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ABSTRACT

The past decades have witnessed the prosperity of graph mining,
with a multitude of sophisticated models and algorithms designed
for various mining tasks, such as ranking, classification, clustering
and anomaly detection. Generally speaking, the vast majority of
the existing works aim to answer the following question, that is,
given a graph, what is the best way to mine it?

In this paper, we introduce the graph sanitation problem, to an-
swer an orthogonal question. That is, given a mining task and an
initial graph, what is the best way to improve the initially provided
graph? By learning a better graph as part of the input of the mining
model, it is expected to benefit graph mining in a variety of settings,
ranging from denoising, imputation to defense. We formulate the
graph sanitation problem as a bilevel optimization problem, and fur-
ther instantiate it by semi-supervised node classification, together
with an effective solver named GaSoliNe. Extensive experimental
results demonstrate that the proposed method is (1) broadly appli-
cable with respect to various graph neural network models and
flexible graph modification strategies, (2) effective in improving the
node classification accuracy on both the original and contaminated
graphs in various perturbation scenarios. In particular, it brings up
to 25% performance improvement over the existing robust graph
neural network methods.

CCS CONCEPTS

• Mathematics of computing → Graph algorithms; • Infor-
mation systems→ Data mining.
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1 INTRODUCTION

Graph mining has become the cornerstone in a wealth of real-
world applications, such as social network mining [21, 58], brain
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connectivity analysis [1], computational epidemiology [25], and
financial analysis [22, 47]. For the vast majority of existing works,
they essentially aim to answer the following question, that is, given a
graph, what is the best model and/or algorithm to mine it? To name
a few, PageRank [36] and its variants [14, 17, 19, 41] measure the
node importance and node proximity based on multiple weighted
paths; spectral clustering [39] minimizes inter-cluster connectivity
and maximizes the intra-cluster connectivity to partition nodes
into different groups; graph neural networks (GNNs) [26, 27, 44, 51]
learn representation of nodes by aggregating information from the
neighborhood. In all these works and many more, they require a
given graph, including its topology and/or the associated attribute
information, as part of the input of the corresponding mining model.

Despite tremendous success, some fundamental questions largely
remain open, e.g., where does the input graph come from at the
first place? To what extent does the quality of the given graph
impact the effectiveness of the corresponding graph mining model?
In response, we introduce the graph sanitation problem, which
aims to improve the initially provided graph for a given graph
mining model, so as to maximally boost its performance. The ra-
tionality is as follows. In many existing graph mining works, the
initially provided graph is typically constructed manually based on
some heuristics. The graph construction is often treated as a pre-
processing step, without the consideration of the specific mining
task. What is more, the initially constructed graph could be subject
to various forms of contamination, such as missing information,
noise and even adversarial attacks. This suggests that there might
be under-explored space for improving the mining performance by
learning a ‘better’ graph as the input of the corresponding task.

There are a few lines of existing works for modifying graphs. For
example, network imputation [18, 31] and knowledge graph com-
pletion [4, 32, 33, 50, 55] problems focus on restoring missing links
in a partially observed graph; connectivity optimization [5] and
computational immunization [6] problems manipulate the graph
connectivity in a desired way by changing the underlying topology;
robust GNNs [10, 20, 52] utilize empirical properties of a benign
graph to remove or assign lower weights to the poisoned graph
elements (e.g., contaminated edges).

The graph sanitation problem introduced in this paper is related
to but bears subtle difference from these existing work in the fol-
lowing sense. Most, if not all, of these existing works for modifying
graphs assume the initially provided graph is impaired or perturbed
in a specific way, e.g., due to missing links, or noise, or adversarial
attacks. Some existing works further impose certain assumptions
on the specific graph modification algorithms, such as the low-rank
assumption behind many network imputation methods, the types
of attacks and/or the empirical properties of the benign graph (e.g.,
topology sparsity, feature smoothness) behind some robust GNNs.

https://doi.org/10.1145/3485447.3512180
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Data With GaSoliNe? GAT SVD RGCN

Cora N 48.8±0.2 60.1±0.6 50.6±0.8
Y 63.7±0.6 79.7±0.6 62.6±0.6

Citeseer N 62.4±0.7 50.6±0.6 55.5±1.4
Y 69.7±0.2 76.5±0.6 66.1±0.8

Polblogs N 48.2±6.6 77.3±3.3 50.8±0.9
Y 70.8±0.6 89.2±0.7 67.7±0.3

Table 1: Node classification accuracy (Mean±Std) boosting of
existing defensemethods on poisoned graphs (25% edges per-

turbed by metattack [65]) by the proposed GaSoliNe.

In contrast, the proposed graph sanitation problem does not make
any such assumptions, but instead pursues a different design princi-
ple. That is, we aim to let the performance of the downstream data
mining task, measured on a validation set, dictate how we should
optimally modify the initially provided graph. This is crucial, as it
not only ensures that the modified graph will directly and maxi-
mally improve the mining performance, but also lends itself to be
applicable to a variety of graph mining tasks.

Formally, we formulate the graph sanitation problem as a generic
bilevel optimization problem, where the lower-level optimization
problem corresponds to the specific mining task and the upper-level
optimization problem encodes the supervision to modify the pro-
vided graph andmaximally improve the mining performance. Based
on that, we instantiate such a bilevel optimization problem by semi-
supervised node classification with GNNs, where the lower-level
objective function represents the cross-entropy classification loss
over the training data and the upper-level objective function repre-
sents the loss over validation data, using the mining model trained
from the lower-level optimization problem. We propose an effec-
tive solver (GaSoliNe) which adopts an efficient approximation
of hyper-gradient to guide the modification over the given graph.
We carefully design the hyper-gradient aggregation mechanism
to avoid potential bias from a specific dataset split by aggregating
the hyper-gradient from different folds of data. GaSoliNe is ver-
satile, and is equipped with multiple variants, such as discretized
vs. continuous modification, modifying graph topology vs. feature.
Comprehensive experiments demonstrate that (1) GaSoliNe is
broadly applicable to benefit different downstream node classifiers
together with flexible choices of variants and modification strate-
gies, (2) GaSoliNe can significantly boost downstream classifiers
on both the original and contaminated graphs in various pertur-
bation scenarios and can work hand-in-hand with existing robust
GNNs methods. For instance, in Table 1, the proposed GaSoliNe
significantly boosts GAT [44], SVD [10], and RGCN [61].

In summary, our main contributions in this paper are as follows:
• Problem Definition. We introduce a novel graph sanitation
problem, and formulate it as a bilevel programming. The pro-
posed problem can be potentially applied to various graphmining
models as long as they are differentiable w.r.t. the input graph.
• Algorithmic Instantiation. We instantiate the graph sanita-
tion problem by semi-supervised node classification with GNNs.
We further propose an effective and scalable solver named GaSo-
liNe with versatile variants.
• Empirical Evaluations.We perform extensive empirical stud-
ies on real-world datasets to demonstrate the effectiveness and
the applicability of the proposed GaSoliNe algorithms.

2 GRAPH SANITATION PROBLEM

A - Notations. We use bold uppercase letters for matrices (e.g.,
A), bold lowercase letters for column vectors (e.g., u), lowercase
letters for scalars (e.g., 𝑐), and calligraphic letters for sets (e.g., T ).
A[𝑖, 𝑗] represents the entry of matrix A at the 𝑖-th row and 𝑗-th
column. A[𝑖, :] and A[:, 𝑗] represent the 𝑖-th row and 𝑗-th column
of matrix A. u[𝑖] denotes the 𝑖-th entry of vector u. Prime denotes
the transpose of matrices and vectors (e.g., A′ is the transpose
of A). For the variables of the modified graphs, we set ˜ over the
corresponding variables of the original graphs (e.g., Ã).

