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HOMOGENIZATION OF NONDILUTE SUSPENSION OF VISCOUS
FLUID WITH MAGNETIC PARTICLES*
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Abstract. This paper seeks to carry out the rigorous homogenization of a particulate flow
consisting of a nondilute suspension of a viscous Newtonian fluid with magnetizable particles. The
fluid is assumed to be described by the Stokes flow, while the particles are either paramagnetic
or diamagnetic, for which the magnetization field is a linear function of the magnetic field. The
coefficients of the corresponding partial differential equations are locally periodic. A one-way coupling
between the fluid domain and the particles is also assumed. The homogenized or effective response of
such a suspension is derived, and the mathematical justification of the obtained asymptotics is carried
out. The two-scale convergence method is adopted for the latter. As a consequence, the presented
result provides a justification for the formal asymptotic analysis of Lévy and Sanchez-Palencia [ Fluid
Mech., 13 (1983), pp. 63-78] for particulate steady-state Stokes flows.

Key words. homogenization, two-scale convergence, viscous flow, coupling, magnetic particles
AMS subject classifications. 76M50, 78M40

DOI. 10.1137/21M1413833

1. Introduction. The past two decades have witnessed a dramatic growth of re-
search interest in the ferrofluids and magnetorheological fluids (e.g., [1, 3, 12, 16, 17]),
which found abundant technological, environmental, and medical applications. The
most salient applications are magnetic drug targeting [15, 28] and molecular communi-
cation using magnetic nanoparticles [20] for the former and noninvasive measurements
of blood pressure, prosthetic knee, and many others (see [10, 13] and the references
therein) for the latter. Both of these types of fluids are colloids consisting of a large
number of fairly small magnetizable particles dispersed/suspended in a carrier fluid,
which is itself electrically nonconducting, in the presence of strong magnetic fields or
strong magnetic gradients (a typical ferro- or magnetorheological fluid also includes
a surfactant layer that for simplicity will be ignored hereafter). Under those external
forces, the particles slip relative to the ambient fluid and, thereby, exert drag to the
latter, yielding the overall suspension to move as a whole. The most important ap-
plications of the aforementioned fluids result from the possibility of controlling their
effective viscosity with an externally applied magnetic field (e.g., magnetorheological
fluids can even solidify in the presence of a magnetic field). The major difference
between these colloids is in the size of the particles in the suspension (nanoscale for
ferrofluids and microscale for magnetorheological fluids) (see [27]), which behave as a
homogeneous continuum. Such a small diameter of the particles, therefore, calls for a
macroscopic (or effective, averaging, homogenized, upscaled, or coarse) description of
the given suspension.

*Received by the editors April 20, 2021; accepted for publication (in revised form) September 21,

2021; published electronically December 2, 2021.
https://doi.org/10.1137/21M1413833
Funding: The work of the first author was partially supported by the NSF through grant
DMS-1350248. The work of the third author was partially supported by NSF grant DMS-2110036.
TDepartment of Mathematics, University of Houston, Houston, TX 77204 USA (ttdang9@Qcentral.
uh.edu).
fNational Science Foundation, Alexandria, VA 22314 USA (ygorb@nsf.gov).
§Department of Mathematics, Colgate University, Hamilton, NY 13346 USA (sjimenez@colgate.
edu).

2547

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/21M1413833
mailto:ttdang9@central.uh.edu
mailsto:ttdang9@central.uh.edu
mailto:ygorb@nsf.gov
mailto:sjimenez@colgate.edu
mailto:sjimenez@colgate.edu

Downloaded 02/11/22 to 129.7.158.43 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

2548 T. DANG, Y. GORB, AND S. JIMENEZ BOLANOS

The macroscopic response of highly heterogeneous multiscale media is often mod-
eled phenomenologically, which typically does not lead to a straightforward control
over the effective properties that is essential in the case of the ferro- or magnetorhe-
ological fluids. However, if the underlying (micro)structure of heterogeneities is pe-
riodic, then the mathematical theory of homogenization, which yields a homogenized
model depending on the microstructure and properties of the constituents, can be
employed. This rigorous approach can thus lead to the design of new materials with
the desired properties.

In the framework of a homogenization method, the studies most directly related
to this current contribution are [18, 19, 23]. More specifically, in [19], the behavior of
nondilute suspensions of rigid particles in a Newtonian fluid was studied in the case
where the magnetic field was neglected, assuming a locally periodic array of particles.
The fluid was described by the stationary Navier—Stokes flow equations, and the mo-
tion of particles of an arbitrary shape followed the rigid body motion. Using the formal
asymptotics expansion procedure, it was obtained that the homogenized medium was
given by a viscous fluid, in general anisotropic, predictably depending on the local
microstructure. The evolution equations for the microstructure were also obtained.
A similar asymptotic study was developed in [18], where a suspension of magnetized
particles in a Newtonian fluid was considered. As in the previous study, rigid parti-
cles of an arbitrary shape were coupled with the stationary Navier—Stokes equation of
the carrier fluid with coupling between the fluid flow and the magnetic field imposed
through the balances of linear and angular momenta equations rather than in the
fluid or solid phase equations. The method of asymptotic expansions employed in [18]
resulted in a set of homogenized equations revealing that, even though the fluid where
the magnetized particles were suspended was Newtonian, the effective medium was, in
general, non-Newtonian. Note that in [18, 19], the effect of the external magnetic field
was imposed as a volume density force acting on each particle and as a surface density
force acting on the boundary of each particle, respectively. Later, in [23], the formal
method of asymptotic expansions was applied to the quasi-static Maxwell equations
coupled with the Stokes equations to capture the effective magnetorheological behav-
ior given by effective viscosity and three effective magnetic permeabilities, which all
depend on the geometry of the suspension, the volume fraction, the original magnetic
permeability of particles, the Alfven number, and the distribution of the particles. A
numerical study, based on the obtained homogenized system, was also developed for
a suspension of iron particles in a viscous nonconducting fluid to capture the effect of
the chain structures present in the microstructure.

