
Structure Meets Sequences: Predicting Network of Co-evolving
Sequences

Yaojing Wang†, Yuan Yao†, Feng Xu†, Yada Zhu§, Hanghang Tong‡
† State Key Laboratory for Novel Software Technology, Nanjing University, China

§IBM Research, USA
‡ University of Illinois at Urbana-Champaign, USA

wyj@smail.nju.edu.cn,{y.yao,xf}@nju.edu.cn,yzhu@us.ibm.com,htong@illinois.edu

ABSTRACT

Co-evolving sequences are ubiquitous in a variety of applications,
where different sequences are often inherently inter-connected
with each other. We refer to such sequences, together with their
inherent connections modeled as a structured network, as network
of co-evolving sequences (NoCES). Typical NoCES applications in-
clude road traffic monitoring, company revenue prediction, motion
capture, etc. To date, it remains a daunting challenge to accurately
model NoCES due to the coupling between network structure and
sequences. In this paper, we propose to modeling NoCES with the
aim of simultaneously capturing both the dynamics and the inter-
play between network structure and sequences. Specifically, we
propose a joint learning framework to alternatively update the
network representations and sequence representations as the se-
quences evolve over time. A unique feature of our framework lies in
that it can deal with the case when there are co-evolving sequences
on both network nodes and edges. Experimental evaluations on
four real datasets demonstrate that the proposed approach (1) out-
performs the existing competitors in terms of prediction accuracy,
and (2) scales linearly w.r.t. the sequence length and the network
size.

CCS CONCEPTS

• Networks→ Network dynamics; • Computing methodolo-

gies→ Neural networks.
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Figure 1: The quarterly revenues of four well-known com-

panies from 2006 to 2014.

1 INTRODUCTION

Sequential data (e.g., time series) has been widely studied to recog-
nize human actions [1], understand company revenues [28], predict
traffic conditions [31], estimate article citations [46], etc. In these
applications, a common character is that different sequences are of-
ten influenced by or correlated with other sequences. For example,
company revenues are correlated since there exist competition and
cooperation relationships among them; the congestion conditions
in a local area are correlated due to the simple fact that vehicles
have to drive on connected roads. To capture the correlations be-
tween sequences, one natural choice is to model their inherent
connections as a structured network, whose nodes (e.g., sensor
readings) and edges (e.g., road congestions) may have co-evolving
sequences. In this work, we refer to these sequences together with
their underlying network as a network of co-evolving sequences
(NoCES).

Fig. 1 shows an example of NoCES. This example contains the
quarterly revenues from four well-known companies in United
States, i.e., Amazon, eBay, Staples, and Best Buy. The revenues are
from 2006 to 2014. We can see from the figures that there may exist
correlations among some of the revenue sequences. For example,
both Amazon and eBay run into a decreasing of revenue around
2009, while the revenue increases for Staples in the same time
period; in contrast, Best Buy is not significantly affected by the
other companies at that time. The possible reasons include: both
Amazon and eBay focus on the e-commerce whereas Staples offers
solutions with direct sales, and Best Buy mainly sells electronic
products whereas the other three companies offer a variety of other
products.

Despite its widespread existence and applicability, it largely re-
mains a challenging problem to accurately model NoCES due to
the following reasons:
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• (A) The interplay and dynamics between network structure
and sequences. On one hand, the sequences could be influ-
enced by each other via the underlying network; on the other
hand, the node/edge representations could change dynami-
cally as the sequences evolve over time.
• (B) The generality of the model. To the best of our knowledge,
none of the existing work can deal with the case when there
are co-evolving sequences on both nodes and edges in a
network.

NoCES modeling is closely related to two lines of existing work.
The first line is multivariate time series recovering or forecast-
ing [4, 9, 23, 42]. However, these work does not utilize the explicit
network structure in the learning process, and thus becomes sub-
optimal when the network structure is available. The second line is
traffic monitoring [14, 16, 24, 45, 48]. These work takes into account
the localness and diffusion nature of traffic to improve prediction
accuracy. However, such methods are specially designed for traffic
prediction and may become less effective in other NoCES scenarios
when the localness and diffusion nature does not hold. Additionally,
none of the above work considers the case when there are both
node sequences and edge sequences.

In this paper, we propose a joint learning framework, SeeS
(Structure Meets Sequences), to model NoCES. SeeS learns the
network representations and sequence representations in a mutu-
ally beneficial way so as to capture the interplay and dynamics
between them. Specifically, in each time step, SeeS first treats the
current sequence representations as node/edge attributes, and si-
multaneously learns the representations of both nodes and edges
in the network; then, SeeS updates the sequence representations
using the learned node/edge representations; such an alternative
learning process repeats as new sequence data keeps arriving. A
unique advantage of SeeS is that it can handle the case when there
are co-evolving sequences on both nodes and edges. To evaluate the
effectiveness and efficiency of the proposed approach, we conduct
extensive experiments on four real NoCES scenarios from different
domains (e.g., company revenues, body motions, and traffic con-
trols), with two prediction tasks (i.e., missing value recovery and
future value prediction). The results demonstrate that the proposed
approach outperforms existing competitors in terms of prediction
accuracy, and scales linearly w.r.t. the sequence length and network
size.

In summary, the main contributions of this paper include:

• The general learning framework SeeS for NoCES, which
considers the bidirectional and dynamical effect between
sequences and network structure.
• Extensive experimental evaluations, which demonstrate that
SeeS outperforms the existing approaches on various NoCES
scenarios. For example, SeeS achieves up to 51.4% relative
improvement over the best competitor in terms of recovering
the missing values.

The rest of the paper is organized as follows. Section 2 states the
problem definition. Section 3 describes the proposed approach, and
Section 4 presents the experimental results. Section 5 reviews the
related work, and Section 6 concludes.