We represent an attributed graph as 𝐺 = {A,X}, where A ∈
R𝑛×𝑛 is the adjacency matrix and X ∈ R𝑛×𝑑 is the feature matrix
composed by 𝑑-dimensional feature vectors of 𝑛 nodes. For super-
vised graph mining models, we first divide the node set into two
disjoint subsets: labeled node setZ and test setW, and then divide
the labeled node setZ into two disjoint subsets: the training set T
and the validation setV . We use 𝑦 and 𝑦 with appropriate indexing
to denote the ground truth supervision and the prediction result
respectively. Take the classification task as an example, 𝑦𝑖 𝑗 = 1 if
node 𝑖 belongs to class 𝑗 and 𝑦𝑖 𝑗 = 0 otherwise; 𝑦𝑖 𝑗 is the predicted
probability that node 𝑖 belongs to class 𝑗 . Furthermore, we use
Ytrain and Yvalid to denote the supervision information of all the
nodes in the training set T and the validation setV , respectively.
B -Optimization-BasedGraphMiningModels. Formany graph
mining models, they can be formulated from the optimization per-
spective [23, 24] with a general goal to find an optimal solution 𝜃∗
so that a task-specific loss L(𝐺, 𝜃,T ,Ytrain) is minimized. Here,
T and Ytrain are the training set and the associated ground truth
(e.g., class labels for the classification task), which would be absent
for the unsupervised graph mining tasks (e.g., clustering, ranking).
We give three concrete examples next.

Example #1: personalized PageRank [19] is a fundamental rank-
ing model. When the adjacency matrix of the underlying graph is
symmetrically normalized, the ranking vector r can be obtained as:

r∗ = arg min
r

𝑞r′(I − Ā)r + (1 − 𝑞) | |r − e| |2, (1)

where Ā is the symmetrically normalized adjacency matrix; 𝑞 ∈
(0, 1] is the damping factor; e is the preference vector; the ranking
vector r∗ is the solution of the ranking model (i.e., 𝜃∗ = r∗).

Example #2: spectral clustering [39] is a classic graph clustering
model aiming to minimizes the normalized cut between clusters:

u∗ = arg min
u

u′Lu s.t. u′Du = 1, Du ⊥ 1u, (2)

where L is the Laplacian matrix, D is the diagonal degree matrix
(i.e., D[𝑖, 𝑖] = ∑

𝑗 A[𝑖, 𝑗]), 1𝑢 is an all-one vector with the same size
as u; the model solution 𝜃∗ is the cluster indicator vector u∗.

Example #3: node classification aims to construct a classification
model based on the graph topology A and feature X. A typical loss
for node classification is cross-entropy (CE) over the training set:

𝜃∗ = arg min
𝜃
−
∑
𝑖∈T

𝑐∑
𝑗=1

𝑦𝑖 𝑗 ln𝑦𝑖 𝑗 , (3)

where 𝑐 is the number of classes,𝑦𝑖 𝑗 is the ground truth indicating if
node 𝑖 belongs to class 𝑗 , T is the training set, 𝑦𝑖 𝑗 = 𝑓 (𝐺, 𝜃 ) [𝑖, 𝑗] is
the predicted probability that node 𝑖 belongs to class 𝑗 by a classifier
𝑓 (𝐺, 𝜃 ) parameterized by 𝜃 . For example, classifier 𝑓 (𝐺, 𝜃 ) can be
a GNN whose trained model parameters form the solution 𝜃∗.
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Mining Tasks Personalized PageRank [2, 19, 30] Spectral clustering [39, 48] Semi-supervised node classification [9]
Llower minr 𝑞r′(I − Ā)r + (1 − 𝑞) | |r − e| |2 minu u′Lu s.t. u′Du = 1, Du ⊥ 1 min𝜃 −

∑
𝑖∈T

∑𝑐
𝑗=1 𝑦𝑖 𝑗 ln𝑦𝑖 𝑗

Lupper minA
∑
𝑥 ∈P,𝑦∈N (1 + exp (r∗ [𝑥] − r∗ [𝑦])/𝑤)−1 minA −u∗′Qu∗ min𝐺 −

∑
𝑖∈V

∑𝑐
𝑗=1 𝑦𝑖 𝑗 ln𝑦𝑖 𝑗

T none none training set T
Ytrain none none labels of training set Ytrain
V positive node set P,

negative node set N
‘must-link’ setM
‘cannot-link’ set C validation setV

Yvalid none none labels of validation set Yvalid

Remarks

normalized adjacency matrix Ā,
damping factor 𝑞, width parameter𝑤 ,

preference vector e

Laplacian matrix L,
degree matrix D,

link constraints matrix Q

number of classes 𝑐 ,
predicted probability of node 𝑖 to class 𝑗 𝑦𝑖 𝑗 ,
binary ground truth of node 𝑖 to class 𝑗 𝑦𝑖 𝑗

Table 2: Instantiations of graph sanitation problem over various mining tasks

Remarks. Both the standard personalized PageRank and spectral
clustering are unsupervised and therefore the training set T and its
supervision Ytrain are absent in the corresponding loss functions
(i.e., Eq. (1) and (2), respectively). Nonetheless, both personalized
PageRank and spectral clustering have been generalized to further
incorporate some forms of supervision, as we will show next.
C - Graph Sanitation: Formulation and Instantiations. Given
an initial graph𝐺 and an optimization-based graph mining model
L(𝐺, 𝜃,T ,Ytrain), we aim to learn a modified graph 𝐺̃ to boost
the performance of the corresponding mining model and we name
it as graph sanitation problem. The basic idea is to let the mining
performance on a validation setV guide the modification process.
Formally, the graph sanitation problem is defined as follows.

Problem 1. Graph Sanitation Problem
Given: (1) a graph𝐺 = {A,X}, (2) amining taskL(𝐺, 𝜃,T ,Ytrain),

(3) a validation setV and its supervision Yvalid, and (4) the
sanitation budget 𝐵;

Find: A modified graph 𝐺̃ = {Ã, X̃} to boost the performance of
input graph mining model.

We formulate Problem 1 as a bilevel optimization problem:
𝐺̃ = arg min

𝐺
Lupper (𝐺, 𝜃∗,V,Yvalid)

s.t. 𝜃∗ = arg minLlower (𝐺, 𝜃,T ,Ytrain), 𝐷 (𝐺̃,𝐺) ≤ 𝐵
(4)

where the lower-level optimization is to train the model 𝜃∗ based
on the training set T ; the upper-level optimization aims to optimize
the performance of the trained model 𝜃∗ on the validation setV ,
and there is no overlap between T andV; the distance function 𝐷
measures the distance between two graphs. In this paper, we instan-
tiate𝐷 (𝐺̃,𝐺) as | |Ã−A| |1,1 or | |X̃−X| |1,1 based on the modification
scenarios. Notice that the loss function at the upper level Lupper

might be different from the one at the lower level Llower. For exam-
ple, Llower for both personalized PageRank (Eq. (1)) and spectral
clustering (Eq. (2)) does not involve any supervision. However,
Lupper for both models is designed to measure the performance on
a validation set with supervision and therefore should be different
from Llower. We elaborate this next.

