
The Future of FPGA Acceleration in Datacenters and the
Cloud

CHRISTOPHE BOBDA, JOEL MANDEBI MBONGUE, University of Florida
PAUL CHOW, MOHAMMAD EWAIS, NAIF TARAFDAR,JUAN CAMILO VEGA, University
of Toronto
KEN EGURO, Microsoft
DIRK KOCH, Manchester University
SURANGA HANDAGALA, MIRIAM LEESER, Northeastern University
MARTIN HERBORDT, HAFSAH SHAHZAD, Boston University
PETER HOFSTE, IBM POWER Systems Performance
BURKHARD RINGLEIN, IBM Research Europe
JAKUB SZEFER, Yale University
AHMED SANAULLAH, Red Hat, Inc
RUSSELL TESSIER, University of Massachusetts Amherst

In this manuscript, we survey existing academic and commercial efforts to provide Field-Programmable Gate
Array (FPGA) acceleration in datacenters and the cloud. The goal is a critical review of existing systems
and a discussion of their evolution from single workstations with PCI-attached FPGAs in the early days of
reconfigurable computing to the integration of FPGA farms in large-scale computing infrastructures. From the
lessons learned, we discuss the future of FPGAs in datacenters and the cloud and assess the challenges likely
to be encountered along the way. The manuscript explores current architectures and discusses scalability and
abstractions supported by operating systems, middleware and virtualization. Hardware and software security
becomes critical when infrastructure is shared among tenants with disparate backgrounds. We review the
vulnerabilities of current systems and possible attack scenarios, and discuss mitigation strategies, some of
which impact FPGA architecture and technology. The viability of these architectures for popular applications is
reviewed, with a particular focus on deep learning and scientific computing. This work draws from workshop
discussions, panel sessions including the participation of experts in the reconfigurable computing field, and
private discussions among these experts. These interactions have harmonized the terminology, taxonomy and
the important topics covered in this manuscript.

CCS Concepts: •Hardware→ Reconfigurable logic and FPGAs; • Computer systems organization→
Cloud computing; • Security and privacy → Systems security.

Additional Key Words and Phrases: Cloud, Datacenter, FPGA, Virtualization, Security

Authors’ addresses: Christophe Bobda, Joel Mandebi MbongueUniversity of Florida; Paul Chow, Mohammad Ewais, Naif
Tarafdar,Juan Camilo VegaUniversity of Toronto; Ken EguroMicrosoft; Dirk KochManchester University; Suranga Handagala,
Miriam LeeserNortheastern University; Martin Herbordt, Hafsah ShahzadBoston University; Peter HofsteIBM POWER
Systems Performance; Burkhard RingleinIBM Research Europe; Jakub SzeferYale University; Ahmed SanaullahRed Hat, Inc;
Russell TessierUniversity of Massachusetts Amherst.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1936-7406/2022/2-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


2

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier
ACM Reference Format:
Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega,
Ken Eguro, Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste,
Burkhard Ringlein, Jakub Szefer, Ahmed Sanaullah, and Russell Tessier. 2022. The Future of FPGA Acceleration
in Datacenters and the Cloud. ACM Trans. Reconfig. Technol. Syst. 1, 1 (February 2022), 44 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Since Microsoft published their work on Catapult in 2014 [183], Field-Programmable Gate Arrays
(FPGAs) have become more than an exotic and niche technology that can only be tamed by the
magicians of hardware.Major players such as Alibaba [35, 63], Amazon [22], Baidu [36], Huawei [53],
and Tencent [46] now expose FPGAs to application developers in their datacenter infrastructures.
Others use FPGAs to provide applications as a service (Microsoft [83] and Nimbix [43]) or for
internally-developed applications. Furthermore, a growing number of projects are underway across
the globe, in academia and other research organizations, to provide the benefit of acceleration and
flexibility remotely to users. While FPGAs are increasingly available in datacenters, their long-term
adoption in these venues is not guaranteed. Several technologies must be provided for FPGAs to
compete with their peers – central processing units (CPUs), graphics processing units (GPUs) – and
the flood of artificial intelligence (AI) specific processors currently deployed and in development.
Architecture and integration at the board and the system level must ensure that applications

harness the strengths of reconfiguration and mitigate its weaknesses. The provisioning of hardware
resources requires adequate middleware, hardware virtualization, and domain separation mecha-
nisms. Efficient and flexible hardware resource provisioning increases the possibility of seamless
integration, ideally with no redesign, in existing cloud management infrastructure. The spatial
sharing of FPGAs increases the complexity of cloud schedulers and resource managers. Fortunately,
the large body of work developed in the last decade can be leveraged in cloud task schedulers
currently in use in datacenters, such as the list-scheduling used in Amazon cloud[1].

With multiple users temporally or spatially sharing FPGAs in datacenters, the security of designs
must be guaranteed. It has recently been demonstrated that FPGAs can be used covertly for various
types of cybersecurity attacks in the cloud [186, 187, 218, 219]. Mitigation strategies have been
proposed [144, 181] and many more are currently in development. However, despite all best efforts,
current FPGA architectures may still be resistant to protection against cloud-based attacks.
Without applications, any architecture incorporating FPGAs will be of no use. Programming

languages and high-level design environments as well as efficient hardware/software mapping
strategies are necessary to facilitate the transition for software engineers. In this manuscript,
experts from academia and industry evaluate the road previously traveled, and the successes and
failures of current solutions. We open a window on the future of FPGA-accelerated datacenters,
identify opportunities and challenges, and discuss the path to success and broad adoption of FPGA
technology for computing.
The remainder of the paper is organized as follows. The next section briefly describes the

landscape of FPGA use in cloud infrastructure. A taxonomy of FPGA architecture integration is
provided in Section 3 followed by a detailed discussion of current architectural development and
trends. The integration of FPGA resources into operating systems (OS) and software is discussed in
Section 4. Topics include shell interfaces, middleware, and virtualization. In Section 5, we explore
challenges in hardware and system security in single-user (tenant) and multi-tenant cloud compute
environments. A critical review of current FPGA architecture is provided and suggestions to
increase resiliency are offered. In Section 6, we review applications that can benefit from cloud
implementation. Deep learning is the main candidate, but image processing, sorting, and database

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


The Future of FPGA Acceleration in Datacenters and the Cloud 3

operations can also benefit. We conclude the paper in Section 7 with a summary of the opportunities
and challenges of the paradigms discussed.

2 THE LANDSCAPE
After decades of single-thread driven performance growth for computing platforms, followed by
more than a decade where the majority of performance growth resulted from increases in the
numbers of hardware threads, we have now entered a period where the majority of hardware-
based computational performance growth is expected to come from specializing hardware [108,
127, 196]. The most power-constrained platforms, such as cell phones, already have multiple
types of specialized processing elements including GPUs, neural processors, and specialized signal
processing, media, and security engines. While some think of ARM [33] as an architecture that
has instruction set architecture (ISA)-driven efficiency, the main reason ARM is gaining traction
beyond cell phones and embedded devices is that ARM provides a system-on-chip (SoC) ecosystem
that is thus far unmatched [111], enabling the rapid construction of more specialized and efficient
SoCs.

One of the earliest successes in using FPGAs in the cloud was the Catapult project at Microsoft
being used for Bing searches [183]. This is an example of “provider application as a service” where
the user is not aware that FPGAs are being used to accelerate their applications. Subsequently
Microsoft provided acceleration for Azure customers by offloading machine learning and host
networking to hardware [105]. In the last few years, FPGAs in the cloud have been used for a
variety of different applications, see Section 6, including the acceleration of networking, privacy
and security, and machine learning and data analytics. As processing becomes more heterogeneous,
FPGAs stand out as accelerators that can process data directly from the network and provide
benefits to users with or without their knowledge. Thus their use is likely to grow dramatically in
the future.
Of course, specialization is challenging primarily because it intrinsically trades off flexibility

for efficiency, primarily measured in reduced chip area and improved energy per computation
at equivalent performance. This approach requires allocating hardware resources to the “right”
priorities for the platform and also requires ensuring that the platform comes with a software
development and runtime ecosystem that ensures the specialized elements are used to a sufficient
degree to justify allocating the resources to these specialized rather than general-purpose functions.
Platforms that provide more extensive and prescriptive application development environments will
be in the lead in providing such specialization.
To date, most cloud providers have focused on more general-purpose platforms, renting out

standardized scalable infrastructure. Offerings are primarily differentiated on the number of (virtual)
cores, and the amount of memory and network bandwidth per CPU and storage. Offerings with
more specialized hardware, primarily GPUs, are mostly separate specialized offerings, e.g., for
high-performance computing (HPC), rather than elements that provide the broad underpinnings of
a cloud platform architecture.

A number of cloud providers have started to use specialized hardware (including FPGAs) [22, 35,
36, 43, 46, 53, 83] and even started to develop their own SoCs [108, 196] rather than rely on vendor
silicon, which opens the door to increased hardware-based platform differentiation. It is envisioned
that as cloud infrastructure progresses from infrastructure as a service (IaaS) to virtualized platforms
and then to microservices and function as a service (FaaS), cloud computing may also provide the
software ecosystems that enable the increased introduction of specialized hardware.
In the creation of specialized hardware, reconfigurable logic occupies an interesting middle

ground. Reconfigurable logic can be leveraged to create a wider set of specialized computational

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



4

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

elements from the same hardware that each can outperform and improve efficiency over a general-
purpose processor for a specific task or set of tasks. Many systems combine reconfigurable offerings
with highly flexible I/O, allowing a very large number of system configurations. At the same time,
for any fixed configuration of the FPGA supporting a fixed set of tasks, hardware that is not (as)
reconfigurable can be implemented significantly more efficiently.
Even if reconfigurable logic becomes ubiquitous, it still may not be programmed by a wide

audience. This does not necessarily mean the logic is not regularly reprogrammed. The logic
configuration is provided by the system vendor or cloud provider, and not by independent software
vendors or end users. There are a number of well-known reasons for this: the difficulty of providing
and maintaining a software ecosystem, difficulty of ensuring system integrity, difficulty of ensuring
security, and the skills required to program the logic.
Before delving more into considerations specific to the deployment of reconfigurable logic

in clouds and datacenters, we take stock of some of the different ways in which reconfigurable
logic can be deployed and introduce some of the challenges within these contexts. Perhaps the
tightest way to integrate reconfigurable logic in a processor is to use it as a reprogrammable
execution unit sharing a register file with the remainder of the core. While not a common use of
reconfigurable logic today, contemplating such a use illustrates some of the challenges. For example,
a unit could be configured to implement new instructions before they are directly supported in
custom hardware. In this case the software ecosystem is essentially the same as for any other new
(set of) instruction(s). A more ambitious step would be to allow reprogramming and changing of
the performance profile but not the set of supported instructions. This approach requires a much
more complex software ecosystem, as compilers tend to be highly tuned to performance specifics.
This approach is also likely to require OS-level coordination, as schedulers would likely have to
become aware of these profile changes to ensure the right tasks are scheduled to the processors
with the appropriate performance profile. A next step might include support for different profiles
with different (vendor-defined) sets of instructions. This step now puts an even larger burden on
the software ecosystem but still leaves the responsibility with the hardware vendor. A final step
would be to allow cloud provider or end-user reprogramming of the embedded reconfigurable
logic to create user-defined instructions. Architectures such as RISC-V [8] and OpenPOWER [7]
explicitly allow for the introduction of implementation-specific instructions. It is not difficult to
contemplate a cloud-specific use of such a capability, for example to improve the performance of a
specific encryption or decryption algorithm that does not already have direct hardware support.

A first approach might be to treat a processor with a customer-specific instruction as a customer-
specific processor to be verified in its entirety by the customer as if they had built a new processor
with a customer-specific instruction. Such an approach might not be satisfactory, but with cloud
providers now building their own SoCs it is perhaps not unrealistic. Beyond the software ecosystem
and system functionality, system integrity and system security are also issues, even for this very
restricted way of introducing reprogrammable functions. For example, one will want to ensure that
reprogramming cannot result in physical damage to the system or affect reliability. The issue is
not far-fetched, as FPGAs can be configured with collections of ring oscillators with local power
densities that exceed normal design constraints [181]. Security could also be a concern, as one would
have to be very careful that a custom execution unit does not observe (and store) any information
from another user context or a context at a different privilege level. Clearly, much work remains
before general-purpose user-reprogramming of a reconfigurable unit integrated at this level can be
commonplace.

Next, we consider a reconfigurable unit that shares memory with other processors in the system,
either physically integrated in the same chip or on the same module or provided separately. Bus
protocols range from architecture-specific (QPI or UPI for example) to open standards such as

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 5

OpenCAPI [174], AXI [32], CCIX [206] and CXL [92]. Standards at the protocol level have to
be accompanied by software standards at the system level. One common approach is for the
native OS (or hypervisor) to retain control over system resources and manage memory access to
shared memory. This provides a clear foundation for system organization, scheduling and security,
as it can build on the knowledge from other systems with heterogeneous processing elements.
However, there are special considerations for processing elements built from reconfigurable logic.
To maintain system integrity, the address translation and/or bus interface units typically must
remain the responsibility of the processor or system vendor to ensure the accelerator operates in a
virtual (effective) address space instead of having physical addressing capabilities. This goal can be
achieved if the interfaces to the reconfigurable logic operate in a virtual (effective) address space,
or any reconfigurable logic provided by someone not responsible for the physical infrastructure
is combined (and verified to be combined) with logic that is. This can also raise an issue of trust.
For example, if the only way to guarantee integrity is to allow the system provider to do extensive
checking of the logic during the build process, an end user or independent software vendor who
wants to differentiate based on the reconfigurable logic they provide may be forced to expose that
logic to the system provider.
Another level is integration as a device, either for computational acceleration or to enhance

network or storage capabilities. A standard device does not have access to all system resources, and
it is easier to delineate the responsibilities. CXL supports device and shared memory accelerators
by providing a variety of protocol profiles. A typical use of reconfigurable logic in this context
might be the creation of “smart” storage or network devices, providing functions like security, data
compression or decompression or filtering. Smart networking or smart storage devices that allow
the combination of user-created reconfigurable logic within a network or storage controller do
again raise a set of concerns that must be addressed.

Finally, perhaps the most ambitious approach would be to develop a datacenter that consists of
(essentially) only FPGAs. Such an approach is made easier because FPGAs integrate increasingly
powerful CPU cores, (stacked) DRAM memory, and high-speed I/O. The software foundation for
such an infrastructure would build on the conventional notions underpinning conventional system
design.

3 FPGA CLOUD ARCHITECTURES
The computational capability and flexibility of a reconfigurable fabric, coupled with the performance
of ASICs for high speed I/O (e.g., SERDES units), allows FPGA-based systems to be deployed almost
anywhere in the cloud to accelerate compute, networking and storage. An example of this versatility
is illustrated in Figure 1, which shows two common, contrasting deployment models. However,
while the potential for arbitrary deployment certainly exists, FPGAs cannot be randomly placed as
part of any cloud infrastructure. The need for cost-effectiveness leads to an emphasis on size, power,
cooling, compatibility, and in-place upgradability - all while ensuring that the specific performance,
memory, server capability, and network connectivity needs of cloud workloads are met. Thus, based
on a system’s requirements, certain types of cloud FPGA architectures can have substantially more
benefit than others.
This section discusses architectural choices for the integration of FPGAs into cloud computing

infrastructures. Current architectures in use in academia and industry have distinctive characteris-
tics, the most important of which are listed below, that have helped shape them over the past two
decades.

• Very large scale, with (potentially) millions of nodes
• Mature, having evolved through many generations

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



6

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

• Highly competitive, with several vendors offering similar products, yet with high value in
differentiation

• Diverse evolving workloads, but with some emerging high performance applications
• System upgrades are always partial placing a premium on compatibility through several
generations

• Heterogeneity, with different sets of nodes for different types of users
The Architectural Perspectives

36

CPU

FPGA

CPU

FPGA

CPU

FPGA

CPU

FPGA

CPU

FPGA

CPU

CPU

CPU

FPGA FPGA
FPGA

Accelerator Peers
- Most everybody today - Microsoft, UofT
(a) Accelerator Model

The Architectural Perspectives

36

CPU

FPGA

CPU

FPGA

CPU

FPGA

CPU

FPGA

CPU

FPGA

CPU

CPU

CPU

FPGA FPGA
FPGA

Accelerator Peers
- Most everybody today - Microsoft, UofT

(b) Peer Model

Fig. 1. Example FPGA placement in datacenters

We hypothesize that future organizations
will only slightly evolve from existing architec-
tures, depending on the devices and integration
technology. A radical break is not expected. In
the next subsection, we begin with a taxonomy
of system organizations, followed by a review
and discussion of existing architectures.

3.1 Taxonomy
This subsection presents a set of high level
attributes that define cloud FPGA systems.
These taxonomic categories provide an effec-
tive means to not only analyse the relationships
between design choices and system constraints;
but also to describe and compare different cloud FPGA architectures. We continue with an overview
of mainstream FPGA cloud systems, both in production and research, and conclude by analysing
architectural trends in these systems in the context of the proposed taxonomy.
The taxonomy is based on the critical aspects of any cloud FPGA system: A) Type of FPGA

boards, B) Placement of FPGAs in the system, C) Network Connectivity, D) Intra-node
Connectivity, and E) Use Cases. Note that these taxonomic categories are neither mutually
exclusive nor comprehensive: it is possible for system to have multiple sub-categories, and for new
sub-categories to be added later to encapsulate future innovation.
Figure 2 illustrates common architectures. These architectures, and a sample benefit, are as

follows:
(1) Bump-in-the-Wire: Large scale compute, network and storage acceleration
(2) Co Processor: Local compute acceleration
(3) Storage attached: Local storage acceleration
(4) Back-end: Ultra low latency, rack scale FPGA-FPGA communication
(5) Smart NIC: Local network acceleration
(6) Network HW: Flexible routing/switching protocols
(7) Local Cluster:Multi-accelerator system
(8) Shared Memory: Cache coherent acceleration
(9) Disaggregated: High infrastructure utilization

3.1.1 Type of FPGA boards. Given that cloud providers do not currently create their own FPGAs,
the smallest unit of differentiation is the FPGA board; both a) Off-the-shelf and b) Custom are
possible. Economic advantages depend on the scale of deployment and provider development
infrastructure. Given the latter, custom boards still have higher start-up and upgrade costs, but
may be cheaper in large quantities. But the advantage of scale also affects off-the-shelf economics
as the provider has the market power to affect price and board features.

With custom FPGAboards, just about any attribute can be varied, such as number/types/bandwidths
of I/O ports, FPGA family, off-chip memory type and size, form factor, and other on-board devices.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 7

Fig. 2. Common FPGA architectures. Note that Accelerator Model and Peer Model from Figure 1b are
illustrated here as Co Processor and Disaggregated, respectively

This ensures that the boards closely match the specifications/requirements of the target system,
from computation to cooling. None-the-less, off-the-shelf boards are available for every (currently)
sizable usage domain, including SoCs [42, 49], node-level networking [61, 62, 65, 132, 165, 169, 202],
NoCs [26], data center switches [40, 41, 171, 198] and storage [37, 45, 48, 56, 98].

3.1.2 Placement of FPGAs. FPGAs can be placed in either a a) distributed or b) centralized
manner. Having a distributed FPGA placement means that compute/storage nodes have their own
FPGAs, and thus do not have to compete for the resource. This leads to more offload capability,
greater reliability since FPGA failure does not affect other compute/storage nodes, and reduces
security concerns since offloads for different nodes can be isolated. It is also possible to place FPGAs
in a centralized manner, typically inside the networking nodes (e.g. in switches as ASIC-FPGA,
CPU-FPGA, or FPGA only circuits). Substantially fewer FPGAs are needed for such a deployment;
this typically translates to easier management, lower power consumption, lower total cost of
ownership (TCO), smaller average node sizes, and potentially higher performance since expensive
high-end FPGAs can be used (and upgraded more frequently).

3.1.3 Network connectivity. Within each node, it is possible for FPGAs to be a) not connected to
any network or connected to b) the primary network and/or c) a secondary network. Being
connected to the primary data center network enables FPGAs to intercept/accelerate network traffic
to the node, as well as achieve data-center-wide scalability for FPGA workloads since multiple
FPGAs can directly communicate with each other. However, the circuitry needed to support this
FPGA position can consume a significant portion of FPGA resources. This includes circuits to
support high resiliency since the FPGAs can be a single point-of-failure: an entire node can become
unstable in the case of an FPGA error. In the case of secondary network connectivity, FPGAs can
communicate across nodes with significantly more flexibility in the topology used (e.g. mesh, torus,
switched), as well as the communication protocol, all of which can lead to ultra low latencies.
However, using a custom network configuration means that complex router hardware, routing
algorithms, and switch arbitration policies may need to be implemented on each FPGA. Moreover,

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



8

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

complex cabling may be required, which can add a significant burden to the overall data center
architecture [83].

