lemma 3.6 (averaging lemma [8]). Let \phi \in Lp(\Omega ;Cper(Y )) with 1 \leq p < \infty .
Then \phi (\cdot , \cdot /\varepsilon ) \in Lp(\Omega ) with

\bigm\| \bigm\| \phi \bigl( \cdot , \cdot 
\varepsilon 

\bigr) \bigm\| \bigm\| 
Lp(\Omega )

\leq \| \phi (\cdot , \cdot )\| Lp(\Omega ;Cper(Y ) , and

\phi 
\Bigl( 
\cdot , \cdot 
\varepsilon 

\Bigr) 
\rightharpoonup 

1

| Y | 

\int 
Y

\phi (\cdot ,\bfity ) d\bfity weakly in Lp(\Omega ).

3.1. The magnetostatic equation. Multiplying (2.6d) by \tau \in H1(\Omega ) and
integrating by parts yields\int 

\Omega 

\Bigl[ 
\mu 
\Bigl( \bfitx 
\varepsilon 

\Bigr) 
\nabla \varphi \varepsilon 

\Bigr] 
\cdot \nabla \tau d\bfitx =

\int 
\partial \Omega 

(\bfitk \cdot \bfitn \partial \Omega ) \tau ds,(3.6)

where the boundary integral on \partial \Omega vanishes by (2.8b) and the boundary integrals on
the particle interfaces \Gamma \epsilon 

i vanish by the continuity of the flux \mu \nabla \varphi \varepsilon \cdot \bfitn i across \Gamma 
\varepsilon 
i for

i \in I\varepsilon .
For \phi \in H1(\Omega )/R, we have that \| \phi \| H1(\Omega )/R := \| \nabla \phi \| L2(\Omega ) is a norm of H1(\Omega )/R

by the Poincar\'e--Wirtinger inequality. Using H1(\Omega )d \subset H(div,\Omega ) and the fact that
the field \bfitk is divergence free, by the Lax--Milgram theorem, we have that, for each
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2554 T. DANG, Y. GORB, AND S. JIM\'ENEZ BOLA\~NOS

\varepsilon > 0, problem (3.6) admits a unique solution \varphi \varepsilon in H1(\Omega )/R satisfying

\| \varphi \varepsilon \| H1(\Omega )/R \leq C
\Bigl( 
\| \bfitk \| L2(\Omega )d + \| div \bfitk \| L2(\Omega )

\Bigr) 
= C \| \bfitk \| L2(\Omega )d ,(3.7)

where C = C(\mu ) is a constant depending only on \mu .

Lemma 3.7. Suppose \varphi \varepsilon \in H1(\Omega )/R satisfies (2.6d) and (2.8b). Then there

exist \varphi 0 \in H1(\Omega )/R and \varphi 1 \in L2(\Omega , H1
per(Y )/R) such that \varphi \varepsilon 2 -  - \rightharpoonup \varphi 0, \nabla \varphi \varepsilon 2 -  - \rightharpoonup 

\nabla \varphi 0 +\nabla \bfity \varphi 
1, with

 - div

\biggl[ 
1

| Y | 

\int 
Y

\mu (\bfity )
\bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity )
\bigr) 
d\bfity 

\biggr] 
= 0 in \Omega ,(3.8a)

 - div\bfity 
\bigl[ 
\mu (\bfity )(\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity ))
\bigr] 
= 0 in \Omega \times Y,(3.8b) \biggl[ 

1

| Y | 

\int 
Y

\mu (\bfity )
\bigl( 
\nabla \varphi 0 +\nabla \bfity \varphi 

1
\bigr) 
d\bfity 

\biggr] 
\cdot \bfitn \partial \Omega = \bfitk \cdot \bfitn \partial \Omega on \partial \Omega .(3.8c)

Proof.
1. By (3.7), there exist \varphi 0 \in H1(\Omega )/R and \varphi 1 \in L2(\Omega , H1

per(Y )/R) such that

(up to a subsequence) \varphi \varepsilon 2 -  - \rightharpoonup \varphi 0 and \nabla \varphi \varepsilon 2 -  - \rightharpoonup \nabla \varphi 0 + \nabla \bfity \varphi 
1 (see [2]). In (3.6), let

\tau (\cdot ) = \tau 0(\cdot ) + \varepsilon \tau 1
\bigl( 
\cdot , \cdot 

\varepsilon 

\bigr) 
, with \tau 0 \in \scrD (\Omega ) and \tau 1 \in \scrD (\Omega , C\infty 

per(Y )). We obtain\int 
\Omega 

\mu 
\Bigl( \bfitx 
\varepsilon 

\Bigr) 
\nabla \varphi \varepsilon (\bfitx ) \cdot 

\Bigl[ 
\nabla \tau 0(\bfitx ) + \varepsilon \nabla \bfitx \tau 

1
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) 
+\nabla \bfity \tau 

1
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr] 
d\bfitx = 0.

Now, using \mu (\bfity )
\bigl( 
\nabla \tau 0(\bfitx ) +\nabla \bfity \tau 

1(\bfitx ,\bfity )
\bigr) 
\in L2

per(Y,C(\=\Omega )) as a test function in the
two-scale convergence of \nabla \varphi \varepsilon , as \varepsilon \rightarrow 0, we obtain

1

| Y | 

\int 
\Omega 

\int 
Y

\mu (\bfity )
\bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity )
\bigr) 
\cdot 
\bigl( 
\nabla \tau 0(\bfitx ) +\nabla \bfity \tau 

1(\bfitx ,\bfity )
\bigr) 
d\bfity d\bfitx = 0.(3.9)

In (3.9), choosing \tau 0(\bfitx ) \equiv 0, \tau 1(\bfitx ,\bfity ) \equiv \tau 1(\bfity ) and integrating by parts, we obtain
(3.8b). Similarly, choosing \tau 1(\bfitx ,\bfity ) \equiv 0 leads to (3.8a).

2. Letting \varepsilon \rightarrow 0 in (3.6), integrating by parts, and using (3.8a), we obtain\int 
\partial \Omega 

(\bfitk (\bfitx ) \cdot \bfitn \partial \Omega ) \tau (\bfitx ) ds =
1

| Y | 

\int 
\Omega 

\int 
Y

\mu (\bfity )
\bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity )
\bigr) 
\cdot \nabla \tau (\bfitx ) d\bfity d\bfitx 

=
1

| Y | 

\int 
\partial \Omega 

\tau (\bfitx )

\biggl[ \int 
Y

\mu (\bfity )
\bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity )
\bigr) 
d\bfity 

\biggr] 
\cdot \bfitn \partial \Omega ds,

which implies (3.8c).

3. For (\tau 0, \tau 1) \in (H1(\Omega )/R)\times L2(\Omega , H1
per(Y )/R), let

\bigm\| \bigm\| (\tau 0, \tau 1)\bigm\| \bigm\| 2 :=
\bigm\| \bigm\| \nabla \tau 0\bigm\| \bigm\| 2

L2(\Omega )
+\bigm\| \bigm\| \tau 1\bigm\| \bigm\| 2

L2(\Omega ;H1
per(Y )/R) . Using this norm, we apply the Lax--Milgram theorem to the

variational problem

1

| Y | 

\int 
\Omega 

\int 
Y

\mu (\bfity )
\bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity )
\bigr) 
\cdot 
\bigl( 
\nabla \tau 0(\bfitx ) +\nabla \bfity \tau 

1(\bfitx ,\bfity )
\bigr) 
d\bfity d\bfitx 

=

\int 
\partial \Omega 

(\bfitk (\bfitx ) \cdot \bfitn \partial \Omega ) \tau 
0(\bfitx ) ds

(3.10)

to obtain that (3.8) has a unique solution (\varphi 0, \varphi 1) in (H1(\Omega )/R)\times L2(\Omega , H1
per(Y )/R).
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The linearity of (3.8b) implies that we can separate the slow and the fast variable
in \varphi 1(\bfitx ,\bfity ) by

\varphi 1(\bfitx ,\bfity ) = \omega i(\bfity )
\partial \varphi 0

\partial xi
(\bfitx ).(3.11)

Substituting back in (3.8b), we deduce that \omega i \in H1
per(Y )/R, 1 \leq i \leq d, satisfies

 - div\bfity 
\bigl[ 
\mu (\bfity )

\bigl( 
\bfite i +\nabla \bfity \omega 

i(\bfity )
\bigr) \bigr] 

= 0 in Y.(3.12)

Plugging (3.11) into (3.8a) and (3.8c), we obtain

 - div
\bigl( 
\mu eff\nabla \varphi 0

\bigr) 
= 0 in \Omega and

\bigl( 
\mu eff\nabla \varphi 0

\bigr) 
\cdot \bfitn \partial \Omega = \bfitk \cdot \bfitn \partial \Omega on \partial \Omega ,(3.13)

where the effective magnetic permeability is given by

\mu eff
jk =

1

| Y | 

\int 
Y

\mu (\bfity )

\biggl( 
\delta kj +

\partial \omega k

\partial yj

\biggr) 
d\bfity =

1

| Y | 

\int 
Y

\mu (\bfity )(\bfite k +\nabla \omega k(\bfity )) \cdot \bfite j d\bfity .(3.14)

Lemma 3.8. The coefficients of the effective matrix \mu eff can be written as

\mu eff
jk :=

1

| Y | 

\int 
Y

\mu (\bfity )(\bfite k +\nabla \omega k(\bfity )) \cdot (\bfite j +\nabla \omega j(\bfity )) d\bfity .(3.15)

Therefore, \mu eff is symmetric and positive definite. As a consequence, (3.13) has a
unique solution (up to a constant) \varphi 0 \in W 2,s(\Omega ) \subset C1(\=\Omega ), where s > 4.