The proposed bilevel optimization problem in Eq. (4) is quite
general. In principle, it is applicable to any graph model with dif-
ferentiable Lupper and Llower. We give its instantiations with the
three aforementioned mining tasks and summarize them in Table 2.

Instantiation #1: supervised PageRank. The original personalized
PageRank [19] has been generalized to encode pair-wised ranking
preference [2, 30]. For graph sanitation with supervised PageRank,
the training set and its supervision is absent, and the lower-level loss
Llower is given in Eq. (1). The validation setV is consisted of a pos-
itive node set P and a negative node set N . The supervision of the

upper-level problem is that ranking scores of nodes from P should
be higher than that from N , i.e., r[𝑥] > r[𝑦],∀𝑥 ∈ P,∀𝑦 ∈ N .
Several choices for the upper-level loss Lupper exist. For example,
we can use Wilcoxon-Mann-Whitney loss [54]:

min
A

∑
𝑥 ∈P,𝑦∈N

(
1 + exp (r∗ [𝑥] − r∗ [𝑦])/𝑤

)−1
(5)

where𝑤 is the width parameter. It is worth-mentioning that Eq. (5)
only modifies graph topology A. Although Eq. (5) does not contain
variable A, r∗ is determined by A through the lower-level problem.

Instantiation #2: supervised spectral clustering. A typical way to
encode supervision in spectral clustering is via ‘must-link’ and
‘cannot-link’ [45, 48]. For graph sanitation with supervised spectral
clustering, the training set together with its supervision is absent,
and the lower-level loss Llower is given in Eq. (2). The validation
setV contains a ‘must-link’ setM and a ‘cannot-link’ set C. For
the upper-level loss, the idea is to encourage nodes from must-link
setM to be grouped in the same cluster and in the meanwhile
push nodes from cannot-link set C to be in different clusters. To be
specific, Lupper can be instantiated as follows.

min
A

−u∗′Qu∗, (6)
where Q encodes the ‘must-link’ and ‘cannot-link’, that is, Q[𝑖, 𝑗] =
1 if (𝑖, 𝑗) ∈ M, Q[𝑖, 𝑗] = −1 if (𝑖, 𝑗) ∈ C, and Q[𝑖, 𝑗] = 0 otherwise.
This instantiation only modifies the graph topology A.

Instantiation #3: semi-supervised node classification. For graph
sanitation with semi-supervised node classification, its lower-level
optimization problem is given in Eq. (3). We have cross-entropy
loss over validation setV as the upper-level problem:

min
𝐺

LCE (𝐺, 𝜃∗,V,Yvalid) = −
∑
𝑖∈V

𝑐∑
𝑗=1

𝑦𝑖 𝑗 ln𝑦𝑖 𝑗 . (7)

Notice that T ∩V = ∅. If both the topology A and node feature X
are used for classification, then they both can be modified in this
instantiation.

Remarks. If the initially given graph 𝐺 is poisoned by adver-
sarial attackers [64, 65], the graph sanitation problem with semi-
supervised node classification can also be used as a defense strategy.
However, it bears important difference from the existing robust
GNNs [10, 20, 52] as it does not assume the given graph 𝐺 is poi-
soned or any specific way by which it is poisoned. Therefore, graph
sanitation problem in this scenario can boost the performance un-
der a wide range of attacking scenarios (e.g., non-poisoned graphs,
lightly-poisoned graphs, and heavily-poisoned graphs) and has the
potential to work hand-in-hand with existing robust GNNs model.
In the next section, we propose an effective algorithm to solve the
graph sanitation problem with semi-supervised node classification.
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3 PROPOSED ALGORITHMS: GASOLINE

We focus on graph sanitation problem in the context of semi-
supervised node classification and propose an effective solver named
GaSoliNe. The general workflow is as follows. First, we solve the
lower-level problem (Eq. (3)) and obtain a solution 𝜃∗. Then we com-
pute the hyper-gradient of the upper-level loss function (Eq. (7))
w.r.t. the graph 𝐺 to solve the upper-level optimization problem.
Recall that a classifier 𝑓 (𝜃 ) is needed to provide the predicted labels
(in both the lower-level and upper-level problems) and we refer
to this classifier as the backbone classifier. Finally we test the per-
formance of another classifier over the modified graph on the test
setW and this classifier is named as the downstream classifier. We
will introduce our proposed solution GaSoliNe in four parts: (A)
hyper-gradient computation, (B) hyper-gradient aggregation, (C)
hyper-gradient-guided modification, and (D) low-rank speedup.
A - Hyper-Gradient Computation. Eq. (4) and its corresponding
instantiations Eqs. (3)(7) fall into the family of bilevel optimization
problem where the lower-level problem is to optimize 𝜃 via mini-
mizing the loss over the training set {T ,Ytrain} given𝐺 , and the
upper-level problem is to optimize 𝐺 via minimizing the loss over
{V,Yvalid}. We compute gradient w.r.t. the upper-level problem
and view the lower-level problem as a dynamic system:

𝜃𝑡+1 = Θ𝑡+1 (𝐺, 𝜃𝑡 ,T ,Ytrain), 𝜃1 = Θ1 (𝐺,T ,Ytrain), (8)
where Θ1 is the initialization of 𝜃 and Θ𝑡+1 (𝑡 ≠ 0) is the updating
formula which can be instantiated as an optimizer over the lower-
level objective function on training set (Eq. (3)). For the hyper-
gradient of the upper-level problem ∇𝐺L, we assume that the
system converges in 𝑇 iterations (i.e., 𝜃∗ = 𝜃𝑇 ). Then we unroll the
iterative solution of the lower-level problem to obtain the hyper-
gradient ∇𝐺L by the chain rule as follows [3] where𝐴𝑡 = ∇𝜃𝑡 𝜃𝑡+1,
𝐵𝑡 = ∇𝐺𝜃𝑡+1. For brevity, we abbreviate cross-entropy loss over
the validation set LCE (𝐺, 𝜃𝑇 ,V,Yvalid) as Lvalid (𝜃𝑇 ).

∇𝐺L = ∇𝐺Lvalid (𝜃𝑇 ) +
𝑇−2∑
𝑡=0

𝐵𝑡𝐴𝑡+1 . . . 𝐴𝑇−1∇𝜃𝑇 Lvalid (𝜃𝑇 ) (9)

Our final goal is to improve the performance of converged down-
stream classifiers. Hence, 𝑇 is set as a relatively large value (e.g.,
200) to ensure the hyper-gradient is computed over a converged
classifier. To balance the effectiveness and the efficiency, we adopt
the truncated hyper-gradient [38] w.r.t. 𝐺 and rewrite the second
part of Eq. (9) as

∑𝑇−2
𝑡=𝑃

𝐵𝑡𝐴𝑡+1 . . . 𝐴𝑇−1∇𝜃𝑇 Lvalid (𝑓𝜃𝑇 ), where 𝑃
denotes the truncating iteration. To further speed up, we adopt a
first-order approximation [35, 65] and ∇𝐺L can be computed as:

∇𝐺L =

𝑇∑
𝑡=𝑃

∇𝐺Lvalid (𝜃𝑡 ). (10)

where the updating trajectory of 𝜃𝑡 is the same as Eq. (8). If the
initially-provided graph 𝐺 is undirected, it indicates that A = A′.
Hence, when we compute the hyper-gradient w.r.t. the undirected
graph topology A, we need to calibrate the partial derivative into
the derivative [24] and update the hyper-gradient as follows:

∇AL ← ∇AL + (∇AL)′ − diag(∇AL) . (11)

For the hyper-gradient w.r.t. feature X and directed graph topology
A (A ≠ A′), the above calibration process is not needed.
B - Hyper-Gradient Aggregation. To ensure the quality of graph
sanitation without introducing bias from a specific dataset split,

we adopt 𝐾-fold split with similar settings as cross-validation [7].
Specifically, during the training phase, we split all the labeled nodes
Z into𝐾 folds and alternatively select one of them asV (with labels
Yvalid) and the others as T (with labels Ytrain). In total, there are
𝐾 sets of training/validation splits. With the 𝑘-th dataset split, by
Eq. (10), we obtain the hyper-gradient ∇𝑘

𝐺
L. For the hyper-gradient

{∇1
𝐺
L, . . . ,∇𝐾

𝐺
L} from the 𝐾 sets of training/validation split, we

sum them up as the aggregated hyper-gradient: ∇𝐺 =
∑
𝑘 ∇𝑘𝐺L.