3.1.4 Intra-node connectivity. FPGAs within a node can be a) not connected to any other signif-
icant device (i.e., be a Disaggregated resource) or connected to one or more devices: b) connected
to CPUs, e.g., through PCIe and possibly with cache coherence using interconnects such as CCIX
[206], CXL [92], or CAPI [174]; c) connected to other FPGAs, e.g. through a PCIe switch and/or
using direct and programmable interconnects; d) connected to GPUs, e.g. through a PCIe switch;
e) connected to ASICs, e.g., through multiple potential forms of connectivity depending on the
ASIC and nature of coupling such as a NIC or tensor processor; f) connected to storage devices
through the device-specific interface, e.g., SPI for flash and DDR for SDRAM.

3.1.5 Use cases. Use cases have a substantial impact on architecture, since cloud providers must
ensure workload requirements are met (e.g., performance) without compromising on core aspects
(e.g., security, reliability). Here we look at some common cloud FPGA use cases. a) Customer
applications: Customers can develop, simulate, debug and compile their custom FPGA logic, as
well as scale their infrastructure and change resources according to their workload demands. A
wide pool of applications can be deployed, e.g., in genomics, financial analytics, computational
fluid dynamics, video processing, transcoding, and security. Several development environments are
available so users do not need to write their own HDL code [69]. b) Provider Application as a
Service (AaaS): The cloud provider supports a limited set of customer applications by developing
the FPGA design themselves: only the necessary APIs and high level design parameters are exposed.
This model ensures high performance and resilience at the expense of reducing customer access to
the entire FPGA. c) Provider applications: In this case cloud providers use FPGAs to accelerate
their internal workloads, e.g., software defined networking (SDN), as well as save CPU resources
that can then be rented to the customer.

3.2 Production Architectures
In this subsection we discuss what can be referred to as core or mainstream production cloud FPGA
systems that are either in widespread or large-scale use.
Perhaps the most unique and widely deployed production system is Microsoft’s Catapult v2

[83], which has FPGAs in most Azure and Bing stock keeping units (SKUs) in a bump-in-the-wire
configuration: an FPGA sits between the top-of-rack switch (TOR), network interface card (NIC),
ASIC and CPU, hence enabling data-center wide communication within tens of microseconds of
latency. These hundreds of thousands of FPGAs (or more) are used for both internal (e.g. network
packet processing [166] and Bing search [89]) and external workloads (e.g., machine learning
inference as a service [89]).
Another type of a widespread production system is the single node accelerator model, which

leverages FPGAs in either a Co-Processor configuration, or as a Local Cluster where devices are
connected either via a PCIe switch or using direct FPGA-FPGA interconnects. A number of cloud
providers such as AWS [22], Huawei [53], Baidu [36], Tencent [46], Nimbix [43] and Alibaba [35] use
this model. These systems are used by customers to run a wide pool of cloud native applications such
as genomics, financial analytics, data acquisition, computational fluid dynamics, video processing,
image processing, transcoding, security, and AI workloads [50, 57, 59, 60, 63, 220]. There are also
examples of these FPGAs being used by providers for their own workloads. Baidu uses FPGAs to
accelerate its cloud based storage, SQL queries, data security, search engine, and AI workloads
[50, 55]. FPGA-based AI chips–such as Baidu’s Kunlun for AI, Alibaba’s Ouroboros for speech
recognition, and Alibaba’s Hanguang 800 for inference operations–are deployed in their cloud data
centers [101]. Alibaba has reported 75% savings in TCO by using FPGAs to oversee product images

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 9

on its e-commerce site [235]. In 2018 it reported over $30 billion retail on its website in a single day
(compared to $5 billion on all US online and in-store retail on Black Friday 2017); this was possible
with its data center FPGAs being used to accelerate transactions and provide recommendations to
users [106].

There are also systems that are widely deployed, but where there is insufficient publicly available
information for analysis. Amazon has announced AQUA (Advanced Query Accelerator) nodes
for its Redshift data warehouse, available through the RA3.16XL and RA3.4XL instances. These
nodes use FPGAs to accelerate dataset filtering and aggregation [38, 58]. Baidu uses Smart NICs to
improve virtualisation and workload performance [66]. OVHCloud also uses Smart NICs, but for
network packet processing to mitigate distributed-denial-of-service (DDoS) attacks in its cloud
traffic [44, 51]. Scaleflux CSD2000 SSDs are deployed by over 40 data centers globally [39]. An
example is the Alibaba cloud, which uses Scaleflux CSD20004 in place of traditional solid state
drives (SSDs) on their storage nodes to accelerate applications such as MySQL, Aerospike, Oracle,
and PostGreSQL [54]. Samsung Smart SSDs [48] are deployed in the Nimbix cloud where they
accelerate Apache Spark, running queries up to 6× faster when using software from Bigstream [47].
Eideticom’s computational storage processor [98] has been implemented in Barreleye G2 servers
on Rackspace [180].

3.3 Research Architectures
In this subsection we discuss systems that are presently in research and development and represent
the most technologically plausible candidates for widespread future deployment.

One of the most commonly used research architectures is the cluster of Back-End tightly coupled
FPGAs that deploy a secondary network using direct and programmable interconnects to connect
FPGAs across nodes. Microsoft’s Catapult v1 was a back-end system that connected multiple nodes
in 6x8 tori [183]. It was demonstrated using Microsoft’s Bing workloads; it is not clear whether it
was ever part of a production cloud. Other research examples include Maxwell [70], Novo-G# [112],
Noctua system at the Paderborn Center for Parallel Computing [64, 176, 179], and Albireo nodes
of the Cygnus supercomputer system at University of Tsukuba [2]. Although this approach can
substantially reduce FPGA-FPGA latency, it is difficult to scale beyond a single rack due to wiring
requirements; in the general case it also requires each FPGA to implement a router to support the
communication. Currently no such example can be found operating in the production cloud.

Another research area proposed in [109, 141] involves Channel-over-Ethernet (CoE); a back-end,
inter-FPGA Ethernet communication network using the OpenCL kernel programming. The results
demonstrate the feasibility of such a configuration as the system achieves a latency of 0.99µs for
inter-FPGA communication via the secondary Ethernet switch as compared to 29.03µs via the host
CPU. A drawback is that data are sent as packets and that there is additional overhead, such as IP
addresses and flags, that reduce the effective data rate [226].

Other research architectures include systems that support a Local Cluster, but where the commu-
nication scaling via direct interconnects is limited to a single node. An example includes Novo-G (a
former version of Novo-G#) [113]. Other examples include the research systems currently deployed
at the IBM SuperVessel Cloud [4] and the IBM Power8+CAPI cluster at the University of Texas,
Austin [52] that use a Shared Memory cache coherency model.

A different approach is to directly connect FPGAs to the datacenter network as a standalone
resource. Each FPGA can be accessed by a CPU or another FPGA resulting in good scalability.
CloudFPGA by IBM Zurich Research Lab is one example [190, 193, 231–233]. The authors have built
a prototype with multiple chassis for data center scale, capable of hosting 1024 FPGAs per rack [25].
A drawback of such an architecture may be that FPGA-CPU communication is necessarily among

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



10

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

separate nodes and has high latency. Another consideration is the increase in the number of TOR
connections.
The University of Toronto SAVI testbed connects FPGAs to the primary network [212]. The

authors in [82, 211, 213] have demonstrated that virtualising FPGA resources on the SAVI testbed
enables multiple regions within an FPGA device to support different designs using APIs such as
OpenStack. Enzian [3] at ETH Zurich employs an FPGA as a node connected to the network on
one end and coherently attached to a large server-class SoC on another node. Unlike Microsoft’s
bump-in-the-wire, this system allows CPUs to either connect directly to the network or via the FPGA.
Unlike other cache coherent systems, it allows the FPGA side of the cache coherency protocol to
be extended and tailored [29]. The Gator Reconfigurable Cloud infrastructure (GatorRecc) provides
a platform to explore multi-tenancy FPGA usage in cloud applications, using virtual instances
(CPU+FPGA) and managed by Openstack[13, 161].

3.4 Architectures Trends
Table 1 classifies production and research cloud FPGA architectures based on the taxonomy in
Section 3.1. Aswe can see, research systems generally explore different varieties of cloud architecture
options. While production systems are bounded by factors such as total-cost-of-ownership (TCO),
power-usage-effectiveness (PUE), performance, resilience, modularity, scalability and security;
research systems tend to enjoy greater degrees of freedom. To effectively analyse these architectures
we highlight trends in their architectures based on the following categories: 1) Boards, 2) Placement,
3) Network Connectivity and Use Cases, and 4) Intra-node Connectivity.

Table 1. Classification for production and research FPGA cloud architectures based on the taxonomic cate-
gories discussed in Section 3.1. Though all systems place FPGAs in a ’Distributed’ manner, the placement
column is still shown to highlight this trend. It is further discussed in Section 3.4.2.

Board Type Placement Network Intra-node Use Case
Connectivity Connectivity

PRODUCTION SYSTEMS
Alibaba [35] Custom Distributed None FPGA, CPU, Storage Customer, Provider
Baidu[36] Custom Distributed None CPU, Storage Customer, Provider
Microsoft Catapult v2[83] Custom Distributed Primary CPU, ASIC, Storage AaaS, Provider
Amazon AWS F1[22] Custom Distributed None FPGA, CPU, Storage Customer
Huawei[53] Custom Distributed None FPGA, CPU, Storage Customer, Provider
Nimbix[43] Off-the-shelf Distributed None CPU, Storage AaaS
Tencent[46] Off-the-shelf Distributed None CPU, Storage Customer
RESEARCH SYSTEMS
Microsoft Catapult v1[183] Custom Distributed Secondary CPU, Storage Research
Enzian[3] Custom Distributed Secondary CPU, Storage Research
Cygnus[2] Off-the-shelf Distributed Secondary FPGA, CPU, GPU, Storage Research
IBM CloudFPGA[25] Custom Distributed Primary Storage Research
Maxwell[70] Off-the-shelf Distributed Secondary CPU, Storage Research
NARC[91] Off-the-shelf Distributed None CPU, Storage Research
Noctua[176] Off-the-shelf Distributed Secondary FPGA, CPU, Storage Research
Novo-G[113] Off-the-shelf Distributed None FPGA, CPU, Storage Research
Novo-G#[112] Off-the-shelf Distributed Secondary FPGA, CPU, Storage Research
IBM Power8 + CAPI[52] Off-the-shelf Distributed None FPGA, CPU, GPU, Storage Research
IBM SuperVessel[4] Off-the-shelf Distributed None CPU, Storage Research
SAVI[147] Off-the-shelf Distributed Primary CPU, Storage Research

3.4.1 Boards. Table 1 shows that a majority of production cloud vendors have used custom boards
in their deployments. For Microsoft in particular, this was necessary since requirements for placing
FPGAs in special HPC SKUs "constrained power to 35W, the physical size to roughly a half-height
half-length PCIe expansion card (80mm x 140 mm), and tolerance to an inlet air temperature of

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 11

70◦C at 160 lfm airflow" [83]. Custom boards are not required, however: Nimbix and Tencent
both use off-the-shelf boards. For research systems, custom boards are preferred if the proposed
systems are Disaggregated, network attached (e.g., Enzian), and like IBM CloudFPGA. Also, for
earlier Back-end systems, like Catapult v1 and Novo-G#, a customised board allowed the system to
increase transceiver count. However, we can see that recent Back-end and Local Cluster systems
mostly use off-the-shelf boards. Systems with no inter-node communication network almost always
use off-the-shelf boards.

3.4.2 Placement. Table 1 shows that all these systems deploy FPGAs in a distributed fashion. This
is because: i) FPGA resources are easier to orchestrate, ii) FPGAs can be offered as bare-metal
resources, which simplifies the tooling needed, and iii) FPGA failure only affects local resources, as
opposed to potentially millions of nodes.

3.4.3 Network Connectivity - Use cases. Table 1 shows two important trends. First, none of the
production systems uses a secondary network. This is likely because of: i) the cost and complexity
of wiring a second network for potentially millions of nodes and additional networking hardware,
ii) the potentially limited scalability if direct FPGA-FPGA connectivity is supported, and iii) high
chip resource usage for building routers and securing the system. The second important trend
is the relationship between network connectivity and use cases. Specifically, due to security and
reliability constraints, systems that allow customers to offload their own applications do not support
any direct network connectivity. Rather, this connectivity is only available if workloads are either
internal, or if the offering is an application where only a limited set of APIs are exposed to the
customer. Research systems are distributed evenly across the different network connectivity options.
We also note that newer research systems almost always have network connectivity, either primary
or secondary. This helps scale the application across multiple FPGAs and achieve lower latency.

3.4.4 Intra-node Connectivity. Table 1 shows four major trends. First, in all systems with the excep-
tion of IBM CloudFPGA, FPGAs communicate with the CPU over the PCIe slot. This emphasises
the role of the CPU as being the core computational resource, whereas the FPGA is a complexity
offload engine managed by the CPU. Second, FPGAs are almost always connected to some form of
off-chip storage; typically a DDR memory chip on the same board. Third, no production system
currently offers instances with FPGA-GPU connectivity. To the best of our knowledge, none of the
cloud providers has placed GPUs and FPGAs within the same node. For research systems, GPUs are
being employed on the same node as FPGAs, especially for highly parallel, SIMD-like workloads
and communication occurs over a PCIe switch [2]. Fourth, in terms of FPGA-ASIC connectivity,
only Microsoft v2 supports this approach since the FPGA must transparently process packets for
the traditional NIC. None of the research architectures connect an ASIC with an FPGA on the same
node.

3.5 Potential Future Innovation
We identify areas of potential novelty that can be derived by traversing the categories in the
taxonomy, and by comparing different sub-categories with what is already present in Table 1.
Type of Boards: Potential novelty here is with modular boards that lie at the intersection of custom
and commodity. Similar to what is commonly done with micro-controllers, semi-custom boards
can be built by buying and connecting together off-the-shelf modules for different FPGA chips,
memory chips, and interfaces (QSFP+, PCIe etc). This would allow providers to tailor boards to
their specific requirements, reduce the penalties of designing a custom board (development costs,
upgrade costs, probability of failure, time to market), and easily replace specific modules as needed
(due to hardware failure or for regular upgrades).

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



12

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

Placement of FPGAs: While FPGAs have been used in high end network switches [40], their
role is typically limited to providing the performance and flexibility needed to support changing
protocols. However, there is currently no system that leverages TOR switches where FPGAs are
responsible for implementing the entire switch hardware [41, 171, 198].

Supporting such an architecture has a number of benefits. i) Customer offloads: Customers could
use these TOR FPGAs to compute in the network e.g. for doing collective operations such MPI
All-Reduce and Broadcast. ii) Provider offloads: Providers could leverage these FPGAs to implement
services such as metering, accounting, analytics, and packet filtering. iii) Flexible networking: By
combining FPGA based TORs with Bump-in-the-Wire FPGAs, a data-center-wide network could be
created that does not rely on a standard protocol for communication. As a result, the communication
latency could be reduced substantially. Alternatively, it may be possible to dynamically switch
between different standard protocols based on the target workload.
NetworkConnectivity:A potential novelty here would be to support both Primary and Secondary
network connectivity, either within the same FPGA, or through multiple tightly coupled FPGAs
within the same node. This would effectively combine key benefits of Microsoft’s Catapult v1 and
v2, i.e. having ultra low latency for rack scale communications through custom interconnects and
still supporting data-center scale FPGA-FPGA connectivity.
Intra-node connectivity and Use cases: The connectivity between FPGAs and CPUs is typically
done using the PCIe bus. This is because existing use cases define the role of the FPGA as an offload
engine for the CPU. However, a potential novelty here is supporting sufficient low-level electrical
coupling, such as the FPGA has read-modify-write access to the CPUs Baseboard Management
Controller and firmware. This would effectively turn the FPGA into a management and security
controller for the CPU, and enable new system administrator use cases such as CPU firmware
attestation.

4 USABILITY, SCALABILITY, AND PORTABILITY
Datacenters have become the enablers of many technologies and services. Search engines, personal
assistants, streaming, video conferences, 5G and telecommunications, along with the newly popular
infrastructure as a service (IaaS) are all examples of such services.With the scale of these applications
and services, deployment, provisioning of resources, and isolation all become tricky, especially with
the loads of these services becoming more dynamic. For example, in cellular networks there may be
a significant increase in peer-to-peer telephone or SMS traffic during holidays, but then during large
sporting events there may be a spike in video streaming and cellular data use. Even if the total load
is the same, different types of traffic must be processed differently making the load on individual
functions dynamic. Furthermore, the principle of elastic computing assumes that instantaneous load
is not constant over time [152] creating opportunities to scale down compute resources, putting
excess resources in a low power state, or quickly scale up when high usage resumes. Similar
examples of dynamic usage profiles exist in most datacenter use cases, and have led to multiple
studies into load balancing, traffic control, and usage forecasting to improve performance and
minimize energy consumption [68, 136, 173, 201].
We start this section with an overview of the singularity of integrating FPGAs for elastic com-

puting in datacenters. We briefly survey existing commercial systems, then dive into the details of
the tools needed to program and deploy FPGA in the cloud. We discuss programability of single
node, integraion of design in vendor cloud using shell, then virtualization. We then survey current
development and discuss the outlook.

4.0.1 Resource Provisioning and Reconfigurability. The problem of datacenter provisioning has
motivated deployment and orchestration platforms that allow datacenter managers to monitor their

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 13

network and modify in real time the amount of compute resources given to each function. They
make use of platforms such as Openstack [199] and Kubernetes [72] that instantiate, provision,
and reconfigure datacenter resources in real time. These tools orchestrate the entire datacenter,
but require individual components on each node to provision its resources. These tools implement
resource provisioning in the cloud in several steps, including admission control, capacity allocation,
load balancing, energy optimization and quality of service guarantees. Unfortunately, these tools
are currently only limited to provisioning CPU resources. For FPGA-accelerated clouds, they must
be extended or re-engineered to include FPGA resource management. Besides the spatial nature
of computing in FPGAs, reconfiguration along with bitstream management must be taken into
account.
FPGAs are becoming more and more popular within the datacenter, as discussed earlier. But a

critical aspect of FPGAs is their configurability, which could play a major role in making them
suitable for accelerating such dynamic tasks, as their reconfigurability could naturally allow for the
deployment and scaling these applications within the datacenter. Extending the typical datacenter
orchestration tools with compatibility to FPGAs is thus natural, as it minimizes the required
changes datacenter operators have to sustain. However, the bulk of the work needed for this
support will happen on the FPGA virtualization side to make FPGAs compatible with orchestration
tools, especially to support FPGAs as primary resources in the datacenter like CPUs, rather than
just accelerators. This includes the ability to remotely provision the FPGA resources, split and
isolate them between tenants, configure their network interfaces, and virtualize these network
connections as needed.

FPGA programming is typically performed via an attached CPU. This is suitable with the current
programming model of FPGAs as function accelerators for CPUs but is not suitable for standalone
FPGA compute nodes as we envision in a datacenter. Depending on the FPGA type, the current
programming interface is usually either JTAG, popular amongst PCIe attached FPGAs, or through
an AXI memory mapped interface, as is typically the case in Xilinx MPSoC configurations. If FPGAs
are to be primary compute resources in the datacenter, their programming model requires more
flexibility.
In a datacenter architecture where part of, or entire, racks are made up of FPGA boards, while

others are made up of CPU based servers (Figure 1), it should be possible for independent FPGAs to
receive partial or full bitstreams over the network. This ability is not new and has been previously
proposed [128, 193, 224], though this would come with, among other things, security challenges
that have not yet been overcome, and many of these alternate programming approaches come at
the cost of area and or performance.

FPGA network configuration and virtualization can be achieved using a variety of ways, each with
its benefits and downsides. The simplest solutionwould be to statically plan the network connections
between FPGAs in a deployment, along with assigning their correct network configurations (i.e.,
IPs and MAC addresses). Static network configuration is used by various current datacenter FPGA
implementations such as Microsoft’s Catapult [83, 183] or Galapagos [209, 212, 214]. This requires
prior knowledge about the deployment, and lacks the ability to scale the deployment up or down
if needed, and the flexibility of deploying these applications alongside others, which may cause
conflicts between the network configurations, for example. Another possible solution is to use some
common chaining protocols like VXLAN [155], MPLS [67], and Segment Routing (SR) [24]. These
protocols may or may not (in the case of VXLAN) require the active participation of the switch as
well as requiring modifications to the network interfaces at the compute nodes. These protocols
can create virtual network connections over-top the existing physical network architecture. This
approach is reconfigurable, allowing a change of the virtual network whenever needed. However,
a few drawbacks of these approaches are that they apply additional routing restrictions, latency

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



14

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

overheads, and they require larger packet headers affecting throughput. These protocols could
be merged into the underlying FPGA Shells used in the datacenter, but allowing these Shells
(along with the switches, if needed) to receive and apply the virtual network configuration will
be required. A third approach is similar to that followed by orchestration tools with CPUs today,
which configures the network interfaces in a non-virtualized way, but instead has to keep each
resource informed about the network interfaces of other resources (i.e., using a DNS table) and
update them in the case of redeployment or scaling. This approach is not restrictive, and allows any
resource to connect to any other resource within its deployment. However, this approach is more
complex in terms of implementation and integration in an FPGA Shell. Regardless of the approach
adopted, MPSoC-based FPGAs are very appealing candidates, since the CPU on the MPSoC can act
as an accelerator to the FPGA itself, offloading most of the network configuration tasks, along with
interfacing with the central datacenter orchestration.