2 PROBLEM DEFINITION

We use 𝑆 = 𝑆𝑣∪𝑆𝑒 to denote the set of sequences in a NoCES, where
𝑆𝑣 is the set of node sequences and 𝑆𝑒 is the set of edge sequences.
We allow either 𝑆𝑣 or 𝑆𝑒 to be empty. For simplicity, we suppose
each sequence is of length 𝑇 , and use superscript to indicate the
time step unless otherwise stated. We use 𝐺 = (𝑉 , 𝐸) to denote the
underlying network between the sequences, where𝑉 is the node set
(|𝑉 | = 𝑁 ) and 𝐸 is the edge set (|𝐸 | = 𝑀). For this network, we use𝐴
to denote its adjacency matrix, and use 𝑍 𝑡𝑣 ∈ R𝑁×𝑑 and 𝑍 𝑡𝑒 ∈ R𝑀×𝑑
to denote its node representations and edge representations at time
step 𝑡 , respectively. We also use 𝑌 𝑡𝑣 ∈ R𝑁×𝑑 and 𝑌 𝑡𝑒 ∈ R𝑀×𝑑 to
denote the sequence representations on nodes and edges at time step
𝑡 , respectively. For simplicity, we assume all the representations
share the same dimension size 𝑑 . With the above notations, we
formally define NoCES as follows.

Definition 1. Network of Co-evolving Sequences (NoCES)
A network of co-evolving sequences is defined as the triple
⟨𝑆,𝐺, 𝜋⟩, where 𝑆 = 𝑆𝑣 ∪ 𝑆𝑒 is a set containing (𝑁 + 𝑀)
sequences for each node/edge, 𝐺 = (𝑉 , 𝐸) is the underlying
network of these sequences, and 𝜋 is a bijection function that
maps each sequence to a corresponding node/edge in the net-
work.

To evaluate the modeling power of different approaches, we
evaluate two widely-studied tasks, i.e., missing value recovery and
future value prediction. For convenience, we rewrite the sequence
set 𝑆 as a matrix 𝑋 ∈ R(𝑁+𝑀)×𝑇 containing column vectors, i.e.,
𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑇 ] where 𝑥𝑡 is the column vector containing all
the node/edge sequence values at time step 𝑡 . In the following, we
interchangeably use 𝑆 and 𝑋 to indicate the sequences. In practice,
there could be many missing values in the sequences. We use an
indicator matrix𝑈 ∈ R(𝑁+𝑀)×𝑇 to indicate whether the values in𝑋
are observed or missing (i.e.,𝑈𝑖 𝑗 = 1 means that the corresponding
value is missing). Then, the above two tasks are defined as follows.

Problem 1. Missing Value Recovery Problem in NoCES
Given: a network of co-evolving sequences ⟨𝑆,𝐺, 𝜋⟩, and the

indicator matrix𝑈 for missing values;
Find: the missing values in 𝑆 indicated by𝑈 .

Problem 2. Future Value Prediction Problem in NoCES
Given: a network of co-evolving sequences ⟨𝑆,𝐺, 𝜋⟩;
Find: the future sequence values [𝑥𝑇+1, 𝑥𝑇+2, ..., 𝑥𝑇+𝑇𝑝 ] in 𝑇𝑝

future steps.

3 THE PROPOSED APPROACH

3.1 Overview

The overview of the SeeS framework is depicted in Fig. 2, where we
show the process of one time step for a given target node for brevity.
To capture the interplay between network structure and node se-
quences, we alternatively feed network structure and sequences
into the modeling of each other at each time step. To capture the
dynamics, we repeat the alternative modeling over each time step.

More specifically, at time step 𝑡 , we first learn the network rep-
resentations of both nodes and edges based on the network struc-
ture and the current sequence representations (i.e., Structure En-
coder). Then, we update the sequence representations using 𝑥𝑡 (i.e.,
Sequence Encoder), and aggregate the sequences of neighboring
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Figure 2: The learning framework of SeeS at each time step.

nodes/edges for the target node (i.e., Sequence Aggregation). During
the aggregation, we use the learned node/edge attention from net-
work representations to capture the correlations between sequences.
For training purpose, the aggregated sequence representation is
used to predict the future value of the target node at time step 𝑡 + 1.
3.2 Structure Encoder

We next explain SeeS in details by starting with the structure en-
coder. In the following, we ignore the time step in the superscript
when it is clear from the context. Here, the current sequence repre-
sentations are treated as node/edge attributes. Consequently, evolv-
ing sequences indicate changing attributes, and thus we need to
update the node/edge representations accordingly. To simultane-
ously learn the representations of both nodes and edges, we propose
a network embedding method named Dual-GCN, i.e.,

(𝑍 (𝐿)𝑣 , 𝑍
(𝐿)
𝑒 ) = Dual-GCN(𝐴,𝑍 (0)𝑣 , 𝑍

(0)
𝑒 ), (1)

where 𝐴 is the adjacency matrix of the network, 𝑍 (0)𝑣 = 𝑌 𝑡𝑣 and
𝑍
(0)
𝑒 = 𝑌 𝑡𝑒 are the current sequence representations of nodes and

edges, and 𝐿 is the number of layers in Dual-GCN.
Dual-GCN is built upon GCN [19], which is a powerful neural

network architecture for learning network’s node representations.
We extends GCN to further learn edge representations. Before pre-
senting the details of Dual-GCN, we first define several matrices. In
order to exchange information between edges and nodes, we define
two incidence matrices 𝑃 ∈ R𝑁×𝑀 and 𝑄 ∈ R𝑀×𝑁 as follows,

𝑃𝑖𝑘 =

{
1, ∃ 𝑗 ∈ 𝑉 , 𝑘 = (𝑖, 𝑗) ∈ 𝐸
0, 𝑜 .𝑤 .

,

𝑄𝑘 𝑗 =

{
1, ∃𝑖 ∈ 𝑉 , 𝑘 = (𝑖, 𝑗) ∈ 𝐸
0, 𝑜 .𝑤 .