Proof.
1. Testing (3.12) against \omega k \in H1

per/R, one gets
\int 
Y
\mu (\bfity )(\bfite j+\nabla \bfity \omega 

j)\cdot \nabla \omega k d\bfity = 0,
where the boundary term vanishes due to periodicity. From the above identity and
(3.14), we obtain (3.15). Now, for \bfitzeta \in Rd, we have

\mu eff\bfitzeta \cdot \bfitzeta = \mu eff
jk \zeta j\zeta k =

1

| Y | 

\int 
Y

\mu (\bfity )(\bfite k +\nabla \omega k(\bfity ))\zeta k \cdot (\bfite j +\nabla \omega j(\bfity ))\zeta j d\bfity 

\geq 1

\Lambda | Y | 

\bigm| \bigm| \bigm| \bigm| \zeta k \int 
Y

(\bfite k +\nabla \omega k(\bfity )) d\bfity 

\bigm| \bigm| \bigm| \bigm| 2 =
| Y | 
\Lambda 

| \bfitzeta | 2

because of Jensen's inequality and
\int 
Y
(\bfite k +\nabla \omega k(\bfity )) d\bfity = | Y | \delta kj\bfite j .

2. Since \Omega is of class C3 and \bfitk \cdot \bfitn \in H1/2(\partial \Omega ) because \bfitk \in H1(\Omega )d, we have
that (3.13) admits a solution \varphi 0 \in H2(\Omega ) by [11, Theorem 5.50]. On the other hand,

\nabla \varphi \varepsilon 2 -  - \rightharpoonup \nabla \varphi 0+\nabla \bfity \varphi 
1 implies \nabla \varphi \varepsilon \rightharpoonup 1

| Y | 
\int 
Y
(\nabla \varphi 0+\nabla \bfity \varphi 

1) d\bfity = \nabla \varphi 0 in L2(\Omega ) (here

we use (3.11)). The latter, together with (3.1), implies that \nabla \varphi \varepsilon converges weakly in
Ls(\Omega )d to \nabla \varphi 0. Moreover, since s > 4, we have \varphi 0 \in W 2,s(\Omega ) \subset C1(\=\Omega ).

Lemma 3.9 (first-order corrector result for the magnetic potential). Let \varphi \varepsilon , \varphi 0,
and \varphi 1 be as in Lemma 3.7. Then

lim
\varepsilon \rightarrow 0

\bigm\| \bigm\| \bigm\| \nabla \varphi \varepsilon (\cdot ) - \nabla \varphi 0(\cdot ) - \nabla \bfity \varphi 
1
\Bigl( 
\cdot , \cdot 
\varepsilon 

\Bigr) \bigm\| \bigm\| \bigm\| 
L2(\Omega )

= 0.(3.16)
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Proof.
1. Recall \mu \geq \Lambda  - 1 > 0. Thus,

\Lambda  - 1
\bigm\| \bigm\| \bigm\| \nabla \varphi \varepsilon (\cdot ) - \nabla \varphi 0(\cdot ) - \nabla \bfity \varphi 

1
\Bigl( 
\cdot , \cdot 
\varepsilon 

\Bigr) \bigm\| \bigm\| \bigm\| 2
L2(\Omega )

\leq 
\int 
\Omega 

\mu 
\Bigl( \bfitx 
\varepsilon 

\Bigr) 
\nabla \varphi \varepsilon (\bfitx ) \cdot \nabla \varphi \varepsilon (\bfitx ) d\bfitx 

 - 2

\int 
\Omega 

\mu 
\Bigl( \bfitx 
\varepsilon 

\Bigr) \Bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr) 
\cdot \nabla \varphi \varepsilon (\bfitx ) d\bfitx 

+

\int 
\Omega 

\mu 
\Bigl( \bfitx 
\varepsilon 

\Bigr) \Bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr) 
\cdot 
\Bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr) 
d\bfitx 

=: \scrI 1 + \scrI 2 + \scrI 3.

(3.17)

2. From (3.6) and by taking
\bigl( 
\tau 0, \tau 1

\bigr) 
=

\bigl( 
\varphi 0, \varphi 1

\bigr) 
in (3.10), we obtain

lim
\varepsilon \rightarrow 0

\scrI 1 = lim
\varepsilon \rightarrow 0

\int 
\partial \Omega 

(\bfitk \cdot \bfitn \partial \Omega )\varphi 
\varepsilon ds = lim

\varepsilon \rightarrow 0

\int 
\Omega 

div(\varphi \varepsilon \bfitk ) d\bfitx = lim
\varepsilon \rightarrow 0

\int 
\Omega 

\bfitk \cdot \nabla \varphi \varepsilon d\bfitx 

(3.18)

=
1

| Y | 

\int 
\Omega 

\int 
Y

\bfitk \cdot (\nabla \varphi 0 +\nabla \bfity \varphi 
1) d\bfity d\bfitx =

\int 
\Omega 

\bfitk \cdot \nabla \varphi 0 d\bfitx =

\int 
\partial \Omega 

(\bfitk \cdot \bfitn \partial \Omega )\varphi 
0 ds

=
1

| Y | 

\int 
\Omega 

\int 
Y

\mu (\bfity )
\bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity )
\bigr) 
\cdot 
\bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity )
\bigr) 
d\bfity d\bfitx ,

where, in the second-to-last identity, we use the fact that \varphi 0 \in C1(\=\Omega ) (Lemma 3.8).
3. To deal with \scrI 2, we first observe that, by (3.11), we have

\mu 
\Bigl( \bfitx 
\varepsilon 

\Bigr) \Bigl( 
\nabla \varphi 0 +\nabla \bfity \varphi 

1
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr) 
\cdot \nabla \varphi \varepsilon = \mu 

\Bigl( \bfitx 
\varepsilon 

\Bigr) \biggl[ 
\partial \varphi 0

\partial xi

\Bigl( 
\bfite i +\nabla \bfity \omega 

i
\Bigl( \bfitx 
\varepsilon 

\Bigr) \Bigr) \biggr] 
\cdot \nabla \varphi \varepsilon .

By Lemma 3.8 and (3.12), \varphi 0 \in C1(\=\Omega ) and \omega i \in L2
per(Y ). Therefore, we can regard

\mu (\bfity )[\partial \varphi 
0

\partial xi
(\bfitx )(\bfite i +\nabla \bfity \omega 

i(\bfity ))] \in L2
per(Y,C(\=\Omega )) as a test function when evaluating the

limit of \scrI 2 as \varepsilon \rightarrow 0:

lim
\varepsilon \rightarrow 0

\scrI 2 =  - 2

| Y | 

\int 
\Omega 

\int 
Y

\mu (\bfity )
\bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity )
\bigr) 
\cdot 
\bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity )
\bigr) 
d\bfity d\bfitx .

(3.19)

4. Finally, for the integral \scrI 3, we use (3.11) to write

\mu 
\Bigl( \bfitx 
\varepsilon 

\Bigr) \Bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr) 
\cdot 
\Bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr) 
= \mu 

\Bigl( \bfitx 
\varepsilon 

\Bigr) \partial \varphi 0

\partial xi
(\bfitx )

\partial \varphi 0

\partial xj
(\bfitx )

\Bigl( 
\bfite i +\nabla \bfity \omega 

i
\Bigl( \bfitx 
\varepsilon 

\Bigr) \Bigr) 
\cdot 
\Bigl( 
\bfite j +\nabla \bfity \omega 

j
\Bigl( \bfitx 
\varepsilon 

\Bigr) \Bigr) 
.

Regarding \partial \varphi 0

\partial xi
(\bfitx )\partial \varphi 

0

\partial xj
(\bfitx ) as a test function, by Lemma 3.6, we have

lim
\varepsilon \rightarrow 0

\scrI 3 =
1

| Y | 

\int 
\Omega 

\int 
Y

\mu (\bfity )
\bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity )
\bigr) 
\cdot 
\bigl( 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity )
\bigr) 
d\bfity d\bfitx .