Existing datacenters circumvent these issues in a variety of ways. Microsoft Catapult, for instance,
rebuilt the database infrastructure from scratch fitting FPGAs into the picture [83, 183]. However,
this system lacks the quick reconfigurability that is possible in other scenarios, and complete
rebuilding of datacenters, as they have done, is extremely costly and may be infeasible. Also, the
wiring is built and optimized for their physical layout with no virtualization in the node functions
or their networking. Instead, it would be ideal to be able to add FPGAs to existing infrastructures
and reap their benefits without the upfront cost of a datacenter overhaul for widespread FPGA
adoption to work. While this showed significant performance benefits without the orchestration or
virtualization, this improvement is limited to one type of application, and can cost more in the long
run for changing the supported applications.

Amazon’s AWS [22] adds FPGAs to an existing infrastructure. It does not directly connect FPGAs
to their datacenter network. Packets instead travel through the software layers of a PCIe-attached
CPU before being forwarded to the network, and incoming packets need to traverse this stack in
reverse. Similar frameworks are utilized by Huawei [53] and Alibaba cloud infrastructures [229].
This approach resolves all the networking and virtual routing issues, as well as some security issues
with network attached FPGAs, although this practice heavily limits throughput and increments
latency. Even in full pass-through mode where the CPU is not asked to perform any processing
or encapsulation, these architectures have network throughputs capped at about 40 Gbps [229].
However it is possible to reconfigure what each FPGA compute node is capable of doing and can
even offer FPGAs as a service by temporarily lending FPGA nodes.

4.0.2 FPGA Programming. Designing for FPGA consists of creating hardware circuits that will
operate on the FPGA, using basic resources available on the device. The process uses Hardware
Description Languages (HDL) such as VHDL and Verilog. It and involves substantial hand and
tedious work to implement all of the I/O functionality for the target board for data exchange. The
migration of a design to a different FPGA board requires a complete redesign of the I/O handling.
There have been many early attempts to create software-like programming environments that

were commercially available circa 2000 such as Handel-C [15] and Impulse C [215]. These environ-
ments used a subset of C with some language extensions, data types and functions that could be
synthesized to hardware running on supported FPGA boards. They provided an abstraction that
hides most of the hardware complexities from the application developer. Maxeler [11] developed
its Data Flow Engine (DFE) data flow programming model based on an extended Java called
MaxJ and provided a full stack from the hardware layer to a software runtime and application layer
interfaces. Again, the goal was to provide a software development flow that runs on CPU and FPGA
platforms. The FPGA vendors have now developed their own programming environments, such
as those using OpenCL [16, 20] and are now moving towards more integrated environments that

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 15

FPGA
partial reconfiguration region

SHELL

ROLE

control 
signals 

data signals

user FPGA  
application 

PCIe, network, other I/O,  
memory, debug, control logic

(a) The Shell Role Architecture principle

FPGA
partial reconfiguration region

ROLE
user FPGA application 

   MANTLE (dynamic plaform logic)

   SHELL (static plaform logic)
PCIe, network, other I/O, 

memory, debug, control logic

dynamic adaption to application, 
run-time envronments

platform signals (control & data)

control
signals

data signals

(b) TheMantle Architecture principle, to relax
the strong dependency of the Role to low-
level details of the Shell [190].

Fig. 3. Shell Role and Mantle Architecture Principle

provide support for several languages and libraries for application spaces such as Vitis [21] from
Xilinx and Intel’s oneAPI Toolkit [17]. There are also efforts to build more of an open middleware
stack such as the Intel Open FPGA Stack and the Open Programmable Acceleration Engine
(OPAE) Technology [18].

Supporting computing environments for FPGAs and making them more usable for application
developers are important steps, but they still do not enable the use of FPGAs at the scale of clouds
and datacenters.

4.0.3 Design Deployment: The Shell-Role Architecture. The emergence of FPGAs as compute accel-
erators in the Cloud and other multi-user environments inevitably led to a split of the FPGA design
into a user application programmed by the developers and a platform-specific part controlled by
the infrastructure provider. This split of FPGA logic into a cloud service provider (CSP) controlled
Shell and a user-controlled Role1 allows the necessary introduction of different privilege levels
within an FPGA design and potentially improves re-usability of user applications [193].

The general principle of the Shell Role Architecture (SRA) is depicted in Figure 3a. Usually, the
Shell contains all necessary I/O and control logic for data exchange between the user’s hardware
design and the rest of the system. On the one hand, this abstraction prevents the user from dealing
with cumbersome I/O details. On the other hand, the central control of the infrastructure by the
CSP simplifies the management and allows the CSP to implement resource allocation, isolation,
and necessary security guarantees. Consequently, SRAs allow the CSP to stay in control of the
Shell while application logic is controlled by the user [193]. This SRA pattern is widely used across
different FPGA platforms [22, 83, 102, 193], each with its own level of details.
However, despite their simplicity and wide-usage, SRAs generate new problems when used

at scale: The important character of the interface between Shell and Role "freezes" this interface
after its release. To tackle this strong dependency while preserving the advantages of SRAs, recent
research developed the notion of a three-layer architecture [190]. The general idea is to introduce
an "adapter" layer between Shell and Role to provide forward and backward compatibility between

1The terms Shell and Role were first introduced by Putnam et al. [183] and are now commonly used. Sometimes, the term
Hypervisor is used instead of Shell because of a loose correspondence to the functionality of hypervisors in the software
systems stack.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



16

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

Shell and Role. The authors call this middle layerMantle and their overall idea is sketched in Figure
3b.

4.1 FPGA Resource Virtualization
While the shell-role architecture can be seen as a bare metal deployment of design in FPGAs, the
integration of resource management, including enforcement of elasticity in datacenter requires
some form of resource virtualization, particularly FPGA resources. This section discusses the
issue of virtualization in datacenters that use FPGA. We discuss virtualization from two different
perspectives. The first one is the hardware resource virtualization on FPGA devices and the second
one is the integration in hypervisors used to span new virtual instances in the cloud.

Virtualization essentially consists of creating abstraction layers over hardware components such
as processors, memory, storage, etc, with the goal of enabling resource sharing at the software level.
While the introduced abstraction layers may decrease native performance, they hide hardware
complexity, improve the flexibility and programmability of the underlying hardware and make the
integration in cloud manage tool.

Processor virtualization is well investigated and currently relies either on instruction set transla-
tion or hardware support with technologies such as Intel VT [170]. Memory and disk virtualization
essentially map the virtual space to physical locations in the physical space [203]. FPGAs differ
from the previous types of hardware in that they do not execute sequential programs, instructions
after instruction, but rather implement parallel circuits. Traditional virtualization techniques used
in software are therefore not applicable to FPGAs. Abstracting FPGA resources at higher levels
requires a new approach. FPGAs consist of configurable computing resources, storage, and inter-
connect, all immersed in a programmable interconnect infrastructure. Programming is achieved
with HDLs. The long synthesis time makes it impossible to achieve binary translation needed in
most virtualization frameworks today.
Abstractions are provided in FPGAs using two different approaches: Slot-based allocation and

FPGA overlays. Slot-based allocation divides the FPGA into blocks where pre-synthesized circuits
can be mapped at run-time, while overlays use processor-like configuration, which makes them
more convenient for traditional virtualization.

4.1.1 Slot-Based Allocation. Slot-based FPGA resource management [77] has been around since
the early days of partial reconfiguration. The goal is to allocate FPGA area for the execution of
pre-synthesized circuits at run-time through partial reconfiguration. The FPGA is divided into
fixed areas, also called virtual regions, that will accommodate pre-synthesized circuits at run-time
through partial reconfiguration. The slot-based allocation is extended for cloud FPGA resource
management in [27, 93, 214, 242]. These works leverage partial reconfiguration at the FPGA level
and provide packages for integration in cloud management infrastructure. Table 2 lists some of the
recently published research work in this direction. Companies such as VMAccell [9] and Inaccel
[5] provide commercial frameworks to achieve the same goal.

The table classifies the architectures based on the shell area overhead, the number of virtualized
regions per FPGA, whether spatial sharing is enabled or not, the presence or absence of on-chip
communication support, the data width, the maximum frequency, and the access method to the
virtual resources on the FPGA. For example, Chen et al. [85] divide each FPGA into four locations or
“virtual FPGAs”. The architecture multiplexes FPGAs in space, and provisions hardware resources
over PCIe. However, this architecture is limited in that it only allows the use of pre-built hardware
functions without support for direct on-chip communication between accelerators. This results in
middleware copy overhead for data movement between the accelerators of a user.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 17

Table 2. Study of recent research in FPGA virtualization architectures for cloud infrastructure

Shell Area
Overhead

# FPGA
regions

Spatial
Sharing

On-chip
Comm.
Support

Data
Width
(bits)

Fmax
(MHz)

Access
Method

PCIe
Version

Network
Specification

Fahmy et al. [103] 7% 4 Yes No 256 250 PCIe Gen 3x8 -
Vesper et al. [225] 18% 4 Yes Yes 32-256 variable PCIe Gen 3x8 -
Weerasinghe et al [233] 21.7% 1 No No 64 156.25 Network - 10GbE
Tarafdar et al. [212] 27% 1 No No 43 125 Network - 10GbE
Mbongue et al. [159] 1% 4 Yes Yes - 227 PCIe Gen3x16 -
Catapult [183] 23% 1 No No 16-48 200 PCIe & Network - 10Gb SAS
Byma et .al [82] 19% - Yes No 256 160 Network - 10GbE
Feniks [241] 13% - Yes No - - PCIe Gen3x8 -
Mandebi et al.[164] 0.1% 6 Yes Yes 32-256 1500 PCIe & Network - Fast Ethernet
Chen at al. [85] 6.46% 4 Yes No - 100 PCIe Gen2x8 -
Asiatici et al. [34] - 3 Yes No - - PCIe - -

To minimize the data movement overhead, an on-chip interconnect can be used between vir-
tualized hardware regions as a support to hardware elasticity [159, 164]. It increases the on-chip
throughput and enables pipelined processing within the hardware domain of cloud and datacen-
ter applications. [162] evaluates the IO bottleneck in multi-tenant cloud FPGAs. Weerasinghe et
al. [233] observe that network-attached FPGAs may offer lower latency and higher throughput
compared to accessing accelerators over PCIe. Catapult [183], Tarafdar [212], and Weerasinghe
[233] do not support spatial sharing of FPGA components between the workloads of multiple cloud
users. They focus on FPGA time sharing. Table 2 also shows that the hardware footprint of the
resource overhead that supports the virtualization is less than 30%. Since Shells occupy a small
area on the FPGA, and considering the increasing size of FPGA devices, this overhead will become
negligible.

4.1.2 FPGA Overlays. FPGA overlays have been developed as a promising way to increase FPGA
programmability and productivity [204]. The approach commonly consists of designing a layer
above the fine-grained FPGAs resources, thus hiding the complexity associated with programming
low-level hardware components such as look-up tables (LUTs), flip flops (FFs), signal process-
ing blocks (DSPs), etc. Moreover, it considerably increases productivity as it mitigates the long
compilation time inherent in FPGA design flows. In general, FPGA overlays use coarse-grained re-
configurable arrays (CGRA) of processors that are programmed at run-time through software-level
function calls. At the architecture level, FPGA overlays usually implement interconnect topologies
allowing parallel processing and data exchange among processing cores [81, 124, 138, 146, 156, 158].
The software programmability of the coarse-grained processors makes it possible to develop effi-
cient compilers for automatic mapping of sequential applications to overlays [23, 153, 160, 234].
Beyond standalone utilization of FPGAs and FPGA overlays, cloud and datacenter architectures
offer the opportunity to exploit FPGAs at a higher level of abstraction. FPGA overlays are most
often immersed in the Shell to provision reconfigurable resources to cloud users.

4.1.3 Operating System Extensions for FPGA Virtualization. The integration of hardware resource,
including those on FPGAs into virtual instances assumes some sort of operating system support
resources and protocols. There is a sizeable body on FPGA and integration in conventional operating
system. While these work don’t directly address cloud and datacenter, the low-level protocols
developed would facilitate the integration of FPGA resources in hypervisor and virtual machines.
Ma et .al [151] propose OPTIMUS, a hypervisor for a scalable shared system between cloud FPGAs
and host CPUs. It implements efficient virtual DMA isolation via page table slicing, resulting in up
to 7× improved throughput. FPGAVirt uses VirtIO for efficient communication between virtual

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



18

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

machine and FPGA through in-kernel network stack [159]. Korolija et al. explore the application of
traditional operating system resource abstraction to FPGAs [143]. The authors implement Coyote,
an open source, portable, and configurable shell for FPGAs. It supports secure spatial and temporal
FPGA multiplexing, virtual memory, communication, and memory management inside an uniform
execution environment. Hategekimana et al. extends Security-Enhanced Linux (SELinux) security
context to hardware IPs on multi-tenant cloud FPGAs [126]. This capability allows system security
policies to propagate access control privileges expressed at the hypervisor level down to individual
FPGA accelerators at run-time. Though operating system-level concerns such as abstraction and
scheduling are being investigated in the literature, there is still need for operating system support
for FPGA multi-tenancy in the cloud. Therefore, Khawaja et al. detail AmorphOS as a solution [139].
It enable cross-domain protection, and replaces fixed slot-based allocation with elastic resource
management to increase utilization and throughput. Moreover, recent research also addresses the
compilation and execution of FPGA accelerators in cloud-based systems. As example, Landgraf et
al. present SYNERGY, an FPGA compiler tool capable of generating controls to software execution,
necessary to support core virtualization primitives such as suspend, resume, and program migration
on FPGA [145]. Fumero et al. introduce TornadoVM, a virtual machine for applications acceleration
on heterogeneous hardware at run-time [110]. It relies on JIT compilation tomap kernels to adequate
hardware accelerators. Using computer vision workloads, the authors show that TornadoVM allows
achieving 7.7× speedup in an heterogeneous platform provisioning CPUs, FPGAs, and GPUs.

4.2 Using and Scaling of FPGA Clusters
Besides providing easy-to-use abstractions or virtualization of a single FPGA in a datacenter
environment, the problem of programming and deploying multiple FPGAs is important as well for
making FPGAs a scaling-up solution. The first problem of programming a cluster of FPGAs includes
the question of how to abstract and use the communication links between the FPGAs and also how
to link the kernels on multiple FPGAs together. The second problem of deploying an FPGA cluster
contains the question of how to distribute, orchestrate and manage an multi-FPGA application once
it is build. In the following, we summarize major academic and commercial approaches tackeling
this problems.

4.2.1 The Galapagos Research Project: Providing a Middleware for communication, build, and deploy-
ment. The Shell – Role interface simplifies using a single FPGA. At a cloud-level, IP core placement
within and across devices is needed. The Galapagos infrastructure [209, 212, 214] provides multiple
layers of abstraction including a Middleware. The responsibility of the Middleware is to provide an
easy abstraction for users to deploy an application across many FPGAs. This entails providing an
abstraction for users to describe clusters, scale and replicate IP cores, as well as to make the routing
simple between IP cores, agnostic to their placement. The agnostic routing removes the headache
the user would have when designing IP cores, and also gives the Middleware layer the flexibility
to place IP cores anywhere. This flexibility is leveraged to provide reliability as IP cores can be
migrated between different physical locations, scalability as these IP cores can be replicated, and
even ease of development as users can implement their IP core (that is part of a large multi-FPGA
deployment) in software and incrementally migrate parts of their multi-FPGA application from
software to hardware.

The Galapagos Middleware standardizes the interface between IP cores through AXI-Stream [32],
a standard streaming protocol used by ARM and Xilinx IP cores. This streaming protocol is typically
used within single FPGA systems in the Xilinx environment, with an optional bit-width configurable
destination side-channel. This side-channel is used to route packets between on-chip AXI-stream
IP cores. Galapagos Middleware takes this established streaming protocol for on-chip IP cores

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 19

and expands this to multiple FPGAs. By leveraging standard AXI-stream, IP-cores do not need
to be aware of the location of their destination IP cores. Figure 4 represents the user’s view of
the cluster versus what is actually implemented. The user-provided IP cores are unaware of the
physical placement of these kernels.

Fig. 4. The logical view of the cluster from the user’s perspective in transformed with the Galapagos Middle-
ware into a multi-FPGA implementation [212].

The logical to physical translation is implemented by first performing a partitioning of IP cores
across different FPGAs. The first iteration of this partitioning is simple as a greedy algorithm is used.
It attempts to fit as many IP cores on one FPGA before allocating another FPGA. This partitioner is
a first implementation and can be improved independent of the rest of the Galapagos stack. Once
a partitioning of all IP cores in the cluster has been established, the middleware generates the
routers and bridges to connect all the IP cores within the cluster. Figure 5 shows the bridges used
to establish on-chip and off-chip connections between IP cores. Since the formation of the bridges
is automated through the middleware, user-provided IP cores can remain agnostic to the placement
of all the other IP cores within the cluster. The autogenerated router on each FPGA is aware of the
placement of all IP cores in the cluster and can route packets to an IP core on the same FPGA or to
a different FPGA through a network bridge. A network bridge translates AXI-stream packets to
off-chip network packets. The network protocol is configurable to be any off-chip protocol the user
wants as long as there is a bridge available to translate AXI-stream packets into network packets.
Currently bridges are available for Layer 2 Ethernet, UDP and TCP/IP. However, as long as the user
supplies the bridge this can support any off-chip protocol.

Fig. 5. Bridges and routers generated by the Middle-
ware placed on each FPGA.

To support heterogeneous interaction be-
tween CPUs and FPGAs, a software library,
called libGalapagos [210] has been created. The
library provides software interfaces that exactly
match the streaming interfaces used in hard-
ware Galapagos kernels. Any software kernel
that uses these interfaces can interact directly
with any hardware Galapagos kernels making
it easy for a software kernel on a CPU to com-
municate with a hardware kernel on an FPGA.
One benefit of this capability is that if a Galapa-
gos kernel is described using HLS-synthesizable
C++, that HLS code can be wrapped using libGalapagos so that it can be run purely in software. This
enables a co-simulation environment where all the hardware kernels can be first tested in software
to debug functionality. Once functionality is achieved, the HLS kernels can then be synthesized
and run as hardware without any code changes. Whether such a kernel is run in software or in
hardware is determined by specifying the version in a Galapagos configuration file.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



20

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

4.2.2 The ZRLMPI prototype: Providing a programming model for FPGA clusters. Besides abstracting
and managing the communication between different FPGA kernels, the behaviour of this type
of concurrency needs to be programmed as well, so a programming model for FPGA clusters is
needed. In the past decade, there have been numerous approaches for this question (among others
[94, 102, 112]), but there is no convergence to a common standard yet.
The trend towards network-attached FPGAs and thus the development of the FPGA from a

co-processor to an "equal" stand-alone node, caused the community to revisit this search for a
programming model for FPGA clusters. The ZRLMPI prototype [191, 192] tries to end this search
by proposing to port MPI, the de-facto standard for HPC, to FPGA clusters.

Bringing MPI to a heterogeneous cluster of FPGAs and CPUs involves two steps: First, a compiler
is needed to compile a given program to different hardware. Second, a run-time environment is
required, which implements the MPI APIs, start, stop, and synchronizes the execution between the
nodes. ZRLMPI provides both. At the one hand, it provides a transpiler – or cross-compiler – that
splits and optimizes an input MPI program to multiple programs, one for each physical node. This
split breaks with the "Single Program, Multiple Data" (SPMD) notion of MPI, but this is necessary
due to two reasons: First, in opposition to software, unused program parts for individual nodes
results in wasted logic for FPGAs. Second, CPU and FPGA parts of the program need different
compilers to build the binaries. At the other hand, ZRLMPI implements a run-time environment
for FPGA and CPU nodes that ensures the synchronous message processing independent of the
executing hardware. Hence, the CPU-FPGA cluster can be programmed and managed like a pure
CPU cluster and existing programs could be ported easily to such heterogeneous clusters.

4.2.3 Commercial programming model: Maxeler’s Dataflow Engines. Maxeler, a pioneer in FPGA-
based high-performance computing, provides an entire infrastructure consisting of hardware and
software for dataflow applications [6]. Its MaxCloud provides cloud implementation of a high-
performance dataflow computing system. MaxCloud runs on Maxeler MPT compute nodes that
consist of multi-core x86 CPUs with multiple Maxeler Dataflow Engines (DFEs), large memory
systems, and fast disks. It runs an industry standard Linux distribution. The DFEs are FPGA-boards
attached to the CPU through PCIe.