As mentioned above, the approaches adopted in previous homogenization contri-
butions [18, 19, 23] were formal. The goal of the present study is to carry out the
rigorous homogenization analysis for a suspension of magnetized particles in a slow,
viscous flow. To that end, we adopt the method of two-scale convergence; see, e.g.,
[2, 22]. Since the analysis for the full coupling of the Navier—Stokes equations with
the Maxwell equations becomes increasingly involved—in terms of necessary existence,
regularity, and other kinds of results—this paper deals with a simplified model of para-
magnetic or diamagnetic particles in a viscous fluid with a one-way coupling between
them. The paramagnetic model is introduced in [21] (see also [25, section 7.2] or [29,
Chapter 13]) and assumes that the magnetic fluz density B is linearly proportional to
the magnetic field strength H; i.e., there exists a function p(x) of the spatial variable
@ such that B = p(z)H, where the function p(x) is called the magnetic permeability.
A similar linear relation holds for diamagnetic particles; see [29]. For the microscopic
or fine-scale description of the coupled system, we have adopted the set of equations
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derived in [1, 17]. Thereby, the fluid is assumed to be electrically nonconducting, the
particles are inertialess, and the contribution from Brownian motions is negligible.
The Stokes law governs the motion of the ambient fluid, while the particles exhibit
rigid body motion, and the magnetic force, exerted on the particles due to magnetic
fields, is represented by the divergence of the Maxwell stress tensor, which acts as a
body force added to the momentum balance equation. The above implies a one-way
coupled system of hydrodynamic and magnetic interactions, where the magnetic field
alters the fluid flow. Clearly, the present simplified model is an initial step in the me-
thodical investigation of the homogenized description of hydrodynamic and magnetic
coupling, where the two-way coupling as well as other descriptions of the particles,
such as nonlinear ferromagnetic ones (see [25, 29]), are intended to be studied.

Finally, the main result of this paper consists of the derivation of the homogenized
or effective response of the suspension described above and the rigorous justification of
the obtained asymptotics. The novelty of the results of this paper is that, to the best
of our knowledge, a rigorous analytical justification for this type of homogenization
has not been obtained yet.

This paper is organized as follows. In section 2, the formulation of the problem
under consideration is given, including the coupling of rigid body motion of paramag-
netic particles with a viscous fluid at the fine (micro) scale. The dimensional analysis
is carried out in this section as well. The main results, which include the homogenized
equation, the cell problems, and the corrector result, will be given in section 3. Our
concluding remarks and comments are summarized in section 4.

2. Formulation. Throughout this paper, the scalar-valued quantities, such as
the pressure p, are written in usual typefaces, while vector-valued or tensor-valued
fields, such as the velocity w and the Cauchy stress tensor o, are written in bold.
A special case that does not follow this rule is the effective tensor, which is always
written in normal font. Sequences are indexed by numeric superscripts (¢°), while
elements of vectors or tensors are indexed by numeric subscripts (z;). Finally, the
Einstein summation convention is used whenever applicable.

Let Y = (0,1)% be the unit cell in R? for d = 2 or 3. The unit cell YV is
decomposed into Y = Y, UY;UT, where Y, representing the magnetic inclusion, and
Yy, representing the fluid domain, are open sets in R? and T is the smooth, closed
interface that separates them.

Furthermore, let i = (iy,...,iq) € Z¢ be a vector of indices and ey, ..., eq be
canonical basis of R%. For a fixed small € > 0, define the dilated sets:

YE = e(Y i), Vi, =e(Yo+i), Vi =e(Yy+i), I%=0Y7,
Let n;, nr, and npo be unit normal vectors on I'; pointing outward Y%, on I pointing
outward Yy, and on 9f) pointing outward, respectively.

We assume that the magnetic permeability is a Y-periodic function p € L>(R%):

w(z +mey) = p(z) VzeRY VmeZ, Vke{l,....d}.

Let © C R be a simply connected and bounded domain of class C?, so that the

effective velocity u® derived below will be from C*(Q)?, as claimed in Lemma 3.13.
We define

F={iez":yfcq}, o=V, 05=0\0, 7= ]I}
i€le i€l®
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Moreover, ds and dI'® denote the surface measure on 92 and I'®, respectively. We
assume further that A= < p(x) < A, for all € Q and some A > 0.

Suppose that g € H*(Q)?, which can be regarded as an external force. As men-
tioned in the introduction, the carrier fluid is described by the Stokes equation. To
that end, denote by n > 0 and py > 0 the fluid viscosity and the fluid density, re-
spectively. Let u® and p® be the fluid velocity and the fluid pressure, respectively.
Also, in a space free of current, the magnetic field strength is given by H® = V°
for some magnetic potential ¢°(x). We are looking for the functions u® € H{(Q)?,
p° € L*(Q)/R, and ¢° € H'(Q)/R satisfying the following boundary value problem:

(2.1a) —div[o(u®,p?) + T(¢°) = pr g in QF,
(2.1b) divu® =0 in Q7%,
(2.1c) D(u®) =0 in QF,

. x g .
(2.1d) —div [,u (;) Vg } =0 in €,
where

Vu+V'iu

D(u®) = —— o(u®,p®) =2nD(u®) — p°I,

2 b
T 1
T(¢°) = p (g) (Vwe A Ve |? I)

are the rate of strain, the Cauchy stress, and the Mazwell stress tensors, respectively.
We briefly explain the physics behind (2.1):

e Equation (2.1a) is the conservation of momentum, and g in the right-hand side
of the equation can be regarded as the gravity force.

e Equation (2.1d) carries out information of no magnetic monopoles (divB = 0)
and the linear constitutive relation (B = pH).

e Equation (2.1c) establishes that Qf is a rigid region, which is equivalent (see
[24, Theorem 3.2]) to u®ly: = U; + R; x (z — C;), where C; is the center of mass
of particle Y, and the constant translational velocity U; and rotational velocity R
are Lagrange multipliers associated to the constraints:

(2.2) / o, ) + T()] my T = 0; / o) + T(e)] my x g dTe = 0.

The constraints above are the balance equations for drag forces and torques on the
particle boundaries, respectively.

Finally, for a given divergence-free k € H'(Q)?, satisfying the compatibility con-
dition f 20 k - npq ds = 0, we consider the following boundary conditions:

(2.3) u® =0 on 092 and (V) - naq = k - ngo on ON.

To write the variational formulation of problem (2.1)—(2.3), we introduce the
following space:

(2.4) U= {v e Hj(Q)*: D(v) =0in QF, diveo=0in Q5}.

It can be shown that the space U¢ is a Hilbert space. Equation (2.1) is derived from
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the variational problem

u® = argmin & (v°), where

v e’
@€ argmin &

£1(uf) =1 D(us):D(us)dm—/ prg-utdz+ [ T(pF): D) da,
Q; Q? Q;
1
E () = 7/ uV® - Ve©de —/ (k- noq) p° de.
2 Q o0

Dimensional analysis. Let L,U, B, 1. be our characteristic scales correspond-

ing to length, velocity, magnetic field, and magnetic permeability, respectively. Let

xF = T oyt = % opto= L ogr o 9L e B and o = £ The dimensionless
T L T Uap T 'r]U’g T U27/j/ T ope? ¥ ‘— BL"

quantities that appear are the (hydrodynamic) Reynolds number R, = # and the

Alfven number S = ﬁ 2@. The nondimensional version of (2.1a) is

(2.5) —div" [o" (u, p™") + T* (¢°*)] = Reg™.