(3.20)

To that end, the result in (3.16) follows from (3.17)--(3.20).
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At this point, we can conclude from (3.16) and H\"older's inequality that

lim
\varepsilon \rightarrow 0

\bigm\| \bigm\| \bigm\| \bfitT (\varphi \varepsilon )(\cdot ) - \bfitT 0
\Bigl( 
\cdot , \cdot 
\varepsilon 

\Bigr) \bigm\| \bigm\| \bigm\| 
L1(\Omega )d\times d

= 0,(3.21)

where

\bfitT 0(\bfitx ,\bfity ) := S\mu (\bfity )

\biggl( \bigl[ 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity )
\bigr] 
\otimes 

\bigl[ 
\nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 

1(\bfitx ,\bfity )
\bigr] 

 - 1

2

\bigm| \bigm| \nabla \varphi 0(\bfitx ) +\nabla \bfity \varphi 
1(\bfitx ,\bfity )

\bigm| \bigm| 2 \bfitI \biggr) .
3.2. The coupled conservation of momentum equation. In this section,

we establish the existence and derive a priori estimates for the velocity \bfitu \varepsilon and the
pressure p\varepsilon in (2.1). We prove the existence of the solution \bfitu \varepsilon of (2.6a) in \scrU \varepsilon (2.4).
Multiplying (2.6a) by \bfitv \in \scrU \varepsilon and integrating by parts, we deduce that

2

\int 
\Omega 

\bfitD (\bfitu \varepsilon ) :\bfitD (\bfitv ) d\bfitx =  - 
\int 
\Omega 

\bfitT (\varphi \varepsilon ) :\bfitD (\bfitv ) d\bfitx ,(3.22)

where the boundary terms vanish by (2.8) and (2.7) and 1\Omega \varepsilon 
f
is the characteristic

function of the domain \Omega \varepsilon 
f . Define

a(\bfitu ,\bfitv ) := 2

\int 
\Omega 

\bfitD (\bfitu ) :\bfitD (\bfitv ) d\bfitx ,

which is a bilinear form on \scrU \varepsilon . Note that a(\cdot , \cdot ) is continuous and coercive on \scrU \varepsilon .

Assuming that \mu and \Omega satisfy the regularity assumptions in Lemma 3.1, we have
that \bfitT (\varphi \varepsilon ) \in L2(\Omega )d\times d. Now define the linear form \ell on \scrU \varepsilon by

\ell (\bfitv ) :=  - 
\int 
\Omega 

\bfitT (\varphi \varepsilon ) :\bfitD (\bfitv ) d\bfitx .

Observe that \ell (\cdot ) is continuous on \scrU \varepsilon . The Lax--Milgram theorem can be applied to
the variational problem given by

Find \bfitu \varepsilon \in \scrU \varepsilon such that a(\bfitu \varepsilon ,\bfitw ) = \ell (\bfitw ) for all \bfitw \in \scrU \varepsilon (3.23)

to show that it has a unique solution \bfitu \varepsilon \in \scrU \varepsilon that satisfies

\| \bfitu \varepsilon \| H1
0 (\Omega )d \leq C

\biggl( \int 
\Omega 

| \bfitk | s d\bfitx 
\biggr) 1

2

,(3.24)

where the last estimate follows from Lemma 3.1.
We introduce the spaces

\scrV \varepsilon :=
\bigl\{ 
\bfitv \in H1

0 (\Omega )
d : \bfitD (\bfitv ) = 0 in \Omega \varepsilon 

s

\bigr\} 
,

\scrP \varepsilon := div(\scrV \varepsilon ) =
\bigl\{ 
q \in L2

0(\Omega ): \exists \bfitv \in \scrV \varepsilon such that q = div \bfitv 
\bigr\} 
,

(3.25)

where L2
0(\Omega ) :=

\bigl\{ 
q \in L2(\Omega ):

\int 
\Omega 
q d\bfitx = 0

\bigr\} 
. It can be shown that \scrV \varepsilon and \scrP \varepsilon are

Hilbert spaces with respect to the H1
0 - and L

2-inner products. The following lemma
deals with the existence of the pressure.
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Lemma 3.10. There exists p\varepsilon \in \scrP \varepsilon , which arises as a Lagrange multiplier of the
minimization problem given by

(3.26) \bfitv = argmin
\bfitw \in \scrV \varepsilon 

J(\bfitw ) subject to G(\bfitw ) = 0,

where J(\bfitv ) := 1
2a(\bfitv ,\bfitv ) - \ell (\bfitv ), and G(\bfitv ) := div \bfitv . The function p\varepsilon is called the pressure

and satisfies

2

\int 
\Omega 

\bfitD (\bfitu \varepsilon ) :\bfitD (\bfitv ) d\bfitx  - 
\int 
\Omega 

p\varepsilon div \bfitv d\bfitx =  - 
\int 
\Omega 

\bfitT (\varphi \varepsilon ) :\bfitD (\bfitv ) d\bfitx for \bfitv \in \scrV \varepsilon .(3.27)

Proof.
1. Since the bilinear form a(\cdot , \cdot ) is symmetric, the variational problem (3.23)

is equivalent to the minimization problem (3.26). Thus, the existence of the unique
solution \bfitu \varepsilon of the variational problem (3.23) implies that \bfitu \varepsilon is also the unique solution
of the minimization problem (3.26).

2. Fix \bfitu \in \scrV \varepsilon , and let \bfitw \in \scrV \varepsilon . Then G(\bfitu + \bfitw )  - G(\bfitu ) = div\bfitw . Since
\| div\bfitw \| L2(\Omega ) \leq \| \nabla \bfitw \| L2(\Omega )d\times d \equiv \| \bfitw \| H1

0 (\Omega )d , the Fr\'echet derivative of G : \scrV \varepsilon \rightarrow \scrP \varepsilon 

at \bfitu is given by G\prime (\bfitu ) : \scrV \varepsilon \rightarrow \scrP \varepsilon , \bfitv \mapsto \rightarrow div \bfitv . By construction, G\prime (\bfitu ) is surjective.
Moreover, it is clear that G\prime : \scrV \varepsilon \rightarrow L(\scrV \varepsilon ,\scrP \varepsilon ) is continuous, where L(\scrV \varepsilon ,\scrP \varepsilon ) is the
space of bounded linear mappings from \scrV \varepsilon to \scrP \varepsilon . Therefore, G is C1.

3. Since J is the sum of a bounded bilinear function and a bounded linear func-
tion, it is C1. By the Lagrange multiplier theorem [30, section 4.14] and the fact that
\scrP \varepsilon is a Hilbert space, there exists p\varepsilon \in (\scrP \varepsilon )

\ast \sim = \scrP \varepsilon , where \sim = means isomorphic, such
that a(\bfitu \varepsilon , \cdot ) - \ell (\cdot ) - p\varepsilon div(\cdot ) = 0 in \scrV \varepsilon . That is, (\bfitu \varepsilon , p\varepsilon ) satisfies (3.27).

Now, in (3.27), we consider \bfitv \in H1
0 (\Omega 

\varepsilon 
f ), which can be extended by zero to \Omega \varepsilon 

s so
that it belongs to \scrV \varepsilon , and integrate by parts over \Omega \varepsilon 

f to obtain

\langle \nabla p\varepsilon ,\bfitv \rangle H - 1(\Omega \varepsilon 
f ),H

1
0 (\Omega 

\varepsilon 
f )

d =

\int 
\Omega \varepsilon 

f

\nabla p\varepsilon \cdot \bfitv d\bfitx =  - 
\int 
\Omega \varepsilon 

f

p\varepsilon div \bfitv d\bfitx 

=  - 
\int 
\Omega \varepsilon 

f

\bfitT (\varphi \varepsilon ) :\bfitD (\bfitv ) d\bfitx  - 2

\int 
\Omega \varepsilon 

f

\bfitD (\bfitu \varepsilon ) :\bfitD (\bfitv ) d\bfitx .

The above implies that

\| \nabla p\varepsilon \| H - 1(\Omega \varepsilon 
f )

\leq C

\biggl( \int 
\Omega 

| \bfitk | s d\bfitx 
\biggr) 1

2

,(3.28)

where the last inequality follows from (3.24) and (3.1).
The next corollary follows from the fact that \| p\varepsilon \| L2

0(\Omega 
\varepsilon 
f )

\leq \| \nabla p\varepsilon \| H - 1(\Omega \varepsilon 
f )

(see [4,

Lemma IV.1.9]) and p\varepsilon = 0 in \Omega \varepsilon 
s, together with (3.28) and (3.24).

Corollary 3.11. For each \varepsilon > 0, there exists a unique solution (\bfitu \varepsilon , p\varepsilon ) of (2.6)
in H1

0 (\Omega )
d \times L2

0(\Omega ) satisfying the a priori estimate

\| \bfitu \varepsilon \| H1
0 (\Omega )d + \| p\varepsilon \| L2

0(\Omega ) \leq C

\biggl( \int 
\Omega 

| \bfitk | s d\bfitx 
\biggr) 1

2

,

where the constant C does not depend on \varepsilon . Moreover, p\varepsilon = 0 on \Omega \varepsilon 
s.
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3.3. Proof of Theorem 3.5. Finally, we are ready to prove the main theorem
of this paper, whose key steps are assembled from results presented above.

