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We construct an efficient emulator for two-body scattering observables using the general (complex)
Kohn variational principle and trial wave functions derived from eigenvector continuation. The emulator
simultaneously evaluates an array of Kohn variational principles associated with different boundary
conditions, which allows for the detection and removal of spurious singularities known as Kohn

anomalies. When applied to the K-matrix only, our emulator resembles the one constructed by Furnstahl
et al. (2020) [29] although with reduced numerical noise. After a few applications to real potentials,
we emulate differential cross sections for 40Ca(n, n) scattering based on a realistic optical potential and
quantify the model uncertainties using Bayesian methods. These calculations serve as a proof of principle
for future studies aimed at improving optical models.
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1. Introduction

There are many reasons to study rare isotopes today; e.g., they
play a crucial role in obtaining a fundamental understanding of the
nucleosynthesis of heavy, neutron-rich nuclei and the dense matter
inside neutron stars [1-3], Due to their short lifetimes, rare iso-
topes are primarily investigated through reaction experiments con-
ducted at radioactive beam facilities worldwide, including RIKEN,
FAIR, GANIL, and soon also ERIE. For the analysis and interpreta-
tion of these experiments, reliable reaction theory is imperative.
However, apart from reactions on light nuclei, reaction theory is
still largely phenomenological and relies on poorly constrained ef-
fective interactions to keep calculations tractable [4],

Statistical methods such as Bayesian parameter estimation [5]
and model comparison [6] can provide important insights into the
issues of effective interactions. They can also help design next-
generation reaction experiments (see, e.g., Ref. [7]). But in practice
their applications are limited because Monte Carlo sampling of
the models’ parameter spaces in reaction calculations is usually
computationally demanding. Hence, Bayesian studies of nuclear re-
actions [8-10] have only considered the simplest reaction theory,
the optical model, which describes, e.g., nucleus-nucleus scattering
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as two particles interacting via a complex-valued interaction. Ex-
tending these studies to more sophisticated reaction theories (see,
e.g, Refs. [11-19]) is a challenging yet important task.

Emulators—computationally inexpensive algorithms capable of
approximating exact model calculations with high accuracy—are
promising tools in this regard [20-23], In particular, eigenvector
continuation (EC) [24,25] has been shown to be a powerful method
for emulating bound-state properties such as binding energies and
charge radii of atomic nuclei [26-28], Furnstahl et al. [29] have re-
cently demonstrated that EC also allows for the construction of
effective trial wave functions for calculations of two-body scat-
tering observables using the K-matrix Kohn variational principle
(KVP) [30], Further, Melendez et al. [31] have extended the EC
concept to trial K- or 7-matrices in applications of Newton’s vari-
ational method to two-body scattering, e.g, with a modern chiral
interaction. Remarkably high accuracies and speedups relative to
exact scattering calculations were obtained [29,31], (See Ref. [32]
for EC applied to R-matrix theory calculations of fusion observ-
ables.)

In this article, we improve and extend the emulator developed
by Furnstahl et al. [29] in several ways. Besides the K-matrix, we
emulate a variety of matrices associated with different scatter-
ing boundary conditions simultaneously via the general (complex)
KVP [33], (For pre-EC studies with this method, including nucleon-
deuteron scattering, see Refs. [34-36].) This approach allows us to
detect and remove spurious singularities known as Kohn anoma-
lies [37,38], which can render variational calculations of scatter-
ing observables ineffective—especially when used for sampling a
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model’'s parameter space. We also propose a method for solving
the emulator equations in Ref. [29] with reduced numerical noise.
As a step toward emulating nuclear reactions, we apply our em-
ulator to differential cross sections in 40Ca(n,n) scattering using
a realistic optical potential and quantify the uncertainties in the
model parameters using Bayesian methods.

The remainder of this article is organized as follows. In Sec-
tion 2 we introduce the formalism of the general KVP with EC trial
wave functions. We then present several applications of our emula-
tor to realistic potentials (including a chiral potential) in Section 3.
Section 4 concludes the article with a summary and outlook. Ad-
ditional information, e.g, on redundancies among different KVPs
with EC trial wave functions, is provided in Appendices A to F. We
use natural units in which fi =¢ = 1.

2. Formalism

We consider here local short-range potentials }(6) in coordi-
nate space that depend on a set of free parameters 0; e.g, the
parameters of an optical model or low-energy couplings of a chiral
potential. Further, V' (9) is assumed to be partial-wave decomposed
into an uncoupled channel with angular momentum £. Following
Furnstahl et al. [29], we then use EC to construct an effective trial
wave function for our (nonrelativistic) variational calculations of
two-body scattering observables:

Nb

I'Atrial) = ! 1)
i=1

Here, each of the Np basis wave functions, ie.,

#c'.E(r)

{rirt E(fii) Y (g2, 2

is an exact (partial-wave) solution to the Schrodinger equation for
V(0j) at the center-of-mass energy E > 0, and the coefficients ¢t
are to be determined. The radial wave functions in Eq. (2) are
normalized by imposing asymptotic boundary conditions! of the
general form [33]