4.2.4 Commercial deployment platforms: InAccel and VMAccel. InAccel [5] offers a general-purpose
accelerator orchestrator capable of integrating FPGAs from various vendors to simplify the de-
ployment, scaling and resource management of FPGA clusters. Their Coral software contains
high-level APIs in C/C++, Java and Python, and a unified engine that supports every heterogeneous
multi-accelerator platform. InAccel also provides a runtime specification that vendors can use to
advertise system hardware resources to Coral. It aims to specify the configuration, and execution
interface for the efficient management of any FPGA hardware resource, without customizing the
code for Coral itself. In Coral, client applications may call accelerators on a local FPGA or remotely
with their arguments and configuration parameters. Coral orchestrates the execution on a variety
of execution environments, from bare-metal Linux servers to containers inside a Kubernetes cluster.
VMAccel [9], a company in stealth before January 2021, operates a large, multi-tenant FPGA

IAAS cloud platform based on Openstack, Docker, and Kubernetes. This platform supports virtual
machines, bare metal, and containerized FPGA acceleration options. VMAccel’s cluster consists
of over 1000 FPGAs and is designed from the ground up with FPGAs in mind. VMAccel removes
restrictions on hardware and offers direct access to JTAG and QSFP interfaces for clients; their
offering is designed to be customizable and flexible to accommodate varying user needs and
workloads. The company plans to implement disaggregation technology by Q4 2021 to offer users
even more flexibility in hardware composition.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 21

4.3 Cloud FPGA usability – Current Needs and Outlook
Considering the usability, scalability and portability, we notice the progress that has been made in
the past years to decrease the barriers of leveraging FPGAs in datacenter and cloud environments,
but we also see the need to further improvements. In particular, we identify two areas: First, to enable
"seamless" portability, the application interfaces within the FPGAs need to be standardized. Second,
FPGAs should be integrated further into classical software stacks and debugging of (distributed)
FPGA applications has to become simpler. Both areas are addressed below.

CPUFPGA
PR region

Network

Memory
(DDR/HBM)

other 
I/O

SHELL

ROLE

control memory

user FPGA 
application

data
streams

app
con.

application

user
code

plattform SW
API

system
calls

OS

"magic" platform
protocol

Fig. 6. Shell Role Architecture share many common
concepts.

4.3.1 Enabling Portability: Standardizing the Ap-
plication Interface. From a general point of view,
FPGA applications do not exist in empty space:
they are part of a more or less complex commu-
nication schema with other FPGAs or CPUs, as
discussed in Sections 3 and 4.0.2. If we analyze
all the earlier mentioned SRAs from this per-
spective, we find some general patterns, besides
the pure split of logic into a Shell and a Role.
This high-level generic design of SRA platforms
is shown in Figure 6. Every Role is controlled by
some configuration and control registers or sig-
nals such as start and stop, node_id or virtual
I/O pins. Besides this, two types of communication channels can be found:

(1) Address based communication: Every data belongs to an address in an address space. This
address space is at least partially shared with the CPU. So, the content of the data can be
interpreted based on the address the data belongs to. This communication type is used by
PCIe-attached or memory-synchronized FPGAs such as openCAPI systems [174] or OpenCL
platforms.

(2) Stream based communication: Here, every data belongs to a stream of data without further
meta data such as addresses. In some cases, the data stream is accompanied by other streams
that indicate the origin or destination of this stream. Consequently, the data can be interpreted
only with the knowledge of the specific physical connection the data came from and to some
extent, the content of parallel meta data streams. This type of communication is used by
network-attached FPGAs – like the IBM cloudFPGA project [25] or the Galapagos cluster [102]
– or for some fabric abstractions.

The synchronization between these FPGAs and the other devices, e.g. the CPU is up to the
“magic” protocol of this platform, as sketched in the middle of Figure 6. “Magic” in the sense
that the details of this synchronization are not important for FPGA application developers. FPGA
application developers are more concerned with the high-level capabilities (what can be done) as
opposed to the low-level implementation details (how the synchronization between FPGAs and
CPUs is done).

Therefore, since most FPGA cloud platforms share the same architectural pattern with the SRA
and due to the observation that interfaces of the data path are more important to users of cloud
FPGAs than the details of how the data path ends up in the FPGA, we think it is possible to describe
a standard interface for cloud FPGA applications at this level and leave the details of the “magic”
to each individual platform. The SRA architecture has been around since the early days of FPGA
integration in desktop systems. Examples include the ESM [77], Walder and Platzner OS [227] and
the Celoxica series 1000PP and 2000 [78], and many more. This standard interface can also apply to

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



22

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

extensions like the Mantle architecture [190], because the adapter could be "below" or "above" a
common interface. There is no reason to doubt that progress will continue in this direction and that
future systems will rely on a more portable, standardized SRA as interface for seamless deployment
of design in the cloud.

Every system designer has implemented a variation with a library on the hardware and software
side to facilitate the development of hardware and software systems. A semblance of standardization
has been developed over the years by FPGA vendors in the form of board support packages and
libraries. While these packages simplify the design and integration of a single FPGA in a desktop
or standalone mode, extension to cloud computing platforms has yet to be achieved. Increased
adoption of FPGA infrastructure requirements in the cloud will help achieve this goal. In this
direction, we are starting to see new CSP players such as VMAccell [9] and Inaccel [5] that provide
tools and architectures to seamlessly expose FPGAs to users in numerous possible cloud computing
paradigms. This progress will continue with companies offeringmore flexible, efficient solutions that
increase resource usage, with single or multiple tenants. The Cyborg project discussed in section
4.3.2 is an effort by the opensource community to facilitate the integration of non-conventional
processors such as FPGA, GPUs in datacenters. We expect these developments to gain traction and
lead to better design tools and efficient management frameworks that will accelerate adoption of
FPGA in datacenters.

4.3.2 Cyborg Project: Managing FPGA Accelerators in OpenStack Clouds. OpenStack is a free
and open standard for cloud computing platforms. It allows easy deployment and management of
infrastructure-as-a-service for public and private clouds. The development of OpenStack is organized
into projects. The Cyborg project specifically addresses the integration and general management
of hardware accelerators such as FPGAs, GPUs, SoCs, etc. in OpenStack, enabling the provision of
hardware acceleration as a service [14]. Cyborg provides REST APIs to list, create, update, and delete
devices hardware devices in a cloud infrastructure [19]. Enabling FPGA acceleration in OpenStack
opens opportunities for researchers to explore use cases of FPGA technology in the cloud. In
addition, it enables cloud providers with the ability to provision heterogeneous architectures with
minimal effort and cost. However, services still need to be developed to program devices at run-time,
manage bitstreams, update and migrate shells, enable debugging designs with the insertion of
probes, monitor on-chip sensors, etc [12].

4.3.3 Simplifying Usability: Increase FPGA Integration and DevOps support. Besides the limited
portability of FPGA applications, which leads to strong dependencies to specific hardware and cloud
vendors [190], FPGA applications need still be developed from scratch, most of the time. Usually,
one need to write a new FPGA application in a tool that depends on the used FPGA platform. In
addition, debugging is often still done with debug-probes at "wire-level". This is in strong contrast
to the usability of other accelerator platforms, where in the best case, the application developer
doesn’t notice the usage of heterogeneous hardware by the toolchain. For example, if using today’s
deep-learning frameworks, GPUs are seamlessly integrated and can be used with one or two lines
of code [121, 184, 216]. The usage of one or many FPGAs must become as simple as the usage of
GPUs in this examples.
As discussed in above sections, there are many efforts that explore this research direction. For

example, it is possible to deploy a given FPGA binary on a multitude of cloud FPGA platforms
with a single line of code [137] or to compile and deploy an application of a given framework
on a specific platform [191]. However, to reach the desired level of simplicity, both categories
need to be combined. It is not sufficient to deploy a fixed functionality on a flexible platform or
a flexible functionality on a fixed platform. For FPGAs, to be of use for complex scientific and
commercial applications, it must be possible to develop, debug and deploy complex distributed

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 23

applications easily and independently of specific platforms. This includes the development of
vertically integrated design environments [122, 167, 172, 178] and supporting more debugging
possibilities [185]. We notice that this problem is subject of many active research projects and we
appreciate that this focus is starting to be reflected in academic conferences and workshops.

5 SECURITY OF FPGA ACCELERATION IN CLOUD AND DATACENTER
ENVIRONMENTS

The availability of FPGAs in cloud datacenters has opened up unprecedented levels of application
flexibility and performance, although security is an important consideration. The development of
Spectre [142] and Meltdown [148] demonstrated how hardware vulnerabilities can be leveraged at
the software level to successfully launch attacks on infrastructure. FPGAs add another infrastructure
resource to the cloud that must be free of vulnerabilities to prevent malicious activities. Unfor-
tunately, a user’s ability to implement any logic function provides unique avenues for malicious
attacks on other cloud users’ applications and data, and the cloud infrastructure itself [134, 222, 239].
In this section, current and future threats to cloud FPGA security are discussed with an eye towards
prevention of existing and future potential attacks.

5.1 Cloud FPGA Security Overview
Many of the threats facing cloud FPGAs are similar to threats that have long been prevalent in
microprocessor-based cloud computing [90, 175, 208]. Multi-tenancy can lead to side channels in
which confidential user data is stolen [186, 243], or covert channels in which otherwise logically
isolated users are able to transmit sensitive information between each other [116]. Software and
interface manipulation can also result in a denial of service for cloud users or even the infrastructure.
Malicious bitstreams uploaded to the FPGAs in the data center can lead to faults or incorrect results
being generated [120, 181]. Unlike previous software-based attacks, cloud FPGA attacks often
include digital hardware manipulation whereby the FPGA logic is configured in a malicious way
that can lead to accelerated device wear-out, short circuits [31, 71], or performance degradation. In
addition to the existing single-tenant deployments already available from vendors such as AWS,
multi-tenant cloud FPGAs are being actively researched. In multi-tenant FPGAs, different users
share the same FPGA, making attacks between users more dangerous. The use of multi-tenant
cloud FPGAs in the future will expand attack surfaces, necessitating more comprehensive security
plans.
The threats associated with cloud FPGAs include malicious FPGA tenants in a single-tenant

setting, co-tenants in a multi-tenant setting, nefarious cloud service providers, malicious and
compromised tools, or intellectual property cores that may try to attack or steal information [134].
The most striking of these threats is related to malicious co-tenants in the multi-tenant setting.

In this section, we review cloud and datacenter FPGA security threats. Vulnerabilities broadly
target the FPGA chip, the interfaces between the FPGA chip and other components on the FPGA
board or the server where the FPGA boards are located, and the system software used to manage
the FPGA bitstreams (e.g. loading designs onto the FPGA) and access data generated by the FPGA.
Other infrastructure components related to FPGAs, such as the shared power distribution within
the server, can also be a source of security vulnerabilities. Current and potential future attacks are
reviewed in this section in addition to existing and potential countermeasures.

5.2 Cloud FPGA Usage Models
In this subsection, we categorize FPGA usage models in the context of the architectures and
interfaces introduced in Sections 3, 4.0.2, and 4.3.1. In many respects, the level of security available
to cloud FPGAs is dependent on the architectural model used and the associated interfaces.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



24

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

Unlike in software-based virtual machine (VM) instances, with FPGA-accelerated instances,
users naturally engage with the hardware at a lower level. In software-based VMs, a hypervisor
provides an encapsulated environment for user execution that largely consists of virtualized CPUs,
memory, storage, and network interfaces. This encapsulation facilitates memory protection and
network isolation. Today’s commercial single-tenant cloud-based FPGAs do not abstract or virtualize
fundamental logical resources such as LUTs, block memory, or multiply-accumulate units. This
limitation is currently present for two reasons. First, abstracting the underlying FPGA fabric with
a template incurs non-trivial overhead in terms of usable FPGA logic density. Since many of the
performance benefits of using an FPGA hinge upon exploiting maximal parallel processing, the
efficient use of the available logic is very important. Second, FPGA virtualization is difficult. For
example, adding logic to stop an arbitrary circuit mid-computation, save the intermediate state,
and restore it at a later point presents design challenges and is expensive to implement in terms
of FPGA resources and performance. For example, although block memory and flip flop contents
in Xilinx UltraScale+ FPGAs can be streamed out of the device at 6.4 Gbps using a configuration
interface, the largest devices contain nearly 500 Mbit of RAM and 3.5 million flip flops [10, 236].
Also, pipeline registers in multiply-accumulate blocks cannot be easily retrieved via the interface.

Difficulties in implementing FPGA virtualization affect how they can be offered in the cloud.
For example, unlike traditional software-based servers, the fine-grain context switching of user
Roles is not practical. Rather, today’s commercial cloud providers assign an entire FPGA or more
than one entire FPGA to a user for the duration of their computation, forming a single-tenant
setting. For example, in the case of an AWS F1 instance, a user is assigned a VM on a given server
that has exclusive access to 𝑁 FPGAs, with the VM resources and number of FPGAs scaled to the
size of the purchased instance [22]. The user first programs their circuit(s) onto the FPGA(s) and
then can utilize them at will, within the constraints of what the Shell will allow. When the user’s
instance terminates, or the cloud provider elects to reclaim the instance, the software-side and
FPGA resources will be returned to the allocation pool to be re-assigned to a different user, who
will then gain exclusive access to the FPGA(s) for themselves. The provider is expected to properly
erase all the resources before allocating them to the next user. For instance, the DDR memories
provided on the FPGA boards in AWS F1 instances get overwritten before an instance is allocated
to a new user.
In the near future, it is likely that large FPGAs that could be shared by multiple users will be

installed in datacenters. Sharing of the same FPGA by multiple users in the multi-tenant setting is
an example of the multi-tenant spatial model. In this case, FPGAs will have enough resources to
subdivide each device into multiple regions that can be assigned to independent users and a single
Shell would manage multiple Role regions, using dynamic partial reconfiguration to install a given
user’s Role at runtime. As a result, a single device would need to connect to multiple different VMs
and communication to the device would need to be multiplexed from a specific VM to a particular
Role. Since the circuits for different users reside on the same FPGA simultaneously in different Role
regions, significant new security issues may arise (e.g., side-channel attacks, fault injection attacks,
attacks on shared memory and I/O infrastructure [134]).

In addition to accelerator-focused deployments, such as AWS F1 instances, in which users access
the FPGAs via PCIe as a co-processo, there are other models of intra-node FPGA communication.
As discussed in Section 3, bump-in-the-wire architectures directly connect FPGAs to a network so
that all network communication flows through FPGAs. This gives faster access to network data, but,
effectively, data from many users may pass through an FPGA instance controlled by a malicious
user.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 25

Shared
PCIe

FPGA Boards
Inside Server

Server

Shared
PCIe

Server

Shared Resources 
within an FPGA:
• FPGA fabric
• Power distribution
• Routing wires
• “Shell” logic
• DRAM memory

One FPGA-accelerated Server

Shared Server Rack Infrastructure: Networking, Power, Cooling

Shared Server C
om
ponents:

Pow
er Supply, C

ooling

FPGA Boards
Inside Server

Multiple FPGA-accelerated Servers in Server Rack

Se
rv
er
’s
 S
ha
re
d

R
es
ou
rc
es
: D
R
A
M
,

C
PU
, C
ac
he
s,
 N
IC

Se
rv
er
’s
 S
ha
re
d

R
es
ou
rc
es
: D
R
A
M
,

C
PU
, C
ac
he
s,
 N
IC

Fig. 7. Diagram of hardware resources that are shared in FPGA-accelerated servers and among servers in a
server rack; each shared resource could be a source of a possible attack or information leak.

A further possible deployment includes the CPU and FPGA together on the server, possibly as
different chips on the same motherboard or with the CPU and FPGA sharing the same system-
on-chip (SoC). With the acquisitions of Altera by Intel and Xilinx by AMD, FPGAs may become
directly integrated into large servers as fundamental computers, not just as accelerator cards. It is
also expected that FPGAs will become parts of the processor dies themselves. This opens up even
further security threats, as, for example, the FPGA may have access to the memory bus and the
coherence messages being sent between CPUs.

5.3 Cloud and Datacenter FPGA Attack Categories
The co-location of multiple tenants inside cloud-based FPGAs, or having multiple dedicated FPGAs
per user but sharing a server between different users, leads to numerous resource sharing threats.
Resource sharing can occur within an FPGA in a multi-tenant setting, between an FPGA and
associated host CPU and DRAM, or between different FPGA boards within the server in a back-
end configuration. Figure 7 provides a summary of resources that can be shared. The vulnerable
resources include the system and individual chip power distribution network (PDN), FPGA logic
and wiring resources, Shell logic provided by the cloud provider, DRAM memory on the FPGA
board, and the host CPU. Further, a system bus in a storage-attached system may be shared with
the host server, which can include vulnerable DRAM memory that can be accessed by multiple
users via direct memory access (DMA).

The following subsections detail current and future threats that are rooted in the shared resources.
These threats have been broadly grouped into the following categories:

(1) Single-tenant attacks
(2) Multi-tenant attacks
(3) Node-level attacks
(4) Datacenter system-level attacks
(5) Bump-in-the-wire attacks

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



26

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

(6) FPGA and CPU on same die, motherboard, or SoC attacks

5.4 Single-Tenant Attacks
These attacks affect FPGA computation in which one user at a time is using the FPGA. Today’s
cloud-based FPGA deployments (e.g., [22]) exclusively follow such a single-tenant model.

5.4.1 Single-Tenant Temporal Channels. Allowing users to load custom FPGA designs opens up
the opportunity for malicious users to sense the environment on or around an FPGA. In particular,
temperature affects operation of many electronic circuits: it affects signal delay in wires, transistor
switching, and capacitor decay (used in DRAM memories, for example).

Previous work [218] has shown that it is possible to create thermal covert channels for commu-
nication between users. In particular, even in a single-tenant FPGA setting, users share the FPGAs
in time: once a user is done using an FPGA, it is assigned to a different user. Other temporal attacks
may be possible, for example one FPGA user may generate substantial PCIe traffic, which reduces
the bandwidth quota assigned to the FPGA. When the next user design is loaded onto the FPGA, he
or she may still experience a reduced bandwidth quota from the prior user. Any system component
that maintains state could be abused for temporal attacks if the state is not properly erased. The
state could be physical (e.g., thermal state) or logical (e.g., PCIe bandwidth allocation). For example,
old DRAM values may be read by subsequent users. In practice, this attack is not currently feasible
since vendors (e.g., AWS F1) actively clear DRAM between users.

5.5 Multi-Tenant Attacks
Multi-tenant attacks impact FPGA computation in which multiple users access the FPGA or shared
resources (e.g., memory) at the same time. Most current research focuses on this setting as resource
sharing can lead to a diverse set of attacks.

5.5.1 Multi-Tenant Voltage Attacks. FPGAs in the multi-tenant spatial model are particularly
vulnerable to supply voltage attacks. All logic implemented in a commercial FPGA shares a power
distribution network (PDN). As a result, the PDN can be manipulated to perform a broad spectrum of
attacks including the implementation of covert channels [116], the side channel theft of encryption
keys [197, 243] or other information, and fault injection [120, 181]. In extreme cases, large power
waster circuits can consume sufficient power to drive the FPGA board into reset [182]. A full
summary of multi-tenant voltage attacks is available [134].
Although multi-tenant voltage attacks have been widely explored, there are several additional

vectors of interest. It may be possible to localize failures to other specific devices on a board
through clever on-FPGA voltage manipulation. Remediation to prevent such attacks is also needed.
AWS F1 includes a power monitor that will shut down an entire FPGA that consumes excessive
power [119]. It has been shown that voltage sensor networks instantiated in an FPGA can quickly
detect attacks [181]. This information could be used to quickly suppress offending attack circuitry.
Finally, it may be possible to architect FPGAs so that PDN regions are isolated or a global "kill"
signal can quickly suppress an FPGA region suspected of malicious activity.

5.5.2 Multi-Tenant Attacks on Shared Block RAMs. Allowing a user to intentionally cause write
collisions in FPGA dual-port block RAMs can induce voltage and temperature fluctuations and
result in circuit faults [28]. The faults may affect other users. Although unexplored, it may be
possible to abuse other modules (e.g., communication blocks, DSP blocks) within an FPGA to cause
faults or unintended behavior for other users.

5.5.3 Multi-Tenant Crosstalk Attacks. The crosstalk of routing channel wires in multi-tenant FPGAs
has be extensively explored [118, 186]. In particular, static values on routing wires (logical 1 vs.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 27

0, which corresponds to a charged or discharged routing wire) affect the propagation delay on
immediately adjacent channel wires. It is possible to sense the state of the adjacent wire and use
the information as a covert channel or side channel. Crosstalk has been used to steal AES [186]
and RSA [187] cryptographic keys.

Crosstalk could also be used to target Shell logic, or wires associated with communication buses,
such as the AXI bus within the FPGA used to connect different modules. The shared internal
FPGA bus could potentially be snooped to extract data from different users at different times. The
existence of crosstalk necessitates physical separation so that different users’ modules or the Shell
are spatially far apart to prevent crosstalk. User-level control of logic placement may need to be
prevented in multi-tenant scenarios so that attackers cannot chose custom locations for their logic,
e.g., next to the Shell’s communication buses.

5.5.4 Multi-Tenant Attacks on DRAM. Each cloud FPGA board typically has its own attached DRAM
that augments the shared DRAM on the server. Both sets of DRAM storage could be susceptible to
Rowhammer-style attacks [140] in which one user attempts to modify the DRAM of another user.
This issue is particularly worrisome for multi-tenant FPGAs in which multiple spatial co-tenants
have immediate hardware access to the same DRAM modules, although this has not yet been
demonstrated in practice.
Since cloud FPGAs contain multiple DRAM chips (e.g., AWS F1 includes four DRAM modules,

or chips, per FPGA), it may be possible to assign data from different tenants to different DRAM
chips, mitigating Rowhammer attacks by tenants. If more tenants than DRAM chips exist in a bank,
tenants could be assigned to non-adjacent DRAM locations to prevent attacks. The development of
a DRAM controller and DRAM allocation and access policies for multi-tenant FPGA settings could
also be considered.

