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ABSTRACT
In today’s increasingly connected world, graph mining plays a piv-
otal role in many real-world application domains, including social
network analysis, recommendations, marketing and financial secu-
rity. Tremendous efforts have been made to develop a wide range
of computational models. However, recent studies have revealed
that many widely-applied graph mining models could suffer from
potential discrimination. Fairness on graph mining aims to develop
strategies in order to mitigate bias introduced/amplified during the
mining process. The unique challenges of enforcing fairness on
graph mining include (1) theoretical challenge on non-IID nature
of graph data, which may invalidate the basic assumption behind
many existing studies in fair machine learning, and (2) algorith-
mic challenge on the dilemma of balancing model accuracy and
fairness. This tutorial aims to (1) present a comprehensive review
of state-of-the-art techniques in fairness on graph mining and (2)
identify the open challenges and future trends. In particular, we
start with reviewing the background, problem definitions, unique
challenges and related problems; then we will focus on an in-depth
overview of (1) recent techniques in enforcing group fairness, indi-
vidual fairness and other fairness notions in the context of graph
mining, and (2) future directions in studying algorithmic fairness on
graphs. We believe this tutorial could be attractive to researchers
and practitioners in areas including data mining, artificial intel-
ligence, social science and beneficial to a plethora of real-world
application domains.
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1 INTENDED AUDIENCE
The tutorial is designed for all researchers and practitioners in
data mining, artificial intelligence, social science, as well as related
areas. The audiences are assumed to have the basic knowledge on
probability, linear algebra and machine learning. However, no prior
knowledge on specific algorithms is required. This tutorial aims
to achieve a good balance between the introductory and advanced
materials. It is designed for 40% novice, 30% intermediate, 30%
expert.
2 LENGTH OF TUTORIAL
The length of the tutorials will be half day, i.e., 3 hours plus breaks.

3 PRESENTER BIOGRAPHY
The presenters and contributors of this tutorial include Jian Kang
and Hanghang Tong. Their biographies and expertises are listed
here.

Jian Kang. He is currently a Ph.D. student in the Department of
Computer Science at the University of Illinois at Urbana-Champaign.
Prior to that, he was a Ph.D. student in the School of Computing,
Informatics, and Decision Systems Engineering at Arizona State
University. He received his M.CS. degree in Computer Science from
the University of Virginia in 2016 and B.Eng. degree in Telecommu-
nication Engineering from Beijing University of Posts and Telecom-
munications in 2014. His current research interests lie in large-scale
data mining and machine learning, especially on graphs, with a fo-
cus on their algorithmic fairness. His research works on related top-
ics have been published at several major conferences and journals in
data mining and machine learning. He has also served as a reviewer
and a program committee member in top-tier data mining and arti-
ficial intelligence venues and journals (e.g., NeurIPS, ICML, ICLR,
CIKM, WSDM, JMLR, TKDE, etc). For more information, please
refer to his personal website at http://jiank2.web.illinois.edu/.

Hanghang Tong. He is currently an associate professor at De-
partment of Computer Science at University of Illinois at Urbana-
Champaign. Before that he was an associate professor at School
of Computing, Informatics, and Decision Systems Engineering
(CIDSE), Arizona State University. He received his M.Sc. and Ph.D.
degrees from Carnegie Mellon University in 2008 and 2009, both
in Machine Learning. His research interest is in large scale data
mining for graphs and multimedia. He has received several awards,
including SDM/IBM Early Career Data Mining Research award
(2018), NSF CAREER award (2017), ICDM 10-Year Highest Impact
Paper award (2015), four best paper awards (TUP’14, CIKM’12,
SDM’08, ICDM’06), seven ’bests of conference’, 1 best demo, hon-
orable mention (SIGMOD’17), and 1 best demo candidate, sec-
ond place (CIKM’17). He has published over 200 refereed arti-
cles. He is the Editor-in-Chief of SIGKDD Explorations (ACM),
and an associate editor of Knowledge and Information Systems
(Springer) and Computing Surveys (ACM); and has served as a
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program committee member in multiple data mining, database
and artificial intelligence venues (e.g., SIGKDD, CIKM, SIGMOD,
AAAI, WWW, etc.). He has given several tutorials at top-tier con-
ferences, such as IEEE Big Data 2015, SDM 2016, WSDM 2018,
KDD 2018, CIKM 2020 (https://sites.google.com/view/cikm2020-
tutorial-netalign/home), etc. For more information, please refere to
his personal website at http://tonghanghang.org/.