#c.E(r)~<"E(r) + Ic.E<%kr)' 3)

where the two independent free-space solutions are expressed in
terms of a nonsingular (complex) matrix u that is associated with
the generic L-matrix in Eq. (3):

« Kr-1 (uoo Uoi \ (¢SinT)c(r) \
\Oc,£(r)/ Vo wuii/ \cosridr) ) )

with ifi(r) = pr — j£ and p = s/2jIE, and an arbitrary normal-
ization constant M ™ 0. For instance, the familiar /(-, S-, and 7-
matrix respectively correspond tol

({1 0 —i 1 10
u7<0 1>’u:<—i _]>, and u:(i ]>. 5)

But any other nonsingular parametrization (L, u) ofthe asymptotic
limit (3) is equally valid.3 The corresponding R-matrix can be ob-
tained using the Mdbius transformation (see also Appendix A)

| The boundary condition (3) can be extended to the (long-range) Coulomb po-
tential. See, e.g, Eq. (SI1) in Ref. [29],

2 The matrices are determined only up to scalar multiples. Lucchese [33] uses
a different convention for the S-matrix (z¢------ u) and T-matrix parametrization
(T—-urT).

3 For example, by swapping the rows in u associated with L [e.g., given by Eq. (5)]
one obtains the matrix u parametrizing E-1.
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KCE (It.E) Uoi + U\\LGE .

Uoo + UIOLCE
which is related to the phase shift via /Q,E = tanS"E.

In Appendix B we give the technical details for solving the
(radial) Schrodinger equation numerically to determine the basis
wave functions in Eq. (1), including a generalization of Eq. (6) to
transform from a given L-matrix to any other L'-matrix—not just
the /(-matrix.

We determine the coefficients cj£ in Eq. (1) using the general
(complex) KVP. Given (L, u) and a trial wave function (i*|-y"triai) sub-
ject to the boundary condition (3), the general KVP provides a sta-
tionary approximation to Le,E = L"g/AA using the functional [33]4
Ai[TAtrial)] = LCE ~ — (Mrial | — E| Atrial) - )
with the reduced mass ji % ApAt/(Ap + At)mn, mass number of
the projectile Ap = | (here, a neutron with mass mn) and target 4z,
respectively, as well as the Hamiltonian H(0) = —V2/(2//) + V(0)
in coordinate space. A derivation similar to the one in Refs. [29,39]
for the /(-matrix shows that the functional (7) is indeed stationary
about exact solutions to the Schrodinger equation, i.e., /Su[|Vh'£> +
ISVq,E>] = le.E + (Sie.E)2, although it does not provide an upper or
lower bound in general.

We impose the normalization constraint cfE =1 on the
EC trial wave function (1) to fulfill the boundary condition (3)
required by the general KVP. Constrained optimization of the func-
tional (7) using a Lagrange multiplier X then leads to the system
of (N/, + 1) linear equations

Aﬁé“% 1 CLEY tg,E 8
_lT 0 A - 1 5 ()]

and eventually to the desired stationary solution [29]

) Np 1 .
e =20 (A0, (L -2). (%)
j=1
N gw 7l
1+ (AT E)q i
A= SRR (9b)

In Eq. (8), 1 (1T) is an all-ones column vector (row vector), and L"g
and Q,g are vectors respectively containing the L-matrices of the
basis wave functions and the unknown coefficients c|)£. Further,
we have defined the JV/, x VI, kernel matrix

() N 2 .. ..
<AU£,E>ij b dety 2AV ~ Bill (10a)
Aijj = (AcEM) | V(0) LFTE(F)) | (10b)
Bij = (AcEN) | V(A) + V(9)) | WE(fij)) - (10¢)

which can be efficiently evaluated for a variety of different (L,u)
at once, as discussed in Appendix C. Hence, the stationary approx-
imation to Le.E reads

Nb )
[A.EIKvVP = 2@5%?1[ T = Ag_)b, <AU$’%>1‘j 62]})5 . (ID

=l L=

4 Lucchese [33] considers electron-nucleus scattering in atomic units, wherein the
electron mass me = | and thus /i « 1. For optical potentials the bra-states are to be
complex conjugated (as indicated by the asterisk).
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Equations (8) to (11) are the main expressions of our emula-
tor. They reduce to the ones derived in Ref. [29] for the K-matrix
KVP (ie., L = I<) with Af'= p. Hence, the discussion of the com-
putational complexity in Ref. [29] also applies to our emulator for
each (L,u).

The EC trial wave function (1) renders the kernel matrix AU|"g
increasingly ill-conditioned as the number of basis wave functions
NR increases. To control the numerical noise due to the explicit
matrix inversion in the algebraic solution (9), Furnstahl et al. [29]
added a small regularization parameter to the diagonal elements
of AU™{. Although this simple approach typically works well in
practice, we find that solving instead the system of equations (8)
numerically using a least-squares solver [to circumvent explicit
matrix inversion] is less sensitive to numerical noise—especially at
low energies. The least-squares solver uses a different regulariza-
tion method, where singular values less than a given cutoff ratio
times the largest singular value are considered zero. In the cases
we studied, this cutoff ratio could be as small as the machine ep-
silon to avoid potential fine-tuning.