5.6 Node-level Attacks
These attacks influence computing components located outside of the FPGA. Many of these attacks
are possible already in single-tenant cloud settings.

5.6.1 Node-level Attacks on Server’s DRAM. An FPGA Role could influence memory access for
software components that are not running on the FPGA. An FPGA Role or compromised Shell
could induce Rowhammer-style attacks on the server’s DRAM since the FPGA has DMA access
to the memory on the server. FPGA accelerators typically use memory mapped buses to access
DRAM. Cloud providers must implement ad-hoc memory protection units to prevent malicious
accesses, especially when resources are shared by another user.
While current FPGA node implementations typically include accelerator cards, FPGAs will

eventually be more tightly integrated into the server. Once integrated, FPGAs may have direct
access to coherence messages and the ability to read and write DRAM, bypassing the PCIe and DMA
used today. This opens up the possibility of attacks on the coherence messages or the modification
of the caches’ contents since FPGA operations will affect the CPU’s memory.

5.6.2 Node-level Attacks on a Server’s Power Distribution Network. Shared power distribution
networks are not only a concern for FPGA co-tenants, but also for components that share a system-
level power supply. Significant changes in FPGA power usage on a data center board can be sensed
by an FPGA on a different board if both boards use the same power supply [117]. While covert
communication using a shared power supply has been demonstrated in a lab setting, it has not
been shown using commercial public cloud hardware. A natural extension may be the creation of a
covert channel between servers or between server racks, although these channels may be blocked
by power supply filtering circuits.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



28

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

It has also been shown that the encryption key of a cryptographic algorithm running on a
microprocessor can be extracted using an FPGA if both devices share a supply voltage [243]. This
approach could also be used to create a covert communication channel. Similar channels could be
developed from CPU to FPGA or from GPU to FPGA, as previously demonstrated [117]. In both
cases the FPGA could be the receiver as it is able to measure voltage changes.

5.6.3 Node-level Bus Attacks. The Shell could be attacked by an FPGA Role to stall the bus connect-
ing the FPGA to the host server, creating a denial-of-service attack. This attack could potentially
be achieved by manipulating messages sent to the bus controller on the FPGA side, or by causing
voltage attacks which in turn create faults in the bus controller that stall the bus.

5.7 Datacenter System-Level Attacks
These attacks affect more than one node in the datacenter.

5.7.1 FPGA Instance Fingerprinting. Users can create malicious FPGA designs that steal cloud
infrastructure information. For example, it is possible to fingerprint FPGA instances using DRAM
physical uncloneable functions (PUFs) [219]. Given the assumption that a given physical DRAM
module will not be moved from one FPGA board to another, fingerprinting DRAM modules is
equivalent to fingerprinting the attached FPGAs. An FPGAmay also be fingerprinted using dedicated
PUF circuits inside the device [223]. Any circuit with a delay path, such as time-to-digital converter
(TDC) circuit or existing hard intellectual property (IP) modules for digital signal processing (DSP),
could potentially be used as a PUF. Recent work [217] has shown that PCIe bus contention can also
be used to fingerprint cloud infrastructures. Such contention-based attacks could be extended to
also cover network cards, which are attached to the bus.
Fingerprinting attacks allow users to learn the number of FPGAs that are available and their

physical co-location within servers. Although fingerprinting attacks have focused on individual
FPGAs and servers, they could be extended to fingerprint server racks or whole data centers,
possibly using server thermal or voltage fluctuation patterns.

5.7.2 Potentially Destructive Attacks. Any attack that can physically damage the data center
hardware is very serious. Most destructive attacks would likely use excessive power, although, as
mentioned eariler in this section, power usage is already checked by cloud providers such as AWS,
and a user’s design is stopped if an FPGA crosses a power usage threshold. In general, destructive
power attacks may not have an instantaneous effect. Accelerated hardware degradation via less
aggressive power attacks may take longer, but can be equally destructive and harder to detect.

5.8 Bump-in-the-wire Attacks
Risks associated with cloud FPGAs impact system architecture and user access models. Bump-in-
the-wire architectures have unique security challenges since FPGAs are directly connected to the
network and process network packets from many users. Exposing FPGA resources in this manner
allows reconfigurable hardware application developers to exploit the natural ability of the hardware
to process at network line rates. Furthermore, bump-in-the-wire (or Smart-NIC) architectures can
support new capabilities while minimizing the impact of host software.

Malicious hardware in a bump-in-the-wire FPGA can easily and quickly flood the network with
nuisance packets. Although modern datacenters have systems to both monitor for problems and
take corrective actions, which limit the potential scope of issues that do arise, there is an inherent
delay between the start of a potential problem and the implementation of a solution. Thus, network-
connected FPGAs can, at the very least, create transitory local service issues. In a datacenter where
network-connected FPGAs are ubiquitous, a well-coordinated attack could have a systemic impact.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 29

This issue is further complicated in bump-in-the-wire architectures since blocking traffic from an
ill-behaved FPGA also blocks access to the host server.
Future research in bump-in-the-wire architectures could consider the moderation of network

packet injection and the careful scanning of network requests. Effectively, a broad class of network
security approaches could be applied to this class of cloud FPGA architecture.

5.9 Comparison with Existing CPU- and GPU-based Threats in Cloud Computing
Most hardware-related CPU threats faced by cloud providers involve information leakage and side-
channel or covert-channel attacks. The information leakage is usually due to resource sharing (e.g.,
via shared processor caches) [207]. These sharing-based attacks have some similarity to possible
shared bus [217] and DRAM attacks involving multiple FPGA tenants. For users that demand
security, cloud providers can allocate full CPU cores (to avoid level 1 cache sharing and related
attacks, for example) or even allocate full servers to a single user. This limits any sharing of CPU
resources, but also clearly prevents resource sharing that could lower costs or improve utilization.
Researchers have also demonstrated GPU-based cache attacks that can leak information between
users due to shared resources such as caches [96]. FPGAs also suffer from resource sharing and
contention, but also have new types of FPGA threats due to ability to create malicious FPGA circuits
that can measure temperature, measure voltage changes, observe decay of the DRAM modules, etc.

5.10 Cloud FPGA Security – Current Countermeasures and Needs
Looking forward, security for cloud FPGAs can be categorized into four axes of protection: FPGA
intellectual property protection, system-level security, run-time user support, and FPGA device
architecture improvements. Each of these axes is addressed below.

5.10.1 FPGA Intellectual Property Protection. Although FPGA design disclosure to the cloud vendor
helps limit the loading of malicious bitstreams to the cloud, it exposes a user’s intellectual property
to the cloud vendor. AWS and Microsoft, for example, do not allow users to directly create FPGA
bitstreams for use in the cloud. Zeitouni et al. [240] have developed a multi-step procedure to
protect cloud infrastructure from damage by a malicious FPGA without disclosing the user’s netlist
to the cloud provider. This goal is accomplished using a trusted execution environment, trusted
Shell, and mutual authentication using a PUF for key generation. This approach could be extended
by considering FPGA architecture enhancements for trusted execution and key storage.

5.10.2 Preventing Attacks Using System-Level Security. Protection for FPGAs, memory, transport
buses, and OS support are needed to create a secure system. These aspects of cloud FPGAs use
could potentially be vulnerable and a security approach must consider how to protect the whole
system. System level integration increases the difficulty of securing an entire system in the face of
remote hardware attacks.
The integration of FPGAs in cloud systems induces temporal and/or spatial interaction among

cloud tenants. Without guarantees of isolated execution, this sharing can lead to scenarios where
shared accelerators act as potential covert channels among software guests which reside in different
security contexts. Remote attacks have been demonstrated by manipulating FPGA hardware (e.g.,
the PDN), as explained earlier in this section. Domain isolation in hardware can be addressed from
a software perspective using an operating system. Emphasis can be placed on a system’s ability to
limit privileges associated with executing processes in order to contain the scope of damage that
can result from the exploitation of application vulnerabilities [149, 194]. Access control used in SoC
and FPGA-based embedded systems have assumed the availability of reference monitors to manage
hardware access [79, 130, 188]. Similar approaches could be provided in a multi-tenant cloud FPGA
scenario.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



30

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

A comprehensive solution to domain isolation that cuts across hardware and software has been
proposed [125, 144, 157, 163] in which an FPGA is shared among virtual machines. The isolation
framework guarantees that hardware modules execute and reside in the same security context
as the “caller” VM. Similar operating systems and hypervisor approaches could form the basis of
multi-tenant isolation.

5.10.3 Run-time User Support. The Shell, cloud software, and cloud management systems used
for cloud FPGAs will need to significantly change in the coming years to support the multi-tenant
spatial model. This prospect raises multiple new FPGA-specific questions for cloud providers.
Starting at the beginning of the work flow, a user’s Role must be dynamically programmed to a
specific Role region. However, the cloud provider may not elect to expose an API for the user’s
VM to perform this programming for itself. Doing so may unnecessarily expose a vital part of
the system, the dynamic partial reconfiguration port, to potential abuse (e.g., a denial of service
attack that prevents or slows other Roles from being programmed onto the device). Rather, the
cloud provider may modify their management system to program the Role region in advance, only
starting the user’s VM after this operation is complete. This model also simplifies the Shell, software
drivers, and VM facilities that must be provided, since no safeguards are needed to ensure that a
given VM can only reprogram a specific Role region. In this case, the cloud management software
will send commands to the hypervisor, similar to what occurs when a VM is allocated. This model
may depart from the experience that some users may expect or need. For example, disallowing a
user from reprogramming the FPGA directly changes the potential use-cases that can be supported
and complicates the recovery process when a Role that has become unresponsive due to a bug in
the user’s code.

Once the user’s Role is active on the device, the user’s VM must have exclusive access to the Role.
Although the VM, driver, and Shell modifications needed to implement this access may be similar
to SR-IOV for devices that use PCIe, this approach may require different techniques for devices
that do not, e.g., network-attached standalone FPGAs. Furthermore, the Shell has responsibilities
that extend beyond communication with a user’s software - it must virtualize all external resources.
In the case of a resource like external memory, the Shell not only needs to segment the address
space for different Roles, it also must make fairness or quality of service considerations between
Roles. In the case of a resource like a network connection, this action likely requires support for
virtual networking to enforce isolation across the network and quality of service considerations
from both Roles and upstream switches.

Put together, the basic requirements needed to support themulti-tenant spatial model of execution
indicate that all parts of the cloud eco-system will need to become more sophisticated. However,
this added complexity presents new issues. For example, adding complexity naturally also increases
the potential for security vulnerabilities. In the case of the Shell, the necessary changes also affect
utilization. For example, the value proposition of the multi-tenant spatial model is the availability of
hardware for different users, thereby minimizing idle FPGA space. However, if significant additional
logic must be added to the Shell to support the multi-tenant spatial model, any potential advantage
may be nullified.

5.10.4 FPGA Architecture Changes. In general, commercial FPGAs were not designed for simul-
taneous use by multiple independent users (the multi-tenant spatial model). To prevent attacks,
additional security measures may need to be added to FPGA devices. One possible architectural
enhancement is the isolation of PDNs to FPGA regions to avoid on-FPGA voltage attacks. Such
isolation, which is common in multi-core microprocessors, may also allow for more flexible voltage
scaling on a per-region basis. FPGAs could also be instrumented with additional hardened voltage
and temperature monitors that can be read quickly. This information could then be used to isolate

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 31

and suppress voltage, thermal, and other attacks before they can cause damage. Finally, new tech-
niques to dynamically reconfigure FPGA regions and save state more quickly may be needed to
fully support rapid on-demand FPGA use in the cloud.

Improved bitstream security may spur interest in FPGA use as a root-of-trust in the data center.
Although modern FPGAs contain PUFs used in key management, and specialized blocks for hashing
and decryption of bitstreams, full breaks of modern FPGA bitstreams are commonplace [99].
Increased bitstream security will allow for a wider role for FPGAs in boot-strapping systems,
incorporating roles which have historically used trusted platform modules (TPMs) to validate
firmware.

6 APPLICATIONS
In this section we focus on customer applications that in most cases are run on public cloud
services. We divide these applications into two categories, namely infrastructure-based and other
applications.

6.1 Infrastructure
FPGAs have traditionally been used within networking equipment such as routers and switches. In
addition to the base functionality provided by the equipment vendor, more flexible switching and
routing capabilities were later introduced with protocols such as OpenFlow. An OpenFlow switch
[168] was implemented using NetFPGA hardware [230] to handle traffic going through the electrical
engineering and computer science building at Stanford University. Subsequently, NetFPGA SUME
was introduced for prototyping 10, 40 and 100 Gbps applications [244]. FPGAs have also been
used as disaggregated computing resources by directly connecting to the datacenter network as
standalone resources [25]. The infrastructure of this cluster can be separated into privileged and
non-privileged regions using partial reconfiguration [193]. In recent years, computing requirements
on the data plane have increased significantly with the emergence of applications such as server
virtualization and overlay tunneling. Performing such functions in software causes significant
CPU overhead, and SmartNICs were used to implement highly complex server side data plane
functions. Microsoft introduced FPGA-based SmartNICs to provide accelerated cloud services for
Azure customers by offloading host networking to hardware [105]. In this architecture, an FPGA is
placed in series with the network connection of the blade server (bump-in-the-wire) that enables
pre- and post-processing of data. Several other cloud service providers have also started using
SmartNICs in their acceleration applications [150, 237]. A framework [100] has been proposed that
provides a software abstraction and an FPGA-based hardware runtime for accelerating general
purpose applications in multi-tenant systems.

6.2 Other Applications
Numerous data center applications can benefit from using FPGA acceleration in areas such as
database acceleration, big data, machine learning, security and privacy, some of which are described
below.

6.2.1 Data Analytics. The core functionality of Memcached, a powerful open-source in-memory
key-value store for small chunks of data, has been implemented on an FPGA [84]. This architecture
has tightly integrated compute, network and memory resources so that it achieves significant
benefits in terms of power consumption and performance compared to a baseline server. Xilinx
has also built two versions of Memcached on FPGA [74, 75]. A methodology has been presented
for integrating FPGAs into Apache Spark [87], an open source analytics engine used for big data
processing. The cluster used in this work consists of a master node and six worker nodes each

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



32

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

of which is equipped with a PCIe-attached Alpha Data ADM-PCIE-7V3 FPGA board. It has been
shown that the performance of Spark-FPGA integration scales well up to six worker nodes. A
challenge of using Java-based analytics platforms like Spark is being able to efficiently share the
application data managed by Java with the custom accelerator inside the FPGA [114, 115]. Samsung
has proposed a near storage accelerator for database sort using a SmartSSD which consists of an
integrated FPGA that has a direct connection (P2P) to the storage device [195]. Having a direct
connection obviates the need to transfer data through the host memory, which incurs significant
latency in addition to occupying host resources. The implementation of a k-means algorithm using
multiple FPGAs in a heterogeneous computing cluster has been presented [88]. Researchers have
shown the ability to sort large amounts of data on an FPGA to support non-volatile memory [135],
an application that could be useful for cloud architectures in the future. Similarly, researchers have
shown that FPGAs can accelerate analytics for relational databases using a single node [154], an
approach that could be implemented in the cloud. Network attached FPGAs have been shown to
significantly accelerate functions useful for database transactions, such as atomic broadcast in
hardware, which has been demonstrated on a distributed key-value store implementation [133]
that demonstrates low latency and high throughput. FLOEM is a system for accelerating network
applications where reconfiguration is part of the NiC. FLOEM also uses key-value stores as a
demonstrator of its efficacy [177].

6.2.2 Deep Learning. Computational requirements for processing AI workloads have grown sig-
nificantly over the past few years, and cloud operators have opted to use FPGAs in applications
involving DNNs because of their high power efficiency and performance compared to CPUs and
GPUs. For some of the implementations, they were motivated by research outcomes in the field
of machine learning. DNNWeaver [200] generates custom, synthesizable accelerators for deep
neural networks that best match the needs of the DNN while providing high performance and
efficiency gains for the target FPGA. Notably, DNNWeaver is FPGA agnostic, and has been demon-
strated on both Intel and Xilinx FPGAs. The automatically generated accelerators deliver superior
performance and efficiency compared to multicore CPU and GPU implementations. The redun-
dancy associated with floating point number representation in CNNs used by CPUs and GPUs
can be removed by quantizing weights and activations and retraining the neural network. FINN
is a framework developed by Xilinx Research Labs to design flexible quantized neural network
inference accelerators on FPGAs [76]. This work shows that simple arithmetic operations in binary
neural networks (BNNs) are well suited for energy-efficient inference by fitting parameters entirely
in on-chip memory (OCM), which enables high computational performance. Microsoft’s Brain-
wave [89, 107] is a hardware architecture developed to perform real time AI calculations using a
soft-core neural processing unit (NPU) implemented on an Intel Stratix 10 FPGA. This NPU uses
reduced precision proprietary floating point formats, and enables competitive levels of performance
and energy efficiency compared to hard NPUs without compromising the accuracy of the model.
Brainwave was used as a cloud service [95] to accelerate ResNet-50 image classification for particle
physics computing applications. An enhancement has been made to the Brainwave’s NPU [80]
to efficiently use the tensor blocks in an FPGA, and its performance has been compared against
Nvidia’s T4 and V100 GPUs. An FPGA acceleration platform using a supertile-based design method
for general-purpose CNNs and image/video inference applications has also been introduced [238].
An interleaved task dispatching method has been used to scale up supertile units (SUs) to efficiently
perform different types of convolutions. Training CNNs using an FPDeep framework has also been
demonstrated [228]. Although the proposed architecture is not cloud-ready yet, the authors have
provided some insights onto a possible future cloud deployment using a scalable FPGA cluster.
The use of multiple FPGAs to implement more complex 3D CNNs is of research interest. Such

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



The Future of FPGA Acceleration in Datacenters and the Cloud 33

implementations have demonstrated higher inference throughput while preserving the end-to-end
latency of a single FPGA implementation [73, 205].

6.2.3 Security and Privacy. An important application area for FPGAs in the cloud is the security
and privacy of user data undergoing computation. Early research identified the necessity of having
FPGAs secure client data from attackers and untrusted system administrators [97]. A virtualization
framework was proposed and prototyped [85] that allows for the abstraction of cloud FPGA
resources using accelerator pools (APs). Garbled circuits (GC) [104] provide a promising approach
for the hardware acceleration of privacy preserving computation. This work demonstrated the
implementation of a generic reconfigurable coarse-grained FPGA overlay architecture for secure
function evaluation. GC has been deployed using AWS [129] and applied to privacy preserving
machine learning on cloud servers using FPGAs [131]. A garbler circuit [129] can achieve a 15×
speedup compared to a software implementation. The acceleration of homomorphic encryption is
also being investigated [221]. Here, a domain-specific co-processor architecture is used to accelerate
homomorphic function evaluation on encrypted data using AWS F1 FPGA instances. Researchers
at Microsoft have demonstrated homomorphic encryption on FPGAs and demonstrated over 100x
speedup compared to previous implementations [189].

6.3 Future Applications
FPGAs are increasingly being made available in user programmable cloud systems including those
from Alibaba [245], AWS [30], and the Open Cloud Testbed [123]. The trend is to have these FPGAs
be directly attached to the network to remove the latency incurred when data is transferred to and
from the host. At the same time, FPGAs continue to grow in capacity and to incorporate larger and
diverse memory elements. The applications of the future will take advantage of these properties to
deliver graph processing [86], machine learning, security and privacy applications on large data as
well as accelerating a host of scientific applications and applications not yet imagined.

7 CONCLUSIONS
This manuscript has discussed the recent and potential future evolution of FPGAs in cloud com-
puting platforms and datacenters from the perspective of experts in this field of research. The
manuscript focuses on the architectural organization, resource management, security, and applica-
tion deployment of FPGAs used in cloud and datacenter environments. These disciplines must be
well understood for cloud service providers (CSP) to effectively provide resources to users, and for
users to efficiently use the resources. The evolution of these FPGA systems has been chronicled in
the manuscript and current research provides insight into future development trajectories.

Towards GPUs and CPUs, FPGAs have the advantage of low latency, high throughput and energy
efficient. While FPGAs will not replace CPU and GPUs, they will be a complementary alternative
in the cloud in applications like computer vision, AI, security, crypto processing and more.
We believe that future FPGA-inclusive cloud systems and datacenters will consolidate the vast

selection of choices available today into a smaller range of architectures, programming models, and
security-enhanced deployments. This consolidation may mirror the integration of CPUs and FPGAs
in desktop and embedded systems that has taken place over the last two decades. With increased
available FPGA resources per device, many applications in the future will use only a portion of an
entire FPGA, leading to a need for resource sharing and system multi-tenancy. As a result, FPGA
architectures for cloud computing will require physical resource and protocol isolation to ensure
user security across different tenants, and the containment of faults and attacks that can disrupt
system operation. Enhancements in architecture, programming models, and security will lead to a

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.