, (2)

where 𝑖, 𝑗 ∈ 𝑉 are nodes, and 𝑘 ∈ 𝐸 is an edge. Note that our
method applies to both directed and undirected networks; when
the network is undirected, we have 𝑃 = 𝑄 ′ where𝑄 ′ stands for the
transpose of 𝑄 . Based on 𝑃 and 𝑄 , we further define an adjacency

matrix Δ ∈ R𝑀×𝑀 for edges as,

Δ𝑘𝑓 =

{
1, ∃𝑖 ∈ 𝑉 ,𝑄𝑘𝑖 = 1, 𝑃𝑖 𝑓 = 1
0, 𝑜 .𝑤 .

, (3)

where 𝑘, 𝑓 ∈ 𝐸 are edges and 𝑖 ∈ 𝑉 is a node.
With the above matrices, we define the following equations for

each Dual-GCN layer to simultaneously learn the representations
of both nodes and edges,

𝑍
(𝑙+1)
𝑣 = 𝐷̂

− 1
2

𝑣 𝐴𝐷̂
− 1

2
𝑣 (𝑍

(𝑙)
𝑣 𝑊

(𝑙)
𝑣,𝑣 + 𝑃𝑍

(𝑙)
𝑒 𝑊

(𝑙)
𝑣,𝑒 ),

𝑍
(𝑙+1)
𝑒 = 𝐷̂

− 1
2

𝑒 Δ̂𝐷̂
− 1

2
𝑒 (𝑍

(𝑙)
𝑒 𝑊

(𝑙)
𝑒,𝑒 +𝑄𝑍

(𝑙)
𝑣 𝑊

(𝑙)
𝑒,𝑣 ), (4)

where𝑊 (𝑙)( ·) ∈ R
𝑑×𝑑 stands for the parameters. For 𝐴 matrix, 𝐴 =

𝐴 + 𝐼 where 𝐼 is the identity matrix, and 𝐷̂𝑣 is the diagonal node
degree matrix of𝐴. The corresponding Δ̂matrix is similarly defined.

In Eq. (4), Dual-GCN considers two types of aggregations, i.e.,
self-aggregation and cross-aggregation to aggregate the neighbor-
hood information. Take the node representations 𝑍 (𝑙+1)𝑣 as an ex-
ample. For self-aggregation, we aggregate the information from the

direct neighbors for each node (as indicated by the 𝐷̂−
1
2

𝑣 𝐴𝐷̂
− 1

2
𝑣 𝑍

(𝑙)
𝑣

term). For cross-aggregation, we aggregate the information from

connected edges for each node (as indicated by the 𝐷̂−
1
2

𝑣 𝐴𝐷̂
− 1

2
𝑣 𝑃𝑍

(𝑙)
𝑒

term). Here, the 𝑃 matrix helps transfer the edge representations
for learning node representations. Note that we use the simplified
GCN [40] in Eq. (4) as it is observed to have little negative impact on
accuracy while runs much faster. Moreover, we can sample a subset
of entries in the 𝑃,𝑄,Δ matrices to save time especially when these
matrices are dense.

Attention Computation. With the learned node/edge representa-
tions, we calculate the attention between these sequences as,

𝜂𝑖 𝑗 = 𝑅𝑒𝐿𝑈 ( [𝑍 (𝐿)
𝑖

, 𝑍
(𝐿)
𝑗
]𝑊𝑎),

𝛼𝑖 𝑗 = softmax(𝜂𝑖 𝑗 ) =
exp (𝜂𝑖 𝑗 )∑

𝑘∈𝐶𝑖
exp (𝜂𝑖𝑘 )

, (5)

where 𝑊𝑎 ∈ R2𝑑×1 is the parameter, 𝑅𝑒𝐿𝑈 (·) is the activation
function, and 𝐶𝑖 indicates the set of 𝑖’s neighbors. 𝐶𝑖 contains both
nodes and edges that directly connect to node 𝑖 , and we can also
randomly sample a subset of 𝐶𝑖 for efficiency concerns.

3.3 Sequence Encoder

For sequence encoder, we separately update each sequence represen-
tation based on the newly arrived sequence data. A straightforward
way is to apply a recurrent neural network structure for both node
sequences and edge sequences as

𝐻𝑡+1 = 𝑡𝑎𝑛ℎ(𝑌 𝑡𝑊ℎ + 𝑥𝑡+1𝑊𝑥 ), (6)

where 𝐻𝑡+1 stands for the updated sequence representations, 𝑌 𝑡
is the current sequence representations, 𝑥𝑡 contains the sequence
data newly arrived at time 𝑡 , and𝑊ℎ and𝑊𝑥 are parameters. How-
ever, such an RNN structure easily forgets long-term dependencies,
making it less effective in terms of memorizing the tendency of the
sequences. Therefore, we adopt the self-attention mechanism [38]
to encode the sequences when the sequence tendency matters.

More specifically, we first expand the dimension of the newly
arrived data, compute the self-attention, and obtain the updated



sequence representations as follows,

𝐸𝑡+1 = 𝑥𝑡𝑊𝑠 + 𝑏𝑠 ,
𝑄, 𝐾, 𝑉 = 𝑌 𝑡𝑊𝑞, 𝑌

𝑡𝑊𝑘 , 𝐸
𝑡+1𝑊𝑣,

𝐻𝑡+1 = softmax(𝑄𝐾 ′)𝑉 , (7)

where 𝑊𝑠 ∈ R1×𝑑 , 𝑏𝑠 ∈ R(𝑁+𝑀)×𝑑 , 𝑊𝑞,𝑊𝑘 ,𝑊𝑣 ∈ R𝑑×𝑑 are pa-
rameters, and 𝐻𝑡+1 ∈ R(𝑁+𝑀)×𝑑 contains the updated sequence
representations. In practice, we further feed 𝐻𝑡+1 into two fully
connected layers following the Transformer structure.

3.4 Sequence Aggregation

To feed network into sequences, we next aggregate the sequence
representations based on the learned network representations. In
the following, we take the updating of node 𝑖 as an example, and
the updating of edges can be analogously obtained.