In addition to these numerical instabilities, the general KVP
is prone to spurious singularities known as Kohn (or Schwartz)
anomalies [37,40], which occur at energies where the func-
tional (7) does not provide a (unique) stationary approxima-
tion (11). (See Section 3.1 for several illustrations.) For the realistic
potentials studied here, we find that neither real KVPs, such as the
one for the K-matrix, nor complex KVPs, such as the one for the
S-matrix [41,42], can guarantee anomaly-free results [33].

We therefore emulate a wide range of matrices associated with
different scattering boundary conditions simultaneously using the
general KVP and assess their consistency. As pointed out in Ap-
pendix D, however, not all KVPs (with EC trial wave functions)
provide independent stationary approximations—we derive a sim-
ple condition to identify those. Results that do not pass the con-
sistency checks, e.g, SS-1 =1 [33,43], are disregarded by our
anomaly detection algorithm and the remaining ones averaged
over in an attempt to obtain anomaly-free results. If none of the
KVPs evaluated are consistent, our algorithm iteratively adapts the
size of the training set, which usually shifts the Kohn anomalies in
each iteration. We refer to this approach as the “mixed approach."
More details on detecting and removing Kohn anomalies are pre-
sented in Appendix E.

3. Results and discussion
3.1. Realistic real potentials

We apply our emulator first to three real potentials as test
cases. Specifically, we consider nucleon-nucleon (NN) scattering in
the 'So channelS based on the Minnesota potential [44],

y (r) = VoR =+ Vos , 12)

and the local chiral potential at next-to-next-to-leading order
(N2LO) developed by Gezerlis et al. [45] with regulator cutoff
Ro = 1.0 fm and spectral-function cutoff A = 1000MeV. The Min-
nesota potential allows for direct comparisons with the emulators
constructed in Refs. [29,31], and the chiral potential is commonly
used in quantum Monte Carlo calculations of atomic nuclei and nu-
clear matter (see, e.g, Refs. [46,47] for recent reviews). The latter
potential depends on 8 parameters (i.e., NN low-energy couplings)

5 The spectroscopic notation 'S0 indicates that the angular momentum £ =0 (“S”)
and the total spin S =0 of the two nucleons couple to the total angular momentum
7=0.
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in the 'So channel.6 Both were constructed to reproduce 'So scat-
tering phase shifts.

We also consider the scattering states of n + 10Be based on the
real Woods-Saxon potential with the spin-orbit (IS) term added,
ie,

Vis d
V(r) = —Vo /ws(r; R,a) +1's Ta/ws(n R a) (13)

with the function

/ws(n R,a) = 1 £exp (14)
which was fit in Ref [48] to low-lying states in IlBe, including
the dg/2 resonance.? *Equation (13) is commonly used to describe
the interaction of the valence nucleon(s) with the core nucleus in
halo nuclei, such as nBe(n+ 10Be) in reaction models [11,13,48], or
16Be(n + n + 14Be) in decay studies [17,49], We consider here the
dg/2 channel (rather than si1/2) because the breakup calculations
in Ref. [48] identified this channel as the dominant one for this
scattering process (see Figure | in Ref. [48]).

For the Minnesota potential (12), we follow Furnstahl et al.
[29] and train our emulator on the set of points (VQR, Vqs) =
{(0.,-291.85), (100., 8.15), (300.,-191.85), (300., 8.15)} in
units of MeV, while the other (nonlinear) parameters are fixed at
their best fit values, i.e, KR = 1.487 fm-2 and ks = 0.465 fm-2 [44].
For the other two potentials, we randomly select the training
points within a +20% interval (in the appropriate units) of the
parameters’ best fit values, as given in Table [ of Ref. [45] for the
chiral potential (Nt = 4) and Table | of Ref. [48] for the Woods-
Saxon potential (13) with fixed VLS =21 MeV{1irT2 (Nk = 6). In all
cases, we emulate the scattering phase shifts at the best fit values.

Fig. 1 shows the emulated phase shifts (a-c) and their absolute
residual (d-f) relative to the exact scattering solution as a func-
tion of the center-of-mass energy. From left to right, the columns
correspond to the results obtained for the Minnesota, chiral, and
Woods-Saxon potential, respectively. Each panel depicts the emu-
lated results based on the KVPs for the [<~ 7-, and T-1-matrix,
as well as our mixed approach as solid lines. The KVPs for the
other canonical matrices (ie, K~\ S, and S-1) do not provide
complementary stationary solutions (as discussed in Appendix D)
and therefore are not shown.

Overall, our emulator reproduces well the exact phase shifts.
The absolute residuals typically are <0.01°, except for the Min-
nesota potential at the low energies where the phase shift is large.
As expected, the K-matrix KVP (orange lines) reproduces the phase
shifts obtained by Furnstahl et al. [50] for the Minnesota poten-
tial, including the noticeable Kohn anomaly at £ & 13 MeV. The
I-1-matrix KVP is anomalous at £ & 59 MeV. In the energy range
shown, we also find such an anomaly for the chiral interaction
at £ & 61 MeV, and for the Woods-Saxon potential at £ & 8§ MeV.
Additional Kohn anomalies, however, may be present and only no-
ticeable when using extremely fine energy grids [29]. Fig. | em-
phasizes the need for efficient anomaly removal algorithms beyond
proof-of-principle calculations, where the exact scattering solution
as a reference is not available.