4 OUTLINE OF TUTORIAL
• Introduction
– Background and motivations
– Problem definitions and settings
– Key challenges
– Related problems

• Part I: Group Fairness on Graphs
– Fair graph ranking
– Fair graph clustering
– Fair graph embedding

• Part II: Individual Fairness on Graphs
– Optimization-based methods
– Ranking-based methods

• Part III: Beyond Group Fairness and Individual Fairness on
Graphs
– Rawlsian fairness
– Degree-related fairness
– Counterfactual fairness

• Part IV: Open Challenges and Future Directions
– Fairness on dynamic graphs
– Fairness on multi-network mining
– Multi-resolution fairness on graphs
– Connections between group fairness and individual fair-
ness on graphs

5 DESCRIPTION OF TOPICS
5.1 Introduction
In this part, we start with the background and motivations of study-
ing algorithmic fairness on graphs. Then we provide an overview
of existing problem definitions and settings, along with the key
challenges in solving algorithmic fairness problems in the con-
text of graph mining. Finally, we briefly review problems that are
closely related to fairness on graphs, including auditing [15, 31, 34],
adversarial attack [7, 37, 38], privacy preservation [8, 30, 36], etc.

5.2 Part I: Group Fairness on Graphs
In this part, we will present the state-of-the-art techniques on en-
forcing grouping fairness on graph mining algorithms, which aims
to achieve fairness among nodes of different demographic groups.
We categorize the problem into the following scenarios. (1) Graph
ranking is a fundamental task in graph mining that aims to measure
importance of nodes in graph or proximity of nodes w.r.t. a query
node. Group fairness on ranking aims to ensure that nodes in differ-
ent demographic groups enjoy similar average rank or stationary
probability mass. Representative works include [18, 29]. It should
be noted that we will focus on graph-based ranking algorithms
for link analysis (e.g., PageRank), instead of other commonly-used
ranking methods (e.g., learning to rank). (2) Graph clustering aims
to divide nodes into several clusters so that nodes within the same

cluster are similar to each other. Group fairness on graph clus-
tering aims to ensure nodes in the same demographic groups are
evenly distributed among the clusters [17]. (3) Graph embedding
attracts much research attention in recent years, which targets for
learning high-dimensional latent representation for nodes. A node
embedding satisfies group fairness if a balanced performance is
achieved on downstream task(s) (e.g., node classification, link pre-
diction) when using the embedding. Various methods have been
proposed in this direction, including adversarial learning based ap-
proaches [2, 3, 6, 12, 21, 33], bayesian based approach [4], statistical
based approaches [5, 16, 19, 23, 27, 35] and others [20, 22].
5.3 Part II: Individual Fairness on Graphs
In this part, we review recent efforts in enforcing individual fair-
ness on graphs by following the principle of ‘similar nodes receive
similar algorithmic outcomes’. Existing methods in individually
fair graph mining can be classified as (1) optimization-based ap-
proaches [13, 14, 19] which applies the Laplacian regularization on
the mining results w.r.t. the graph Laplacian of node-node simi-
larity matrix, and (2) ranking-based approach [9] which leverages
learning-to-rank to calibrate the inconsistency between input space
and output space in Laplacian regularization.
5.4 Part III: Beyond Group and Individual