C -Hyper-Gradient-GuidedModification. Tomodify the graph
based on ∇𝐺 , we provide two variants, discretized modification and
continuous modification. The discretizedmodification canworkwith
binary inputs such as adjacency matrices of unweighted graphs and
binary feature matrices. The continuous modification is suitable for
both continuous and binary inputs. For the clarity of explanation,
we replace the 𝐺 with the adjacency matrix A as an example for
the topology modification. It is straight-forward to generalize that
to the feature modification with feature matrix X.

The discretized modification is flipping 𝐵 entries in A whose
indices are also the the indices of the top-𝐵 entries in a hyper-
gradient-based score matrix S. Mathematically S is presented as:

S = (−∇A) ◦ (1 − 2A), (12)
where ◦ denotes Hadamard product, 1 is an all-one matrix. This
score matrix is composed by ‘preference’ (i.e., −∇A) and ‘modifia-
bility’ (i.e., (1 − 2A)). Only entries with both high ‘preference’ and
‘modifiability’ are assigned with high scores. For example, large
positive (−∇A) [𝑖, 𝑗] indicates strong preference of adding an edge
between the 𝑖-th and 𝑗-th nodes based on the hyper-gradient and if
the 𝑖-th and 𝑗-th nodes are not linked (i.e., A[𝑖, 𝑗] = 0), (−∇A) [𝑖, 𝑗]
and (1−2A) [𝑖, 𝑗] share the same sign which results in a large S[𝑖, 𝑗].

The continuous modification is gradient descent with budget-
adaptive learning rate:

A← A − 𝐵∑
𝑖, 𝑗 |∇A | [𝑖, 𝑗]

· ∇A . (13)

The learning rate is based on the ratio of the modification budget
𝐵 to the sum of absolute values of the gradient matrix. In imple-
mentation, for both modification methods, we set the budget in
every iteration as 𝑏 and update the graph in multiple steps until the
total budget 𝐵 is used up. Algorithm 1 summarizes our methods. In
addition, in our experiments, the 𝐵 for topology and feature (𝐵topo
and 𝐵fea) are set separately since the modification cost on different
elements of a graph may not be comparable.

Remarks. LDS [13] formulates the structural learning problem
under the bilevel optimization context. Here, we claim the differ-
ences and advantages: (1) LDS focuses on learning graph topology,
but GaSoliNe can handle any graph components; (2) LDS formu-
lates the topology as Bernoulli random variables, whose updating
requires multiple samplings which are time-consuming, but GaSo-
liNe works in a deterministic and efficient way and also provides
discrete solutions; (3) in the following section we will introduce a
speed-up variant of GaSoliNe which shows great efficacy.
D - Speedup and Scale-up. The core operation of our proposed
GaSoliNe is to compute hyper-gradient w.r.t. the graph compo-
nents (i.e., A and X) which leads into a gradient matrix (e.g. ∇AL).
In many real-world scenarios (e.g., malfunctions of certain nodes,
targeted adversarial attacks), perturbations are often around a small
set of nodes, which leads to low-rank perturbation matrices. Hence,
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Algorithm 1: GaSoliNe
Input :a graph 𝐺 , the labeled nodesZ, total budget and

budget in every step 𝐵 and 𝑏, number of fold 𝐾 ,
truncating and converging iterations 𝑇 and 𝑃 ;

Output : the modified graph 𝐺̃ ;
1 initialization: split the labeled nodesZ and their labels into

𝐾 folds:Z = {Z1, . . . ,Z𝐾 }, Ylabeled = {Y1, . . . ,Y𝐾 };
𝐺̃ ← 𝐺 ; cumulative budget 𝛿 ← 0;

2 while 𝛿 < 𝐵 do

3 for k=1 to K do

4 V ← Z𝑘 , T ← Z\Z𝑘 , Yvalid ← Y𝑘 ,
Ytrain ← Ylabeled\Y𝑘 , ∇𝑘

𝐺̃
L ← 0;

5 for 𝑡 = 1 to 𝑇 do

6 update 𝜃𝑡 to 𝜃𝑡+1 by Eq. (8);
7 if 𝑡 > 𝑃 then

8 compute ∇𝑘
𝐺̃
Lvalid given

{𝐺̃, 𝜃𝑡+1,V,Yvalid};
9 ∇𝑘

𝐺̃
L ← ∇𝑘

𝐺̃
L + ∇𝑘

𝐺̃
Lvalid

10 end

11 end

12 end

13 calibrate {∇𝑘
Ã
L} by Eq. (11) (if needed);

14 sum {∇𝑘
𝐺̃
L} into ∇

𝐺̃
, 𝛿 ← 𝛿 + 𝑏;

15 update 𝐺̃ based on the guide of score matrix S by
Eq. (12) (discretized modification) or by Eq. (13)
(continuous modification) with budget 𝑏

16 end

for topology modification, we propose to decompose the incremen-
tal matrix (i.e.,ΔA) into its low-rank representation (i.e.,ΔA = UV′),
and compute the hyper-gradient with respect to the low-rank ma-
trices instead, which can significantly speedup and scale up the
computation. Recall that the low-rank assumption is only held for
the incremental matrix, but for the modified graph (i.e., Ã), it is not
limited to be low-rank. Mathematically, the low-rank modification
can be represented as:

Ã = A + ΔA = A + UV′, (14)
where U, V ∈ R𝑛×𝑟 , and 𝑟 is the rank of ΔA. Hence, by substituting
A with A + UV′ in Eq. (7) (i.e., 𝐺 = {A + UV′,X}) and changing
the optimization variable from A into U and V, we can obtain
hyper-gradient with respect to U and V (i.e., ∇UL and ∇VL) in the
same manner as Eq.(10). By aggregating the hyper-gradients from
different training/validation splits as we introduced in Sec. 3-B,
we obtain aggregated hyper-gradients ∇U and ∇V. Any gradient
descent-based method can then be used to update U and V.

In this way, we can significantly reduce the time and space
complexity, which is summarized in the following lemma. Notice
that 𝑛,𝑚,𝑑 are number of nodes, number of edges and feature
dimension, respectively and we have 𝑑 ≪ 𝑛 and 𝑚 ≪ 𝑛2. As a
comparison, the time complexity of computing ∇AL is 𝑂 (𝑛2𝑑)
and the space complexity of computing ∇AL is 𝑂 (𝑛2). Hence, this
low-rank method is much more efficient in both time and space.