Such an algorithm is implemented in our emulator (see Sec-
tion 2). Depicted by the red lines in Fig. 1, the mixed approach
is capable of detecting and removing Kohn anomalies by assess-
ing the consistency of the results obtained from a set of different

6 Only two independent (spectroscopic) low-energy couplings contribute to the
'So channel, which are given by linear combinations of the couplings mentioned in
the text. For details see, e.g.. Appendix A in Ref. [45],

7 The spectroscopic notation ds/2 indicates that the angular momentum [ =2
(“d”) is coupled to a total angular momentum of the valence particle j = 5/2.
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Woods-Saxon potential: d5/2
7

Energy £ [MeV]

Fig. 1. Phase shifts (a-c) and the associated absolute residuals (d-f) with respect to the exact solution for the different KVPs (see legend) as a function of the center-of-mass
energy: Minnesota potential (12) (left column), local chiral potential [45] at N2LO (center column), and Woods-Saxon potential with spin-orbit term (13) (right column).
Both, the Minnesota and chiral potential, are used for NN scattering, whereas the Woods-Saxon potential is used for n + 10Be scattering. The dotted vertical lines highlight
the (approximate) locations of the detected Kohn anomalies. Notice that the algorithm proposed here (red lines) is capable of removing these anomalies. See the main text

for more details.

KVPs and (if necessary) adaptively removing basis wave functions
from the training set used for emulation. In this specific case,
we have simultaneously emulated the complementary matrices
L=( T 3 1), as shown in the figure, as well as the three addi-
tional matrices specified in Appendix E. No changes in the training
set were necessary to mitigate these Kohn anomalies.

3.2. Realistic optical potential

We also apply our emulator to a realistic optical potential for
40Ca(n.n) scattering at £ = 20MeV in the center-of-mass frame.
Parametrizations of optical potentials (see, e.g., Ref. [51]) typically
contain real and imaginary terms of the Woods-Saxon form:

V() = —Vv /ws(r; Rv*av) ~ iWv_fws(rl Rw. aw),

d (15)
— ida& Wk a/ws(n Rd ad)
We do not consider the spin-orbit term in Eq. (15) and assume in
the following Rw = Rv and aw =av, as in Ref. [51], To train the
emulator, we randomly select IV, points for the remaining seven
parameters, ie, 0 = {Vv, Rv,av, Wv,Wd, Rd.ad], within a +20%
interval (in the appropriate units) centered around the Koning-
Delaroche (KD) parameterization [51] at E = 20MeV. This ap-
proach allows us to probe a realistic region of the parameter space.
Fig. 2 shows (a) the emulated differential cross sections (mixed
approach) and (b) their corresponding average relative residuals
as a function of the scattering angle 6—which is not to be con-
fused with the parameter set of the interaction, F(0). The exact
scattering solutions serve as the reference for the residuals and
their mean value is depicted by the black-dotted line in panel (a).
We emulate the differential cross section at 500 randomly selected
points in the parameter space similar to the training phase, and
determine the bands shown in panel (b) as the range spanned by
the 50% limit (i.e., median) and (upper) 95% limit of the residuals.
The solid lines in both panels correspond to the average results
for the emulators with IV, = 4 (red lines), IV/, = 6 (orange lines),
JVl, =8 (green lines), and JV/, = 10 (blue lines), respectively. We in-
clude partial-wave channels with angular momentum 7 & 10 in the
calculations.

Scattering Angle 0 [deg]

Fig. 2. Differential cross section (a) and average relative residual (b) for 40Cam, n)
scattering at 20 MeV using the mixed approach with 500 random sampling points
and four different basis sizes (see legend) as a function of the scattering angle 9.
The solid lines depict the average results for the mixed approach using N/, =4 (red),
Nt, = 6 (orange), N/, =8 (green), and % = 10 (blue) basis points. The shaded bands
span the range between the 50% limit (i.e., median) and (upper) 95% limit of the
residuals. The black-dashed line represents the mean value of the exact scattering
solutions. For more details see the main text.

As shown in Fig. 2, the accuracy of the emulator roughly im-
proves by an order of magnitude when increasing the size of the
training set by increments of two, from IV/, =4 to 10. But the accu-
racy can also vary by more than an order of magnitude within the
500 sampled points. Furthermore, increasing the scattering angle
tends to decrease the accuracy, which is lowest at the backward
angles where the differential cross section is smallest. Neverthe-
less, for JV, £ 6, the emulator residual does not exceed the ex-
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Fig. 3. Comparison of the MCMC results obtained for the mixed approach using Nb = 8 (red) and the exact solution (black) for 40Cam, n) scattering at 20MeV: (a) posterior
distributions for the parameters Vv, Rv, Wd, and Rj along the diagonal, and correlations between each pair of parameters in the off-diagonal; (b) the median value of the
differential cross section as a function of scattering angle (lines) and the corresponding 95% confidence interval (C.I, shaded area). These MCMC calculations correspond to

20,000 accepted parameters sets.

perimental uncertainty, typically of the order of ~10% (see, e.g,
Refs. [52,53]).