Fairness on Graphs
In this part, we will introduce three fairness notions other than ex-
tensively studied group fairness and individual fairness, and present
how they are applied in fair graph learning. These notions include:
(1) rawlsian fairness, which is a fairness notion originated in John
Rawls’ theory of distributive justice [26] and has been applied
to guarantee fairness on influence maximization [10, 11, 24, 25]
(2) degree-related fairness, which promises that nodes of different
degrees will have comparable performance on downstream tasks
(e.g., node classification) [28, 32], and (3) counterfactual fairness,
where the learning outcomes are counterfactually fair w.r.t. sen-
sitive attribute (i.e., being independent to the value of sensitive
attribute) [1].
5.5 Part IV: Future Directions
In this part, we will point out open challenges in this field and
share our thoughts regarding the future directions about fairness
on graphs, including (1) fairness on dynamic graphs where bias
mitigation algorithms can be developed to track the change in
bias measurement and mitigate the bias efficiently in a dynamic
environment, (2) fairness on multi-network mining where fairness
should be guaranteed onmulti-sourced networks instead of existing
works on single network only, (3)multi-resolution fairness on graphs
where a debias algorithm that applies on a coarse granularity (e.g., a
subgraph) can also help mitigate the bias in a finer granularity (e.g.,
a subgraph within a subgraph), or vice versa, and (4) connections
between group fairness and individual fairness on graphs where new
theoretical analysis is needed to understand to what extent group
fairness and individual fairness can be ensured simultaneously with
certain condition(s).
6 COVEREDWORKS
Due to the space limit, we only list some most relevant papers.
Note that the following is not an exhaustive list of papers that are
relevant to the topic.
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• Part I: Group Fairness on Graphs
– Graph ranking

∗ Sotiris Tsioutsiouliklis, Evaggelia Pitoura, Panayiotis
Tsaparas, Ilias Kleftakis, and Nikos Mamoulis. 2021.
Fairness-Aware PageRank. In Proceedings of the Web
Conference 2021. 3815–3826

– Graph clustering
∗ Matthäus Kleindessner, Samira Samadi, Pranjal Awasthi,
and Jamie Morgenstern. 2019. Guarantees for spectral
clustering with fairness constraints. In International
Conference on Machine Learning. PMLR, 3458–3467.

– Graph embedding
∗ Avishek Bose and William Hamilton. 2019. Composi-
tional fairness constraints for graph embeddings. In
International Conference on Machine Learning. PMLR,
715–724.

∗ Maarten Buyl and Tijl De Bie. 2020. DeBayes: a Bayesian
method for debiasing network embeddings. In Interna-
tional Conference onMachine Learning. PMLR, 1220–1229.

∗ Tahleen A Rahman, Bartlomiej Surma, Michael Backes,
and Yang Zhang. 2019. Fairwalk: Towards Fair Graph
Embedding. In IJCAI. 3289–3295.

• Part II: Individual Fairness on Graphs
– Optimization based method

∗ Jian Kang, Jingrui He, Ross Maciejewski, and Hang-
hang Tong. 2020. InFoRM: Individual Fairness on Graph
Mining. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery &DataMining.
379–389.

– Ranking based method
∗ Yushun Dong, Jian Kang, Hanghang Tong, and Jundong
Li. 2021. Individual Fairness for Graph Neural Networks:
A Ranking based Approach. In Proceedings of the 27th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining.

• Part III: Beyond Group Fairness and Individual Fairness on
Graphs
– Rawlsian fairness

∗ Aida Rahmattalabi, Shahin Jabbari, Himabindu Lakkaraju,
Phebe Vayanos, Max Izenberg, Ryan Brown, Eric Rice,
and Milind Tambe. 2021. Fair Influence Maximization: a
Welfare Optimization Approach. In Proceedings of the
AAAI Conference on Artificial Intelligence. 11630–11638.

– Degree-related fairness
∗ Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jil-
iang Tang, CharuAggarwal, PrasenjitMitra, and Suhang
Wang. 2020. Investigating andMitigatingDegree-Related
Biases in Graph Convoltuional Networks. In Proceedings
of the 29th ACM International Conference on Information
& Knowledge Management. 1435–1444.