34

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

broader range of applications for FPGA-based cloud deployment and growing market share in the
years to come.
The main obstacle for a broad adoption of FPGAs in datacenters is the lack of the software

stack that allows easy deployment, management and scaling of FPGAs on the cloud. Providing a
software stack similar to the one that has led to the success of CPUs/GPUs will increase architecture
diversification in the cloud, with FPGAs operating as equal partners on the side of CPUs and
GPUs. The foundations for broad adoption of FPGA in datacenters are currently being developed.
Innovative companies such as VMAccel, Inaccel as well as the opensource initiatives such as the
Cyborg project whose goal is the seamless integration of accelerator in OpenStack are paving the
way.

REFERENCES
[1] AWS Batch, User Guide. https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html.
[2] Cygnus. https://www.ccs.tsukuba.ac.jp/wp-content/uploads/sites/14/2018/12/About-Cygnus.pdf [Last accessed: April

29, 2021].
[3] Enzian. http://enzian.systems/ [Last accessed: April 29, 2021].
[4] IBM SuperVessel, OpenPower Cloud. https://www.research.ibm.com/labs/china/supervessel.html [Last accessed:

April 29, 2021].
[5] Inaccell website. https://inaccel.com/.
[6] Maxeller website. https://www.maxeler.com/products/maxcloud/.
[7] Open power foundation. https://openpowerfoundation.org/.
[8] Riscv website. https://riscv.org/.
[9] VMAccel – cloud service provider for fpga-based computing. https://www.vmaccel.com/.
[10] Xilinx Virtex UltraScale+. https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html.
[11] Programming MPC Systems. https://www.maxeler.com/media/documents/MaxelerWhitePaperProgramming.pdf

[Last accessed: January 26, 2021], June 2013.
[12] Cyborg FPGA Programming Service Proposal. https://docs.openstack.org/cyborg/stein/specs/rocky/approved/cyborg-

fpga-programming-proposal.html [Last accessed: October 25, 2021], 2018.
[13] Gator reconfigurable cloud computing. https://smartsystems.ece.ufl.edu/research/projects/gatorrecc/ [Last accessed:

June 2, 2021], 2018.
[14] Cyborg. https://wiki.openstack.org/wiki/Cyborg [Last accessed: October 25, 2021], 2021.
[15] Handel-C. https://en.wikipedia.org/wiki/Handel-C/ [Last accessed: October 22, 2021], 2021.
[16] Intel FPGA SDK for OpenCL Software Technology. https://www.intel.com/content/www/us/en/software/

programmable/sdk-for-opencl/overview.html [Last accessed: January 26, 2021], 2021.
[17] Intel oneAPI. https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html [Last Accessed:

October 22, 2021], 2021.
[18] Intel Open FPGA Stack. https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/

acceleration-stack.html [Last Accessed: January 26, 2021], 2021.
[19] OpenStack Acceleration APIs. https://docs.openstack.org/api-ref/accelerator/ [Last accessed: October 25, 2021], 2021.
[20] SDAccel. https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html [Last accessed: January 26,

2021], 2021.
[21] Vitis unified software platform. https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html [Last Ac-

cessed: January 26, 2021], 2021.
[22] AWS. EC2 F1 Instances. https://aws.amazon.com/ec2/instance-types/f1/ [Last accessed: April 29, 2021].
[23] Mohamed S Abdelfattah, David Han, Andrew Bitar, Roberto DiCecco, Shane O’Connell, Nitika Shanker, Joseph

Chu, Ian Prins, Joshua Fender, Andrew C Ling, et al. Dla: Compiler and fpga overlay for neural network inference
acceleration. In 2018 28th International Conference on Field Programmable Logic and Applications (FPL), pages 411–4117.
IEEE, 2018.

[24] A. Abdelsalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and L. Veltri. Implementation of virtual network
function chaining through segment routing in a Linux-based NFV infrastructure. In 2017 IEEE Conference on Network
Softwarization (NetSoft), pages 1–5, 2017.

[25] Francois Abel, Jagath Weerasinghe, Christoph Hagleitner, Beat Weiss, and Stephan Paredes. An FPGA platform for
hyperscalers. Proceedings - 2017 IEEE 25th Annual Symposium on High-Performance Interconnects, HOTI 2017, pages
29–32, 2017.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.

https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html
https://www.ccs.tsukuba.ac.jp/wp-content/uploads/sites/14/2018/12/About-Cygnus.pdf
http://enzian.systems/
https://www.research.ibm.com/labs/china/supervessel.html
https://inaccel.com/
https://www.maxeler.com/products/maxcloud/
https://openpowerfoundation.org/
https://riscv.org/
https://www.vmaccel.com/
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.maxeler.com/media/documents/MaxelerWhitePaperProgramming.pdf
https://docs.openstack.org/cyborg/stein/specs/rocky/approved/cyborg-fpga-programming-proposal.html
https://docs.openstack.org/cyborg/stein/specs/rocky/approved/cyborg-fpga-programming-proposal.html
https://smartsystems.ece.ufl.edu/research/projects/gatorrecc/
https://wiki.openstack.org/wiki/Cyborg
https://en.wikipedia.org/wiki/Handel-C/
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/acceleration-stack.html
https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/acceleration-stack.html
https://docs.openstack.org/api-ref/accelerator/
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://aws.amazon.com/ec2/instance-types/f1/


The Future of FPGA Acceleration in Datacenters and the Cloud 35

[26] Achronix. Speedster 7t FPGAs. https://www.achronix.com/product/speedster7t-fpgas [Last accessed: April 29, 2021].
[27] Amran A Al-Aghbari and Muhammad ES Elrabaa. Cloud-based fpga custom computing machines for streaming

applications. IEEE Access, 7:38009–38019, 2019.
[28] Md Mahbub Alam, Shahin Tajik, Fatemeh Ganji, Mark Tehranipoor, and Domenic Forte. RAM-Jam: Remote tempera-

ture and voltage fault attack on FPGAs using memory collisions. InWorkshop on Fault Diagnosis and Tolerance in
Cryptography, pages 48–55, 2019.

[29] Gustavo Alonso, Timothy Roscoe, David Cock, Muhsen Owaida, Kaan Kara, Dario Korolija, Zeke Wang, et al. Tackling
hardware/software co-design from a database perspective. In Proceedings of the 6th biennial Conference on Innovative
Data Systems Research (CIDR), Amsterdam, Netherlands, January 2020., 2020.

[30] Amazon.com, Inc. Amazon EC2 F1 Instances, 2021.
[31] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, and G. Snider. Teramac-Configurable Custom Computing. In

IEEE Symposium on FPGAs for Custom Computing Machines, pages 32–38, 1995.
[32] ARM. AMBA 4 AXI4-Stream Protocol Specification. Technical report, ARM, 2010.
[33] ARM. AMBA AXI and ACE Protocol Specification. Technical report, ARM, 2011.
[34] Mikhail Asiatici, Nithin George, Kizheppatt Vipin, Suhaib A Fahmy, and Paolo Ienne. Virtualized execution runtime

for fpga accelerators in the cloud. Ieee Access, 5:1900–1910, 2017.
[35] Alibaba. Alibaba FPGA Cloud. https://www.alibabacloud.com/help/doc-detail/108504.htm [Last accessed: April 29,

2021].
[36] Baidu. FPGA Cloud. https://cloud.baidu.com/product/fpga.html [Last accessed: April 29, 2021].
[37] Bittware. Computational Storage. https://www.bittware.com/fpga/storage/ [Last accessed: April 29, 2021].
[38] Blocks&Files. A brief look at AWS Redshift’s AQUA acceleration hardware. https://blocksandfiles.com/2019/12/05/

amazon-aqua-data-warehouse-acceleration-hardware/ [Last accessed: April 29, 2021].
[39] Blocks&Files. Our Computational Storage Drives are Bigger, Faster and Cheaper than Ordinary SSDs. https:

//blocksandfiles.com/2021/02/22/scaleflux-ceo-hao-zhong-interview/ [Last accessed: April 29, 2021].
[40] Cisco. Nexus 3000 Switch Architecture. https://www.ciscolive.com/c/dam/r/ciscolive/us/docs/2018/pdf/BRKDCN-

3734.pdf [Last accessed: April 29, 2021].
[41] Huawei. CloudEngine Is the Foundation of the Intent-driven Network. https://actfornet.com/ueditor/php/upload/file/

20191206/1575567949680852.pdf [Last accessed: April 29, 2021].
[42] Intel. SoC FPGAs. https://www.intel.com/content/www/us/en/products/programmable/soc.html [Last accessed:

April 29, 2021].
[43] Nimbix. FPGA Cloud. https://www.nimbix.net/what-is-an-fpga [Last accessed: April 29, 2021].
[44] OVH. Acceleration-as-a-Service leveraging Intel PAC. https://www.ovh.com/world/news/press/cp2541.ovh_

launches_acceleration-as-a-service_leveraging_the_new_intel_programmable_acceleration_card_and_app_store_
from_fpga_acceleration_partner_accelize [Last accessed: April 29, 2021].

[45] Scaleflux. Computational Storage. https://www.scaleflux.com/ [Last accessed: April 29, 2021].
[46] Tencent. FPGA Cloud Server. https://cloud.tencent.com/product/fpga [Last accessed: April 29, 2021].
[47] TheNextPlatform. Computational Storage Winds its Way Towards the Mainstream. https://www.nextplatform.com/

2020/02/25/computational-storage-winds-its-way-towards-the-mainstream/ [Last accessed: April 29, 2021].
[48] Xilinx. SmartSSD Computational Storage Drive. https://www.xilinx.com/applications/data-center/computational-

storage/smartssd.html [Last accessed: April 29, 2021].
[49] Xilinx. SoCs with Hardware and Software Programmability. https://www.xilinx.com/products/silicon-devices/soc/

zynq-7000.html [Last accessed: April 29, 2021].
[50] Baidu. Baidu ABC Platform. https://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Baidu_ABC_Platform.

pdf [Last accessed: April 29, 2021].
[51] Bittware. How OVHcloud Uses FPGAs to Mitigate DDoS Attacks. https://www.bittware.com/resources/case-study-

ovh/ [Last accessed: April 29, 2021].
[52] FaBRIC. FPGA Accelerator Research Infrastructure Cloud (FAbRIC). https://wikis.utexas.edu/display/fabric/Home

[Last accessed: April 29, 2021].
[53] Huawei. FPGA Cloud. https://www.huaweicloud.com/en-us/product/fcs.html [Last accessed: April 29, 2021].
[54] Scaleflux. Applications. https://www.scaleflux.com/news.html [Last accessed: April 29, 2021].
[55] TheNextPlatform. Baidu Takes FPGA Approach to Accelerating SQL at Scale. https://www.nextplatform.com/2016/

08/24/baidu-takes-fpga-approach-accelerating-big-sql/ [Last accessed: April 29, 2021].
[56] Xilinx. FPGAs: The Key to Accelerating High-Speed Storage Systems. https://www.flashmemorysummit.com/

Proceedings2019/08-07-Wednesday/20190807_Keynote11_Xilinx_Raje.pdf [Last accessed: April 29, 2021].
[57] AWS. Accelerate applications using Amazon EC2 F1 FPGA instances. https://d1.awsstatic.com/events/reinvent/2019/

Accelerate_applications_using_Amazon_EC2_F1_FPGA_instances_CMP314.pdf [Last accessed: April 29, 2021].

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.

https://www.achronix.com/product/speedster7t-fpgas
https://www.alibabacloud.com /help/doc-detail/108504.htm
https://cloud.baidu.com/product/fpga.html
https://www.bittware.com/fpga/storage/
https://blocksandfiles.com/2019/12/05/amazon-aqua-data-warehouse-acceleration-hardware/
https://blocksandfiles.com/2019/12/05/amazon-aqua-data-warehouse-acceleration-hardware/
https://blocksandfiles.com/2021/02/22/scaleflux-ceo-hao-zhong-interview/
https://blocksandfiles.com/2021/02/22/scaleflux-ceo-hao-zhong-interview/
https://www.ciscolive.com/c/dam/r/ciscolive/us/docs/2018/pdf/BRKDCN-3734.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/us/docs/2018/pdf/BRKDCN-3734.pdf
https://actfornet.com/ueditor/php/upload/file/20191206 /1575567949680852.pdf
https://actfornet.com/ueditor/php/upload/file/20191206 /1575567949680852.pdf
https://www.intel.com/content/www/us/en/ products/programmable/soc.html
https://www.nimbix.net/what-is-an-fpga
https://www.ovh.com/world/news/press/cp2541.ovh_launches_acceleration-as-a-service_leveraging_the_new_intel_programmable_acceleration_card_and_app_store_from_fpga_acceleration_partner_accelize
https://www.ovh.com/world/news/press/cp2541.ovh_launches_acceleration-as-a-service_leveraging_the_new_intel_programmable_acceleration_card_and_app_store_from_fpga_acceleration_partner_accelize
https://www.ovh.com/world/news/press/cp2541.ovh_launches_acceleration-as-a-service_leveraging_the_new_intel_programmable_acceleration_card_and_app_store_from_fpga_acceleration_partner_accelize
https://www.scaleflux.com/
https://cloud.tencent.com/product/fpga
https://www.nextplatform.com/ 2020/02/25/computational-storage-winds-its-way-towards-the-mainstream/
https://www.nextplatform.com/ 2020/02/25/computational-storage-winds-its-way-towards-the-mainstream/
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Baidu_ABC_Platform.pdf
https://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/Baidu_ABC_Platform.pdf
https://www.bittware.com/resources/case-study-ovh/
https://www.bittware.com/resources/case-study-ovh/
https://wikis.utexas.edu/display/fabric/Home
https://www.huaweicloud.com/en-us/product/fcs.html
https://www.scaleflux.com/news.html
https://www.nextplatform.com/2016/08/24/baidu-takes-fpga-approach-accelerating-big-sql/
https://www.nextplatform.com/2016/08/24/baidu-takes-fpga-approach-accelerating-big-sql/
https://www.flashmemorysummit.com/Proceedings2019/08-07-Wednesday/20190807_Keynote11_Xilinx_Raje.pdf
https://www.flashmemorysummit.com/Proceedings2019/08-07-Wednesday/20190807_Keynote11_Xilinx_Raje.pdf
https://d1.awsstatic.com/events/reinvent/2019/Accelerate_applications_using_Amazon_EC2_F1_FPGA_instances_CMP314.pdf
https://d1.awsstatic.com/events/reinvent/2019/Accelerate_applications_using_Amazon_EC2_F1_FPGA_instances_CMP314.pdf


36

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

[58] AWS. AQUA (Advanced Query Accelerator) for Amazon Redshift. https://pages.awscloud.com/AQUA_Preview.html
[Last accessed: April 29, 2021].

[59] Baidu. AI Cloud. https://intl.cloud.baidu.com/product/abc-stack.html [Last accessed: April 29, 2021].
[60] Huawei. FPGA as a Service in the Cloud. https://indico.cern.ch/event/669648/contributions/2838181/attachments/

1581893/2500031/Huawei_Cloud_FPGA_as_a_Service_CERN_openlab.pdf [Last accessed: April 29, 2021].
[61] Intel. FPGA Programmable Acceleration Card D5005. https://www.intel.com/content/www/us/en/programmable/

products/boards_and_kits/dev-kits/altera/intel-fpga-pac-d5005/overview.html [Last accessed: April 29, 2021].
[62] Xilinx. Alveo SmartNIC Accelerator Card. https://www.xilinx.com/products/boards-and-kits/alveo.html [Last

accessed: April 29, 2021].
[63] Intel. Intel FPGAs Power Acceleration-as-a-Service for Alibaba Cloud. https://newsroom.intel.com/news/intel-fpgas-

power-acceleration-as-a-service-alibaba-cloud/#gs.uijjhu [Last accessed: April 29, 2021].
[64] TheNextPlatform. Another Step towards FPGAs in Supercomputing. https://www.nextplatform.com/2018/04/04/

another-step-toward-fpgas-in-supercomputing/ [Last accessed: April 29, 2021].
[65] Xilinx. Alveo SN1000 Accelerator Card. https://www.xilinx.com/applications/data-center/network-acceleration/alveo-

sn1000.html [Last accessed: April 29, 2021].
[66] Intel. Intelligent Infrastructure Transformation. https://newsroom.intel.com/news/intel-baidu-drive-intelligent-

infrastructure-transformation [Last accessed: April 29, 2021].
[67] Daniel O Awduche. Mpls and traffic engineering in ip networks. IEEE communications Magazine, 37(12):42–47, 1999.
[68] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards predictable datacenter networks.

In Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, page 242–253, New York, NY, USA, 2011.
Association for Computing Machinery.

[69] AWS. Marketplace. https://aws.amazon.com/marketplace/search/results?x=0&y=0&searchTerms=fpga [Last accessed:
April 29, 2021].

[70] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A. Trew, A. McCormick, G. Smart, R. Smart,
A. Cantle, R. Chamberlain, and G. Genest. Maxwell - a 64 FPGA Supercomputer. In Second NASA/ESA Conference on
Adaptive Hardware and Systems (AHS 2007), pages 287–294, 2007.

[71] Christian Beckhoff, Dirk Koch, and Jim Torresen. Short-circuits on fpgas caused by partial runtime reconfiguration.
In International Conference on Field Programmable Logic and Applications, pages 596–601, 2010.

[72] D. Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud Computing, 1(3):81–84, 2014.
[73] Saman Biookaghazadeh, Pravin Kumar Ravi, and Ming Zhao. Toward multi-FPGA acceleration of the neural networks.

ACM Journal on Emerging Technologies in Computing Systems (JETC), 17(2):1–23, 2021.
[74] Michaela Blott, Kimon Karras, Ling Liu, Kees Vissers, Jeremia Bär, and Zsolt István. Achieving 10gbps line-rate

key-value stores with fpgas. In 5th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 13), San Jose, CA,
June 2013. USENIX Association.

[75] Michaela Blott, Ling Liu, Kimon Karras, and Kees Vissers. Scaling out to a single-node 80gbps memcached server
with 40terabytes of memory. In 7th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 15), Santa
Clara, CA, July 2015. USENIX Association.

[76] Michaela Blott, Thomas B Preußer, Nicholas J Fraser, Giulio Gambardella, Kenneth O’brien, Yaman Umuroglu, Miriam
Leeser, and Kees Vissers. FINN-R: An end-to-end deep-learning framework for fast exploration of quantized neural
networks. ACM Transactions on Reconfigurable Technology and Systems (TRETS), 11(3):1–23, 2018.

[77] C. Bobda, A. Majer, A. Ahmadinia, T. Haller, A. Linarth, and J. Teich. The erlangen slot machine: increasing flexibility
in fpga-based reconfigurable platforms. In Proceedings. 2005 IEEE International Conference on Field-Programmable
Technology, 2005., pages 37–42, 2005.

[78] Christophe Bobda. Introduction to Reconfigurable Computing: Architectures, Algorithms, and Applications. Springer
Publishing Company, Incorporated, 1st edition, 2007.

[79] Marc Boulé and Zeljko Zilic. Automata-based assertion-checker synthesis of PSL properties. ACM Trans. Des. Autom.
Electron. Syst., 13(1):4:1–4:21, February 2008.

[80] Andrew Boutros, Eriko Nurvitadhi, Rui Ma, Sergey Gribok, Zhipeng Zhao, James C. Hoe, Vaughn Betz, and Martin
Langhammer. Beyond peak performance: Comparing the real performance of AI-Optimized FPGAs and GPUs. In
2020 International Conference on Field-Programmable Technology (ICFPT), pages 10–19, 2020.

[81] Alexander Brant and Guy GF Lemieux. Zuma: An open fpga overlay architecture. In Field-Programmable Custom
Computing Machines (FCCM), 2012 IEEE 20th Annual International Symposium on, pages 93–96. IEEE, 2012.

[82] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Alberto Leon Garcia, and Paul Chow. Fpgas in the cloud: Booting
virtualized hardware accelerators with openstack. In 2014 IEEE 22nd Annual International Symposium on Field-
Programmable Custom Computing Machines, pages 109–116. IEEE, 2014.

[83] A.M. Caulfield, E.S. Chung, A. Putnam, H. Angepat, Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods,

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.

https://pages.awscloud.com/AQUA_Preview.html
https://intl.cloud.baidu.com/product/abc-stack.html
https://indico.cern.ch/event/669648/contributions/2838181/attachments/1581893/2500031/Huawei_Cloud_FPGA_as_a_Service_CERN_openlab.pdf
https://indico.cern.ch/event/669648/contributions/2838181/attachments/1581893/2500031/Huawei_Cloud_FPGA_as_a_Service_CERN_openlab.pdf
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-d5005/overview.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-d5005/overview.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://newsroom.intel.com/ news/intel-fpgas-power-acceleration-as-a-service-alibaba-cloud/#gs.uijjhu
https://newsroom.intel.com/ news/intel-fpgas-power-acceleration-as-a-service-alibaba-cloud/#gs.uijjhu
https://www.nextplatform.com/ 2018/04/04/another-step-toward-fpgas-in-supercomputing/
https://www.nextplatform.com/ 2018/04/04/another-step-toward-fpgas-in-supercomputing/
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
https://newsroom.intel.com/news/intel-baidu-drive-intelligent-infrastructure-transformation
https://newsroom.intel.com/news/intel-baidu-drive-intelligent-infrastructure-transformation
https://aws.amazon.com/marketplace/search/results?x=0&y=0&searchTerms=fpga


The Future of FPGA Acceleration in Datacenters and the Cloud 37

Sitaram Lanka, Derek Chiou, and Doug Burger. A cloud-scale acceleration architecture. In 49th IEEE/ACM Int. Symp.
Microarchitecture, pages 1–13, 2016.