3.3. Uncertainty quantification for optical models

In this section we explore Bayesian parameter estimation and
uncertainty quantification of an optical model using our emulator—
as a step toward systematic studies in the future. For the proof-
of-principle calculation we consider again 40Ca(n, n) scattering at
20 MeV8 and use the mixed approach with Nj,= 8 training points.
The real and imaginary volume depths and radii of the optical po-
tential (i.e, Vv, Rv, Wd, and Rj) are constrained based on mock
data generated from the KD potential [51] (see Ref. [54] for more
details), whereas the other optical model parameters are fixed at
the original KD values. Each parameter’s prior is taken to be a
normal distribution with mean set to the KD potential value and
width of 50% of the mean, similar to previous studies [8-10], and
the likelihood is the standard exponentiated x21 The uncertainty
quantification is performed through Markov Chain Monte Carlo
(MCMC) sampling with 20,000 accepted parameters sets from a
single Markov chain. We also obtain 95% confidence intervals for
the differential cross sections, defined as the smallest interval over
which the posterior distribution integrates to 0.95.

Fig. 3 shows the results of the parameter estimation based on
the mixed approach (red lines) and the exact scattering solution

Additional results for 40Cam, n) scattering at 5 MeV are provided in Appendix F.

(black lines). Panel (a) gives the posterior distributions for the
four varied parameters along the diagonal, with contour plots dis-
playing the correlations between each pair of parameters in the
off-diagonal panels (also known as corner plot). Panel (b) com-
pares the resulting 95% confidence intervals for emulated vs. exact
differential cross sections. Apart from statistical fluctuations, the
emulator reproduces well the exact calculations of the parameter
posterior distributions, correlations, and the confidence intervals
for the angular distributions. Remarkably, our mixed approach ob-
tained anomaly-free results without adapting the training set in all
of our MCMC runs.

The mean values of the posterior distributions match the KD
parameters, as expected, and the uncertainties of the parameters
and the differential cross sections are similar to what has been
obtained in previous studies [8,54], Note that the same reaction
has been studied in Ref. [54] at slightly lower energy but with a
larger set of parameters allowed to vary in the MCMC sampling.

4. Summary and outlook

Motivated by the recent Letter by Furnstahl et al. [29], we con-
structed an efficient emulator for two-body scattering observables
using the general KVP [33] and trial wave functions derived from
EC. Our emulator does not only consider the K-matrix KVP (as in
Ref. [29]), but rather simultaneously evaluates an array of KVPs as-
sociated with different (complex) scattering boundary conditions.
This approach allows us to systematically detect and remove spu-
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rious singularities known as Kohn anomalies, which can render
applications of the KVP and other variational principles ineffective;
especially when used for Monte Carlo sampling of a model’s pa-
rameter space. If only the /(-matrix KVP is evaluated, our emulator
resembles the one constructed in Ref. [29] although with reduced
numerical noise.

We investigated the EC-driven general KVP in detail and derived
analytic expressions to transform the emulator equations of differ-
ent KVPs efficiently into one another. In particular, we showed that
the stationary solutions of two KVPs are identical if a simple con-
dition is fulfilled [see the discussion of Eq. (D.5)[.

We demonstrated the efficacy of the proposed algorithm for
removing Kohn anomalies by emulating scattering phase shifts
obtained from the Minnesota, a local chiral, and the real Woods-
Saxon potential. For each potential, we found anomalies in at least
one of the applied KVPs, which the algorithm reliably detected
and removed—without adapting the size of the training set. This
emphasizes that Kohn anomalies need to be dealt with in prac-
tice, even in proof-of-principle calculations, but doing so does not
require the exact scattering solution. The basic concept of the algo-
rithm is general and might also be applicable to other variational
methods [31]. Furthermore, we showed that, although the emu-
lator’s rate of convergence can be sensitive to the details of the
interaction and the size of the training set, the high accuracies ob-
tained with our KVP-based emulator are well-suited for scattering
calculations.

After these test applications to real potentials, we studied
the EC convergence for emulating differential cross sections in
40Ca(n, n) scattering at 20MeV using the realistic KD optical poten-
tial. A training set with IV, =6 — 10 wave functions, typically, was
enough to obtain high-accuracy results for this observable. Next,
we performed Bayesian parameter estimation for the optical model
by optimizing the emulated differential cross section to reproduce
mock data calculated from the KD potential. The sampled distribu-
tion functions for the model parameters and the differential cross
section obtained with the emulator were in excellent agreement
with those calculated from the exact scattering solution.