Using the correlations/attention 𝛼𝑖 (computed as Eq. (5)) be-
tween node 𝑖 and its related nodes/edges, we first aggregate the
neighboring sequence representations for node 𝑖 as,

𝐹 𝑡+1𝑣,𝑖 = 𝛼𝑖 [𝐻𝑡+1
𝑣 ;𝐻𝑡+1

𝑒 ], (8)

where 𝐻𝑡+1
𝑣 and 𝐻𝑡+1

𝑒 are the output from the sequence encoder for
nodes and edges, respectively, and 𝐹 𝑡+1

𝑣,𝑖
∈ R1×𝑑 is the aggregated

results from 𝑖’s neighbors. Here, 𝐹 𝑡+1
𝑣,𝑖

stands for the overall influence
of 𝑖’s neighboring nodes and edges.

Then, we combine 𝐹 𝑡+1
𝑣,𝑖

and the sequence representation 𝐻𝑡+1
𝑣,𝑖

for node 𝑖 to obtain the aggregated sequence representation,

𝑌 𝑡+1𝑣,𝑖 = [𝐹 𝑡+1𝑣,𝑖 , 𝐻
𝑡+1
𝑣,𝑖 ]𝑊𝑦 + 𝑏𝑦, (9)

where𝑊𝑦 ∈ R2𝑑×𝑑 and 𝑏𝑦 ∈ R1×𝑑 are parameters. The aggregated
sequence representations 𝑌 𝑡+1 will be fed into the next time step,
and serve to predict the next sequence value.

3.5 Training

Next, we describe how to train SeeS, which is non-trivial due to the
bidirectional modeling of network structure and sequences. We still
take time step 𝑡 as an example and present the training objective
function as follows,

argmin 𝛿 (𝑥𝑡+1, 𝑥𝑡+1),
𝑠 .𝑡 . 𝑥𝑡+1𝑣 = 𝑌 𝑡+1𝑣 ·𝑊𝑝,𝑣 + 𝑏𝑝,𝑣,

𝑥𝑡+1𝑒 = 𝑌 𝑡+1𝑒 ·𝑊𝑝,𝑒 + 𝑏𝑝,𝑒 ,
(𝑌 𝑡+1𝑣 , 𝑌 𝑡+1𝑒 ) = Seq-Updater(𝑥𝑡 , 𝑌 𝑡𝑣 , 𝑌 𝑡𝑒 , 𝛼),
𝛼 = Attention(𝑍 𝑡𝑣 , 𝑍 𝑡𝑒 ),
(𝑍 𝑡𝑣 , 𝑍 𝑡𝑒 ) = Dual-GCN(𝐴,𝑌 𝑡𝑣 , 𝑌 𝑡𝑒 ),

(10)

where 𝛿 (·) is the loss function decided by the specific prediction
tasks. In this work, we use mean absolute error for 𝛿 (·) as our
sequence values are numerical. Attention stands for the attention
computation in Eq. (5), and Seq-Updater stands for the sequence
encoder and the sequence aggregation.𝑊( ·) and 𝑏 ( ·) are the param-
eters.

We can either train the above loss on time 𝑡 or over each time
step before 𝑡 + 1 when predicting the values 𝑥𝑡+1. However, in
practice, it would be less effective if we train only on time 𝑡 , and
time-consuming if we train over all the time steps especially when

Algorithm 1 The SeeS Algorithm.
Input: The adjacency matrix 𝐴 of the network, the sequences 𝑋 ,

the window size 𝑐 , the Dual-GCN layer number 𝐿
Output: The sequence representations 𝑌𝑇𝑣 and 𝑌𝑇𝑒
1: Initialize 𝑌 0

𝑣 and 𝑌 0
𝑒 ;

2: Compute 𝑃,𝑄,Δ according to Eq. (2) - (3);
3: for 𝑖𝑡𝑒𝑟 = 1 : 𝑟 do
4: for 𝑡 = 1 : 𝑇 − 1 do
5: for 𝜏 = 𝑡 − 𝑐 : 𝑡 do
6: 𝑍

(0)
𝑣 ← 𝑌𝜏𝑣 , 𝑍

(0)
𝑒 ← 𝑌𝜏𝑒 ;

7: (𝑍 (𝐿)𝑣 , 𝑍
(𝐿)
𝑒 ) = Dual-GCN(𝐴,𝑍 (0)𝑣 , 𝑍

(0)
𝑒 );

8: Calculate 𝛼 by Eq. (5);
9: Calculate 𝐻𝜏+1 by Eq. (7);
10: 𝐹𝜏+1 = 𝛼 [𝐻𝜏+1

𝑣 ;𝐻𝜏+1
𝑒 ];

11: Update 𝑌𝜏+1 by Eq. (9);
12: end for

13: 𝑥𝑡+1𝑣 = 𝑌 𝑡+1𝑣 ·𝑊𝑝,𝑣 + 𝑏𝑝,𝑣 ;
14: 𝑥𝑡+1𝑒 = 𝑌 𝑡+1𝑒 ·𝑊𝑝,𝑒 + 𝑏𝑝,𝑒 ;
15: Update model parameters by Eq. (10);
16: end for

17: if The parameters converge then
18: Break;
19: end if

20: end for

21: return 𝑌𝑇𝑣 and 𝑌𝑇𝑒 as well as other model parameters;

the sequence is long. As a result, we add a sliding-window of size 𝑐 ,
and train only 𝑐 steps before 𝑡 to make the predictions.

3.6 Algorithm and Analysis

Alg. 1 summarizes the proposed SeeS algorithm. After initializations
(Lines 1-2), Line 3 starts the iterations where 𝑟 is the maximum
iteration number. Line 4 iterates over each time step, and Line
5 iterates over the time window with size 𝑐 . Lines 6-8 learn the
node/edge representations and compute the attention, and Lines 9-
11 update and aggregate the sequence representations. Lines 13-15
predict the next sequence values, and update the model parameters
accordingly.