In the Stokes regime, we have R, < 1, so for simplicity, we assume that the right-hand
side of (2.5) vanishes (see also Remark 2.1). We obtain the nondimensional version
of (2.1) (dropping the x for clarity of exposition),

(2.6a) —div[o(u®,p®) + T(¢°)] =0 in Q%,
(2.6b) divu® =0 in Q%,
(2.6¢) D(u®)=0 in Q,
. T e .
(2.6d) —div [u (E) Ve } =0 in €,

together with the balance equations

(2.7) / o (ut,p) + T(oF) g T = 0 = / (ot ) + T ni) x g dT*

and boundary conditions

(2.8a) u® =0 on 0f,
(2.8b) (V) - naq = k - nag on 012,
where

1
(2.9) oW, p°) =2D(u®) —p°I, T(¢):=Su (the ® V£ — 3 s I) .

Remark 2.1. If the Reynolds number is not small, then one has to keep R.g on
the right-hand side of (2.5). During the homogenization process, one would need to
consider at least three cases, corresponding to the weak limits of subsequences of ]19? .

In some cases, one may encounter a strange term coming from nowhere; see [9].
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3. Main results. Before formulating the main theorem, we will discuss regu-
larity, which is essential for the existence of solutions. First of all, the existence of
the magnetic potential ¢° is straightforward via the Lax—Milgram theorem (see sub-
section 3.1). However, to prove the existence of the velocity u®, we need some extra
technical assumptions on the regularity of the permeability p and the domain 2. To
that end, we note that k € H*(Q)? ¢ L%(Q)¢. Now, from [6, Theorem 2] (see also [7,
Theorem 1.2]), we have the following regularity result.

LEMMA 3.1. Let Q be a given domain in R% with a smooth boundary, and suppose
s € (4,6]. Then there exists a small number 6 = §(A,s,Q) > 0 so that, if esssup p —
essinf yu < 6§, one has

(3.1) /\V@E\SdmgC/ |k|” de,
Q Q

where the constant C' > 0 is independent of €, ¢, and k.

Remark 3.2. The above result also holds when €2 is only Lipschitz with a small
Lipschitz constant (see [26] for an estimate). In the most general setting, we only
need to assume p is (0, R)-vanishing and € is (4, R)-Reifenberg flat; for more details,
we refer the reader to [6, 26].

Remark 3.3. Although s = 4 is enough for the existence of u®, as one can see in
subsection 3.2, the higher regularity, namely, s > 4, is needed in order to prove the
corrector result in Lemma 3.14.

In the following, we will use the following functional spaces:
o Cper(Y)—the subspace of C(R?) of Y-periodic functions;
Cper(Y)—the subspace of C*° (R9) of Y-periodic functions;

H] .(Y)—the closure of C32.(Y) in the H'-norm;
D(R, CSe,(Y))—the space infinitely differentiable functions from Q to C'59,(Y),

per per

whose support is a compact set of R? contained in ©; ~
o L2, (Y,C())—the space of measurable functions w: y € Y — w(-,y) € C(Q)

per
such that w is periodic with respect to y and [, (supgeq |w(z, y))? dy < oo;
o LP(Q, X)—where X is a Banach space and 1 < p < oo the space of measurable

1
functions w: @ € Q= w(z) € X such that [[w]| 1, x) = (fo lw(@)[ dz)? < co.

DEFINITION 3.4. A sequence {v¢}.so in L*(Q) is said to two-scale converge to
v=uv(x,y), with v € L*>(Q x Y), and we write v° 2y if and only if

e—0

(3.2) liy | @)y (m g) dm:%/ﬂ/}/v(w,y)w(az,y)dydx

for any test function ¢ = ¥(x,y) with ¢ € D(Q,C2.(Y)); see [2, 8, 22].

per

Note that, by density, if v° —= v, then (3.2) holds for any 1 in L2, (Y,C(Q)) or
L2 (Q,Cper(Y)); see, e.g., [2]. In the following, we will use the subscript -, to denote
the derivative with respect to the second variable y. We now state our main result in

Theorem 3.5, whose proof will rely on several lemmas discussed over the next sections.

THEOREM 3.5 (main theorem). Suppose that p and Q satisfy the assumptions
in section 2 and Lemma 3.1. Then the solution triple (p°,u®,p%) € (H'(Q)/R) x
H ()4 x (L2(Q)/R) of (2.6) two-scale converges to the unique solution (¢°,u°, p°) €
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(HY(Q)/R) x HY(Q)? x L2(Q x Y)/R of the “two-scale homogenized problem”

1
(3.3a) —div [Y / 1(y) (Ve + Vye') dy} =0 in Q,
(3.3b) —divy [u(y) (Ve + Vye')] =0 in Q x Y,
1
(3.3¢) [|Y /Y w(y) (Vapo + Vyapl) dy} ‘ngg =k -nga on 09,
(3.3d) —div {1 / (e°+T17) dy} =01inQ,
Y1 Jy
(3.3¢) divy (6 +T°) =0 in Q x Yy,
(3.3f) divu’ =0 in Q,
(3.3g) divyu' =0 in Q x Y,
(3.3h) D(u°) + Dy(u') =0 in Q x Y,
(3.3i) / / (6 +T°) npdl'y dz =0,
(3.3) / / O+ 7% nr] x nprdly dz =0,

with the constitutive laws
(34) ¢ =2[D’) + Dy(u")] —p°I inQ,

1
(35) T°:=5u ([Vwo + Vyp'] @ [Ve© + Vyp'] - 5 [Ve" + Vo' [ I) in 9,

where u' € LZ(Q Hl (Y)¥R), o' € LQ(Q H! (Y)/R) are given by the two-scale

limits Vu® —— Vu? p+ Vyul and V£ 2 chp + Vyot.

We adopt the following lemma several times throughout the paper.

LEMMA 3.6 (averaging lemma [8]). Let ¢ € LP(£2; Cper(Y)) with 1 < p < 0.
Then ¢(-,-/e) € LP(Q) with [|¢ (- 2)[| 11y < 100, o0ucper) - and

1) (~, g> — D1/|/Y¢(,y) dy weakly in LP(92).