Important future avenues include the extension of our emu-
lator to scattering in coupled partial-wave and reaction channels,
with coordinate and momentum space interactions, as well as the
inclusion of the (long-range) Coulomb interaction [29,31,39], Tech-
nically more challenging will be the extension to emulating three-
and higher-body scattering observables, where the computational
efficiency of emulators is vital for rigorous uncertainty quantifica-
tion. Recent developments in this direction [55,56], however, are
promising and will benefit from the insights into the EC-driven
general KVP provided here. As the number of efficient emulators
for scattering observables increases [29,31,57], it will be impor-
tant to benchmark the different emulators quantitatively, e.g, in
terms of accuracy, computational speedup, and susceptibility to
anomalous behavior. These advances set the stage for construct-
ing next-generation optical models using emulators for scattering
observables in the ERIE era.
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Appendix A. Mobius transformation

The Mobius (or linear fractional) transformation refers to the
function (for more details, see, e.g., Ref. [59])

A QU1 + GilZ (Al)
2 o + quoz '

generated by the nonsingular 2x2 matrix a. We have chosen
the order in which the coefficients a,j appear such that Eq. (6)
reads K(L) = £U(L). If a was singular (i.e, deta=0), then Eq. (A.])
would be just a constant,

o0 if Qio 7" 0,
88(1) if Qio = 0 and ago ™ O, (A2)
undefined ifago = dig = 0,

and thus not strictly considered a Mobius transformation. £a(z)
has the properties

£a(z)=4a (z) , withA ™ 0, (A3a)

£a (z— o0o0) = —, ifthe limit exists, (A.3b)
ATI (z) = :121 A) - and (A.3c)
4,(A.(2)) = A,b(2). (Ajd)

Further, it can be efficiently implemented using (mostly) linear al-
gebra operations; e.g.,

Aib(z) = -A bTal <)fhz>i|’ with J <g>] S (A4)

Note that the vector representation of a fraction is only determined
up to an arbitrary factor A 4 0. In this work, we use the Mobius
transformation to relate different asymptotic limit parametriza-
tions with one another.

Appendix B. Solving the radial Schrodinger equation

We write the radial Schrodinger equation for a given angular
momentum £ and center-of-mass energy £ as a system of coupled
first-order differential equations,

and numerically solve it for each of the JV/, partial-wave de-
composed potentials V(7,;01),..., and V(r; 0"b) using the explicit
Runge-Kutta method in Scipy’s iNTEGRATE.sOLVE_1vp(). The relative
and absolute tolerance are each set to 1CT9 or less. As initial val-
ues for the solver we set O(e) =0 and (by choice) 0'(e) = 1, where
the value of the derivative will be rescaled later on by imposing
an asymptotic boundary condition, and e > 0 is a numerical value
close to zero. We solve the radial Schrodinger equation up to the
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matching radius rm << oo located outside the range of the potential.
At rm, we smoothly match the numerical solution to the free-space
solution parametrized by <p”e\r) = <f>free\r) + LtE<f{jEree\r),

with

Pk (M)
")

Here, jt(pr) and pe(pr) denote the spherical Bessel function and
Neumann function, respectively. Notice that the asymptotic limit
of the free-space solution (B.2) is defined in Eq. (4). The (ar-
bitrary) constant A/-1 = p is chosen following Ref. [29]. Given
a parametrization u, we determine the value of the L-matrix
in terms of the inverse logarithmic derivative with respect to r,
R(rm) = <pirm)/<f>'(rm), as follows

/Uoo  Uoi
\UIO till

( idpr) \

\-r2dpr)J B2)

(B.3)

and then rescale 4>(r) by the factor More details
can be found, eg., in Ref. [60].

The numerical solution matched to any asymptotic boundary
condition of the form (3) is an equally valid solution of the radial
Schrodinger equation for r A e. In practice, we choose a partic-
ular boundary condition (e.g., with L = S) for the matching. To
efficiently transform wave functions normalized by this asymptotic
limit parametrization (L, u) to another (L’ u’)] we use the analytic
expressions derived in the following. Notice that primes [e.g, as in
Og(r)[ no longer indicate derivatives.

We consider the identity in the asymptotic limit

0o (r) + LOi (t) = C' [0 (r) + L0, (1)] , (B.4)

which implies that 0'(r) = C,-1(L)0(r), and solve for the scalars
C’" and L' as a function of L. For brevity, we omit subscripts that
indicate (E, £, 0, ). Equating the coefficients of the sine and cosine
functions in Eq. (B.4) leads to the desired transforms9

(B.5)
uii — ul0K(I)
detu Ui — uygK(L)
cm o KA T s (B.6)
with I<(L) as defined in Eq. (6),
— tin u11 _ detu' 0
¢ —ulld —tl and d 0 detu (B.7)

These expressions can be rewritten as L'(L) = £Luu/-i(L) and
C(L) =tucd(L), with the generating matrix

/detu' (uu' 00\

ucd = detu Voo dete  / (B.8)

using the properties (A.3) of the Mdbius transformation. The gen-
erating matrix (B.8) is singular if, and only if, detc = (uu'~ho =0,
as expected. In that case, C'(L) = (ucd)oi/(ucd)oo is a constant
(i.e., independent of L) because of the property (A.2) and (ucd)io =
0. As discussed in Appendix D, this case has important implications
for the results obtained from the two KVPs associated with (L, u)
and (L',u")t respectively. Explicit expressions relating the matrices
(K, S, 1), as special cases of Eq. (B.5), can be found in Table 3.1 of
Ref. [60].