Proof.
1. The estimates in Corollary 3.11 and Lemma 3.1 imply that there exist \bfitu 0 \in 

H1
0 (\Omega )

d, \bfitu 1 \in L2(\Omega , H1
per(Y )d/R), and p0 \in L2(\Omega \times Y )/R satisfying (up to a subse-

quence)

\bfitu \varepsilon 2 -  - \rightharpoonup \bfitu 0, \nabla \bfitu \varepsilon 2 -  - \rightharpoonup \nabla \bfitu 0 +\nabla \bfity \bfitu 
1, p\varepsilon 

2 -  - \rightharpoonup p0.(3.29)

2. Let \psi \in H1
0 (\Omega ), and regard H1

0 (\Omega ) as a subspace of L2(\Omega \times Y ). We deduce
from (2.6b), (2.8a), and (3.29) that

0 = lim
\varepsilon \rightarrow 0

\int 
\Omega 

\psi div\bfitu \varepsilon d\bfitx =  - lim
\varepsilon \rightarrow 0

\int 
\Omega 

\bfitu \varepsilon \cdot \nabla \psi d\bfitx =  - 1

| Y | 

\int 
\Omega 

\int 
Y

\bfitu 0 \cdot \nabla \psi d\bfity d\bfitx 

=  - 
\int 
\partial \Omega 

\psi \bfitu 0 \cdot \bfitn \partial \Omega d\Gamma (\bfitx ) +

\int 
\Omega 

\psi div\bfitu 0 d\bfitx =

\int 
\Omega 

\psi div\bfitu 0 d\bfitx .

Therefore, we obtain that div\bfitu 0 = 0 in \Omega . Moreover, 0 = div\bfitu \varepsilon = tr(\nabla \bfitu \varepsilon )
2 -  - \rightharpoonup 

tr(\nabla \bfitu 0 +\nabla \bfity \bfitu 
1) = div\bfitu 0 + div\bfity \bfitu 

1, so div\bfity \bfitu 
1 = 0 in \Omega \times Y .

3. Let \Psi \in \scrD 
\bigl( 
\Omega , C\infty 

per(Y )d\times d
\bigr) 
be supported in \Omega \times Ys. From (2.6c) and (3.29),

we have

0 = lim
\varepsilon \rightarrow 0

\int 
\Omega 

\bfitD (\bfitu \varepsilon ) : \Psi 
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) 
d\bfitx =

1

| Y | 

\int 
\Omega 

\int 
Ys

\bigl[ 
\bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 

1)
\bigr] 
: \Psi (\bfitx ,\bfity ) d\bfity d\bfitx ,

which implies that \bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 
1) = 0 on \Omega \times Ys.

4. In (3.27), by letting \bfitv (\bfitx ) = \bfitpsi 
\bigl( 
\bfitx , \bfitx \varepsilon 

\bigr) 
, for \bfitpsi \in \scrD (\Omega , C\infty 

per(Y )d) supported in
\Omega \times Yf , we get

2

\int 
\Omega 

\bfitD (\bfitu \varepsilon ) :

\biggl[ 
\bfitD \bfitx (\bfitpsi ) +

1

\varepsilon 
\bfitD \bfity (\bfitpsi )

\biggr] 
d\bfitx  - 

\int 
\Omega 

p\varepsilon 
\biggl( 
div\bfitx \bfitpsi +

1

\varepsilon 
div\bfity \bfitpsi 

\biggr) 
d\bfitx 

=  - 
\int 
\Omega 

\bfitT (\varphi \varepsilon ) :

\biggl[ 
\bfitD \bfitx (\bfitpsi ) +

1

\varepsilon 
\bfitD \bfity (\bfitpsi )

\biggr] 
d\bfitx .

Multiplying by \varepsilon and passing to the limit as \varepsilon \rightarrow 0 yields

2

| Y | 

\int 
\Omega 

\int 
Y

\bigl[ 
\bfitD \bfitx (\bfitu 

0) +\bfitD \bfity (\bfitu 
1)
\bigr] 
:\bfitD \bfity (\bfitpsi ) d\bfity d\bfitx 

 - 1

| Y | 

\int 
\Omega 

\int 
Y

p0 div\bfity \bfitpsi d\bfity d\bfitx =  - lim
\varepsilon \rightarrow 0

\int 
\Omega 

\bfitT (\varphi \varepsilon ) :\bfitD \bfity (\bfitpsi ) d\bfitx .

(3.30)

Observe that\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\bfitT (\varphi \varepsilon (\bfitx )) :\bfitD \bfity 

\Bigl( 
\bfitpsi 
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr) 
d\bfitx  - 1

| Y | 

\int 
\Omega 

\int 
Y

\bfitT 0(\bfitx ,\bfity ) :\bfitD \bfity (\bfitpsi (\bfitx ,\bfity )) d\bfity d\bfitx 

\bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\bfitT (\varphi \varepsilon (\bfitx )) :\bfitD \bfity 

\Bigl( 
\bfitpsi 
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr) 
d\bfitx  - 

\int 
\Omega 

\bfitT 0
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) 
:\bfitD \bfity 

\Bigl( 
\bfitpsi 
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr) 
d\bfitx 

\bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\bfitT 0
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) 
:\bfitD \bfity 

\Bigl( 
\bfitpsi 
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr) 
d\bfitx  - 1

| Y | 

\int 
\Omega 

\int 
Y

\bfitT 0(\bfitx ,\bfity ) :\bfitD \bfity (\bfitpsi (\bfitx ,\bfity )) d\bfity d\bfitx 

\bigm| \bigm| \bigm| \bigm| .
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Hence, by (3.21) and Lemma 3.6, we deduce lim\varepsilon \rightarrow 0

\int 
\Omega 
\bfitT (\varphi \varepsilon (\bfitx )) :\bfitD \bfity 

\bigl( 
\bfitpsi 
\bigl( 
\bfitx , \bfitx \varepsilon 

\bigr) \bigr) 
d\bfitx =

1
| Y | 

\int 
\Omega 

\int 
Y
\bfitT 0(\bfitx ,\bfity ) :\bfitD \bfity (\bfitpsi (\bfitx ,\bfity )) d\bfity d\bfitx . Therefore, (3.30) becomes\int 

\Omega 

\int 
Y

\bigl( 
\bfitsigma 0 + \bfitT 0

\bigr) 
:\bfitD \bfity (\bfitpsi ) d\bfity d\bfitx = 0.(3.31)

In (3.31), we let \bfitpsi (\bfitx ,\bfity ) = \phi (\bfitx )\bfittheta (\bfity ), where \phi \in C\infty 
c (\Omega ) and \bfittheta \in C\infty 

c (Yf )
d. Then\int 

\Omega 
\phi (\bfitx )

\bigl[ \int 
Y

\bigl( 
\bfitsigma 0 + \bfitT 0

\bigr) 
:\bfitD \bfity (\bfittheta ) d\bfity 

\bigr] 
d\bfitx = 0, so

\int 
Y

\bigl( 
\bfitsigma 0 + \bfitT 0

\bigr) 
: \bfitD \bfity (\bfittheta ) d\bfity = 0 for all

\bfitx \in \Omega . Integrating by parts with respect to \bfity , we obtain

div\bfity 
\bigl( 
\bfitsigma 0 + \bfitT 0

\bigr) 
= 0 in \Omega \times Yf .(3.32)

5. Let \bfittheta \in C\infty 
c (Y ) such that \bfitD \bfity (\bfittheta ) = 0 in Ys. The same argument as in point

4 for test function \bfitv (\bfitx ) = \bfittheta 
\bigl( 
\bfitx 
\varepsilon 

\bigr) 
leads to

\int 
\Omega 

\int 
Y

\bigl( 
\bfitsigma 0 + \bfitT 0

\bigr) 
: \bfitD \bfity (\bfittheta ) d\bfity d\bfitx = 0. Inte-

grating by parts with respect to \bfity and using (3.32), we obtain two balance equations\int 
\Omega 

\int 
\Gamma 

\bigl( 
\bfitsigma 0 + \bfitT 0

\bigr) 
\bfitn \Gamma d\Gamma \bfity d\bfitx = 0 and

\int 
\Omega 

\int 
\Gamma 

\bigl[ \bigl( 
\bfitsigma 0 + \bfitT 0

\bigr) 
\bfitn \Gamma 

\bigr] 
\times \bfitn \Gamma d\Gamma \bfity d\bfitx = 0.

6. By (3.29), we have that \bfitsigma \varepsilon = 2\bfitD (\bfitu \varepsilon )  - p\varepsilon \bfitI two-scale converges to \bfitsigma 0 :=
2
\bigl( 
\bfitD \bfitx (\bfitu 

0) +\bfitD \bfity (\bfitu 
1)
\bigr) 
 - p0\bfitI , and, therefore, it converges to 1

| Y | 
\int 
\Omega 

\int 
Y
\bfitsigma 0(\bfitx ,\bfity ) d\bfity 

weakly in L2(\Omega ). By (2.6a), we have  - div\bfitsigma \varepsilon = div\bfitT (\varphi \varepsilon ) in \Omega \varepsilon 
f . Moreover, since

both \bfitD (\bfitu \varepsilon ) and p\varepsilon \bfitI vanish on \Omega \varepsilon 
s, we deduce that \bfitsigma \varepsilon = 0 in \Omega \varepsilon 

s. Therefore,

 - div\bfitsigma \varepsilon = 1\Omega \varepsilon 
f
div\bfitT (\varphi \varepsilon ) in \Omega .(3.33)

Thus, for any \bfitpsi \in H1
0 (\Omega )

d, using integration by parts over \Omega and (2.7), we obtain\int 
\Omega 

\bfitsigma \varepsilon :\bfitD (\bfitpsi ) d\bfitx =

\int 
\Omega 

( - div\bfitsigma \varepsilon )\bfitpsi d\bfitx =  - 
\int 
\Omega \varepsilon 

f

\bfitT (\varphi \varepsilon ) :\bfitD (\bfitpsi ) d\bfitx .