3.1. The magnetostatic equation. Multiplying (2.6d) by 7 € H(Q) and
integrating by parts yields

(3.6) /Q [u (%) V(ps} -Vrde = /BQ (k- mnpq) Tds,

where the boundary integral on 92 vanishes by (2.8b) and the boundary integrals on
the particle interfaces I'{ vanish by the continuity of the flux uV¢® - n; across I'; for
1€ I°.

For ¢ € H'(2)/R, we have that [|¢]| 1)/ = V@l 12(q) is a norm of H'(Q)/R
by the Poincaré-Wirtinger inequality. Using H'(Q)¢ C H(div,) and the fact that
the field k is divergence free, by the Lax—Milgram theorem, we have that, for each
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e > 0, problem (3.6) admits a unique solution ¢° in H'(Q)/R satisfying

BT e msaym < C (Il Lz oy + 14V kll 20y ) = C 1Rl L2y

where C' = C(u) is a constant depending only on .
LEMMA 3.7. Suppose ¢ € H'(Q)/R satisfies (2.6d) and (2.8b). Then there

exist o € H'(Q)/R and o' € L*(Q, H}.(Y)/R) such that ¢ 2a 00 v 2
Vil + V!, with

(3.8a) —div [; / 1(y) (Ve () + Vyo'(z,y)) dy] =0 in Q,

(3.8b) —divy [u(y) (Ve (®) + Vye'(2,9))] =0 in QxY,

(3.8¢) L;,' /Y 1(y) (Ve + Vye!) dy] ‘nga =k -npq  on 0.
Proof.

1. By (3.7), there exist ¢° € HY(Q)/R and ¢! € L*(Q, H! .(Y)/R) such that

per
(up to a subsequence) ° 2. 0 and VF 2 V0 + Vyp! (see [2]). In (3.6), let
() =70) +ert (-, 2), with 7° € D(Q) and 7! € D(2, C2,.(Y)). We obtain

per

/Qu (%) Vet (x) - [VTO(iL') + eV (w, %) + Vg1t (:c, g)} dz =0.

Now, using p(y) (V70(z) + Vy7i(z,y)) € L2..(Y,C(Q)) as a test function in the

per
two-scale convergence of Vy©, as € — 0, we obtain

69 37 [ [ 1) (9@ + Ve (@9) - (7(@) + ¥y (2.) dyda = 0

In (3.9), choosing 7°(x) = 0, 7!(z,y) = 7'(y) and integrating by parts, we obtain
(3.8b). Similarly, choosing 7!(z,y) = 0 leads to (3.8a).
2. Letting e — 0 in (3.6), integrating by parts, and using (3.8a), we obtain

/69 (k(x) - moq) T(x)ds = |Y\ / / (x) + Vyap (x, y)) V7 (x)dy dx

N % o0 2 |:/y K(y) (V('OO(:B) + Vy@l(way)) dy| - naq ds,

which implies (3.8¢).
3. For (r°,71) € (H'(Q)/R) < (2, Hlo (V) /R), let [|(7, 7)|[* = V70|72 +

per

||7' HL2 QHL_(Y)/R) Using this norm, we apply the Lax—Milgram theorem to the

per

varlatlonal problem
(z) + Vyp'(z,y)) - (VI(z) + Vyr'(z,y)) dy de
I NG
_ / (k(@) - nga) (@) ds
a0

to obtain that (3.8) has a unique solution (¢°, p') in (H(Q)/R)xL?*(Q, H},.(Y)/R). O

per
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The linearity of (3.8b) implies that we can separate the slow and the fast variable
in ¢'(z,y) by

0
.11 P ay) = (1) 5 (@),

Substituting back in (3.8b), we deduce that w’ € H],,

(Y)/R, 1 <i<d, satisfies
(3.12) —divy [u(y) (€' + Vyw'(y))] =0in Y.

Plugging (3.11) into (3.8a) and (3.8¢), we obtain
(3.13) —div (MQHV@O) =0in Q2 and (ueHVgoo) ‘nyo = k- nao on 0N,

where the effective magnetic permeability is given by

(3.14) ,@fg |Y|/ ((5@ By )dy |Y|/ (€* + V" (y)) - e’ dy.

LEMMA 3.8. The coefficients of the effective matriz u°® can be written as
1 , )
(3.15) = [ rw) (e V) - (€ + Ve ) dy.

Therefore, p°% is symmetric and positive definite. As a consequence, (3.13) has a
unique solution (up to a constant) @° € W25(Q) C C1(Q2), where s > 4.

Proof.

1. Testing (3.12) against w* € H} /R, one gets [, u(y)(e? +Vyw!)-Vuk dy =0,
where the boundary term vanishes due to periodicity. From the above identity and
(3.14), we obtain (3.15). Now, for ¢ € R, we have

PTG ¢ = GG = m / (" + Vek (1)) - (¢ + Ve ()¢ dy

2
iy (o [ e e vt eay] =i

because of Jensen’s inequality and [ (" + Vw*(y)) dy = Y| ;€.

2. Since  is of class C% and k- n € H'/?(09) because k € H'(Q)?, we have
that (3.13) admits a solution ¢° € H?(Q) by [11, Theorem 5.50]. On the other hand,
V© 2. Vil + V! implies Vip© — ﬁ Ly (Ve? + V0! dy = V¥ in L2(2) (here
we use (3.11)). The latter, together with (3.1), implies that V° converges weakly in
L#(92)? to V. Moreover, since s > 4, we have ° € W25(Q) C C1(Q). 0

LEMMA 3.9 (first-order corrector result for the magnetic potential). Let %, ¢°,
and @' be as in Lemma 3.7. Then

(3.16) hm HVga = Ve'() = Vye! (" E)’ L2(Q)
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Proof.
1. Recall g > A~! > 0. Thus,

2

|7t () = () = Ve (12))

L2()
< /Qﬂ(i) Ve (z) - Vo () dw
(3.17) _ 2/9# (%) (V'@ + Ve (2.2)) - Ve (@) da
= fp () e et (5. 2))- (70 v )

=11+ 1 +1s.

2. From (3.6) and by taking (7°,7%) = (¢°, ¢') in (3.10), we obtain

(3.18)
hm 7, = lim (k-mpq)p®ds = lim/ div(¢°k)dx = lim/ k- -Ve©dx
e—0 90 e—0 Q e—0 Q
=—//k-(V<p°+Vy<p1)dydm=/k-wodmz/ (k- ma0)e” ds
\Yl Q 20
gl // () + Vyo'(z,y)) - (Ve'(z) + Vyo' (z,y)) dy de,

where, in the second-to-last identity, we use the fact that ¢ € C1(Q) (Lemma 3.8).
3. To deal with 7y, we first observe that, by (3.11), we have

0 (2) (76050 (0.2)) 5 () [ 2 (7 ()]

By Lemma 3.8 and (3.12), ¢ € C1(Q) and w? € L?

per
u(y)[g‘; (z)(e" + Vyw'(y))] € L2,.(Y,C(Q)) as a test function when evaluating the
limit of Ig as € — 0:

(Y). Therefore, we can regard

(3.19)
Ty =~ [ ) (7'@)+ Ve @) - (Ve (@) + Vi .0) dy da

e—0

4. Finally, for the integral 75, we use (3.11) to write

()( +W( ) (v vt (+.))
= (%) G @) (¢4 7 (2)) (¢ -7 (7).