9 Equation (B.5) can also be obtained by noting that the K-matrix (6) is indepen-
dent of whether (L. u) or (', u") is used to parametrize the asymptotic limit of the
radial wave function.
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Appendix C. Efficient evaluation of kernel matrices

Constructing the kernel matrix AU™| a 2A,j — B,j as defined in
Egs. (10) for emulating scattering observables with local potentials
in coordinate space involves the evaluation of overlap integrals of
the functional form

=y drr(@y ()7 (0). (€

0

These integrals can be evaluated to a high accuracy using Gauss-
Legendre quadrature rules distributed across multiple intervals.
The matrix B,j = f,j[V(r; 0,) + V(r;0j)] only depends on the in-
teractions used for training and thus needs to be evaluated only
once (for a given u), whereas A4,j = f,j[V(r; 0)] has to be evaluated
each time the emulator is invoked after the training phase.

Our emulator applies a set of KVPs with different boundary
conditions. Instead of constructing the kernel matrix for each KVP
individually, we make use of the analytic transform for the wave
functions derived in Appendix B to relate two kernel matrices as-
sociated with (L, u) and (7, u'), respectively. This amounts to the
element-wise (i.e., Hadamard) matrix product:

AU™| =@v-I(L)@=ULj) M AU, (C2)
d A

etu

where the subscripts index the basis wave functions used for train-
ing. While the first two factors on the right-hand side of Eq. (C.2)
transform the wave functions in the integrals of A,j and B,j, as dis-
cussed in Appendix B, the third factor from the left corrects for the
different determinants in Eq. (10). Note that a general expression
for the inverse of a Hadamard product does not exist. In conclu-
sion, by using the analytic transform (C.2) combined with Eq. (B.5)
we need to explicitly evaluate the kernel matrix only once each
time the emulator is invoked, which allows us to efficiently evalu-
ate an array of different KVPs.

Appendix D. Relationships between Kohn variational principles
and Kohn anomalies

In this Appendix we inspect the relationship between two ar-
bitrary KVPs associated with (L,u) and (V] u'), respectively, and
show that their stationary solutions are identical (up to numeri-
cal noise) if the cross matrix ¢ defined in Eq. (B.7), and thus the
generating matrix (B.8), is singular (ie., detc = detued = 0). For
instance, this applies to (L, L") = (I, S) and (K~\ I-1), as well as
combinations drawn from the generalized 7-matrix KVP,

cos T sin T
—sinr +icoOST COST +isinr
and generalized S-matrix KVP,
/—sinr —icosr COST —isinr
ur = . . o (D.2)
\ sinr —icosr —cost—isinr

which reduce to the matrices given in Eq. (5) for the T-matrix and
S-matrix, respectively, when r = 0. (See also Refs. [61,62] and the
overview of the KVPs in Ref. [63].)

In Appendix C we have shown that C'(L) = C is a constant if
detc = 0. Hence, in that case, the kernel matrices for the two KVPs
are directly (not just element-wisely) proportional to one another
and Eq. (C.2) reads

AU™| =CAUU), with C=C'-2"7>_

detu’

(D.3)

Since Eq. (B.6), on the other hand, reduces to
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v L

I'd) v A
uu'-"~00

D4
due to the property (A.2) of the Mobius transformation and
(uu,-1)io = detc, we find that the sets of coefficients ¢, for the
two KVPs [determined by Eq. (9a)] are equal: the first term from
the left in Eq. (D.4) cancels with the corresponding term from the
Lagrange multiplier, while the factor C in the second term cancels
with the prefactor C-1 of'the kernel matrix’s inverse. Furthermore,
Egs. (C.2) and (D.4) together with ¢ = | imply that the station-
ary approximations for the ['-matrix obtained from two KVPs are
identical, ie.,

[I'Ikve = L' ([L]kvp)  (for detc = 0), D.5)
where [LJkvp is given by Eq. (11). For KVPs with detc ™ 0, the
two approximations are not equal in general, unless the trial wave
function is an exact scattering solution, in which case Eq. (D.5) is
generally fulfilled.

For real potentials, we moreover find that the coefficients c,
and values of the stationary solutions for two KVPs with (L, L) =
(S, S-1) are complex conjugated: i.., [Sli<yp = [S-1]">. This iden-
tity follows from AUlu | = AU*({U) and S-1 = §* (unitarity), and is
generally fulfilled by exact scattering solutions.

Kohn (or Schwartz) anomalies occur at energies £ > 0 where
det AUl =0 or ™NjJ(AUlw,)ill = 0.10 In either case, no (unique)
stationary approximation for the L-matrix can be obtained from
the functional (7). Generally, Kohn anomalies reduce the KVP’s ac-
curacy over a finite range of the phase space (e.g., the energy)
since the stationary solution becomes unstable as det AU(U) or

(AU(U))Al becomes vanishingly small (in absolute value). This
can be seen in Fig. 1.

Our findings imply that the KVPs for (L, L) with singular
cross matrices ¢ [and, for real potentials, also (L, V) = (S, S-1)]
are equally subject to these Kohn anomalies and that deviations
from Eq. (D.5) are due to numerical noise, e.g., from inverting
ill-conditioned kernel matrices. Apart from these cases, however,
we find for real potentials that complex KVPs (e.g, the S-matrix
KVP) typically are less prone to Kohn anomalies than real KVPs
(e.g, the K-matrix KVP) because their kernel matrices are complex,
which means that both the real and imaginary part of det AU({U) or

(AU(U))AI need to approach zero simultaneously. (See also the
discussion in Ref. [33].) For optical potentials, on the other hand,
the kernel matrices are complex whether a real or a complex KVP
is used.