Taking \varepsilon \rightarrow 0 and using (3.21) together with Lemma 3.6 yields

1

| Y | 

\int 
\Omega 

\int 
Y

\bfitsigma 0 :\bfitD (\bfitpsi ) d\bfity d\bfitx =  - 1

| Y | 

\int 
\Omega 

\int 
Y

\bfitT 0 :\bfitD (\bfitpsi ) d\bfity d\bfitx .

Integrating by parts over \Omega , we obtain\int 
\Omega 

div

\biggl( 
1

| Y | 

\int 
Y

\bigl( 
\bfitsigma 0 + \bfitT 0

\bigr) 
d\bfity 

\biggr) 
\cdot \bfitpsi d\bfitx = 0 for all \bfitpsi \in H1

0 (\Omega )
d,

which implies that div( 1
| Y | 

\int 
Y
(\bfitsigma 0 + \bfitT 0) d\bfity ) = 0 on \Omega .

7. We now prove that the triple (\bfitu \varepsilon , p\varepsilon , \varphi \varepsilon ) two-scale converges to (\bfitu 0, p0, \varphi 0).
To this end, we only need to show that the limits are unique. The uniqueness of \varphi 0

and \varphi 1 was proven above in Lemma 3.7. We prove the uniqueness of \bfitu 0 and p0 in
this step and in the next step, respectively.

Let \bfitphi 0 \in \scrD (\Omega ) and \bfitphi 1 \in \scrD 
\bigl( 
\Omega , C\infty 

per(Y )/R
\bigr) 
. Multiplying (3.33) by \bfitphi (\bfitx ) :=

\bfitphi 0(\bfitx ) + \varepsilon \bfitphi 1
\bigl( 
\bfitx , \bfitx \varepsilon 

\bigr) 
and integrating by parts over \Omega , we obtain\int 

\Omega 

\bfitsigma \varepsilon :\bfitD (\bfitphi ) d\bfitx =  - 
\int 
\Omega 

(div\bfitsigma \varepsilon ) \cdot \bfitphi d\bfitx =  - 
\int 
\Omega \varepsilon 

f

\bfitT (\varphi \varepsilon ) :\bfitD (\bfitphi ) d\bfitx .
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Note that \bfitD (\bfitphi ) = \bfitD (\bfitphi 0)(\bfitx ) + \varepsilon \bfitD \bfitx (\bfitphi 
1) + \bfitD \bfity (\bfitphi 

1)
\bigl( 
\bfitx , \bfitx \varepsilon 

\bigr) 
. Taking \varepsilon \rightarrow 0, using

\bfitsigma \varepsilon 2 -  - \rightharpoonup \bfitsigma 0 and (3.21), we obtain

1

| Y | 

\int 
\Omega 

\int 
Y

\bfitsigma 0 :
\bigl[ 
\bfitD (\bfitphi 0) +\bfitD \bfity (\bfitphi 

1)
\bigr] 
d\bfity d\bfitx 

=  - 1

| Y | 

\int 
\Omega 

\int 
Y

\bfitT 0 :
\bigl[ 
\bfitD (\bfitphi 0) +\bfitD \bfity (\bfitphi 

1)
\bigr] 
d\bfity d\bfitx .

(3.34)

Suppose further that div\bfitphi 0 = 0, div\bfity \bfitphi 
1 = 0. Then

2

| Y | 

\int 
\Omega 

\int 
Y

\bigl[ 
\bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 

1)
\bigr] 
:
\bigl[ 
\bfitD (\bfitphi 0) +\bfitD \bfity (\bfitphi 

1)
\bigr] 
d\bfity d\bfitx 

=  - 1

| Y | 

\int 
\Omega 

\int 
Y

\bfitT 0 :
\bigl[ 
\bfitD (\bfitphi 0) +\bfitD \bfity (\bfitphi 

1)
\bigr] 
d\bfity d\bfitx .

(3.35)

Consider the space

\scrH :=

\left\{     (\bfitv 0,\bfitv 1) \in H1
0 (\Omega )

d \times L2(\Omega , H1
per(Y )/R)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
div \bfitv 0 = 0 in \Omega ,

div\bfity \bfitv 
1 = 0 in \Omega \times Y,

\bfitD (\bfitv 0) +\bfitD \bfity (\bfitv 
1) = 0 in \Omega \times Ys

\right\}     .
(3.36)

Let \scrH be endowed with the inner product\bigl\langle 
(\bfitv 0,\bfitv 1), (\bfitw 0,\bfitw 1)

\bigr\rangle 
\scrH :=

\int 
\Omega 

\nabla \bfitv 0 : \nabla \bfitw 0 d\bfitx +
1

| Y | 

\int 
\Omega 

\int 
Y

\nabla \bfity \bfitv 
1 : \nabla \bfity \bfitw 

1 d\bfity d\bfitx (3.37)

for all (\bfitv 0,\bfitv 1), (\bfitw 0,\bfitw 1) in \scrH . Then it can be shown that \scrH is a Hilbert space. By
density, (3.35) holds for all (\bfitphi 0,\bfitphi 1) in \scrH . Now let

b((\bfitv 0,\bfitv 1), (\bfitw 0,\bfitw 1)) :=
2

| Y | 

\int 
\Omega 

\int 
Y

\bigl[ 
\bfitD (\bfitv 0) +\bfitD \bfity (\bfitv 

1)
\bigr] 
:
\bigl[ 
\bfitD (\bfitw 0) +\bfitD \bfity (\bfitw 

1)
\bigr] 
d\bfity d\bfitx 

for (\bfitv 0,\bfitv 1) and (\bfitw 0,\bfitw 1) in \scrH . Clearly, the bilinear form b and the linear map
(\bfitu 0,\bfitu 1) \mapsto \rightarrow  - 1

| Y | 
\int 
\Omega 

\int 
Y
\bfitT 0 :

\bigl[ 
\bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 

1)
\bigr] 
d\bfity d\bfitx are continuous by H\"older's in-

equality. For (\bfitu 0,\bfitu 1) in \scrH , we write \bfitu 0 = (u01, . . . , u
0
d), \bfitu 

1 = (u11, . . . , u
1
d) and let

\bfitn \Gamma = (n1, . . . , nd) be the unit normal vector on \Gamma . Then\int 
\Omega 

\int 
Y

\bfitD (\bfitu 0) :\bfitD \bfity (\bfitu 
1) d\bfity d\bfitx =

\int 
\Omega 

\int 
Y

\partial 

\partial yj

\biggl( 
u1i
\partial u0i
\partial xj

\biggr) 
d\bfity d\bfitx =

\int 
\Omega 

\int 
\partial Y

u1inj
\partial u0i
\partial xj

ds\bfity 

= 0,

since \bfitu 1 is periodic with respect to \bfity . Therefore, we infer that

b((\bfitu 0,\bfitu 1), (\bfitu 0,\bfitu 1)) =
2

| Y | 

\biggl[ \bigm\| \bigm\| \bfitD (\bfitu 0)
\bigm\| \bigm\| 2
L2(\Omega \times Y )

+
\bigm\| \bigm\| \bfitD \bfity (\bfitu 

1)
\bigm\| \bigm\| 2
L2(\Omega \times Y )

+ 2

\int 
\Omega 

\int 
Y

\bfitD (\bfitu 0) :\bfitD \bfity (\bfitu 
1) d\bfity d\bfitx 

\biggr] 
\geq C

\bigm\| \bigm\| (\bfitu 0,\bfitu 1)
\bigm\| \bigm\| 2
\scrH ,

and hence b is coercive. The Lax--Milgram theorem is then applied to obtain the
existence and uniqueness of (\bfitu 0,\bfitu 1) \in \scrH ---the solution of (3.35)---for any (\bfitphi 0,\bfitphi 1) \in 
\scrH . This implies that the full sequence \bfitu \varepsilon , not just up to a subsequence, two-scale
converges to \bfitu 0.
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8. We now show that p0 is unique. Define

\scrK :=
\bigl\{ 
(\bfitv 0,\bfitv 1) \in H1

0 (\Omega )
d \times L2

\bigl( 
\Omega , H1

per(Y )d/R
\bigr) 
:

\bfitD (\bfitv 0) +\bfitD \bfity (\bfitv 
1) = 0 in \Omega \times Ys

\bigr\} 
,

\scrL :=
\bigl\{ 
(q0, q1) \in L2

0(\Omega )\times L2
\bigl( 
\Omega , L2

per(Y )/R
\bigr) 
:

\exists (\bfitv 0,\bfitv 1) \in \scrK s.t. q0 = div \bfitv 0, q1 = div\bfity \bfitv 
1
\bigr\} 
,

(3.38)

and
\bigl\langle 
(q0, q1), (p0, p1)

\bigr\rangle 
\scrL :=

\int 
\Omega 
q0(\bfitx )p0(\bfitx ) d\bfitx + 1

| Y | 
\int 
\Omega 

\int 
Y
q1(\bfitx ,\bfity )p1(\bfitx ,\bfity ) d\bfity d\bfitx . Then

it is clear that (\scrK , \langle \cdot , \cdot \rangle \scrH ) and (\scrL , \langle \cdot , \cdot \rangle \scrL ) are Hilbert spaces. For (\bfitv 0,\bfitv 1) \in \scrK , define
Jb : \scrK \rightarrow R and Gb : \scrK \rightarrow \scrL as follows:

Jb(\bfitv 
0,\bfitv 1) := b((\bfitv 0,\bfitv 1), (\bfitv 0,\bfitv 1)) +

1

| Y | 

\int 
\Omega 

\int 
Y

\bfitT 0 :
\bigl[ 
\bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 

1)
\bigr] 
d\bfity d\bfitx ,

Gb(\bfitv 
0,\bfitv 1) :=

\bigl( 
div \bfitv 0, div\bfity \bfitv 

1
\bigr) 
.

Since b is symmetric, by a similar argument as in the proof of Lemma 3.10, we have

(\bfitu 0,\bfitu 1) = argmin
(\bfitv 0,\bfitv 1)\in \scrK 

Jb(\bfitv 
0,\bfitv 1) subject to Gb(\bfitv 

0,\bfitv 1) = 0.

Clearly, the following holds:
\bigl\langle 
G\prime 

b(\bfitv 
0,\bfitv 1)(\bfitw 0,\bfitw 1)

\bigr\rangle 
=

\bigl( 
div\bfitw 0, div\bfity \bfitw 

1
\bigr) 
, where the

left-hand side is the pairing between the Fr\'echet derivative G\prime 
b(\bfitv 

0,\bfitv 1) acting on
(\bfitw 0,\bfitw 1). This yields Gb \in C1(\scrK ,\scrL ). Moreover, G\prime 

b(\bfitu 
0,\bfitu 1) : \scrK \rightarrow \scrL is surjective

by construction. By the Lagrange multiplier theorem, there exists (\=q, q) \in \scrL \ast \sim = \scrL 
such that

J \prime 
b(\bfitu 

0,\bfitu 1) + (\=q, q) \circ G\prime 
b(\bfitu 

0,\bfitu 1) = 0,(3.39)

where \circ denotes the composition of functions. Testing (3.39) against (\bfitphi 0,\bfitphi 1) \in \scrK ,

1

| Y | 

\int 
\Omega 

\int 
Y

\bfitsigma 0 :
\bigl[ 
\bfitD (\bfitphi 0) +\bfitD \bfity (\bfitphi 

1)
\bigr] 
d\bfity d\bfitx 

+
1

| Y | 

\int 
\Omega 

\int 
Y

\bfitT 0 :
\bigl[ 
\bfitD (\bfitphi 0) +\bfitD \bfity (\bfitphi 

1)
\bigr] 
d\bfity d\bfitx 

+
1

| Y | 

\int 
\Omega 

\int 
Yf

\=q div\bfitphi 0 d\bfity d\bfitx +
1

| Y | 

\int 
\Omega 

\int 
Yf

q div\bfity \bfitphi 
1 d\bfity d\bfitx = 0.

Let \bfitphi 0 = 0 and \bfitphi 1 \in \scrD 
\bigl( 
\Omega , C\infty 

per(Yf )
d/R

\bigr) 
, extended by zero into Ys. Then

1

| Y | 

\int 
\Omega 

\int 
Y

\bigl[ 
\bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 

1)
\bigr] 
:\bfitD \bfity (\bfitphi 

1) d\bfity d\bfitx +
1

| Y | 

\int 
\Omega 

\int 
Y

\bfitT 0 :\bfitD \bfity (\bfitphi 
1) d\bfity d\bfitx 

+
1

| Y | 

\int 
\Omega 

\int 
Yf

q div\bfity \bfitphi 
1 d\bfity d\bfitx = 0.

On the other hand, let \bfitphi 0 = 0 in (3.34). Then, for all \bfitphi 1 \in \scrD 
\bigl( 
\Omega , C\infty 

per(Y )d/R
\bigr) 
,

1

| Y | 

\int 
\Omega 

\int 
Y

p0\bfitI :\bfitD \bfity (\bfitphi 
1) d\bfity d\bfitx +

1

| Y | 

\int 
\Omega 

\int 
Y

\bigl[ 
\bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 

1)
\bigr] 
:\bfitD \bfity (\bfitphi 

1) d\bfity d\bfitx 

=  - 1

| Y | 

\int 
\Omega 

\int 
Y

\bfitT 0 :\bfitD \bfity (\bfitphi 
1) d\bfity d\bfitx .
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Therefore, for all \bfitphi 1 \in \scrD 
\bigl( 
\Omega , C\infty 

per(Yf )
d/R

\bigr) 
, we have 1

| Y | 
\int 
\Omega 

\int 
Yf
q div\bfity \bfitphi 

1 d\bfity d\bfitx =
1

| Y | 
\int 
\Omega 

\int 
Yf
p0\bfitI : \bfitD \bfity (\bfitphi 

1) d\bfity d\bfitx , which yields q = p0 in \Omega \times Yf . Thus, q = p0 in

\Omega \times Y because both functions are zero inside Ys. This implies that the full sequence
p\varepsilon , not just up to a subsequence, two-scale converges to p0.

Remark 3.12. If the coupling parameter S \equiv 0, the proof presented above does,
in particular, justify the formal asymptotic results of [19] for the case of moving rigid
particles in a steady viscous flow.

3.4. Cell problems and corrector results. We recall the cell problem for the
magnetostatic equations presented in (3.12). These equations, together with (3.11),
(3.13), and (3.15), uniquely determine \varphi 0 and \varphi 1; thus, they also determine \bfitT 0 by
(3.5). Moreover, one can write

\bfitT 0(\bfitx ,\bfity ) = S
\partial \varphi 0

\partial xi

\partial \varphi 0

\partial xj
\mu (\bfity )

\biggl( \bigl[ 
\bfite i +\nabla \bfity \omega 

i
\bigr] 
\otimes 

\bigl[ 
\bfite j +\nabla \bfity \omega 

j
\bigr] 

 - 1

2

\bigl[ 
\bfite i +\nabla \bfity \omega 

i
\bigr] 
\cdot 
\bigl[ 
\bfite j +\nabla \bfity \omega 

j
\bigr] 
\bfitI 

\biggr) 
.

(3.40)

Equations (3.3d) and (3.3h) suggest that it is possible to write \bfitu 1 as a function
of \bfitu 0 and \varphi 0. To achieve this, let us introduce, for 1 \leq i, j \leq d, the matrix \bfitQ ij

satisfying the following:
\bullet If i = j. Then \bfitQ ii

ii = 1, and the rest of the entries are zero.

\bullet If i \not = j, then \bfitQ ij
ij = \bfitQ 

ij
ji =

1
2 , and the rest of the entries are zero.

In short, the above assumptions imply that\bfitQ ij
mn = 1

2 (\delta im\delta jn + \delta in\delta jm). Now consider

the vector \bfitU ij defined by \bfitU ij
k := yj\delta ik. Observe that \bfitD \bfity 

\bigl( 
\bfitU ij

\bigr) 
= \bfitQ ij . Indeed, write

\bfitU ij = \bfitU ij
n \bfite n = yj\delta in\bfite n. Then \nabla \bfitU ij = \partial 

\partial ym
(yj\delta in)\bfite n \otimes \bfite m = \delta jm\delta in\bfite n \otimes \bfite m.

Therefore,
\bigl( 
\nabla \bfitU ij

\bigr) \top 
= \delta jn\delta im\bfite n \otimes \bfite m, so \bfitD \bfity (\bfitU 

ij) = 1
2 (\delta jm\delta in + \delta jn\delta im)\bfite n \otimes \bfite m.