The time complexity of the proposed SeeS is 𝑂 ((𝑁 +𝑀)𝑑3𝑟𝑇𝑐),
where 𝑁 is the node number, 𝑀 is the edge number, 𝑑 is the rep-
resentation dimension, 𝑟 is a maximum iteration number, 𝑇 is the
sequence length, and 𝑐 is the training window size. By assuming 𝑟 ,
𝑐 , and 𝑑 to be small constants, the time complexity can be rewritten
as𝑂 ((𝑁 +𝑀)𝑇 ), meaning that SeeS scales linear w.r.t. the sequence
length 𝑇 and the network size𝑀 + 𝑁 .

4 EXPERIMENTAL EVALUATIONS

4.1 Datasets and Scenarios

The proposed SeeS can be used in a variety of NoCES applications.
In this work, we evaluate it in the following four datasets/scenarios.
Table 1 summarizes the statistics of the datasets. The sequence
length varies in the Motion dataset as there are different body
motions.1

1The code of the proposed algorithms is publicly available at: https://github.com/
SoftWiser-group/SeeS



Company Quarterly Revenue (Revenue). This dataset records the
quarterly revenues of 170 companies from 2006 to 2017. The net-
work is defined by the co-search relationships, which is built from
SEC2 fillings. That is, we extract the co-search pairs from the web
logs of searches on the SEC’s EDGAR website following Lee et
al. [21]. For example, if a user searches Intel and Microsoft in the
same session, we consider these two companies having a co-search
relationship. In summary, we found 1379 co-search relationships
among the 170 companies. Then, the adjacency matrix of the co-
search relationships is defined as follows,

𝐴𝑖 𝑗 =
𝐶𝑜𝑆𝑒𝑎𝑟𝑐ℎ(𝑖, 𝑗)∑

𝑖′
∑

𝑗 ′ 𝐶𝑜𝑆𝑒𝑎𝑟𝑐ℎ(𝑖 ′, 𝑗 ′)
,

where 𝐶𝑜𝑆𝑒𝑎𝑟𝑐ℎ(𝑖, 𝑗) denotes the number of co-searches between
companies 𝑖 and 𝑗 in the web logs.

Body Motion Capture (Motion). This dataset contains a set of
sensor reading sequences recorded from several body motions. To
capture the body motions, a skeleton hierarchy of sensors is defined
to describe the body. The skeleton defines a ‘root’ segment at first,
and each segment is defined under the ‘root’ segment as a tree.
For example, ‘root’ is the father of ‘hips’, and ‘hips’ is the father
of ‘hips1’, ‘hips2’, and ‘hips3’. Then the adjacency matrix of this
dataset is defined by the skeleton hierarchy as follows,

𝐴𝑖 𝑗 =

{
1
𝑙𝑖 𝑗
, 𝐹𝑎𝑡ℎ𝑒𝑟 ( 𝑗) = 𝑖,

0, 𝑜 .𝑤 .
,

where 𝑙𝑖 𝑗 is the distance between the father segment 𝑖 and son
segment 𝑗 in three-dimensional Euclidean space, and 𝐹𝑎𝑡ℎ𝑒𝑟 ( 𝑗)
denotes the father of 𝑗 in the skeleton hierarchy. Each segment
records three-dimensional tensors (i.e., [𝑥,𝑦, 𝑧]) as sequences over
time.

Traffic Speed (Traffic). This dataset records the real-time traffic
speed on the roads in five boroughs of the New York City. Each road
has some sensors recording the average speed of passing vehicles
in every five minutes. We construct the network relying on the
map.3 That is, each road is marked as an edge on the map by its
sensors’ coordinates. Then, we add nodes at the two terminals of
each road. Note that the constructed network is a directed graph,
according to the vehicles’ driving directions. The first two datasets
contain only node sequences, and this dataset contains only edge
sequences.

City Bike Trip (Bike). This dataset records the start and end sta-
tions of each city bike ride in the New York City. We extract the data
of 204 bike stations in May 2019, and treat each day as a time step.
For the network, we use bike stations as nodes, and the bike rides
between them as edges. This network has both node sequences
and edge sequences: node sequences are the number of incoming
bikes minus the number of outgoing bikes in each day, and edge
sequences are the normalized number of trips between the stations
in each day.

4.2 Experimental Setup

Comparison Methods. We compare our proposed approach SeeS
with the following methods:

2U.S. Securities and Exchange Commission
3http://nyctmc.org/

Table 1: Statistics of the datasets.

Dataset sequence length # nodes # edges

Revenue 52 170 1379
Motion 299−1472 29 28
Traffic 3000 113 83
Bike 31 204 25016

• m-LSTM, m-RNN. These two competitors treat the sequences
in NoCES as a multivariate sequence and model them with
LSTM and RNN, respectively.
• PMF [30]. PMF is a matrix factorization algorithm for rec-
ommender systems. We apply it on the 𝑋 matrix to recover
missing values.
• SoRec [26]. SoRec is a social collaborative filtering algorithm
for recommender systems. Compared to PMF, it further mod-
els the network structure.
• DynaMMo [23]. DynaMMo is proposed to recover the miss-
ing values in co-evolving sequences. It applies Kalman filter
and smoother to adjust the recovered values.
• DCMF [2]. This is a dynamic contextual matrix factorization
algorithm for a network of co-evolving sequences. Compared
to DynaMMo, it further considers network structure.
• MTGNN [42]. MTGNN learns the network structure for mul-
tivariate time series forecasting when the explicit network
structure is unavailable.
• StemGNN [4]. StemGNN is also a multivariate time series
forecasting method that captures the interplay between se-
quences and temporal dependencies in the spectral domain.
• DCRNN [24]. DCRNN encodes the diffusion process into a
convolutional recurrent neural network. It is designed to
predict traffic transportation flows.
• Graph-WaveNet [43]. Graph-WaveNet is also designed for
traffic prediction. It learns an adaptive adjacency matrix and
encodes the diffusion process by a convolution layer.