Lemma 1. For computing ∇UL and ∇VL, the time complexity is
𝑂 (𝑛𝑑2 +𝑚𝑑) and the space complexity is 𝑂 (𝑚 + 𝑛𝑑).

Proof. See Appendix. □

4 EXPERIMENTS

Here, we design experiments to answer the following questions:
• RQ1 How applicable is the proposed GaSoliNewith respect to dif-

ferent backbone/downstream classifiers, as well as different
modification strategies?

• RQ2 How effective is the proposed GaSoliNe for initial graphs
under various forms of perturbation? Towhat extent does the
proposed GaSoliNe strengthen the existing robust GNNs?

• RQ3 How efficient and effective is the low-rank GaSoliNe?
Remark. A case study about the behaviour of GaSoliNe and hyper-
parameter sensitivity studies are provided in Appendix for space.

4.1 Experiment Setups

We evaluate the proposed GaSoliNe on Cora, Citeseer, and Polbolgs
datasets [26, 64, 65]. Since the Polblogs dataset does not contain
node features, an identity matrix is used as the node feature ma-
trix. All the datasets are undirected unweighted graphs and we
experiment on the largest connected component of every dataset.

In order to set fair modification budgets across different datasets,
the modification budget on adjacency matrix 𝐵topo is defined as
𝐵topo = 𝑚 × modification ratetopo and the budget on feature
matrix 𝐵fea is defined as 𝐵fea = 𝑛 × 𝑑 × modification ratefea.
where𝑚, 𝑛, and 𝑑 are the number of edges, nodes, and node fea-
tures. In all the experiments, modification ratetopo = 0.1 and
modification ratefea = 0.001. Detailed hyper-parameter set-
tings are attached in Appendix. We report the mean ± std accuracy
over 10 repetitions as the evaluation metric.

4.2 Applicability of GaSoliNe

The proposed GaSoliNe trains a backbone classifier in the lower-
level problem and uses the trained backbone classifier to modify
the initially-provided graph and improve the performance of the
downstream classifier on the test nodes. In addition, GaSoliNe is
capable of modifying both the graph topology (i.e., A) and feature
(i.e., X) in both the discretized and continuous fashion. To verify
that, we select three classic GNNs-based node classifiers, including
GCN [26], SGC [51], and APPNP [27] as the backbone classifiers
and the downstream classifiers. The detailed experiment proce-
dure is as follows. First, we modify the given graph using proposed
GaSoliNe algorithm with 4 modification strategies (i.e., modifying
topology or node feature with discretized or continuous modifi-
cation). Each variant is implemented with 3 backbone classifiers
so that in total there are 12 sets of GaSoliNe settings. Second, for
every of the 12 modified graphs, we evaluate 3 downstream classi-
fiers and report the result (mean±std Acc). For this subsection, the
initially provided graph is Citeseer [26].

Experimental results are reported in Table 3 where ‘DT’, ‘CT’,
‘DF’, and ‘CF’ denote ‘discretized topology’, ‘continuous topology’,
‘discretized feature’, and ‘continuous feature’ modifications, respec-
tively. The second row of Table 3 shows the results on the initially-
provided graph and the other rows denote the results on modified
graphs with different settings. We use • to indicate that the improve-
ment of the result is statistically significant compared with results
on the initially-provided graph with a 𝑝-value< 0.01, and we use ◦
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Variant Backbone GCN SGC APPNP

None None 72.2±0.5 72.8±0.2 71.8±0.4

DT
GCN 74.7±0.3• 74.8±0.1• 75.4±0.2•
SGC 74.7±0.4• 75.2±0.2• 75.6±0.3•

APPNP 74.6±0.3• 74.6±0.1• 75.4±0.4•

DF
GCN 72.4±0.3◦ 72.7±0.2◦ 72.8±0.4•
SGC 73.3±0.5• 73.4±0.2• 73.6±0.4•

APPNP 72.6±0.3◦ 72.9±0.1◦ 73.6±0.4•

CT
GCN 73.1±0.4• 73.6±0.1• 74.8±0.2•
SGC 73.0±0.3• 73.5±0.2• 74.4±0.3•

APPNP 72.8±0.5◦ 73.4±0.1• 74.4±0.9•

CF
GCN 72.7±0.4◦ 73.6±0.1• 73.8±0.3•
SGC 72.9±0.4• 73.6±0.4• 73.8±0.4•

APPNP 73.0±0.3• 73.6±0.2• 73.9±0.3•
Table 3: Effectiveness of GaSoliNe under multiple variants

(Mean±Std Accuracy). The first and second columns denote

themodification strategies and backbone classifiers adopted

byGaSoliNe respectively. The remaining columns show the

performance of various downstream classifiers. • indicates
significant improvement comparedwith results on the origi-

nal graph (values at the second row) with a 𝑝-value<0.01 and

◦ indicates no statistically significant improvement.

(a) Original (b) After modification

Figure 1: Visualization of node embeddings from original

Citeseer graph (a) and modified Citeseer graph by GaSo-

liNe (b). Best viewed in color.

to indicate no statistically significant improvement. We have the fol-
lowing observations. First, in the vast majority cases, the proposed
GaSoliNe is able to statistically significantly improve the accuracy
of the downstream classifier over the initially-provide graph, for
every combination of the modification strategy (discretized vs. con-
tinuous) and the modification target (topology vs. feature). Second,
the graphs modified by GaSoliNe with different backbone classifier
can benefit different downstream classifiers, which demonstrates
great transferability and broad applicability.

We further provide visualization of node embeddings before and
after modification. We present the visualizations of initial Citeseer
graph and the modified Citeseer graph from GaSoliNe DT variant
with SGC [51] backbone classifier. The detailed procedure is that a
GCN [26] is trained on the training set T of given initial/modified
graphs and hidden representations are used as node embeddings.
Then, t-SNE [43] maps the node embeddings into two-dimensional
ones for visualization. Figure 1 shows the visualization results from
the original and the modified Citeseer graphs. Clearly, the node
embeddings from modified graph are more discriminative than
the embeddings from the original graph. In specific, the clusters
are more cohesive and there is less overlap between clusters in
the modified graphs (i.e., Figures 1b) compared with those on the

original graph (i.e., Figure 1a). It further demonstrates that even we
have no knowledge about the downstream classifiers (in this case
the backbone classifier and downstream classifier are different), the
proposed GaSoliNe can still improve the graph quality to benefit
downstream classifiers.

4.3 Effectiveness of GaSoliNe

As we point out in Sec. 1, the defects of the initially-provided
graph can be due to various reasons. In this subsection, we eval-
uate the effectiveness of the proposed GaSoliNe by (A) the com-
parison with baseline methods on various poisoned/noisy graphs
and (B) integrating with existing robust GNNs methods. The at-
tack methods we adopt are as follows: (1) Random Attack ran-
domly flips entries of benign adjacency matrices with different
perturbation rate; (2) Nettack [64] attacks a set of target nodes
with different perturbations/node; (3) metattack [65] poisons the
performance of node classifiers by perturbing the overall benign
graph topology with different perturbation rate.
A - Comparison with baseline methods. We compare GaSo-
liNe with the following baseline methods: APPNP [27], GAT [44],
Jaccard [52], SVD [10], RGCN [61], DE [37], and LDS [13]. Recall
that we feed all the graph modification-based methods (Jaccard,
SVD, DE, LDS, GaSoliNe) with the exactly same downstream clas-
sifier (APPNP) for a fair comparison.