Now we write \bfitu 1 as a function of \bfitu 0 and \varphi 0 by setting

\bfitu 1(\bfitx ,\bfity ) =  - \bfitD 
\bigl( 
\bfitu 0(\bfitx )

\bigr) 
ij
\bfitchi ij(\bfity ) + S

\partial \varphi 0

\partial xi
(\bfitx )

\partial \varphi 0

\partial xj
(\bfitx )\bfitxi ij(\bfity ),(3.41)

where \bfitchi ij , \bfitxi ij \in H1
per(Y )d/R. It follows that

\bfitD 
\bigl( 
\bfitu 0

\bigr) 
+\bfitD \bfity 

\bigl( 
\bfitu 1

\bigr) 
=\bfitD 

\bigl( 
\bfitu 0

\bigr) 
ij
\bfitD \bfity 

\bigl( 
\bfitU ij  - \bfitchi ij

\bigr) 
+ S

\partial \varphi 0

\partial xi

\partial \varphi 0

\partial xj
\bfitD \bfity 

\bigl( 
\bfitxi ij

\bigr) 
.(3.42)

Now let p0(\bfitx ,\bfity ) = 2\bfitD 
\bigl( 
\bfitu 0(\bfitx )

\bigr) 
ij
qij(\bfity ) - S \partial \varphi 0

\partial xi
(\bfitx )\partial \varphi 

0

\partial xj
(\bfitx )rij(\bfity ) + \pi 0(\bfitx ), where \pi 0 \in 

L2
0(\Omega ) and q

ij , rij \in L2
per(Y )/R. The formula, together with (3.42), yields

\bfitsigma 0 = 2\bfitD 
\bigl( 
\bfitu 0

\bigr) 
ij

\bigl[ 
\bfitD \bfity 

\bigl( 
\bfitU ij  - \bfitchi ij

\bigr) 
 - qij\bfitI 

\bigr] 
 - \pi 0\bfitI + S

\partial \varphi 0

\partial xi

\partial \varphi 0

\partial xj

\bigl( 
\bfitD \bfity 

\bigl( 
\bfitxi ij

\bigr) 
+ rij\bfitI 

\bigr) 
.

Let us define the following matrices:

\scrN ij :=
1

| Y | 

\int 
Y

\bfitD \bfity 

\bigl( 
\bfitU ij  - \bfitchi ij

\bigr) 
d\bfity and \scrB ij :=

1

| Y | 

\int 
Y

\bigl( 
\bfitD \bfity (\bfitxi 

ij) + \bfittau ij
\bigr) 
d\bfity ,(3.43)

where \bfittau ij := \mu (\bfity )
\bigl[ 
(\bfite i +\nabla \bfity \omega 

i)\otimes (\bfite j +\nabla \bfity \omega 
j) - 1

2 (\bfite 
i +\nabla \bfity \omega 

i) \cdot (\bfite j +\nabla \bfity \omega 
j)\bfitI 

\bigr] 
.

D
ow

nl
oa

de
d 

02
/1

1/
22

 to
 1

29
.7

.1
58

.4
3 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2564 T. DANG, Y. GORB, AND S. JIM\'ENEZ BOLA\~NOS

Then, from (3.3d), (3.3f), and div
\bigl( \int 

Y
qij(\bfity )\bfitI d\bfity 

\bigr) 
= 0 = div

\bigl( \int 
Y
rij(\bfity )\bfitI d\bfity 

\bigr) 
, we

conclude that in \Omega ,

div

\biggl[ 
2\scrN ij\bfitD 

\bigl( 
\bfitu 0

\bigr) 
ij
 - \pi 0\bfitI + S\scrB ij \partial \varphi 

0

\partial xi

\partial \varphi 0

\partial xj

\biggr] 
= 0 and div\bfitu 0 = 0.(3.44)

As it follows from (3.44), \scrN :=
\bigl\{ 
\scrN ij

mn

\bigr\} 
1\leq i,j,m,n\leq d

is the effective viscosity, and it is a

fourth rank tensor.
From (3.3e), (3.3h), (3.3i), (3.3g), and (3.3j), the cell problems for \bfitchi ij , \bfitxi ij \in 

H1
per(Y )d/R and qij , rij \in L2(Y )/R are given by

div\bfity 
\bigl[ 
\bfitD \bfity 

\bigl( 
\bfitU ij  - \bfitchi ij

\bigr) 
+ qij\bfitI 

\bigr] 
= 0 in Yf ,

div\bfity \bfitchi 
ij = 0 in Y, \bfitD \bfity 

\bigl( 
\bfitU ij  - \bfitchi ij

\bigr) 
= 0 in Ys,\int 

\Gamma 

\bigl[ 
\bfitD \bfity 

\bigl( 
\bfitU ij  - \bfitchi ij

\bigr) 
 - qij\bfitI 

\bigr] 
\bfitn \Gamma d\Gamma \bfity = 0 =

\int 
\Gamma 

\bigl[ 
\bfitD \bfity 

\bigl( 
\bfitU ij  - \bfitchi ij

\bigr) 
 - qij\bfitI 

\bigr] 
\bfitn \Gamma \times \bfitn \Gamma d\Gamma \bfity ,

(3.45)

div\bfity 
\bigl[ 
\bfitD \bfity 

\bigl( 
\bfitxi ij

\bigr) 
+ rij\bfitI + \bfittau ij

\bigr] 
= 0 in Yf ,

div\bfity \bfitxi 
ij = 0 in Y, \bfitD \bfity 

\bigl( 
\bfitxi ij

\bigr) 
= 0 in Ys,\int 

\Gamma 

\bigl[ 
\bfitD \bfity 

\bigl( 
\bfitxi ij

\bigr) 
+ rij\bfitI + \bfittau ij

\bigr] 
\bfitn \Gamma d\Gamma \bfity = 0 =

\int 
\Gamma 

\bigl[ 
\bfitD \bfity 

\bigl( 
\bfitxi ij

\bigr) 
+ rij\bfitI + \bfittau ij

\bigr] 
\bfitn \Gamma \times \bfitn \Gamma d\Gamma \bfity .

(3.46)

Lemma 3.13. The coefficients of the effective tensor \scrN can be written as

\scrN ij
mn :=

1

| Y | 

\int 
Y

\bfitD \bfity (\bfitU 
ij  - \bfitchi ij) :\bfitD \bfity (\bfitU 

mn  - \bfitchi mn) d\bfity .(3.47)

Therefore, \scrN is symmetric, i.e., \scrN ij
mn = \scrN mn

ij = \scrN ji
mn = \scrN ij

nm. Moreover, \scrN sat-
isfies the Legendre--Hadamard condition (or strong ellipticity condition); i.e., there

exist \lambda > 0 such that, for all \bfitzeta ,\bfiteta \in Rd, one has \scrN ij
mn\zeta i\zeta m\eta j\eta n \geq \lambda | \bfitzeta | 2 | \bfiteta | 2 . As a

consequence, the system (3.44) with homogeneous Dirichlet boundary condition has a
unique solution (\bfitu 0, \pi 0) \in C1(\=\Omega )d \times C(\=\Omega ) (here \pi 0 is defined up to a constant).

Proof. We follow the same line of argument as in Lemma 3.8. Testing the first
equation of (3.45) with \bfitchi mn and using the incompressibility condition to eliminate
the pressure term, we obtain

\int 
Y
\bfitD \bfity (\bfitU 

ij  - \bfitchi ij) :\bfitD \bfity (\bfitchi 
mn) d\bfity = 0. Since \bfitD \bfity (\bfitU 

ij) =
\bfitQ ij = \bfitQ ji = \bfitD \bfity (\bfitU 

ji), (3.45) implies that \bfitchi ij = \bfitchi ji. By (3.43), we have \scrN ij
mn =

\scrN ji
mn. Taking into account with the first equation of (3.43), we obtain (3.47). This

representation (3.47) and the fact that \scrN ij
mn = \scrN ji

mn imply that \scrN is symmetric.
Now, for all \bfitzeta ,\bfiteta \in Rd,

\Upsilon (\bfitzeta ,\bfiteta ) := \scrN ij
mn\zeta i\zeta m\eta j\eta n =

1

| Y | 

\int 
Y

\bfitD \bfity (\bfitU 
ij  - \bfitchi ij)\zeta i\eta j :\bfitD \bfity (\bfitU 

mn  - \bfitchi mn)\zeta m\eta n d\bfity 

=
1

| Y | 

\int 
Y

\bigm| \bigm| \bfitD \bfity (\bfitU 
ij  - \bfitchi ij)\zeta i\eta j

\bigm| \bigm| 2 d\bfity \geq 0.

Therefore, \Upsilon | \partial B(0,1)2(\bfitzeta ,\bfiteta ) = 0 if and only if \bfitD \bfity (\bfitU 
ij  - \bfitchi ij) = 0 a.e. in Y . The

latter implies that \bfitchi ij = \bfitU ij + constant, which is a contradiction since it would not
be a periodic function. Let \lambda be the minimum of the continuous function \Upsilon on the
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compact set \partial B(0, 1)2. Then the argument above yields \lambda > 0. By scaling, we have
\scrN is strongly elliptic. For the last claim, since \Omega is of class C3, \bfitg \in H(\Omega )d and \varphi 0 \in 
W 2,4(\Omega ), the solution (\bfitu 0, \pi 0) of (3.44) belongs to H3(\Omega )d\times H2(\Omega ) \subset C1(\=\Omega )d\times C(\=\Omega )
by [14, Theorem 4.1].