Appendix E. Diagnostic tools for Kohn anomalies

As illustrated in Fig. 1, Kohn anomalies can readily be spotted
when the emulated scattering observable of interest is plotted as a
function of a continuous variable such as the energy and scatter-
ing angle—or likewise when the exact scattering solution is known.
Since this is not the case in practice and Monte Carlo sampling can
be performed at a fixed energy or scattering angle, a different (i.e.,
automated) method to detect and remove Kohn anomalies is re-
quired for such applications.

Our method works as follows. For a given (£, E, Nb), we simul-
taneously evaluate the complementary KVPs for L = (K, T, I-1)
and LT = (L3o=, Leer, Lgo®) associated with asymptotic boundary
conditions drawn from

10 Note that the analytic derivation of the stationary approximation (9) in Ref. [29]
assumes that £jJ(AUlul)y! in the Lagrange multiplier (9b) does not vanish.
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1 el ) 71 3m
Ur = ot , with 5 <T < weeee. (ED

The construction and usage of the parameter matrix (E.I) is moti-

vated by the generalized 7- and S-matrix KVP (see Appendix D for

details), which are redundant for EC trial wave functions. We then

compute the relative residuals of, eg, the estimated S-matrices,

defined as

S(Li12) = max 9V Sq> _ 1” , (E2)
Sdi)

for all considered KVPs without repetitions to avoid trivial cases
where L\ = L2.n For instance, given the KVP estimates for
L = (KT, 7~1) we would determine S(K,7), S(K,T_1), and
5(T, T-1). The expressions for the transformations S(L) are dis-
cussed in Appendix B.

Let V" be the set of pairs (Li, L2) that fulfill the relative con-
sistency check S(Li, L2) < sre|, with sre] = 10-1. Since such a con-
sistency check alone does not allow one to disentangle whether
Li, L2, or both are anomalous, we estimate the S-matrix by the
weighted sum of averages

Mg (E32)
sy
<y(Li, D) = (E3b)

AwvLyep sg | 1N

if at least one consistency check passes (see also Ref. [65]). A small
regularization parameter is added to 8(L\,L2) to prevent a poten-
tial division by zero. If all checks fail, we partition the training
set with Nb wave functions in batches of size Np < JV/,12 re-
move one batch at a time from the training set (i.e., then of size
Nt — Np), and repeat the process iteratively. This usually shifts the
Kohn anomalies in each iteration. The iterative process is com-
putationally efficient because AU(U) only needs to be sliced, not
recomputed. Different ways of partitioning the training set can be
straightforwardly implemented.

For instance, suppose N/, =6 and Np = 3, we would first re-
move the basis wave functions with indices i = (1,2,3) and run
the consistency checks; if all checks fail again, we add the basis
wave functions with i = (1,2, 3) back to the training sets and re-
move the ones with i = (4, 5, 6) next. Ifall checks fail once more,
our algorithm signals that Kohn anomalies could not be mitigated
for the given training set and terminates. This can happen in prac-
tice, eg, if all KVPs considered are anomalous at overlapping re-
gions in the phase space.

Appendix F. Additional results

We provide here additional results for 40Ca(n,n) scattering at
E =5MeV. Fig. 4 shows the posterior distributions for the four
varied parameters, similar to Fig. 3 but at the lower energy. The
differential cross sections and 95% confidence intervals for the ex-
act scattering solution and emulator are in good agreement, as are
the means and standard deviations (see Table 1), and the correla-
tions of the parameters.

Il See also Refs. [33,43,64] for similar approaches. If S(L1,L2) is not well-defined,
e.g, S(L]) =0, one could consider the absolute instead of the relative residual in
Eq. (E2).

12 The size of the last batch will be slightly larger than Np if the integer division
Nb/Np has a nonzero remainder.
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Fig. 4. Comparison of the MCMC results obtained for the mixed approach using Nf, =8 (red) and the exact solution (black) for 40Cam, n) scattering at 5MeV: (a) posterior
distributions for the parameters Vv, Rv, Wd, and R, along the diagonal, and correlations between each pair of parameters in the off-diagonal; (b) the median value of the
differential cross section as a function of scattering angle (lines) and the corresponding 95% confidence interval (C.I, shaded area). These MCMC calculations correspond to

20,000 accepted parameters sets.

Table 1

Mean values (p) and standard deviations (Ap) for the four parameters varied in
the MCMC optimization of 40Cam, n) scattering at 5 MeV as obtained from the EC-
driven emulator (mixed approach) and the exact scattering solution. Note that the
values for the radii are given for Ri = nAl/3.

Parameter Emulated Exact

P &P P Ap
Vv [MeV] 54.82 8.95 5239 7.94
Ry [fm] 3.97 038 4.07 0.34
Wy [MeV] 7.79 L1l 7.97 1.00
Rw [fm] 4.44 0.21 4.40 0.18
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