Evaluation Protocol. We formulate two prediction tasks. The first
one is missing value recovery. In the experiments, we randomly
hide some values in the sequences as missing values and use the
rest to recover. For SeeS, m-LSTM, and m-RNN, we use the existing
sequences before 𝑡 to recover the missing values at time step 𝑡 . For
the other methods, we use all the observed values. In this task, we
compare SeeS with all the competitors listed above.

The second task is future value prediction. For this task, we hide
all the sequence values after a specific time step 𝑡 and then predict
the future sequences in 𝑇𝑝 steps. Intuitively, this task is more dif-
ficult as the errors may accumulate over time. In the competitors,
PMF, SoRec, DynaMMo, and DCMF are not designed for predict-
ing the future values. For DCMF, since it is built upon the linear
dynamic system, we adapt it for this task. Therefore, we compare
SeeS with m-RNN, m-LSTM, DCMF, MTGNN, StemGNN, DCRNN
and Graph-WaveNet in this task. For evaluation metrics of both
tasks, we adopt the root mean squared error (RMSE) between the
predicted values and the real values.
Parameters and Implementations. For the proposed SeeS, we
search the parameters 𝑑 and 𝑐 using cross validation. We search
𝑑 within [8, 16, 32, 64] and search 𝑐 within [4 − 8]. The resulting



Table 2: Effectiveness results of missing value recovery. SeeS generally outperforms the competitors in all the datasets. Graph-

WaveNet is better than SeeS on the Traffic data since it is specially designed for traffic prediction.

Revenue Motion Traffic Bike

Wave Hello Jump Boxing Football Throw Mawashi Geri Edge Seq. Node Seq.

T 52 299 547 773 1091 1472 3000 31 31

m-RNN 0.6563 5.56 11.5 5.44 13.2 13.7 19.68 2.68 7.919
m-LSTM 0.6347 8.62 12.7 4.73 11.1 13.6 18.01 2.68 8.027
PMF 4.119 12.2 18.1 17.4 31.0 26.2 42.03 1.76 8.810
SoRec 6.840 16.7 48.3 16.8 36.6 34.8 15.31 8.77 8.485
DynaMMo 0.2639 19.7 26.9 21.9 40.9 33.3 22.62 0.609 7.447
DCMF 0.2613 6.49 13.1 12.1 31.8 22.1 17.96 − 8.306
MTGNN 0.2219 3.15 4.92 15.2 4.60 9.78 7.290 − 8.564
StemGNN 0.3127 13.6 10.1 22.9 3.03 6.93 11.04 − 8.067
DCRNN 0.3373 1.49 2.18 8.15 0.740 1.10 19.81 − 7.653
Graph-WaveNet 0.2345 0.598 1.12 6.32 0.741 0.718 3.286 − 7.946
SeeS 0.1337 0.582 0.796 3.07 0.668 0.526 6.656 0.601 7.249

parameters are as follows. For the revenue data, we set 𝑑 = 8, 𝑐 = 5;
for the motion data, we set 𝑑 = 16, 𝑐 = 5 for all the motions for
simplicity; for the traffic data, we set 𝑑 = 16, 𝑐 = 5; for the bike
data, we set 𝑑 = 16, 𝑐 = 5. The number of Transformer layers in
SeeS is set to 2; we also use multi-head attention and set the head
number to 2. Following GCN, we set 𝐿 = 2 in our Dual-GCN. For the
maximum iteration number in Alg. 1, we set 𝑟 = 100. For the bike
data, since its network is dense, we constrain the context size 𝐶𝑖 in
the Δmatrix to be 10. For the compared methods DynaMMo, DCMF,
MTGNN, StemGNN, DCRNN, and Graph-WaveNet, we directly use
the code provided by the authors and use their default parameter
settings. For SoRec and PMF, we use the publicly available library
(i.e., LibRec), and follow the default setting given by the library.
For m-LSTM and m-RNN, we implement them ourselves using the
same parameter setting with SeeS including the window size 𝑐 and
representation size 𝑑 . We also use early stop to prevent the models
from over-fitting.

The experiments on Revenue, Motion, and Traffic data run on
the same machine with 64G memory, 6 CPU cores (at 3.4GHz using
12 threads), and an Nvidia GeForce RTX 1080 graphics card. For
the Bike dataset, we run the experiments on a server with 256G
memory, 48 CPU cores (at 2.3GHz) since DynaMMo and DCMF
easily run out of memory on this dataset using the 64G memory
machine.
4.3 Effectiveness Results

(A) Missing Value Recovery. We first present the effectiveness results
in the missing value recovery task. For all the datasets, we randomly
hide 10% of the values in sequences as test set. For the Motion data,
we select five body motions including waving hello, jump, boxing,
catch and football throw, and mawashi geri in karate. Existing
competitors consider only node sequences. For the Traffic data and
Bike data where the sequences exist on edges, we apply DCMF on
the edge adjacencymatrixΔ. For the Bike data, we run the compared
methods separately on node sequences and edge sequences. The
RMSE results of recovering the hidden values in all the datasets are
shown in Table 2, where ‘−’ indicates the corresponding method is
computationally prohibitive (i.e., cannot return results within 48
hours or run out of memory) on the corresponding dataset.