Regarding g—f(a})g—f(w) as a test function, by Lemma 3.6, we have
i J

(3.20)
lim Z3 = v / / () + Vyol (x,9)) - (V' (z) + Vyo'(z,y)) dy da.

e—0

To that end, the result in (3.16) follows from (3.17)—(3.20). d
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At this point, we can conclude from (3.16) and Holder’s inequality that

(3.21) lim HT(qf)(-) - T° ( *)‘ Li(@)ixd

e—0 3

where
T(z,y) = Su(y) ( V(@) + Voo (@.9)] © [Ve'(@) + Voo (. 9)]
1 2
- IV@ Vi@ T).

3.2. The coupled conservation of momentum equation. In this section,
we establish the existence and derive a priori estimates for the velocity u® and the
pressure p° in (2.1). We prove the existence of the solution u® of (2.6a) in U° (2.4).
Multiplying (2.6a) by v € U° and integrating by parts, we deduce that

(3.22) 2/QD(UE) : D(v)dx = —/QT(goe) : D(v) de,

where the boundary terms vanish by (2.8) and (2.7) and lo: is the characteristic
function of the domain Q%. Define

a(u,v) = Z/QD(u) : D(v) de,

which is a bilinear form on /. Note that a(-,-) is continuous and coercive on U°.

Assuming that p and 2 satisfy the regularity assumptions in Lemma 3.1, we have
that T'(¢°) € L?(2)4*¢. Now define the linear form ¢ on U° by

L(v) = —/QT(cps) : D(v) de.

Observe that ¢(-) is continuous on €. The Lax—Milgram theorem can be applied to
the variational problem given by

(3.23) Find u® € U® such that a(u®, w) = (w) for all w € U®

to show that it has a unique solution u® € ¢ that satisfies

%
(3.24) [ 1 (ye < C (/Q |k|5dw> :

where the last estimate follows from Lemma 3.1.
We introduce the spaces
Ve = {v e H)(N): D(v) =0in Q},

(3.25) 9
Pe = div(V°) = {q € L§(Q): v € V° such that ¢ = divo},

where LE(Q) = {q€ L*(Q): [,qdx=0}. It can be shown that V° and P° are
Hilbert spaces with respect to the Hi- and L?-inner products. The following lemma
deals with the existence of the pressure.
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LEMMA 3.10. There exists p* € P¢, which arises as a Lagrange multiplier of the
minimization problem given by

(3.26) v = argmin J(w) subject to G(w) =0,

weVe

where J(v) = 1a(v,v)—€(v), and G(v) = divv. The function p® is called the pressure
and satisfies

327) 2 [ D) : D(v)dx — / pPdivode = — | T(¢°) : D(v)dz for v € V°.
Q Q Q

Proof.

1. Since the bilinear form a(-,-) is symmetric, the variational problem (3.23)
is equivalent to the minimization problem (3.26). Thus, the existence of the unique
solution u® of the variational problem (3.23) implies that u® is also the unique solution
of the minimization problem (3.26).

2. Fix uw € V¢, and let w € V°. Then G(u + w) — G(u) = divw. Since
[divwl| p2(q) < [Vwll2gyaxa = |lwll g q)a, the Fréchet derivative of G: V= — P*
at u is given by G'(u): V¢ — P¢, v — divv. By construction, G'(u) is surjective.
Moreover, it is clear that G': V* — L(V*,P?) is continuous, where L(V®,P¢) is the
space of bounded linear mappings from V¢ to P¢. Therefore, G is C*.

3. Since J is the sum of a bounded bilinear function and a bounded linear func-
tion, it is C'. By the Lagrange multiplier theorem [30, section 4.14] and the fact that
P* is a Hilbert space, there exists p* € (P)* = P, where 2 means isomorphic, such
that a(u®,-) — £(-) — p¢div(-) = 0 in V°. That is, (u®, p®) satisfies (3.27). |

Now, in (3.27), we consider v € H&(Q?), which can be extended by zero to Q2 so
that it belongs to V*, and integrate by parts over ch to obtain

€ _ e . - _ £ 7
<Vp "v>H*1(Q?),H&(Q;)d = /ch Vp vdx /{; p divvdz

7
=— T(¢%): D(v)dx — 2 D(u®) : D(v)d=.
Q5 Qs
The above implies that

2

(328) ||Vp€||H_1(Qs) < C </ |ksdﬂ3> s
! Q

where the last inequality follows from (3.24) and (3.1).
The next corollary follows from the fact that ||p5||L3(Q§) < ||Vp€||H_1(Q?) (see [4,

Lemma IV.1.9]) and p® = 0 in Qf, together with (3.28) and (3.24).

COROLLARY 3.11. For each £ > 0, there exists a unique solution (u®,p®) of (2.6)
in H (Q)? x LE(Q) satisfying the a priori estimate

1
2
I g + 197 gy < € ([ 017 0) "

where the constant C' does not depend on €. Moreover, p* =0 on Q5.
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3.3. Proof of Theorem 3.5. Finally, we are ready to prove the main theorem
of this paper, whose key steps are assembled from results presented above.

Proof.

1. The estimates in Corollary 3.11 and Lemma 3.1 imply that there exist u® €
Hi()*, u' € L2(Q, H}, (Y)/R), and p° € L*(Q x Y)/R satisfying (up to a subse-
quence)

(3.29) ut 2 u®, Vu 2 vl + Vyul, p° 2. .

2. Let ¢ € H}(Q), and regard H{ () as a subspace of L?(Q2 x Y). We deduce
from (2.6b), (2.8a), and (3.29) that

0=1lim | ¢¥divu®der = — lim
e—0 Q e—0

1
uE-de:c:——//uo-Vipdydm
0 Y[ JaJy

= - Yu’ - naq dl(x) —|—/ P divul de = /  divu? de.
o0 Q Q

Therefore, we obtain that divu® = 0 in Q. Moreover, 0 = divu® = tr(Vu®) 2.
tr(Vu® + Vyu') = divu® + divy u!, so divyu! =0in Q x Y.