We set 3 variants of GaSoliNe to compare with the above base-
lines. To be specific, we refer to (1) GaSoliNe with discretized
modification on topology as GaSoliNe-DT, (2) GaSoliNe with con-
tinuous modification on feature as GaSoliNe-CF, and (3) GaSoliNe
with discretized modification on topology and continuous modifi-
cation on feature as GaSoliNe-DTCF. All these GaSoliNe variants
use APPNP [27] as both the backbone classifier and the downstream
classifier. We test various perturbation rates (i.e., perturbation
rate of metattack from 5% to 25% with a step of 5%, perturbation
rate of random attack from 20% to 100% with a step of 20%, and
perturbations/node of Nettack from 1 to 5) to attack the Cora [26]
dataset and report the accuracy (mean±std) in Figure 2. From experi-
ment results we observe that: (1) with the increase of adversarial per-
turbation, the performance of all methods drops, which is consistent
with our intuition; (2) variants of GaSoliNe consistently outper-
form the baselines under various adversarial/noisy scenarios; and
(3) the proposed GaSoliNe even improves over the original, benign
graphs (i.e., 0 perturbation rate and 0 perturbations/node).

An interesting question is, if the initially-provided graph is heav-
ily poisoned/noisy, to what extent is the proposed GaSoliNe still
effective? To answer this question, we study the performance of
GaSoliNe and other baseline methods on heavily-poisoned graphs
(100% perturbation rate of random attack, 25% perturbation
rate of metattack, and 5 perturbations/node of Nettack). The
detailed experiment results are presented in Table 4. In most cases,
GaSoliNe can obtain competitive or even better performance against
baseline methods. On the Polblogs graph, GaSoliNe does not per-
form as well as in the other two datasets. This is because, (1) the
Polblogs graph does not have node feature which weakens the effec-
tiveness of modification from GaSoliNe and (2) the Polblogs graph
has strong low-rank structure, which can be further verified in
Sec. 4.4. As flexible solutions, in the next subsection, we study that
if GaSoliNe can work together with other graph defense methods.
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(a) metattack

(b) Nettack

(c) random attack

Figure 2: Performance comparison between baselines and GaSoliNe under (a) metattack, (b) Nettack, and (c) random attack

with various perturbation rates. Best viewed in color.

Attack Data APPNP GAT Jaccard SVD RGCN DE LDS G-DT G-CF G-DTCF

metattack
Cora 47.0±0.7 48.8±0.2 65.4±0.9 60.3±0.8 50.6±0.8 48.7±0.9 58.7±1.3 67.3±0.7 57.0±0.9 68.8±0.9

Citeseer 49.4±2.2 62.4±0.7 57.1±1.0 49.5±0.8 55.5±1.4 50.1±2.3 58.2±2.3 63.5±1.5 58.4±1.5 62.2±1.0
Polblogs 58.4±3.6 48.2±6.6 N/A 79.1±2.4 50.8±0.9 56.4±6.3 63.7±5.7 65.0±0.7 55.0±4.1 64.7±1.4

Nettack
Cora 60.7±1.2 54.2±2.3 63.7±1.4 52.9±2.8 56.5±1.1 60.8±1.0 64.5±2.4 64.5±2.2 63.9±2.4 66.1±1.9

Citeseer 68.3±6.8 61.9±4.4 72.5±3.3 50.2±6.6 56.4±1.5 63.3±4.7 71.0±3.3 71.6±3.9 69.4±4.8 74.3±1.6
Polblogs 90.5±1.0 91.1±0.7 N/A 93.6±1.2 93.1±0.2 89.1±2.4 91.1±1.8 92.3±1.6 90.3±0.7 92.4±1.7

random
attack

Cora 74.3±0.4 58.1±1.0 75.1±0.5 72.6±0.3 68.9±0.4 73.9±0.6 76.6±0.4 77.1±0.3 78.3±0.5 77.8±0.2
Citeseer 69.8±0.6 60.8±1.6 69.7±0.5 66.7±0.4 65.7±0.2 69.4±0.5 72.3±0.4 73.8±0.2 72.3±0.4 73.4±0.5
Polblogs 74.7±2.8 84.5±1.0 N/A 83.3±2.8 81.7±0.9 75.9±1.4 73.2±2.8 73.4±4.1 77.1±1.6 77.6±2.9

Table 4: Comparison with baselines on heavily poisoned datasets (Mean±Std Accuracy). Some results are not applicable since

Jaccard requires node features which are absent on Polblogs graph. G denotes GaSoliNe for short.

B - Incorporatingwith graphdefense strategies.GaSoliNe does
not make any assumption about the property of the defects of
the initially-provided graph. We further evaluate if GaSoliNe can
boost the performance of both model-based and data-based defense
strategies under the heavily-poisoned settings. We use a data-based
baseline SVD [10], a model-based baseline RGCN [61], and another
strong baseline GAT [44] to integrate with GaSoliNe since they
have shown competitive performance from Table 4 and Figure 2.
The detailed procedure is that for model-based methods (GAT and
RGCN), GaSoliNe modifies the graph first, and then the baselines
are implemented on the modified graphs to report the final results.
For the data-based method (SVD), the baseline is implemented to
preprocess graphs first, and then we modify graphs again by GaSo-
liNe, and finally run the downstream classifiers (APPNP) on the
twice-modified graphs. In this task, GaSoliNe-DTCF is adopted.

In order to heavily poison the graphs, we use metattack [65] with
perturbation rate as 25% to attack the benign graphs. We report
the results in Table 1 and observe that after integrating with GaSo-
liNe, performance of all the defense methods further improves
significantly with a 𝑝-value<0.01.

4.4 Efficacy of Low-Rank GaSoliNe

To answer RQ3, we first compare the performance of APPNP [27]
on two modified graphs from the low-rank GaSoliNe (denoted as
GaSoliNe-LR) and the original GaSoliNe, respectively. Specifically,
for the original GaSoliNe, we adopt its variant with continuous
modification towards the network topology. Due to the space limi-
tation, we only show the results given graphs perturbed by metat-
tack [65] in Table 5. We observe that in most settings on both the
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Cora and Citeseer datasets, the GaSoliNe-LR can obtain promis-
ing performance against the original GaSoliNe. Surprisingly, on
the Polblogs dataset, the GaSoliNe-LR shows great advantages
over the original GaSoliNe. One possible explanation is that Pol-
blogs dataset is inherently low-rank (which can be corroborated
by Table 4 where SVD [10] obtains strong performance) and GaSo-
liNe-LR learns a low-rank incremental matrix which amplifies the
advantage further.

To verify the efficiency of proposed GaSoliNe-LR, we generate a
set of synthetic graphs with different number of nodes 𝑛. The wall-
clock time for computing hyper-gradient is presented in Figure 3.
Clearly, the GaSoliNe-LR is much more efficient compared with
the original GaSoliNe especially when the network size is large.