We can observe from the table that the proposed SeeS generally
outperforms all the competitors in all the datasets. For example, on
the Revenue data, SeeS achieves 39.7% improvement over its best
competitor (i.e., MTGNN). PMF and SoRec perform relatively poor
in this dataset, indicating the importance of temporal smoothness
for revenue prediction. On the five body motions, Graph-WaveNet
performs relatively well among the competitors, and SeeS improves
it by 2.6%, 28.9%, 51.4%, 9.7%, and 26.7% for the five body motions,
respectively. On the Traffic data, Graph-WaveNet achieves the best
result among all the methods. This is due to the fact that Graph-
WaveNet is specially designed for traffic prediction. However, in
other NoCES scenarios, SeeS is much better than Graph-WaveNet.
Except for Graph-WaveNet, SeeS still performs best among the
other compared methods. On the Bike data, the relative improve-
ment over the best competitor (i.e., DynaMMo) is 1.3% and 2.7%
for edge sequences and node sequences, respectively. SeeS’s im-
provement in this dataset is not as significant as that in the other
datasets. The possible reason is that the network is very dense and
we randomly sample only 10 neighbors for each node/edge. In other
words, we trade effectiveness for efficiency (note that DCMF, MT-
GNN, StemGNN, DCRNN, and Graph-WaveNet are computationally
prohibitive on the edge sequences).

Overall, for the competitors, m-LSTM and m-RNN do not con-
sider the network structure; PMF and SoRec do not consider the
temporal order of sequences. MTGNN and StemGNN learn the net-
work structure from sequences, and perform less effective in NoCES
when the underlying network is available. Although DynaMMo,
DCMF, DCRNN, and Graph-WaveNet consider both network struc-
ture and sequences, they either treat the network in a static way
or are specially designed for traffic prediction only. Therefore, the
above result indicates the effectiveness of the bidirectional and
dynamic modeling between network structure and sequences for
the missing value recovery task in NoCES.

(B) Future Value Prediction. Next, we present the results of the
future value prediction task. As mentioned in Section 2, we need to
predict 𝑇𝑝 future steps based on the current sequences. We cut the
NoCES data into small time slices with size 𝑡 +𝑇𝑝 . The goal is to
predict the sequence values from 𝑡 + 1 to 𝑡 +𝑇𝑝 in each slice. We use



Table 3: Effectiveness results of future value prediction. SeeS generally outperforms all the competitors. Graph-WaveNet is

better than SeeS on the Traffic data since it is specially designed for traffic prediction.

Revenue Traffic

𝑇𝑝 1 2 3 4 5 Average 1 2 3 4 5 Average

m-RNN 0.557 0.338 0.390 0.386 0.667 0.468 22.15 21.84 22.74 24.11 25.45 23.25
m-LSTM 0.416 0.252 0.267 0.321 0.857 0.423 19.94 18.88 20.37 22.75 24.43 21.27
DCMF 0.167 0.211 0.241 0.234 0.479 0.266 17.04 16.78 19.22 18.83 21.56 18.68
MTGNN 0.221 0.415 0.380 0.371 0.368 0.335 7.71 7.78 14.25 14.25 14.24 11.64
StemGNN 0.386 0.393 0.398 0.405 0.389 0.394 12.8 15.1 17.5 18.9 20.5 17.0
DCRNN 0.337 0.324 0.341 0.364 0.449 0.363 19.81 19.83 19.93 20.01 20.07 19.93
Graph-WaveNet 0.234 0.273 0.318 0.346 0.342 0.302 3.28 4.23 4.81 5.29 5.66 4.65

SeeS 0.137 0.164 0.187 0.200 0.195 0.176 6.61 7.56 8.23 8.73 9.05 8.04

Jump Motion Mawashi Geri Motion

𝑇𝑝 1 2 3 4 5 Average 1 2 3 4 5 Average

m-RNN 9.91 10.31 12.31 11.27 16.78 12.12 14.91 16.45 16.68 15.46 17.93 16.28
m-LSTM 12.27 13.56 14.21 14.29 15.95 14.06 16.81 19.32 21.96 26.07 22.87 21.41
DCMF 10.78 10.44 11.20 12.67 15.89 12.19 11.90 16.59 17.96 24.34 24.13 18.98
MTGNN 5.47 23.62 23.67 23.73 23.78 20.05 9.59 49.33 36.65 34.91 41.25 34.35
StemGNN 9.58 9.61 9.78 9.91 10.3 9.83 5.29 5.40 5.60 6.24 6.45 5.79
DCRNN 2.18 3.09 4.10 5.18 6.26 4.16 1.10 1.44 1.86 2.31 2.77 1.90
Graph-WaveNet 1.12 1.01 1.40 1.90 2.51 1.59 0.71 0.67 1.02 1.39 1.76 1.11
SeeS 0.83 0.96 1.12 1.31 1.55 1.15 0.66 0.80 0.97 1.18 1.40 1.00

Figure 3: The prediction results of jump motion.

(a) Representation dimension 𝑑 . (b) Training window size 𝑐 .

Figure 4: Parameter sensitivity results. SeeS is robust w.r.t.

the two parameters in a relatively wide range.

the first 70% time slices for training, the middle 10% for validating
and the last 20% for testing. In this experiment, we set 𝑇𝑝 to 5 and
compute the RMSE results on the Revenue data, Traffic data, and
two Motion data as shown in Table 3. Similar results are observed
on the other datasets and thus are omitted for brevity.

We can first observe from Table 3 that, SeeS generally outper-
forms all the competitors in terms of accurately predicting the
future sequence values. For example, averaging over the five future
time steps, SeeS improves its best competitor (DCMF) by 33.9% on

the Revenue data; on Jump Motion and Mawashi Geri Motion, the
relative improvements over the best competitor (Graph-WaveNet)
are 27.6% and 9.9%, respectively. On the traffic data, similar to the
results in Table 2, Graph-WaveNet performs the best among all the
methods as it is specially designed for traffic prediction. However,
SeeS achieves 30.9% improvement over the second best competi-
tor (MTGNN). Second, as mentioned above, the prediction errors
may accumulate over time. We do observe such trends for all the
methods. For example, the RMSE sharply increases from 𝑇𝑝 = 2 for
MTGNN on the motion data, which is probably because MTGNN
learns the network structure in each step and leads to severe error
accumulations. However, we also observe that the improvements of
SeeS become larger when 𝑇𝑝 becomes larger. For example, on the
two motions, the relative improvements over the best competitors
are 25.8%, and 7.0% when𝑇𝑝 = 1, and become 38.2% and 20.5% when
𝑇𝑝 = 5.