[84] Sai Rahul Chalamalasetti, Kevin Lim, Mitch Wright, Alvin AuYoung, Parthasarathy Ranganathan, and Martin Margala.
An FPGA memcached appliance. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, page 245–254, 2013.

[85] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and Kun Wang. Enabling fpgas in the cloud.
In Proceedings of the 11th ACM Conference on Computing Frontiers, page 3. ACM, 2014.

[86] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Deming Chen. Thundergp: Hls-based
graph processing framework on fpgas. In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 69–80, 2021.

[87] Yu-Ting Chen, Jason Cong, Zhenman Fang, Jie Lei, and Peng Wei. When spark meets FPGAs: A case study for
next-generation DNA sequencing acceleration. In 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
16), 2016.

[88] Yuk-Ming Choi and Hayden Kwok-Hay So. Map-reduce processing of k-means algorithm with FPGA-accelerated
computer cluster. In 2014 IEEE 25th International Conference on Application-Specific Systems, Architectures and
Processors, pages 9–16, 2014.

[89] Chung, Eric and Fowers, Jeremy and Ovtcharov, Kalin and Papamichael, Michael and Caulfield, Adrian and Massengill,
Todd and Liu, Ming and Lo, Daniel and Alkalay, Shlomi and Haselman, Michael and others. Serving DNNs in Real
Time at Datacenter Scale with Project Brainwave. IEEE Micro, 38(2):8–20, 2018.

[90] Catalin Cimpano. Vast majority of cyber-attacks on cloud servers aim to mine cryptocurrency. https://www.zdnet.
com/article/vast-majority-of-cyber-attacks-on-cloud-servers-aim-to-mine-cryptocurrency/, August 2020.

[91] Chris Conger, Ian Troxel, D Espinoza, Vikas Aggarwal, and A George. NARC: Network Attached Reconfigurable
Computing for High Performance, Network Based Applications. In Proceedings of the Eighth Annual International
Conference on Military and Aerospace Programmable Logic Devices (MAPLD’05), 2005.

[92] CXL. CPU-to-Device Interconnect. https://www.computeexpresslink.org/about-cxl [Last accessed: April 29, 2021].
[93] Guohao Dai, Yi Shan, Fei Chen, Yu Wang, Kun Wang, and Huazhong Yang. Online scheduling for fpga computation

in the cloud. In 2014 International Conference on Field-Programmable Technology (FPT), pages 330–333. IEEE, 2014.
[94] Tiziano De Matteis, Johannes de Fine Licht, Jakub Beránek, and Torsten Hoefler. Streaming Message Interface:

High-Performance Distributed Memory Programming on Reconfigurable Hardware. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–33, 2019.

[95] Javier Duarte, Philip Harris, Scott Hauck, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Suffian Khan, Benjamin
Kreis, Brian Lee, Mia Liu, et al. FPGA-accelerated machine learning inference as a service for particle physics
computing. Computing and Software for Big Science, 3(1):1–15, 2019.

[96] Sankha Baran Dutta, Hoda Naghibijouybari, Nael Abu-Ghazaleh, Andres Marquez, and Kevin Barker. Leaky buddies:
Cross-component covert channels on integrated cpu-gpu systems. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pages 972–984. IEEE, 2021.

[97] Ken Eguro and Ramarathnam Venkatesan. FPGAs for trusted cloud computing. In 22nd International Conference on
Field Programmable Logic and Applications (FPL), pages 63–70, 2012.

[98] Eideticomm. NVMe Computational Storage. https://www.eideticom.com/ [Last accessed: April 29, 2021].
[99] Maik Ender, Amir Moradi, and Christof Paar. The unpatchable silicon: A full break of the bitstream encryption of

Xilinx 7-Series FPGAs. In 29th USENIX Security Symposium, 2020.
[100] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. NICA: An infrastructure for inline

acceleration of network applications. In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 345–362,
2019.

[101] Dieter Ernst. Competing in Artificial Intelligence Chips: China’s Challenge amid Technology War. Centre for
International Governance Innovation, Special Report, 2020.

[102] Nariman Eskandari, Naif Tarafdar, Daniel Ly-Ma, and Paul Chow. A modular heterogeneous stack for deploying fpgas
and cpus in the data center. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’19, pages 262–271, New York, NY, USA, 2019. ACM.

[103] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. Virtualized fpga accelerators for efficient cloud computing.
In 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), pages 430–435.
IEEE, 2015.

[104] Xin Fang, Stratis Ioannidis, and Miriam Leeser. Secure function evaluation using an FPGA overlay architecture. In
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 257–266,
2017.

[105] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh, Mike Andrewartha, Hari
Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, et al. Azure accelerated networking: SmartNICs in the public

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.

https://www.zdnet.com/article/vast-majority-of-cyber-attacks-on-cloud-servers-aim-to-mine-cryptocurrency/
https://www.zdnet.com/article/vast-majority-of-cyber-attacks-on-cloud-servers-aim-to-mine-cryptocurrency/
https://www.computeexpresslink.org/about-cxl
https://www.eideticom.com/


38

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

cloud. In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), pages 51–66, 2018.
[106] Forbes. Xilinx FPGAs: The Chip Behind Alibaba’s Singles Day. https://www.forbes.com/sites/moorinsights/2018/11/

29/xilinx-fpgas-the-chip-behind-alibabas-singles-day/?sh=5f2294e27e3b [Last accessed: April 29, 2021].
[107] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael

Haselman, Logan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger. A configurable cloud-scale DNN
processor for real-time AI. In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),
pages 1–14, 2018.

[108] Karl Freund. Google cloud tpu: Strategic implications for google, nvidia and the machine learning indus-
try. https://www.forbes.com/sites/moorinsights/2017/05/22/google-cloud-tpu-strategic-implications-for-google-
nvidia-and-the-machine-learning-industry/?sh=69d2f5a13af7, May 2017.

[109] Norihisa Fujita, Ryohei Kobayashi, Yoshiki Yamaguchi, and Taisuke Boku. Parallel Processing on FPGA Combining
Computation and Communication in OpenCL Programming. In 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 479–488. IEEE, 2019.

[110] Juan Fumero, Michail Papadimitriou, Foivos S Zakkak, Maria Xekalaki, James Clarkson, and Christos Kotselidis.
Dynamic application reconfiguration on heterogeneous hardware. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, pages 165–178, 2019.

[111] William Gayde. How arm came to dominate the mobile market and it’s coming for more, much more. https:
//www.techspot.com/article/1989-arm-inside, dec 2020.

[112] A. D. George, M. C. Herbordt, H. Lam, A. G. Lawande, J. Sheng, and C. Yang. Novo-G#: Large-Scale Reconfigurable
Computing with Direct and Programmable Interconnects. In 2016 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–7, 2016.

[113] Alan George, Herman Lam, and Greg Stitt. Novo-G: At the Forefront of Scalable Reconfigurable Supercomputing.
Computing in Science & Engineering, 13(1):82–86, 2010.

[114] Ehsan Ghasemi and Paul Chow. Accelerating apache spark big data analysis with fpgas. In 2016 Intl IEEE Conferences on
Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld),
pages 737–744, 2016.

[115] Ehsan Ghasemi and Paul Chow. Accelerating apache spark with fpgas. Concurrency and Computation: Practice and
Experience, 31(2):e4222, 2019.

[116] Ilias Giechaskiel, Kasper Rasmussen, and Jakub Szefer. Reading between the dies: Cross-SLR covert channels on
multi-tenant cloud FPGAs. In IEEE International Conference on Computer Design, pages 1–10, 2019.

[117] Ilias Giechaskiel, Kasper Rasmussen, and Jakub Szefer. CAPSULe: Cross-FPGA covert-channel attacks through power
supply unit leakage. In IEEE Symposium on Security and Privacy, pages 1728–1741, May 2020.

[118] Ilias Giechaskiel, Kasper B Rasmussen, and Ken Eguro. Leaky wires: Information leakage and covert communication
between FPGA long wires. In Asia Conference on Computer and Communications Security (ASIACCS), pages 15–27,
2018.

[119] AWS GitHub. AFI Power. https://github.com/aws/aws-fpga/blob/master/hdk/docs/afi_power.md, 2020.
[120] Dennis RE Gnad, Fabian Oboril, and Mehdi B Tahoori. Voltage drop-based fault attacks on FPGAs using valid

bitstreams. In International Conference on Field Programmable Logic and Applications (FPL), pages 1–7, 2017.
[121] Google, Inc. Use a GPU. https://www.tensorflow.org/guide/gpu [Last accessed: October 19, 2021].
[122] Christoph Hagleitner, Dionysios Diamantopoulos, Burkhard Ringlein, Constantinos Evangelinos, Charles Johns,

Rong N. Chang, Bruce D’Amora, James A. Kahle, James Sexton, Michael Johnston, Edward Pyzer-Knapp, and Chris
Ward. Heterogeneous computing systems for complex scientific discovery workflows. In 2021 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 13–18, February 2021.

[123] S Handagala, M Herbordt, and M Leeser. Oct: The open cloud fpga testbed. In 31st International Conference on Field
Programmable Logic and Applications (FPL), 2021.

[124] Reiner Hartenstein. Coarse grain reconfigurable architecture (embedded tutorial). In Proceedings of the 2001 Asia and
South Pacific Design Automation Conference, pages 564–570. ACM, 2001.

[125] Festus Hategekimana, Joel Mandebi Mbongue, Md Jubaer Hossain Pantho, and Christophe Bobda. Inheriting software
security policies within hardware IP components. In IEEE International Symposium on Field-Programmable Custom
Computing Machines, pages 53–56, 2018.

[126] Festus Hategekimana, Joel Mandebi Mbongue, Md Jubaer Hossain Pantho, and Christophe Bobda. Secure hardware
kernels execution in cpu+ fpga heterogeneous cloud. In 2018 International Conference on Field-Programmable
Technology (FPT), pages 182–189. IEEE, 2018.

[127] Nicole Hemsothd. First in-depth look at google’s new second-generation tpu. https://www.nextplatform.com/2017/
05/17/first-depth-look-googles-new-second-generation-tpu/, May 2017.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.

https://www.forbes.com/sites/moorinsights/2018/11/29/xilinx-fpgas-the-chip-behind-alibabas-singles-day/?sh=5f2294e27e3b
https://www.forbes.com/sites/moorinsights/2018/11/29/xilinx-fpgas-the-chip-behind-alibabas-singles-day/?sh=5f2294e27e3b
https://www.forbes.com/sites/moorinsights/2017/05/22/google-cloud-tpu-strategic-implications-for-google-nvidia-and-the-machine-learning-industry/?sh=69d2f5a13af7
https://www.forbes.com/sites/moorinsights/2017/05/22/google-cloud-tpu-strategic-implications-for-google-nvidia-and-the-machine-learning-industry/?sh=69d2f5a13af7
https://www.techspot.com/article/1989-arm-inside
https://www.techspot.com/article/1989-arm-inside
https://github.com/aws/aws-fpga/blob/master/hdk/docs/afi_power.md
https://www.tensorflow.org/guide/gpu
https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/
https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/


The Future of FPGA Acceleration in Datacenters and the Cloud 39

[128] Edson L. Horta, John W. Lockwood, David E. Taylor, and David Parlour. Dynamic hardware plugins in an fpga with
partial run-time reconfiguration. In Proceedings of the 39th Annual Design Automation Conference, DAC ’02, page
343–348, New York, NY, USA, 2002. Association for Computing Machinery.

[129] Kai Huang, Mehmet Gungor, Xin Fang, Stratis Ioannidis, and Miriam Leeser. Garbled circuits in the cloud using
FPGA enabled nodes. In 2019 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–6, 2019.

[130] Ted Huffmire, Brett Brotherton, Nick Callegari, Jonathan Valamehr, Jeff White, Ryan Kastner, and Tim Sherwood.
Designing secure systems on reconfigurable hardware. ACM Trans. Des. Autom. Electron. Syst., 13(3):44:1–44:24, July
2008.

[131] Siam U Hussain, Bita Darvish Rouhani, Mohammad Ghasemzadeh, and Farinaz Koushanfar. Maxelerator: FPGA
accelerator for privacy preserving multiply-accumulate (MAC) on cloud servers. In Proceedings of the 55th Annual
Design Automation Conference, pages 1–6, 2018.

[132] Inventec. FPGA SmartNIC C5020X. https://ebg.inventec.com/en/product/Accessories/Smart%20NIC%20Card/
Inventec%20FPGA%20SmartNIC%20C5020X [Last accessed: April 29, 2021].

[133] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. Consensus in a box: Inexpensive coordination
in hardware. In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16), pages
425–438, 2016.

[134] Chenglu Jin, Vasudev Gohil, Ramesh Karri, and Jeyavijayan Rajendran. Security of cloud FPGAs: A survey. arxiv,
arXiv:2005.04867, 2020.

[135] Sang-Woo Jun, Shuotao Xu, and Arvind. Terabyte sort on FPGA-accelerated flash storage. In 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 17–24, 2017.

[136] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and Fabien Duchene. Flowbender: Flow-level adaptive routing
for improved latency and throughput in datacenter networks. In Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and Technologies, CoNEXT ’14, page 149–160, New York, NY, USA,
2014. Association for Computing Machinery.

[137] Chris Kachris, Elias Koromilas, and Ioannis Stamelos. Single-line deployment of Cloud FPGAs. https://cfdevops.
github.io/cFDevOps21/slides/cFDevOps21_Kachris.pdf [Last accessed: October 19, 2021].

[138] Nachiket Kapre and Jan Gray. Hoplite: Building austere overlay nocs for fpgas. In 2015 25th International Conference
on Field Programmable Logic and Applications (FPL), pages 1–8. IEEE, 2015.

[139] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza, and Christopher J Rossbach. Sharing,
protection, and compatibility for reconfigurable fabric with amorphos. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pages 107–127, 2018.

[140] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Jihye Lee, Donghyuk Lee, Chris B Wilkerson, Konrad K Lai, and
Onur Mutlu. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors.
In International Symposium on Computer Architecture, pages 361–372, 2014.

[141] Ryohei Kobayashi, Yuma Oobata, Norihisa Fujita, Yoshiki Yamaguchi, and Taisuke Boku. OpenCL-Ready High Speed
FPGA Network for Reconfigurable High Performance Computing. In Proceedings of the International Conference on
High Performance Computing in Asia-Pacific Region, pages 192–201, 2018.

[142] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. In 40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[143] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. Do {OS} abstractions make sense on fpgas? In 14th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 20), pages 991–1010, 2020.

[144] S. Kumar Saha and C. Bobda. Fpga accelerated embedded system security through hardware isolation. In 2020 Asian
Hardware Oriented Security and Trust Symposium (AsianHOST), pages 1–6, 2020.

[145] Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J Rossbach, and Eric Schkufza. Compiler-driven fpga virtualiza-
tion with synergy. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 818–831, 2021.

[146] Xiangwei Li, Abhishek Jain, Douglas Maskell, and Suhaib A Fahmy. An area-efficient fpga overlay using dsp block
based time-multiplexed functional units. arXiv preprint arXiv:1606.06460, 2016.

[147] Thomas Lin, Byungchul Park, Hadi Bannazadeh, and Alberto Leon-Garcia. Savi Testbed Architecture and Federation.
In Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pages 3–10. Springer, 2015.

[148] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from
user space. In 27th USENIX Security Symposium (USENIX Security 18), 2018.

[149] Peter Loscocco and Stephen Smalley. Meeting critical security objectives with security-enhanced Linux. In Ottawa
Linux Symposium, pages 115–134, 2001.

[150] Layong Larry Luo and TEG Tencent. Towards converged SmartNIC architecture for bare metal & public clouds, 2018.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.

https://ebg.inventec.com/en/product/Accessories/Smart%20NIC%20Card/Inventec%20FPGA%20SmartNIC%20C5020X
https://ebg.inventec.com/en/product/Accessories/Smart%20NIC%20Card/Inventec%20FPGA%20SmartNIC%20C5020X
https://cfdevops.github.io/cFDevOps21/slides/cFDevOps21_Kachris.pdf
https://cfdevops.github.io/cFDevOps21/slides/cFDevOps21_Kachris.pdf


40

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

[151] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang Liu, Abel Mulugeta Eneyew, Zhengwei Qi, and
Baris Kasikci. A hypervisor for shared-memory fpga platforms. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating Systems, pages 827–844, 2020.

[152] M. Ma and V. W. S. Wong. An optimal peak hour content server cache update scheduling algorithm for 5g hetnets. In
ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pages 1–6, 2019.

[153] Sen Ma, Zeyad Aklah, and David Andrews. A run time interpretation approach for creating custom accelerators. In
2015 25th International Conference on Field Programmable Logic and Applications (FPL), pages 1–4. IEEE, 2015.

[154] Divya Mahajan, Joon Kyung Kim, Jacob Sacks, Adel Ardalan, Arun Kumar, and Hadi Esmaeilzadeh. In-RDBMS
Hardware Acceleration of Advanced Analytics. Proceedings of the VLDB Endowment, 11(11):1317–1331, July 2018.

[155] Mallik Mahalingam, Dinesh G Dutt, Kenneth Duda, Puneet Agarwal, Lawrence Kreeger, T Sridhar, Mike Bursell, and
Chris Wright. Virtual extensible local area network (vxlan): A framework for overlaying virtualized layer 2 networks
over layer 3 networks. RFC, 7348:1–22, 2014.

[156] Pongstorn Maidee, Alireza Kaviani, and Kevin Zeng. Linkblaze: Efficient global data movement for fpgas. In 2017
International Conference on ReConFigurable Computing and FPGAs (ReConFig), pages 1–8. IEEE, 2017.

[157] Joel Mandebi Mbongue, Sujan Kumar Saha, and Christophe Bobda. Domain isolation in fpga-accelerated cloud and
data center applications. In Proceedings of the 2021 on Great Lakes Symposium on VLSI, pages 283–288, 2021.

[158] Joel Mandebi Mbongue, Danielle Tchuinkou Kwadjo, and Christophe Bobda. Flexitask: A flexible fpga overlay for
efficient multitasking. In Proceedings of the 2018 on Great Lakes Symposium on VLSI, pages 483–486. ACM, 2018.

[159] Joel Mbongue, Festus Hategekimana, Danielle Tchuinkou Kwadjo, David Andrews, and Christophe Bobda. Fpgavirt: A
novel virtualization framework for fpgas in the cloud. In 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), pages 862–865. IEEE, 2018.

[160] Joel Mandebi Mbongue, Danielle Tchuinkou Kwadjo, and Christophe Bobda. Automatic generation of application-
specific fpga overlays with rapidwright. In 2019 International Conference on Field-Programmable Technology (ICFPT),
pages 303–306. IEEE, 2019.

[161] Joel Mandebi Mbongue, Danielle Tchuinkou Kwadjo, Alex Shuping, and Christophe Bobda. Deploying multi-tenant
fpgas within linux-based cloud infrastructure. ACM Transactions on Reconfigurable Technology and Systems (TRETS),
15(2):1–31, 2021.

[162] Joel Mandebi Mbongue, Sujan Kumar Saha, and Christophe Bobda. Performance study of multi-tenant cloud fpgas.
In 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 168–171. IEEE,
2021.

[163] Joel Mandebi Mbongue, Sujan Kumar Saha, and Christophe Bobda. A security architecture for domain isolation in
multi-tenant cloud fpgas. In 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 290–295. IEEE,
2021.

[164] Joel Mandebi Mbongue, Alex Shuping, Pankaj Bhowmik, and Christophe Bobda. Architecture support for fpga
multi-tenancy in the cloud. In 2020 IEEE 31st International Conference on Application-specific Systems, Architectures
and Processors (ASAP), pages 125–132. IEEE, 2020.

[165] Mellanox. Innova-2 Flex Open Programmable SmartNIC. https://www.mellanox.com/files/doc-2020/pb-innova-2-
flex.pdf [Last accessed: April 29, 2021].

[166] Microsoft Azure. Deploy ML models to FPGAs with Azure Machine Learning. https://azure.microsoft.com/en-
us/pricing/details/virtual-machines/windows/ [Last accessed: April 29, 2021].

[167] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Yan, Lianmin Zheng, Josh Fromm, Ziheng Jiang,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. A hardware–software blueprint for flexible deep learning
specialization. IEEE Micro, 39(5):8–16, 2019.

[168] Jad Naous, David Erickson, G Adam Covington, Guido Appenzeller, and Nick McKeown. Implementing an OpenFlow
switch on the NetFPGA platform. In Proceedings of the 4th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, pages 1–9, 2008.

[169] Napatech. FPGA acceleration cards. https://www.napatech.com/products/ [Last accessed: April 29, 2021].
[170] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. Intel virtualization technology: Hardware

support for efficient processor virtualization. Intel Technology Journal, 10(3), 2006.
[171] NewWaveDV. 32-Port Programmable Switch. http://newwavedv.com/wordpress/wp-content/uploads/2019/04/32-

Port-Programmable-Switch-Datasheet.pdf [Last accessed: April 29, 2021].
[172] Jonas Ney, Dominik Loroch, Vladimir Rybalkin, Nico Weber, Jens Krüger, and Norbert Wehn. HALF: Holistic Auto

Machine Learning for FPGAs. In Proceedings of the 31st IEEE International Conference on Field-Programmable Logic
and Applications (FPL), pages –. IEEE, 2021.