3. Let ¥ € D(Q,C55,(Y)?*4) be supported in Q x Y;. From (2.6¢) and (3.29),
we have

0= ;1_1)% QD(uE) A (m, %) dx = |}1/|/Q/Y [D(u’) + Dy(u')] : ¥(z,y) dy dz,

which implies that D(u®) + Dy (u') =0 on Q x Y.

4. In (3.27), by letting v(z) = v (x, Z), for ¢ € D(Q,C32,(Y)?) supported in
Q x Yy, we get

2/QD(’U,E) : [Dm(w,b) + iDy(w)} de — /ng <div:c Y+ édivy 1/;) dx
—— [ 26 [Datw) + LDy
Multiplying by € and passing to the limit as € — 0 yields
2
7 | | [Dew) + Dy(w)] : Dy a6) dy da
(3.30) “1 Y
— m/ﬂ/ypo divy ¢ dydx = —Elig(l)/QT(gps) : Dy (¢) de.

Observe that

[ @)Dy (v (=) do -5 [ [ 1°@w): D, Gh(a) dy s

QT(gos(as)) 1 Dy (1/1 (:1:, %)) dx — /Q T° (ac, %) : Dy, ('w (m, %)) dx
1

/QTO (:c7 %) : D, (1/1 (m, %)) dx — m/g/yTo(w,y) : Dy (Y(x,y)) dy de

<

+
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Hence, by (3.21) and Lemma 3.6, we deduce lim._,o [, T(¢°(z)) : Dy (¢ (, %)) dz =
ﬁ Jo fy T°(z,y) : Dy (¢(x,y)) dy dz. Therefore, (3.30) becomes

(3.31) // 0 +71°% :Dy()dydz = 0.

In (3.31), we let ¥ (z, y) = ¢(z)0 (y), where ¢ € C°(£2) and 8 € C2°(Yy)?. Then
Joo@) [[y (6 +T°) : Dy(0)dy] dz = 0, so [, (6 +T°) : Dy(6)dy = 0 for all
x € Q). Integrating by parts with respect to y, we obtain

(3.32) divy (6 +T°) =0in Q x Y.

5. Let 8 € C°(Y) such that Dy (@) = 0 in Y,. The same argument as in point
4 for test function v(z) = 0 (2) leads to [, [y (6° +T°) : Dy(6) dydax = 0. Inte-
grating by parts with respect to ¢y and using (3.32), we obtain two balance equations
Jo Jr (6°+T ) npdlyde =0 and [, [; [(69+T°) nr| x npdl'y de = 0.

6. By (3.29), we have that ¢ = 2D(uf) — p°I two-scale converges to o¥ =
2 (Dgz(u®) + Dy(u')) — p°I, and, therefore, it converges to |71\f9 [y oz, y)dy
weakly in L2(2). By (2.6a), we have —dive® = divT(¢°) in Q? Moreover, since
both D(u®) and p*I vanish on Q%, we deduce that o = 0 in Qf. Therefore,

(3.33) —dive® = 1o div T(%) in Q.

Thus, for any ¥ € Hg(Q)?, using integration by parts over Q and (2.7), we obtain

/ o : D) de :/ (=dive®)ypde = — T(¢%) : D(¢) da.
Q Q

@5

Taking £ — 0 and using (3.21) together with Lemma 3.6 yields

}1/|/Q/Yo-o:D('l,b)dydm——Dfll/Q/YTO:D(q/;)dyda:.

Integrating by parts over €2, we obtain
1
/ div <|Y| / (6 +1°) dy) ~apda = 0 for all ¢ € H}(Q)%,

which implies that div % Jy (e +T°)dy) =0 on Q.

7. We now prove that the triple (uf,p®, ¢) two-scale converges to (u?,p?, ©°).
To this end, we only need to show that the limits are unique. The uniqueness of ¢°
and ¢! was proven above in Lemma 3.7. We prove the uniqueness of u® and p°
this step and in the next step, respectively.

Let ¢° € D() and ¢' € D(Q,Cx,(Y)/R). Multiplying (3.33) by ¢(x) =
¢°(x) + ed' (x,2) and integrating by parts over €2, we obtain

/ o : D(¢)dx = f/ (dive®) - ¢pdx = — T(¢%) : D(¢p) dex.
Q Q

5
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Note that D(¢) = D(¢°)(x) + eDg(p') + Dy(¢') (x,%). Taking ¢ — 0, using
o° 22 60 and (3.21), we obtain

D(¢°) + D ((]51)] dydzx
(3.34) M//

|n//ﬂ D(¢°) + Dy(¢")] dy da.

Suppose further that div ¢ = 0, div, #' = 0. Then

2

m// [D(u®) + Dy(u')] : [D(¢°) + Dy(¢')] dyda
G / / T°: [D(¢°) + Dy(¢")] dy dz.

Consider the space

(3.36)

(3.35)

dive® =01in Q,
Hi= ¢ (v°,v") € H(Q)? x L*(Q, HL (V) /R) divy v' =0in Q x Y,
D(°) + Dy(v') =01in Q x Y,

Let ‘H be endowed with the inner product

(3.37) <(v0,v1)7(w07w1)>7{ ::/QV'U : Va? d:c—i—m//v vl Vyw! dyde

for all (v°,v!), (w® w?) in H. Then it can be shown that H is a Hilbert space. By
density, (3.35) holds for all (¢°, ¢') in H. Now let

(@), (' w) = [ [ (D) + D) [D(w') + Dy (w)] dy da

for (v°, v?) and (w®, w ) in H. Clearly, the bilinear form b and the linear map
(u®, ul) — IY\ o fY : [D(u®) + Dy(u')] dy dz are continuous by Hélder’s in-
equality. For (u® u') in H, we write u® = (uf,...,u9), u! = (ul,...,u}) and let

nr = (n1,...,ng4) be the unit normal vector on T'. Then
D) : D dydm—// ( )dydw—// uin; ’ds
/Q /Y (w): D 3% " Oz; oy = Oxy Y

since u! is periodic with respect to y. Therefore, we infer that

b, () = DG ||imxy+||Dy<u1>||12(my>

w2 [ [ D) Dyt dyda) = €t

and hence b is coercive. The Lax—Milgram theorem is then applied to obtain the
existence and uniqueness of (u”, u') € H—the solution of (3.35)—for any (¢°, ¢!) €
H. This implies that the full sequence u®, not just up to a subsequence, two-scale

converges to ul.
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8. We now show that p is unique. Define

K= {(»°v") € H3(2)* x L* (Q, H...(Y)?/R) :

per

D(v°) + Dy(v') =01in Q x Y, },

B e ) € 130 x I (2 12,(1)/R)
3(v° v)Gletq—dlvv,q—dlvyv}
and ((¢% ¢"), (. p")) ;= Jo " (@)p°(x) dz + 7 [, [y ¢' (x. y)p' (2, y) dy dz. Then

it is clear that (IC, (*y)4) and (L, ( >L) are Hilbert spaces. For (v°,v!) € K, define
Jp: K — R and Gy: K — L as follows:

B o) = (o). (0 01) + [ [ 20 (D) + Dy ()] dyd
Gy(v°, vt) == (div vY, divy v 1) )
Since b is symmetric, by a similar argument as in the proof of Lemma 3.10, we have

(u’,u') = argmin J,(v",v!) subject to Gy(v°, v') = 0.