Lemma 3.14 (first-order corrector result for the velocity). Let \bfitu \varepsilon , \varphi \varepsilon , p\varepsilon ,\bfitu 0,
\varphi 0, p0, \bfitu 1, \varphi 1 be as in Theorem 3.5. Then

lim
\varepsilon \rightarrow 0

\bigm\| \bigm\| \bigm\| \bfitD (\bfitu \varepsilon )(\cdot ) - \bfitD (\bfitu 0)(\cdot ) - \bfitD \bfity (\bfitu 
1)

\Bigl( 
\cdot , \cdot 
\varepsilon 

\Bigr) \bigm\| \bigm\| \bigm\| 
L2(\Omega )

= 0.(3.48)

Proof.
1. We write

2
\bigm\| \bigm\| \bfitD (\bfitu \varepsilon ) - \bfitD (\bfitu 0) - \bfitD \bfity (\bfitu 

1)
\bigm\| \bigm\| 2
L2(\Omega )

= \scrJ 1  - 2\scrJ 2 + \scrJ 3, where(3.49)

\scrJ 1 := 2

\int 
\Omega 

\bfitD (\bfitu \varepsilon )(\bfitx ) :\bfitD (\bfitu \varepsilon )(\bfitx ) d\bfitx ,

\scrJ 2 := 2

\int 
\Omega 

\Bigl[ 
\bfitD (\bfitu 0)(\bfitx ) +\bfitD \bfity (\bfitu 

1)
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr] 
:\bfitD (\bfitu \varepsilon )(\bfitx ) d\bfitx ,

\scrJ 3 := 2

\int 
\Omega 

\Bigl[ 
\bfitD (\bfitu 0)(\bfitx ) +\bfitD \bfity (\bfitu 

1)
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr] 
:
\Bigl[ 
\bfitD (\bfitu 0)(\bfitx ) +\bfitD \bfity (\bfitu 

1)
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr] 
d\bfitx .

2. By letting \bfitv = \bfitu \varepsilon in (3.22), we deduce that

lim
\varepsilon \rightarrow 0

\scrJ 1 =  - lim
\varepsilon \rightarrow 0

\int 
\Omega 

\bfitT (\varphi \varepsilon ) :\bfitD (\bfitu \varepsilon ) d\bfitx .(3.50)

Next, we compute the last limit in (3.50). Fix s > 4 in Lemma 3.1.
\bullet On the one hand, for 1 \leq i \leq d, by [31, Corollary 3.5], we have \omega i \in W 1,\infty (Y ),

so \nabla \omega i \in L\infty (Y ) \subset Ls(Y ). Let C = max1\leq i\leq d \| \nabla \omega i\| Ls(Y ) . Then\bigm\| \bigm\| \nabla \omega i
\bigm\| \bigm\| 
Ls(Y )

\leq C for all 1 \leq i \leq d.(3.51)

Let r = s
2 > 2. Then \bfitT 0

\bigl( 
\cdot , \cdot 

\varepsilon 

\bigr) 
is bounded in Lr(\Omega ) by (3.40) and (3.51). Moreover,

from Lemma 3.1 and the definition of \bfitT (\varphi \varepsilon ) in (2.9), we have that \| \bfitT (\varphi \varepsilon )\| Lr(\Omega ) is

bounded. On the other hand, (3.21) and [5, Theorem 4.9] imply, up to a subsequence,
lim\varepsilon \rightarrow 0

\bigl( 
\bfitT (\varphi \varepsilon (\bfitx )) - \bfitT 0

\bigl( 
\bfitx , \bfitx \varepsilon 

\bigr) \bigr) 
= 0. Therefore, by [5, Exercise 4.16], we obtain

lim
\varepsilon \rightarrow 0

\bigm\| \bigm\| \bigm\| \bfitT (\varphi \varepsilon ) - \bfitT 0
\Bigl( 
\cdot , \cdot 
\varepsilon 

\Bigr) \bigm\| \bigm\| \bigm\| 
L2(\Omega )d\times d

= 0.(3.52)

Note that this convergence is stronger than (3.21). This estimate justifies our choice
of s > 4 in Lemma 3.1.

\bullet By rewriting and taking the limit as \varepsilon \rightarrow 0, we have\int 
\Omega 

\bfitT (\varphi \varepsilon ) :\bfitD (\bfitu \varepsilon ) d\bfitx 

=

\int 
\Omega 

\Bigl[ 
\bfitT (\varphi \varepsilon ) - \bfitT 0

\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) \Bigr] 
:\bfitD (\bfitu \varepsilon ) d\bfitx +

\int 
\Omega 

\bfitT 0
\Bigl( 
\bfitx ,
\bfitx 

\varepsilon 

\Bigr) 
:\bfitD (\bfitu \varepsilon ) d\bfitx 

\varepsilon \rightarrow 0 -  -  - \rightarrow 1

| Y | 

\int 
\Omega 

\int 
Y

\bfitT 0(\bfitx ,\bfity ) :
\bigl[ 
\bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 

1)
\bigr] 
d\bfity d\bfitx .

(3.53)D
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Here, the first integral converges to zero due to (3.52) and because \bfitD (\bfitu \varepsilon ) is bounded,
while in the second integral, we regard \bfitT 0 \in L2

per

\bigl( 
Y,C(\=\Omega )

\bigr) 
as a test function for

\bfitD (\bfitu \varepsilon )
2 -  - \rightharpoonup \bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 

1). From (3.3d), (3.50), and (3.53), we conclude that

lim
\varepsilon \rightarrow 0

\scrJ 1 =
2

| Y | 

\int 
\Omega 

\int 
Y

\bigl[ 
\bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 

1)
\bigr] 
:
\bigl[ 
\bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 

1)
\bigr] 
d\bfity d\bfitx .(3.54)

3. Substituting (3.42) into \scrJ 2 and \scrJ 3 and using the definition of two-scale con-
vergence for \scrJ 2 and Lemma 3.6 for \scrJ 3, we obtain

lim
\varepsilon \rightarrow 0

\scrJ 2 = lim
\varepsilon \rightarrow 0

\scrJ 3

=
2

| Y | 

\int 
\Omega 

\int 
Y

\bigl[ 
\bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 

1)
\bigr] 
:
\bigl[ 
\bfitD (\bfitu 0) +\bfitD \bfity (\bfitu 

1)
\bigr] 
d\bfity d\bfitx .

(3.55)

Here, we used that \bfitD (\bfitu 0)ij \in C(\=\Omega ) and \partial \varphi 0

\partial xi
\in C(\=\Omega ), which follow from Lemma 3.13

and Lemma 3.8. Putting (3.49), (3.54), and (3.55) together, we obtain (3.48).

Finally, in the following corollary, we synthesize the results of Theorem 3.5 and
the cell problems (3.45)--(3.46).

Corollary 3.15. Let (\varphi \varepsilon ,\bfitu \varepsilon , p\varepsilon ) \in (H1(\Omega )/R)\times H1
0 (\Omega )

d\times L2
0(\Omega ) be the solution

of (2.6). Then \varphi \varepsilon \rightharpoonup \varphi 0 in H1(\Omega )/R, \bfitu \varepsilon \rightharpoonup \bfitu 0 in H1
0 (\Omega )

d, p\varepsilon \rightharpoonup \pi 0 in L2
0(\Omega ), where

\varphi 0,\bfitu 0, and \pi 0 are solutions of

 - div
\bigl( 
\mu eff\nabla \varphi 0

\bigr) 
= 0 in \Omega ,\bigl( 

\mu eff\nabla \varphi 0
\bigr) 
\cdot \bfitn \partial \Omega = \bfitk \cdot \bfitn \partial \Omega on \partial \Omega ,

div

\biggl[ 
2\scrN ij\bfitD 

\bigl( 
\bfitu 0

\bigr) 
ij
 - \pi 0 + S\scrB ij \partial \varphi 

0

\partial xi

\partial \varphi 0

\partial xj

\biggr] 
= 0 in \Omega ,

div\bfitu 0 = 0 in \Omega ,

(3.56)

with \mu eff defined by (3.15) and \scrN ij , \scrB ij, 1 \leq i, j \leq d defined in (3.43).

4. Conclusions. The results obtained above in Theorem 3.5 and Corollary 3.15
demonstrate the effective response of a viscous fluid with a locally periodic array of
paramagnetic/diamagnetic particles suspended in it, given by the system of equations
(2.6). The effective equations are described by (3.56) in Corollary 3.15, with effective
coefficients given by (3.15) and (3.43). As evident from the effective system obtained,
these effective quantities depend only on the instantaneous position of the particles,
their geometry, and the magnetic and flow properties of the original suspension de-
coded in (2.6). It is worth mentioning that this paper is not concerned with modeling
issues for the colloids with particles whose magnetic properties are described by the
linear relation between the magnetic flux density B and the magnetic field strength
H suspended in a viscous fluid in the presence of an external magnetic field, which
is an interesting and important topic in itself (see relevant references cited in the
introduction). In the future, however, the authors intend to continue analyzing the
effective behavior of the suspensions described by more complicated systems, includ-
ing the nonlinear magnetic relation, the two-way coupling between the flow and the
magnetic descriptions of the suspension, and perhaps the interaction between the
particles and the Navier--Stokes description of the carrier fluid, whose results will be
reported elsewhere.
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