– Counterfactual fairness
∗ Chirag Agarwal, Himabindu Lakkaraju, and Marinka
Zitnik. 2021. Towards a Unified Framework for Fair and
Stable Graph Representation Learning. arXiv preprint
arXiv:2102.13186 (2021)

7 RELATED TUTORIALS
The following list includes most relevant tutorials that will be or
have been presented in other prominent data mining and machine
learning conferences, as well as the similarities and differences
compared with ours.

• Fairness in Networks
– Presenters: Sorelle Friedler, Carlos Scheidegger, Suresh
Venkatasubramanian, Aaron Clauset

– Conference: KDD, Aug 14 - 18, 2021, Virtual Conference
– Connection: Both tutorials aim to introduce recent ad-
vances in algorithmic fairness on graphs.

– Difference: The related tutorial mainly focuses on algo-
rithmic fairness in information access and influence maxi-
mization, whereas our tutorial present fairness on graphs
in a much broader scope. Our tutorial differs the related
tutorial in two aspects: (1) we review about a variety of
fundamental fairness notions including group fairness,
individual fairness, Rawlsian fairness, degree-related fair-
ness and counterfactual fairness; (2) we present research
works on a wide range of graph mining problems includ-
ing not only influence maximization but also many other
fundamental tasks like ranking, clustering, representation
learning and classification.

• NetworkAlignment: RecentAdvances and FutureTrends
– Presenters: Si Zhang, Hanghang Tong
– Conference: CIKM, Oct 19 – 23, 2020, Virtual Conference
– Connection: Both tutorials aim to present recent advances
in graph mining.

– Difference: Our tutorial focuses on algorithmic fairness
on graphs, which is a totally different topic compared with
the related tutorial on network alignment.

• Fairness in Unsupervised Learning
– Presenters: Deepak S. Padmanabhan, Joemon M. Jose,
Sanil Viswanathan Nair

– Conference: CIKM, Oct 19 – 23, 2020, Virtual Conference
– Connection: Both tutorials aim to introduce recent ad-
vances in algorithmic fairness.

– Difference: The related tutorial presents studies on fair-
ness of unsupervised learning in IID data, whereas our
tutorial is specifically focused on algorithmic fairness on
graphs and covers both supervised learning and unsuper-
vised learning on non-IID graph data.

• Representation Learning and Fairness
– Presenters: Moustapha Cisse, Sanmi Koyejo
– Conference: NeurIPS, Dec 8 - 14, 2019, Vancouver, Canada
– Connection: Both tutorials aim to introduce recent ad-
vances in algorithmic fairness.

– Difference: The related tutorial focuses on the intersec-
tion of representation learning and algorithmic fairness
in IID data, whereas our tutorial focuses on algorithmic
fairness in non-IID graph data.

• Defining and Designing Fair Algorithms
– Presenters: Sam Corbett-Davies, Sharad Goel
– Conference: ICML, Jul 10 - 15, 2018, Stockholm, Sweden
– Connection: Both tutorials aim to introduce recent ad-
vances in algorithmic fairness.



– Difference: The related tutorial reviews intrinsic limi-
tations of existing fairness notions in machine learning
and sheds light on designing fair algorithms with ideas
from economics and legal theory, whereas our tutorial
focuses on review state-of-the-art techniques about en-
forcing a wide range of fairness notions on graph mining
algorithms.

• Fairness in Machine Learning
– Presenters: Solon Barocas, Moritz Hardt
– Conference: NeurIPS, Dec 4 - 9, 2017, Long Beach, CA,
USA

– Connection: Both tutorials aim to introduce recent ad-
vances in algorithmic fairness.

– Difference: The related tutorial mainly focuses on group
fairness and counterfactual fairness in traditional machine
learning with IID data, whereas our tutorial focuses on
algorithmic fairness on graphs, including group fairness,
individual fairness and other fairness notions like Rawl-
sian fairness, counterfactual fairness.
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