[173] M. Noormohammadpour and C. S. Raghavendra. Datacenter traffic control: Understanding techniques and tradeoffs.
IEEE Communications Surveys Tutorials, 20(2):1492–1525, 2018.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.

https://www.mellanox.com/files/doc-2020/pb-innova-2-flex.pdf
https://www.mellanox.com/files/doc-2020/pb-innova-2-flex.pdf
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/
https://www.napatech.com/products/
http://newwavedv.com/wordpress/wp-content/uploads/2019/04/32-Port-Programmable-Switch-Datasheet.pdf
http://newwavedv.com/wordpress/wp-content/uploads/2019/04/32-Port-Programmable-Switch-Datasheet.pdf


The Future of FPGA Acceleration in Datacenters and the Cloud 41

[174] OpenCAPI. A New Standard for High Performance Memory, Acceleration and Networks. https://opencapi.org/2017/
04/opencapi-new-standard-high-performance-memory-acceleration-networks/ [Last accessed: April 29, 2021].

[175] Opeyemi Osanaiye, Kim-Kwang Raymond Choo, and Mqhele Dlodlo. Distributed denial of service (DDoS) resilience
in cloud: Review and conceptual cloud DDoS mitigation framework. Journal of Network and Computer Applications,
67:147–165, May 2016.

[176] Paderborn Center for Parallel Computing, University of Padeborn. Noctua. https://pc2.uni-paderborn.de/hpc-
services/available-systems/noctua [Last accessed: April 29, 2021].

[177] PhitchayaMangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter, Rastislav Bodik, and Thomas Anderson.
Floem: A programming system for nic-accelerated network applications. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pages 663–679, 2018.

[178] Christian Pilato, Stanislav Bohm, Fabien Brocheton, Jeronimo Castrillon, Riccardo Cevasco, Vojtech Cima, Radim
Cmar, Dionysios Diamantopoulos, Fabrizio Ferrandi, Jan Martinovic, Gianluca Palermo, Michele Paolino, Antonio
Parodi, Lorenzo Pittaluga, Daniel Raho, Francesco Regazzoni, Katerina Slaninova, and Christoph Hagleitner. Everest:
A design environment for extreme-scale big data analytics on heterogeneous platforms. In 2021 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1320–1325, February 2021.

[179] Christian Plessl. Bringing FPGAs to HPC Production Systems and Codes. In H2RC’18 workshop at Supercomputing
(SC’18), 2018. doi: 10.13140/RG.2.2.34327.42407.

[180] PRNewsWire. NVMe Production Ready System. https://www.prnewswire.com/news-releases/eideticom-
ibm-rackspace-and-xilinx-demonstrate-worlds-first-pcie-gen4-nvm-express-production-ready-system-
676532203.html [Last accessed: April 29, 2021].

[181] George Provelengios, Daniel Holcomb, and Russell Tessier. Characterizing power distribution attacks in multi-user
FPGA environments. In International Conference on Field Programmable Logic and Applications (FPL), pages 194–201,
2019.

[182] George Provelengios, Daniel Holcomb, and Russell Tessier. Power wasting circuits for cloud FPGA attacks. In
International Conference on Field Programmable Logic and Applications (FPL), 2020.

[183] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P.
Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati, J. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith,
J. Thong, P. Y. Xiao, and D. Burger. A Reconfigurable Fabric for Accelerating Large-Scale Data Center Services. In
2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA), pages 13–24, 2014.

[184] PyTorch community. Training a Classifier on GPU. https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#
training-on-gpu [Last accessed: October 19, 2021].

[185] Arzhang Rafii, Welson Sun, and Paul Chow. Pharos: a multi-fpga performance monitor. In 2021 31st International
Conference on Field-Programmable Logic and Applications (FPL), pages 257–262, 2021.

[186] Chethan Ramesh, Shivukumar B Patil, Siva Nishok Dhanuskodi, George Provelengios, Sébastien Pillement, Daniel
Holcomb, and Russell Tessier. FPGA side channel attacks without physical access. In IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 45–52, 2018.

[187] Kasper Rasmussen, Ilias Giechaskiel, and Ken Eguro. Leakier wires: Exploiting FPGA long wires for covert-and
side-channel attacks. ACM Transactions on Reconfigurable Technology and Systems, 12(3):11:1–11.29, 2019.

[188] Sandip Ray and Yier Jin. Security policy enforcement in modern SoC designs. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, pages 345–350, 2015.

[189] M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. Heax: An architecture for computing on encrypted data. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 1295–1309, 2020.

[190] B. Ringlein, F. Abel, , D. Diamantopoulos, B. Weiss, C. Hagleitner, M. Reichenbach, and D. Fey. A Case for Function-as-
a-Service withDisaggregated FPGAs. In Proceedings of the 2021 IEEE 14th International Conference on Cloud Computing
(CLOUD 2021), pages 333–344, Virtual Conference, September 2021. IEEE.

[191] B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner, and D. Fey. Programming Reconfigurable Heterogeneous
Computing Clusters Using MPI With Transpilation. In 2020 IEEE/ACM International Workshop on Heterogeneous
High-performance Reconfigurable Computing (H2RC), pages 1–9. IEEE, November 2020.

[192] B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner, and D. Fey. ZRLMPI: A Unified Programming Model for
Reconfigurable Heterogeneous Computing Clusters. In 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), page 220. IEEE, May 2020.

[193] Burkhard Ringlein, Francois Abel, Alexander Ditter, Beat Weiss, Christoph Hagleitner, and Dietmar Fey. System
Architecture for Network-Attached FPGAs in the Cloud using Partial Reconfiguration. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL), pages 293–300. IEEE, 2019.

[194] JohnM Rushby. Proof of separability a verification technique for a class of security kernels. In International Symposium
on Programming, pages 352–367, 1982.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.

https://opencapi.org/2017/04/opencapi-new-standard-high-performance-memory-acceleration-networks/
https://opencapi.org/2017/04/opencapi-new-standard-high-performance-memory-acceleration-networks/
https://pc2.uni-paderborn.de/hpc-services/available-systems/noctua
https://pc2.uni-paderborn.de/hpc-services/available-systems/noctua
https://www.prnewswire.com/news-releases/eideticom-ibm-rackspace-and-xilinx-demonstrate-worlds-first-pcie-gen4-nvm-express-production-ready-system-676532203.html
https://www.prnewswire.com/news-releases/eideticom-ibm-rackspace-and-xilinx-demonstrate-worlds-first-pcie-gen4-nvm-express-production-ready-system-676532203.html
https://www.prnewswire.com/news-releases/eideticom-ibm-rackspace-and-xilinx-demonstrate-worlds-first-pcie-gen4-nvm-express-production-ready-system-676532203.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#training-on-gpu
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#training-on-gpu


42

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

[195] Sahand Salamat, Armin Haj Aboutalebi, BehnamKhaleghi, Joo Hwan Lee, Yang Seok Ki, and Tajana Rosing. NASCENT:
Near-storage acceleration of database sort on SmartSSD. In The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’21, page 262–272, 2021.

[196] Grigory Sapunov. Will asic chips become the next big thing in ai? https://moorinsightsstrategy.com/will-asic-chips-
become-the-next-big-thing-in-ai/, jan 2021.

[197] Falk Schellenberg, Dennis RE Gnad, Amir Moradi, and Mehdi B Tahoori. An inside job: Remote power analysis
attacks on FPGAs. In Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1111–1116, 2018.

[198] Sdxcentral. Broadcom Sharpens Tomahawk Switch Chips, Versatile SmartToR. https://www.sdxcentral.com/articles/
news/broadcom-sharpens-tomahawk-switch-chips-versatile-smarttor/2020/12/ [Last accessed: April 29, 2021].

[199] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. Openstack: toward an open-source solution for cloud
computing. International Journal of Computer Applications, 55(3):38–42, 2012.

[200] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung Kim, Chenkai Shao, Asit Mishra, and
Hadi Esmaeilzadeh. From high-level deep neural models to fpgas. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[201] S. B. Shaw, C. Kumar, and A. K. Singh. Use of time-series based forecasting technique for balancing load and reducing
consumption of energy in a cloud data center. In 2017 International Conference on Intelligent Computing and Control
(I2C2), pages 1–6, 2017.

[202] Silicom. FPGA SmartNIC N5010 Series. https://www.silicom-usa.com/pr/fpga-based-cards/fpga-intel-based/fpga-
intel-stratix-based/silicom-fpga-smartnic-n5010_series/ [Last accessed: April 29, 2021].

[203] Jim Smith and Ravi Nair. Virtual machines: versatile platforms for systems and processes. Elsevier, 2005.
[204] Hayden Kwok-Hay So and Cheng Liu. Fpga overlays. In FPGAs for Software Programmers, pages 285–305. Springer,

2016.
[205] Mengshu Sun, Pu Zhao, Mehmet Gungor, Massoud Pedram, Miriam Leeser, and Xue Lin. 3D CNN acceleration on

FPGA using hardware-aware pruning. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2020.
[206] Synopsys. An Introduction to CCIX. https://www.synopsys.com/designware-ip/technical-bulletin/introduction-ccix-

2017q3.html [Last accessed: April 29, 2021].
[207] Jakub Szefer. Survey of microarchitectural side and covert channels, attacks, and defenses. Journal of Hardware and

Systems Security, 3(3):219–234, Sept. 2019.
[208] David Talbot. Vulnerability seen in Amazon’s cloud-computing. https://www.technologyreview.com/2009/10/23/

208662/vulnerability-seen-in-amazons-cloud-computing/, October 2009.
[209] N. Tarafdar, N. Eskandari, V. Sharma, C. Lo, and P. Chow. Galapagos: A full stack approach to fpga integration in the

cloud. IEEE Micro, 38(06):18–24, nov 2018.
[210] Naif Tarafdar and Paul Chow. libGalapagos: A Software Environment for Prototyping and Creating Heterogeneous

FPGA and CPUApplications. In Sixth InternationalWorkshop on FPGAs for Software Programmers (FSP 2019), September
2019.

[211] Naif Tarafdar, Nariman Eskandari, Thomas Lin, and Paul Chow. Designing for FPGAs in the Cloud. IEEE Design and
Test, 35(1):23–29, 2017.

[212] Naif Tarafdar, Thomas Lin, Eric Fukuda, Hadi Bannazadeh, Alberto Leon-Garcia, and Paul Chow. Enabling flexible
network fpga clusters in a heterogeneous cloud data center. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 237–246, 2017.

[213] Naif Tarafdar, Thomas Lin, Daniel Ly-Ma, Daniel Rozhko, Alberto Leon-Garcia, and Paul Chow. Building the
Infrastructure for Deploying FPGAs in the Cloud. In Hardware Accelerators in Data Centers, pages 9–33. Springer,
2019.

[214] Naif Tarafdar, Thomas Lin, Daniel Ly-Ma, Daniel Rozhko, Alberto Leon-Garcia, and Paul Chow. Building the
infrastructure for deploying fpgas in the cloud. In Hardware Accelerators in Data Centers, pages 9–33. Springer, 2019.

[215] Impulse Accelerated Technologies. https://web.archive.org/web/20110904033728/http://www.impulseaccelerated.com/
[Last accessed: October 22, 2021], 2021.

[216] The Apache Software Foundation / TVM community. Quick Start Tutorial for Compiling Deep Learning Models.
https://tvm.apache.org/docs/tutorial/relay_quick_start.html [Last accessed: October 19, 2021].

[217] Shanquan Tian, Ilias Giechaskiel, Wenjie Xiong, and Jakub Szefer. Cloud FPGA cartography using PCIe contention.
In IEEE International Symposium on Field-Programmable Custom Computing Machines, May 2021.

[218] Shanquan Tian and Jakub Szefer. Temporal thermal covert channels in cloud fpgas. In Proceedings of the International
Symposium on Field-Programmable Gate Arrays, FPGA, February 2019.

[219] Shanquan Tian, Wenjie Xiong, Ilias Giechaskiel, Kasper Rasmussen, and Jakub Szefer. Fingerprinting cloud fpga
infrastructures. In Proceedings of the International Symposium on Field-Programmable Gate Arrays, FPGA, February
2020.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.

https://moorinsightsstrategy.com/will-asic-chips-become-the-next-big-thing-in-ai/
https://moorinsightsstrategy.com/will-asic-chips-become-the-next-big-thing-in-ai/
https://www.sdxcentral.com/articles/news/broadcom-sharpens-tomahawk-switch-chips-versatile-smarttor/2020/12/
https://www.sdxcentral.com/articles/news/broadcom-sharpens-tomahawk-switch-chips-versatile-smarttor/2020/12/
https://www.silicom-usa.com/pr/fpga-based-cards/fpga-intel-based/fpga-intel-stratix-based/silicom-fpga-smartnic-n5010_series/
https://www.silicom-usa.com/pr/fpga-based-cards/fpga-intel-based/fpga-intel-stratix-based/silicom-fpga-smartnic-n5010_series/
https://www.synopsys.com/designware-ip/technical-bulletin/introduction-ccix-2017q3.html
https://www.synopsys.com/designware-ip/technical-bulletin/introduction-ccix-2017q3.html
https://www.technologyreview.com/2009/10/23/208662/vulnerability-seen-in-amazons-cloud-computing/
https://www.technologyreview.com/2009/10/23/208662/vulnerability-seen-in-amazons-cloud-computing/
https://web.archive.org/web/20110904033728/http://www.impulseaccelerated.com/
https://tvm.apache.org/docs/tutorial/relay_quick_start.html


The Future of FPGA Acceleration in Datacenters and the Cloud 43

[220] TIBCO. Customers See Success with TIBCO on AWS. https://www.tibco.com/blog/2018/11/26/tibco-customers-see-
success-with-tibco-on-aws/ [Last accessed: April 29, 2021].

[221] Furkan Turan, Sujoy Sinha Roy, and Ingrid Verbauwhede. HEAWS: An accelerator for homomorphic encryption on
the amazon AWS FPGA. IEEE Transactions on Computers, 69(8):1185–1196, 2020.

[222] Furkan Turan and Ingrid Verbauwhede. Trust in FPGA-accelerated cloud computing. ACM Computing Surveys,
53(6):28:1–28:128, December 2020.

[223] Mohammad Usmani, Shahrzad Keshavarz, Eric Matthews, Lesley Shannon, Russell Tessier, and Daniel E Holcomb.
Efficient PUF-based key generation in FPGAs using per-device configuration. IEEE Transactions on VLSI Systems,
27(2):364–375, February 2019.

[224] Juan Camilo Vega, Qianfeng Clark Shen, Alberto Leon-Garcia, and Paul Chow. Introducing recpri: A field re-
configurable protocol for backhaul communication in a radio access network. In 2019 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), pages 329–336, 2019.

[225] Malte Vesper, Dirk Kocha, and Khoa Phama. Pciehls: an opencl hls framework. In FSP 2017; Fourth International
Workshop on FPGAs for Software Programmers, pages 1–6. VDE, 2017.

[226] Hasitha Muthumala Waidyasooriya and Masanori Hariyama. Multi-FPGA Accelerator Architecture for Stencil
Computation Exploiting Spacial and Temporal Scalability. IEEE Access, 7:53188–53201, 2019.

[227] Herbert Walder and Marco Platzner. A runtime environment for reconfigurable hardware operating systems. In
Jürgen Becker, Marco Platzner, and Serge Vernalde, editors, Field Programmable Logic and Application, pages 831–835,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[228] Tianqi Wang, Tong Geng, Ang Li, Xi Jin, and Martin Herbordt. FPDeep: Scalable acceleration of CNN training on
deeply-pipelined FPGA clusters. IEEE Transactions on Computers, 69(8):1143–1158, 2020.

[229] X. Wang, Y. Niu, F. Liu, and Z. Xu. When fpga meets cloud: A first look at performance. IEEE Transactions on Cloud
Computing, pages 1–1, 2020.

[230] Greg Watson, Nick McKeown, and Martin Casado. NetFPGA: A tool for network research and education. In 2nd
Workshop on Architectural Research using FPGA Platforms (WARFP), volume 3, 2006.

[231] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf. Enabling FPGAs in Hyperscale Data Centers. In 2015
IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted
Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops
(UIC-ATC-ScalCom), pages 1078–1086, 2015.

[232] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf. Disaggregated FPGAs: Network Performance Comparison
against Bare-Metal Servers, Virtual Machines and Linux Containers. In 2016 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pages 9–17, 2016.

[233] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner. Network-Attached FPGAs for Data Center Applications. In 2016
International Conference on Field-Programmable Technology (FPT), pages 36–43, 2016.

[234] David Wilson and Greg Stitt. Seiba: An fpga overlay-based approach to rapid application development. In 2019
International Conference on ReConFigurable Computing and FPGAs (ReConFig), pages 1–8. IEEE, 2019.

[235] Xilinx Case Study. Xilinx Powers Alibaba Cloud FaaS with AI Acceleration Solution for E-Commerce Business.
https://www.xilinx.com/publications/powered-by-xilinx/xilinx-alibaba-case-study.pdf [Last accessed: April 29, 2021].

[236] Xilinx Corporation. Virtex UltraScale+ FPGA Data Sheet: DC and AC Switching Characteristics, 2021.
[237] Wang Xu. Hardware acceleration over NFV in China Mobile. OPNFV Plugfest. (Accessed: Jan. 2019). June, 2018.
[238] Xiaoyu Yu, Yuwei Wang, Jie Miao, Ephrem Wu, Heng Zhang, Yu Meng, Bo Zhang, Biao Min, Dewei Chen, and

Jianlin Gao. A data-center FPGA acceleration platform for convolutional neural networks. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL), pages 151–158, 2019.

[239] Shaza Zeitouni, Ghada Dessouky, and Ahmad-Reza Sadeghi. SoK: On the security challenges and risks of multi-tenant
FPGAs in the cloud. arxiv, arXiv:2009.13914, 2020.

[240] Shaza Zeitouni, Jo Vliegen, Tommaso Frassetto, Dirk Koch, Ahmad-Reza Sadeghi, and Nele Mentens. Trusted
configuration in cloud FPGAs. In IEEE International Symposium on Field-Programmable Custom Computing Machines,
2021.

[241] Jiansong Zhang, Yongqiang Xiong, Ningyi Xu, Ran Shu, Bojie Li, Peng Cheng, Guo Chen, and Thomas Moscibroda.
The feniks fpga operating system for cloud computing. In Proceedings of the 8th Asia-Pacific Workshop on Systems,
pages 1–7, 2017.

[242] Ke Zhang, Yisong Chang, Mingyu Chen, Yungang Bao, and Zhiwei Xu. Computer organization and design course
with fpga cloud. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education, pages 927–933.
ACM, 2019.

[243] Mark Zhao and G Edward Suh. FPGA-based remote power side-channel attacks. In IEEE Symposium on Security and
Privacy (S&P), pages 229–244, 2018.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.

https://www.tibco.com/blog/2018/11/26/tibco-customers-see-success-with-tibco-on-aws/
https://www.tibco.com/blog/2018/11/26/tibco-customers-see-success-with-tibco-on-aws/
https://www.xilinx.com/publications/powered-by-xilinx/xilinx-alibaba-case-study.pdf


44

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,Juan Camilo Vega, Ken Eguro,
Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier

[244] Noa Zilberman, Yury Audzevich, G Adam Covington, and Andrew W Moore. NetFPGA SUME: Toward 100 Gbps as
research commodity. IEEE Micro, 34(5):32–41, 2014.

[245] Xiantao Zxt, Zhengxiao Zx, and Justin Song. High-density multi-tenant bare-metal cloud with memory expansion
soc and power management. In 2020 IEEE Hot Chips 32 Symposium (HCS), pages 1–18, 2020.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: February 2022.


	Abstract
	1 Introduction
	2 The Landscape
	3 FPGA Cloud Architectures
	3.1 Taxonomy
	3.2 Production Architectures
	3.3 Research Architectures
	3.4 Architectures Trends
	3.5 Potential Future Innovation

	4 Usability, Scalability, and Portability
	4.1 FPGA Resource Virtualization
	4.2 Using and Scaling of FPGA Clusters
	4.3 Cloud FPGA usability – Current Needs and Outlook

	5 Security of FPGA Acceleration in Cloud and Datacenter Environments
	5.1 Cloud FPGA Security Overview
	5.2 Cloud FPGA Usage Models
	5.3 Cloud and Datacenter FPGA Attack Categories
	5.4 Single-Tenant Attacks
	5.5 Multi-Tenant Attacks
	5.6 Node-level Attacks
	5.7 Datacenter System-Level Attacks
	5.8 Bump-in-the-wire Attacks
	5.9 Comparison with Existing CPU- and GPU-based Threats in Cloud Computing
	5.10 Cloud FPGA Security – Current Countermeasures and Needs

	6 Applications
	6.1 Infrastructure
	6.2 Other Applications
	6.3 Future Applications

	7 Conclusions
	References