Figure 3: Efficiency comparison between GaSoliNe and

GaSoliNe-LR

5 RELATEDWORK

A - Graph Modification Most existing works on graph modifica-
tion assume the initially provided graph is impaired or perturbed
in a specific way. Network imputation problems restore missing
links in a partially observed graph. For example, Liben-Nowell
and Kleinberg [31] study the property of node topology proxim-
ity measures; Huisman [18] handles missing data in exponential
random graphs. Besides, knowledge graph completion is to predict
missing links between entities. The representative works include
TransE [4], TransH [50], ComplEx [42] and many more. In another
line of research, network enhancement and denoising problems
delete irrelevant links for the given graphs. Arts such as NE [46],
E-net [53], Mask-GVAE [29] study this problem under various sce-
narios. For network connectivity analysis, Chen et al. [5, 6] modify
the underlying topology to manipulate the graph connectivity. An-
other relevant line is adversarial defense, which is a response for
the attack on graph mining models. Wu et al. [52] propose to delete
edges connecting two dissimilar nodes; Entezari et al. [10] adopt the
low-rank approximation of given graphs to retain the performance
of downstreamGCNs; Jin et al. [20] merge the topology sparsity and
feature smoothness into the optimization goal. In addition, super-
vised PageRank [2, 30] and constrained spectral clustering [48] also
encode extra supervision to guide the modification of graphs. Re-
cently many graph structural learning arts [15, 49, 59] emerge such
as neural sparsification [34, 60], augmentation-based contrastive
learning [16, 40, 56, 57, 63], and many more. Zhu et al. [62] provide
a comprehensive survey about advanced arts on that.
B - Bilevel Optimization Bilevel optimization problem is a power-
ful mathematical tool with broad applications. For instance, Finn et
al. [11] formulate the learning to initialization problem in the bilevel
optimization context; Li et al. [28] propose a bilevel optimization-
based poisoning attack method for factorization-based systems.

Data Ptb Rate (%) APPNP GaSoliNe GaSoliNe-LR

Cora

0 84.0±0.4 85.2±0.2 84.4±0.3
5 74.1±0.7 77.4±0.5 75.0±0.3
10 65.2±0.4 70.8±0.5 67.9±0.9
15 58.2±1.1 67.1±0.8 65.3±0.8
20 51.7±0.7 62.5±0.5 60.2±1.2
25 47.0±0.7 57.3±0.6 57.1±0.5

Citeseer

0 71.8±0.4 74.7±0.2 73.4±0.2
5 67.6±0.9 69.6±0.7 68.2±0.8
10 61.8±0.8 66.3±1.0 63.9±0.4
15 54.1±0.8 59.3±1.1 56.8±1.1
20 51.0±1.2 56.5±0.9 55.3±0.9
25 49.4±2.2 57.7±1.8 56.5±0.8

Polblogs

0 94.1±0.6 95.3±0.6 95.7±0.3
5 70.1±0.6 73.8±0.9 93.4±0.3
10 69.8±0.8 72.8±0.4 90.8±0.2
15 67.5±0.5 70.1±1.2 88.7±0.3
20 64.1±0.9 68.5±1.0 88.0±0.3
25 57.0±3.6 64.8±2.1 89.9±0.5

Table 5: Effectiveness comparison between GaSoliNe and

GaSoliNe-LR

There are effective solutions such as the forward and reverse gradi-
ents [12], truncated back-propagation [38] and so on. In addition,
Colson et al. [8] provide a detailed review about this topic. The most
related arts to our work are [7] and [13]. Both of them aim to modify
(or generate from scratch) the given data in a bilevel optimization
context. The former studies a data debugging problem under the
collaborative filtering scenario whose lower-level problem has a
closed-form solution. The latter models every edge with a Bernoulli
random variable. As a comparison, the lower-level problem of graph
sanitation may not necessarily have a closed-form solution and we
modify the initially provided graphs deterministically with versatile
variants and broader applications.

6 CONCLUSION

In this paper, we introduce the graph sanitation problem, which
aims to improve an initially-provided graph for a given graph min-
ing model. We formulate the graph sanitation problem as a bilevel
optimization problem and show that it can be instantiated by a
variety of graph mining models such as supervised PageRank, su-
pervised clustering and node classification. We further propose an
effective solver named GaSoliNe for the graph sanitation prob-
lem with semi-supervised node classification. GaSoliNe adopts
an efficient approximation of hyper-gradient to guide the modi-
fication over the initially-provided graph. GaSoliNe is versatile,
and equipped with multiple variants. The extensive experimental
evaluations demonstrate the broad applicability and effectiveness
of the proposed GaSoliNe.
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A REPRODUCIBILITY

The code is available at https://github.com/pricexu/GASOLINE.
Three public graph datasets, Cora1, Citeseer1, and Polbolgs 2, are
used in our paper with following detailed statistics in Table 6

Data Nodes Edges Classes Features

Cora 2,485 5,069 7 1,433
Citeseer 2,110 3,668 6 3,703
Polblogs 1,222 16,714 2 N/A

Table 6: Statistics of Datasets

A.1 Hyper-Parameter Settings

We summarize the hyper-parameter settings ofmodels implemented
in our experiments including baseline methods, backbone and down-
stream classifiers of GaSoliNe:
• GCN [26]/GAT [44]/RGCN [61]: We follow the default set-
tings of publicly available implementation of GCN1, GAT3, RGCN4.
• SGC [51]: The implementation of SGC is the same as GCN [26]
but we remove the activation function of the hidden layers.
• APPNP [27]: We follow the recommended hyper-parameter
settings of APPNP [27] in the original paper.
• Jaccard [52]: We search the edge removing threshold of Jaccard
similarity from {0.01, 0.03, 0.05, 0.1, 0.3, 0.5} and report the best.
• SVD [10]: We search the rank of SVD from {10, 30, 50, 100
, 200, 300} and report the best results from the above settings.
• DE [37]: We search the dropout rate of DE over existing edges
from {0.05, 0.1, 0.15, 0.2, 0.25} and report the best results from
the above settings.
• LDS [13]: We implement LDSwith the samemodification budget
as GaSoliNe-CT.
The detailed settings of GaSoliNe are as follows: (1) for all the

modification strategies (discretized vs. continuous and topology
vs. feature), the modification budget towards topology 𝐵topo and
the modification budget towards feature 𝐵fea are introduced in
the Section 4.1. Specifically, the modification ratetopo = 0.1 and
modification ratefea = 0.001. We modify the graph in 10 steps
so the budget 𝑏 in every modification step is ⌊ 𝐵10 ⌋ (i.e., 𝑏topo =

⌊ 𝐵topo10 ⌋ and 𝑏fea = ⌊ 𝐵fea10 ⌋). (2) the settings of backbone classifiers
and downstream classifiers (GCN [26], SGC [51], APPNP [27]) used
in our experiments follow the aforementioned settings. (3) the
number of iterations for the optimization of lower-level problem 𝑇

is set as 200 and the truncating iteration 𝑃 is set as 196. The number
of folds 𝐾 is set as 8.

For the attacking methods, their attacking perturbation rates
are introduced in the Section 4.3, and here we present the detailed
implementation of them. (1) We follow the publicly-available im-
plementation5 of metattack [65] and adopt the ‘Meta-Self’ variant
to attack the provided graphs; (2) we follow [20] to select nodes
with degree larger than 10 as the target nodes and implement Net-
tack with the publicly-available implementation6; (3) we imple-
ment random attack by symmetrically flipping 𝐵attack entries of
the adjacency matrix A of provided graphs.

1https://github.com/tkipf/gcn
2https://github.com/ChandlerBang/Pro-GNN
3https://github.com/PetarV-/GAT
4https://github.com/ZW-ZHANG/RobustGCN
5https://github.com/danielzuegner/gnn-meta-attack
6https://github.com/danielzuegner/nettack

B PROOF OF LEMMA 1

Our complexity analysis is mainly based on the propagation formula
of matrix multiplication-based GNNs and only focuses on a single-
layered GNN with first order approximation of the hyper-gradient.
However, it can be easily generalized into a wide range of scenarios
(e.g., multi-layered GNNs) with similar analysis and conclusions.
For brevity, we only analyze the complexity of computing ∇UL.
The analysis w.r.t. computing ∇VL is similar and we omit here.