(v9,v1)eK
Clearly, the following holds: <Gg(vo,v1)(w0,w1)> = (div w?, div,, wl), where the
left-hand side is the pairing between the Fréchet derivative G}(v°,v') acting on
(w, w'). This yields G, € CY(K,L). Moreover, G} (u’,u'): K — L is surjective
by construction. By the Lagrange multiplier theorem, there exists (g,q) € L* = L
such that
(3.39) Jy(u®,ut) + (7, q) o Gy(u’, u') = 0,

where o denotes the composition of functions. Testing (3.39) against (¢°, ¢') € K,

IYI// D(¢°) + Dy(¢")] dy dz
m//w D(¢°) + Dy (¢")] dy do

1
"‘7// qdiV¢70ddeB+7// qdiv, ¢ dydx = 0.
|Y| Q Yf ‘Yl (9] Yf

Let ¢° =0 and ¢! € D (2, C,(Y7)?/R), extended by zero into Y. Then

per

%/Q/Y[D(uo)—&-D( ] Dy (¢! dydw+|Y|//T0 D) dy dz

_’_7// qdiqubldydw:O.
Y1 JaJy,

On the other hand, let ¢° = 0 in (3.34). Then, for all ¢' € D (Q,C2.(Y)?/R),

per

1%AAW”% dydﬁ“ﬂm// D, (u)] : D,(¢") dy dz
:n//w ) dy da.
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per
|Tl,‘f9 fo p’I : Dy(¢')dydx, which yields ¢ = p® in Q x Y. Thus, ¢ = p°
Q x Y because both functions are zero inside Y. This implies that the full sequence
p°, not just up to a subsequence, two-scale converges to p°. 0

Therefore, for all ¢' € D (Q,C,(Y5)?/R), we have ﬁfﬂ fo qdivy ¢' dydx =

Remark 3.12. If the coupling parameter S = 0, the proof presented above does,
in particular, justify the formal asymptotic results of [19] for the case of moving rigid
particles in a steady viscous flow.

3.4. Cell problems and corrector results. We recall the cell problem for the
magnetostatic equations presented in (3.12). These equations, together with (3.11),
(3.13), and (3.15), uniquely determine ¢° and ¢!; thus, they also determine T° by
(3.5). Moreover, one can write

A 9p°
O0x; 0z

T (x,y) = (y) <[ei + Vyw'] ® [ef + Vyu']

(3.40) )
Ll V] [+ V] I> .
Equations (3.3d) and (3.3h) suggest that it is possible to write u! as a function
of u® and ¢°. To achieve this, let us introduce, for 1 < i,j < d, the matrix Q%
satisfying the following:
e If i = j. Then Q” =1, and the rest of the entries are zero.
e If i # j, then Q Qﬂ = l , and the rest of the entries are zero.
In short, the above assumptlons 1mply that Q% = % (0im0jn + 0indjm). Now consider
the vector U% defined by Uk] = y;0;,. Observe that D, (Uij ) = QY. Indeed, write
Therefore, (VU”)T = 5jn51‘m6n X €em, SO Dy(U”) = %(5jm5in + 5jn5im)en X em.
Now we write u! as a function of u° and ¢° by setting

00 O¢°

BA)  wl@y) = =D (u(e) X7 () + S5E @) 5 ()6 ()

J
where x¥/, €% € HL,.(Y)?/R. It follows that

(342) D (u’)+Dy(u')=D (uo)ij D, (U7 —x") + ng %Dy (€7).
i J

Now let p®(z,y) = 2D (u O(m))” 4 (y) — S22 (x )gij ()7 (y) + 7°(x), where ¥ €

ox;
L3(Q) and ¢, 77 € L2, (Y)/R. The formula, together with (3.42), yields

0" 8@

a" =2D (), [D, (U ) 1] = 21 4 55255

- (Dy (§7) +rV1).
Let us define the following matrices:
g 1 g
(3.43) NV = —/ Dy (U7 —x")dy and BY = / y(€7) + 1) dy,
Y1)y Y]

where 79 := p(y) [(e' + Vyw') @ (&7 + Vyw?) — 3(e' + Vyw') - (67 + Vyw’)I].
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Then, from (3.3d), (3.3f), and div ([}, ¢”(y)I dy) = 0 = div ([, 7 (y)I dy) , we
conclude that in €,

. s 0V 90
ij 0 0 ©J
(3.44) div 2N D (u )Z.j —mI+SB 2, 0

=0 and divu’=0.

As it follows from (3.44), N := { N}

”}1§i,j,m,n§d is the effective viscosity, and it is a

fourth rank tensor. o
From (3.3e), (3.3h), (3.3i), (3.3g), and (3.3j), the cell problems for x*,&7 €

H! . (Y)?/R and ¢",r" € L*(Y)/R are given by

(3.45)

divy [Dy (U7 = x7) 4+ ¢7I] =0 in Yy,

divy x? =0in Y, D, (U7 —x") =0in Yy,

/ (D, (U — x¥) — ¢T) npdly =0 = / (D, (U — %) — ¢¥T) np x np Ty,
T T

(3.46)
divy [Dy (€7) +rI+77] =0 in Yy,
divy €9 =0in Y, D, (¢7) =0in Yj,

/F[Dy (€7) + 79I + 77 npdly, :oz/F[Dy (€7) +r7I + 7] np x np dTy,.

LeEMMA 3.13. The coefficients of the effective tensor N' can be written as

(3.47) Nidn = 137 /Y D, (U — x) : D,(U™ — x"™) dy.

Therefore, N is symmetric, i.e., Nii, = N7 = Nl = N, Moreover, N sat-
isfies the Legendre—Hadamard condition (or strong ellipticity condition); i.e., there
exist X > 0 such that, for all {,n € R?, one has N, (;Cmninn > )\|C|2 |77|2. As a

consequence, the system (3.44)_with homogeneous Dirichlet boundary condition has a
unique solution (u°,7°) € C*(Q)? x C(Q) (here 7 is defined up to a constant).