For better visualization of the results, we also present the pre-
diction results of one specific body skeleton in the jump motion
in Fig. 3, where the x-axis is the frame number of the last 20% test
set, and y-axis is one of the corresponding sensor readings. Each
frame is predicted with the previous 𝑡 frames as input. Fig. 3 shows
that the predicted frames suffer little loss compared to the original
frames.

(C) Parameter Sensitivity. Next, we evaluate the sensitivity of the
two parameters in SeeS, i.e., the dimension 𝑑 of network/sequence
representations and the training window size 𝑐 . We take the Rev-
enue dataset as an example, and the results are shown in Fig. 4. We
also plot the results of two competitors (m-LSTM and m-RNN) in
the figure for comparison. As we can see, for both parameters, there
is a relatively wide range where SeeS performs relatively stable and
significantly outperforms the competitors.



(a) Scalability against network
size 𝑁 +𝑀 on Revenue data.

(b) Scalability against network
size 𝑁 +𝑀 on Traffic data.

(c) Scalability against network
size 𝑁 +𝑀 on Bike data.

(d) Scalability against sequence
length𝑇 on Revenue data.

(e) Scalability against training
window size 𝑐 on Revenue data.

Figure 5: Scalability results. SeeS scales linearly w.r.t. the sequence length 𝑇 , the window size 𝑐, and the network size 𝑁 +𝑀 .

4.4 Efficiency Results

Finally, we evaluate the scalability of the proposed SeeS. First, we
present the wall-clock time of SeeS against the network size 𝑁 +𝑀 .
Here, we randomly select subsets of the network, and apply SeeS on
the resulting datasets. We fix the other parameters (e.g., sequence
length and training window size) in this experiment, and the results
on the Revenue, Traffic, and Bike datasets are shown in Fig. 5(a),
Fig. 5(b), and Fig. 5(c), respectively. As we can see, the proposed SeeS
scales linearly w.r.t. the network size. Next, we test the scalability
against the sequence length 𝑇 and the window size 𝑐 . We report
the results in Fig. 5(d) and Fig. 5(e), the proposed SeeS also scales
linearly w.r.t. both parameters.

5 RELATEDWORK

In this section, we briefly review the related work.
Time Series Modeling. The first branch of related work is from

time series modeling [17]. Typical examples include time series rep-
resentation [35], classification [12], group detection [6], outlier
detection [50], missing value recovery [41], etc. For example, Contr-
eras et al. [8] predict the next-day electricity prices by ARIMA. Raza
et al. [34] propose a derivative-based linear method to predict the
trend of data measured by sensors. Kim et al. [18] propose a decision
tree framework for spatio-temporal sequence prediction.However,
these methods are suboptimal for modeling NoCES as they ignore
the network structure/correlations between multiple sequences.

Multivariate Time Series Modeling. To better model the cor-
relations between sequences, multivariate time series recovering
and forecasting have been widely studied [4, 9, 23, 29, 42]. For
example, Li et al. [23] implicitly consider the network structure
of multiple sequences by using their correlations, and propose to
recover the missing values based on the correlations. Matsubara et
al. [29] also capture the implicit connections between sequences,
and propose to model the non-linear evolution of sequences. Wu et
al. [42] propose to learn the correlations between sequences and
make use of the learned correlations in the sequence prediction.
Different from these proposals, we consider the NoCES problem
setting where there exists explicit network structure underlying
the sequences.

Traffic Prediction. Another branch of related work is from
traffic prediction [14, 16, 24, 25, 43, 45, 48]. Existing methods are
mainly built upon the localness and diffusion nature of traffic. For
example, Li et al. [24] model the diffusion phenomenon of traffic
flows on the network and incorporate it into sequence modeling.
Yao et al. [45] use a local CNN to handle spatial dependencies
between traffic flows. Since they are specially designed for traffic
data, these methods could be less effective for other NoCES domains
when the localness and diffusion nature does not hold.

NoCES Modeling. We are not the first to study the general
NoCES problem. In literature, Cai et al. explicitly incorporate the
network structure to smooth the sequences [2], and further extend
their model to handle high-order time series data [3]. Different
from the above work which feeds network features into sequences,
we further model the bidirectional and dynamical effect between
network structure and sequences.

Static Network Embedding. Our work is also related to net-
work embedding. Network embedding methods typically take the
network structure as input and output the representations for
each node. In literature, several researchers propose to apply the
skip-gram model to learn the node representations [13, 32, 36].
Some others treat the problem as a matrix factorization problem
and propose to factorize the adjacency matrix to obtain the net-
work representations [5, 22, 33, 44]. Recently, graph neural net-
works [7, 10, 15, 19, 39, 40, 47] have received increasing attention.
In this work, we adapt and extend the simplified GCN model [40]
for simultaneously learning the representations of both nodes and
edges in SeeS.

Dynamic Network Embedding. Another line of related work
is on embedding dynamic networks [11, 20, 27, 37, 49, 51]. These
methods learn the network embeddings while the network keeps
evolving. For example, Du et al. [11] update the a subset of influ-
enced nodes for a structure change in the network; Ma et al. [27]
encode the high-order proximity as latent states of nodes so as
to learn the embeddings for new nodes. These existing work is
orthogonal to our work. That is, they are handling the case when
the network structure evolves over time; in contrast, the network
structure in NoCES is assumed to be static, while the nodes and
edges have co-evolving sequences (i.e., dynamic attributes).

6 CONCLUSIONS

In this paper, we propose a joint learning framework for network
of co-evolving sequences. The proposed framework considers the
bidirectional dynamics and interplay between network structure
and sequences, and also the mutual influence between sequences on
nodes and edges. We evaluate the proposed approach in two predic-
tion tasks, i.e., missing value recovery and future value prediction.
The results on four different scenarios show that the proposed ap-
proach outperforms its competitors in terms of prediction accuracy.
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