Proof. For typical matrix multiplication-based GNNs (e.g., [26]),
their propagation formula can be represented as X← 𝜎 (AXW) (or
even simplified by removing the nonlinear activation function𝜎 and
feature transformation matrixW between several layers [27, 51]).
If we do not consider the gradient across the model parameter (i.e.,
W) updating trajectory (i.e., first order approximation), and assume
that our GNN contains only one layer, the hyper-gradient with
respect to the vector U can be computed as follows,

∇UL = [ 𝜕L
𝜕𝜎 ((A + UV′)XW) ◦ 𝜎

′((A + UV′)XW)]W′X′V. (15)

The computation of (A + UV′)XW can be rewritten as AXW +
UV′XW. Note that A is a sparse matrix and the space cost is 𝑂 (𝑚)
for computing AXW. The space cost is 𝑂 (𝑛𝑑) for UV′XW. For
W′X′V the space cost is 𝑂 (𝑛𝑑). Put everything together the space
cost for computing ∇UL is 𝑂 (𝑚 + 𝑛𝑑).

The time complexity of the part within [·] in Eq.(15) is 𝑂 (𝑛𝑑2 +
𝑚𝑑). The time complexity of computing W′X′V is 𝑂 (𝑛𝑑𝑟 ). The
time complexity about the multiplication between [·] andW′X′V
is𝑂 (𝑛𝑑𝑟 ). Hence, put everything together the total time complexity
for computing ∇UL is 𝑂 (𝑛𝑑2 +𝑚𝑑) given 𝑟 ≪ 𝑑 . □

C CASE STUDY ABOUT THE BEHAVIOUR OF

GASOLINE

Here, we further study the potential reasons behind the success
of GaSoliNe. To this end, we conduct a case study whose core
idea is to label malicious modifications (from adversaries) and test
if GaSoliNe is able to detect them. The specific procedure is that
we utilize different kinds of attackers (i.e., metattack [65], Net-
tack [64], and random attack) to modify the graph structure of a
benign graph 𝐺 (with adjacency matrix A) into a poisoned graph
𝐺adv (with adjacency matrix Aadv). Then, we utilize the score ma-
trix S from Eq. (12) to assign a score to every entry of the poisoned
adjacency matrix Aadv. As we mentioned in Section 3, the higher
score an entry obtains, the more likely GaSoliNe will modify it.
We compute the average score of three groups of entries from Aadv:
the poisoned entries after adding/deleting perturbations from ad-
versaries, the benign existing edges without perturbation, and the
benign non-existing edges without perturbation. Remark that both
the benign graphs and the poisoned graphs are unweighted and
we define following auxiliary matrices. Adiff = |Aadv − A| is a
difference matrix whose entries with value 1 indicate poisoned
entries. Abenign-E = A ◦ (1 − Adiff) is a benign edge indicator
matrix whose entries with value 1 indicate the benign existing
edges without perturbation. ◦ indicates element-wise multiplica-
tion. Abenign-NE = (1 − A) ◦ (1 − Adiff) is a benign non-existing
edge indicator matrix whose entries with value 1 indicate the be-
nign non-existing edges without perturbation. Based on that, we
have the following three statistics:

https://github.com/pricexu/GASOLINE
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(a) metattack

(b) Nettack

(c) random attack

Figure 4: Score of various entries under metattack (a), Net-

tack (b), and random attack (c). Best viewed in color.

𝑆adv =

∑
𝑖, 𝑗 (S ◦ Adiff) [𝑖, 𝑗]∑
𝑖, 𝑗 Adiff [𝑖, 𝑗]

,

𝑆benign-E =

∑
𝑖, 𝑗 (S ◦ Abenign-E) [𝑖, 𝑗]∑
𝑖, 𝑗 Abenign-E [𝑖, 𝑗]

,

𝑆benign-NE =

∑
𝑖, 𝑗 (S ◦ Abenign-NE) [𝑖, 𝑗]∑
𝑖, 𝑗 Abenign-NE [𝑖, 𝑗]

,

which denote the average score obtained by poisoned entries, be-
nign existing edges, and benign non-existing edges.

Detailed results are presented in Figure 4. We observe that GaSo-
liNe tends to modify poisoned entries more (with higher scores)
than to modify benign unperturbed entries in the adjacency matrix
of poisoned graphs, which is consistent with our expectation and
enables the algorithm to partially recover the benign graphs and to
boost the performance of downstream classifiers.

D EFFECT OF MODIFICATION BUDGET

In this section we study the relationships between the budget
of GaSoliNe and the corresponding performance of the down-
stream classifier. Here, we instantiate two variants of GaSoliNe:
discretized modification towards topology (GaSoliNe-DT) and con-
tinuous modification towards feature (GaSoliNe-CF). The provided
graph is Cora [26] which is heavily-poisoned by metattack [65]
with perturbation rate = 25% (i.e., 𝐵). The perturbation budget
per modification step 𝑏 is set to be 𝐵

10 . Both the backbone classifier
and the downstream classifier of GaSoliNe are the APPNP [27]
models with the aforementioned settings. From Figure 5 we observe
that with the increase of the budget (modification ratetopo and
modification ratefea), GaSoliNe enjoys great potential to fur-
ther improve the performance of the downstream classifiers. At
the same time, ‘economic’ choices are strong enough to benefit
downstream classifiers so we set modification ratetopo as 0.1
and modification ratefea as 0.001 throughout our experiment
settings.

(a) GaSoliNe-DT (b) GaSoliNe-CF

Figure 5: Performance of downstream classifier vs. the mod-

ification budget of GaSoliNe-DT (a) and GaSoliNe-CF (b)

(a) update steps (b) number of folds 𝐾

Figure 6: Performance of GaSoliNe-DTCF vs. the update

steps (a) and the number of folds 𝐾 (b).

E EFFECTS OF MODIFICATION STEPS AND

NUMBER OF FOLDS

As we claimed in the main content, in implementation we set the
budget in every iteration as 𝑏 and update the given graph multi-
ple iterations till we run out of total budget 𝐵. Hence, the update
steps equals to ⌈𝐵

𝑏
⌉. Intuitively less budget per iteration can provide

finer update towards the given graphs. To validate that we test the
performance of an instantiation of GaSoliNe with discretized mod-
ification towards topology and continuous modification towards
feature (GaSoliNe-DTCF) on the Cora [26] graphwhich is poisoned
by metattack [65] with perturbation rate = 25%. Both the back-
bone classifier and the downstream classifier of GaSoliNe are the
APPNP [27] with the aforementioned settings. From Figure 6a we
observe that with more update steps downstream classifiers can get
better performance. However, when the number of steps is larger
than 20, the improvement of performance is minor.

In addition, the number of training/validation split fold 𝐾 is an-
other important hyper-parameter in our model. Intuitively larger 𝐾
leads into better usage of the given data. To study the relationships
between 𝐾 and the corresponding performance of the downstream
classifier, we implement GaSoliNe-DTCF on the original Cora
graph to verify that. Note that the modification ratetopo = 0.1,
modification ratefea = 0.001, and the number of modification
steps is set as 10. From Figure 6b we observe that performance
of the downstream classifier is improved with the increase of the
number of folds. However, such performance gaining stops when
𝐾 = 6. Hence, 𝐾 = 6 is enough to make full use of the given graph
by GaSoliNe.
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