Proof. We follow the same line of argument as in Lemma 3.8. Testing the first
equation of (3.45) with x™" and using the incompressibility condition to eliminate
the pressure term, we obtain [, Dy (U — x") : Dy(x™")dy = 0. Since Dy (U") =
QY = Q" = D,(U’), (3.45) implies that x/ = x’*. By (3.43), we have N¥ =
Nt . Taking into account with the first equation of (3.43), we obtain (3.47). This
representation (3.47) and the fact that N¥, = NJi imply that A is symmetric.

Now, for all ¢,n € R?,

- 1 - -
Y(¢,n) = Nyl GiCmnjng = 4 / Dy (U —x")Gnj : Dy(U™" = x™" )it dy
Y
1 i i 2
- 7/ |Dy (U — x")¢in;| ™ dy > 0.
Y|y

Therefore, T|yp(0,1)2(¢,n) = 0 if and only if Dy(U” — x") = 0 a.e. in Y. The
latter implies that x* = U" + constant, which is a contradiction since it would not
be a periodic function. Let A be the minimum of the continuous function T on the
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compact set dB(0,1)2. Then the argument above yields A > 0. By scaling, we have
N is strongly elliptic. For the last claim, since Q is of class C3, g € H(Q)? and ¢° €
W?24(Q), the solution (u’, 7°) of (3.44) belongs to H3(Q)? x H2(2) c C1(Q)? x C(Q)
by [14, Theorem 4.1]. 0

LEMMA 3.14 (first-order corrector result for the velocity). Let uf, %, p°, u,
o0, p°, ul, o' be as in Theorem 3.5. Then

(3.48) im [D@) ) = D) = Dy ()L =
Proof.
1. We write

(3.49) 2| D) - D(u) — Dy(ul)HQLQ(Q) =T — 2T + J5, where

J = 2/QD(UE)(£E) : D(uf)(x) de,
To = /Q [D(uo)(w) + Dy (ul) (w %)} . D(wf)(x) dz,
Ty = /Q[D(uo)(a:)+Dy(u1) (.2)]: [P@") @) + Dy () (2, 2)] de.

2. By letting v = u° in (3.22), we deduce that

(3.50) lim 73 = —lim [ T(¢°): D(u®)de.
e—0 e—=0 Jo
Next, we compute the last limit in (3.50). Fix s > 4 in Lemma 3.1.
e On the one hand, for 1 < i < d, by [31, Corollary 3.5], we have w’ € W1H°(Y),
so Vw; € L>(Y) C L*(Y). Let C = maxi<i<a ||Vwi| -y - Then

(3.51) [V < Cforalll<i<d.

Ls(Y)

Let r = § > 2. Then T° (-, £) is bounded in L"(2) by (3.40) and (3.51). Moreover,
from Lemma 3.1 and the definition of T'(¢%) in (2.9), we have that | T'(¢°)[/;-(q) is

bounded. On the other hand, (3.21) and [5, Theorem 4.9] imply, up to a subsequence,
lim. o (T(¢°(x)) — T° (x, Z)) = 0. Therefore, by [5, Exercise 4.16], we obtain

€

(3.52) lim HT(cpE) e 7)‘ _

e—0 3

L2 (Q)dxd

Note that this convergence is stronger than (3.21). This estimate justifies our choice
of s > 4 in Lemma 3.1.
e By rewriting and taking the limit as e — 0, we have

T(p%) : D(u®)dx
Q

(3.53) :/Q [T(@E)—TO (mg)] ;D(us)dx+/ﬂT0 (az%) . D(uf) da

evo, 1 O, y) : u? ut T
—>|Y/Q/YT( ,y).[D( )+ Dy ( )}dyd )
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Here, the first integral converges to zero due to (3.52) and because D(u®) is bounded,
while in the second integral, we regard T° € L2 (Y, C(Q)) as a test function for

per

D(u®) N D(u®) + Dy(u'). From (3.3d), (3.50), and (3.53), we conclude that

i —l u? ul)] u® u! x
(3.54) ;%jlm/g/y[p( )+ Dy(uh)] : [D() + Dy (ul)] dy de.

3. Substituting (3.42) into J> and J3 and using the definition of two-scale con-
vergence for /5 and Lemma 3.6 for J3, we obtain

t 7o =l
(3.55)
= %/Q/Y [D(u®) + Dy (u')] : [D(u®) + Dy(u')] dy da.

Here, we used that D(u®);; € C(Q) and g,—f; € C(Q), which follow from Lemma 3.13
and Lemma 3.8. Putting (3.49), (3.54), and (3.55) together, we obtain (3.48). d

Finally, in the following corollary, we synthesize the results of Theorem 3.5 and
the cell problems (3.45)—(3.46).

COROLLARY 3.15. Let (¢°,u,p?) € (H'(Q)/R) x H}(Q)4 ><L2( ) be the solution
of (2.6). Then ¢° — ¢° in H(Q)/R, u® — u® in H}(Q)?, p* — 70 in LE(), where
00, u®, and 7° are solutions of

—div (pVe") =0 in €,
(1TVL°) mog =k -maq  on 99,
3.56
(3:50) div [2MD (u), — 04 55928008} in Q,
O0z; 0z
divu’ =0 in £,

with 1t defined by (3.15) and N9, BV, 1 <i,j < d defined in (3.43).

4. Conclusions. The results obtained above in Theorem 3.5 and Corollary 3.15
demonstrate the effective response of a viscous fluid with a locally periodic array of
paramagnetic/diamagnetic particles suspended in it, given by the system of equations
(2.6). The effective equations are described by (3.56) in Corollary 3.15, with effective
coefficients given by (3.15) and (3.43). As evident from the effective system obtained,
these effective quantities depend only on the instantaneous position of the particles,
their geometry, and the magnetic and flow properties of the original suspension de-
coded in (2.6). It is worth mentioning that this paper is not concerned with modeling
issues for the colloids with particles whose magnetic properties are described by the
linear relation between the magnetic flux density B and the magnetic field strength
H suspended in a viscous fluid in the presence of an external magnetic field, which
is an interesting and important topic in itself (see relevant references cited in the
introduction). In the future, however, the authors intend to continue analyzing the
effective behavior of the suspensions described by more complicated systems, includ-
ing the nonlinear magnetic relation, the two-way coupling between the flow and the
magnetic descriptions of the suspension, and perhaps the interaction between the
particles and the Navier—Stokes description of the carrier fluid, whose results will be
reported elsewhere.
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