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We construct an efficient emulator for two-body scattering observables using the general (complex) 
Kohn variational principle and trial wave functions derived from eigenvector continuation. The emulator 
simultaneously evaluates an array of Kohn variational principles associated with different boundary 
conditions, which allows for the detection and removal of spurious singularities known as Kohn 
anomalies. When applied to the K-matrix only, our emulator resembles the one constructed by Furnstahl 
et al. (2020) [29] although with reduced numerical noise. After a few applications to real potentials, 
we emulate differential cross sections for 40Ca(n, n) scattering based on a realistic optical potential and 
quantify the model uncertainties using Bayesian methods. These calculations serve as a proof of principle 
for future studies aimed at improving optical models.

© 2021 The Author]s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.Org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

There are many reasons to study rare isotopes today; e.g., they 
play a crucial role in obtaining a fundamental understanding of the 
nucleosynthesis of heavy, neutron-rich nuclei and the dense matter 
inside neutron stars [1-3], Due to their short lifetimes, rare iso­
topes are primarily investigated through reaction experiments con­
ducted at radioactive beam facilities worldwide, including RIKEN, 
FAIR, GANIL, and soon also ERIE. For the analysis and interpreta­
tion of these experiments, reliable reaction theory is imperative. 
However, apart from reactions on light nuclei, reaction theory is 
still largely phenomenological and relies on poorly constrained ef­
fective interactions to keep calculations tractable [4],

Statistical methods such as Bayesian parameter estimation [5] 
and model comparison [6] can provide important insights into the 
issues of effective interactions. They can also help design next- 
generation reaction experiments (see, e.g., Ref. [7]). But in practice 
their applications are limited because Monte Carlo sampling of 
the models’ parameter spaces in reaction calculations is usually 
computationally demanding. Hence, Bayesian studies of nuclear re­
actions [8-10] have only considered the simplest reaction theory, 
the optical model, which describes, e.g., nucleus-nucleus scattering
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as two particles interacting via a complex-valued interaction. Ex­
tending these studies to more sophisticated reaction theories (see, 
e.g, Refs. [11-19]) is a challenging yet important task.

Emulators—computationally inexpensive algorithms capable of 
approximating exact model calculations with high accuracy—are 
promising tools in this regard [20-23], In particular, eigenvector 
continuation (EC) [24,25] has been shown to be a powerful method 
for emulating bound-state properties such as binding energies and 
charge radii of atomic nuclei [26-28], Furnstahl et al. [29] have re­
cently demonstrated that EC also allows for the construction of 
effective trial wave functions for calculations of two-body scat­
tering observables using the K-matrix Kohn variational principle 
(KVP) [30], Further, Melendez et al. [31] have extended the EC 
concept to trial K- or T-matrices in applications of Newton’s vari­
ational method to two-body scattering, e.g, with a modern chiral 
interaction. Remarkably high accuracies and speedups relative to 
exact scattering calculations were obtained [29,31], (See Ref. [32] 
for EC applied to R -matrix theory calculations of fusion observ­
ables.)

In this article, we improve and extend the emulator developed 
by Furnstahl et al. [29] in several ways. Besides the K-matrix, we 
emulate a variety of matrices associated with different scatter­
ing boundary conditions simultaneously via the general (complex) 
KVP [33], (For pre-EC studies with this method, including nucleon- 
deuteron scattering, see Refs. [34-36].) This approach allows us to 
detect and remove spurious singularities known as Kohn anoma­
lies [37,38], which can render variational calculations of scatter­
ing observables ineffective—especially when used for sampling a
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model’s parameter space. We also propose a method for solving 
the emulator equations in Ref. [29] with reduced numerical noise. 
As a step toward emulating nuclear reactions, we apply our em­
ulator to differential cross sections in 40Ca(n,n) scattering using 
a realistic optical potential and quantify the uncertainties in the 
model parameters using Bayesian methods.

The remainder of this article is organized as follows. In Sec­
tion 2 we introduce the formalism of the general KVP with EC trial 
wave functions. We then present several applications of our emula­
tor to realistic potentials (including a chiral potential) in Section 3. 
Section 4 concludes the article with a summary and outlook. Ad­
ditional information, e.g., on redundancies among different KVPs 
with EC trial wave functions, is provided in Appendices A to F. We 
use natural units in which ft = c = 1.

2. Formalism

We consider here local short-range potentials V(6) in coordi­
nate space that depend on a set of free parameters 0; e.g, the 
parameters of an optical model or low-energy couplings of a chiral 
potential. Further, V (9) is assumed to be partial-wave decomposed 
into an uncoupled channel with angular momentum £. Following 
Furnstahl et al. [29], we then use EC to construct an effective trial 
wave function for our (nonrelativistic) variational calculations of 
two-body scattering observables:

Nb
I’Atrial) = '

i=l
(1)

Here, each of the Np basis wave functions, i.e.,

{r\irt.E(fii))
#c'.E(r) ym (£2r), (2)

is an exact (partial-wave) solution to the Schrodinger equation for 
V(0j) at the center-of-mass energy E > 0, and the coefficients c ’̂£ 
are to be determined. The radial wave functions in Eq. (2) are 
normalized by imposing asymptotic boundary conditions1 of the 
general form [33]

#c.E(r)~<^E(r) + Ic.E<%kr)' (3)

where the two independent free-space solutions are expressed in 
terms of a nonsingular (complex) matrix u that is associated with 
the generic L-matrix in Eq. (3):

(_ Kr-1 (uoo Uoi \ (SinT)c(r) \ 
\0c,£(r)/ V‘io uii / \ cosridr) ) (4)

with i]i(r) = pr — j£ and p = s/2jlE, and an arbitrary normal­
ization constant M ^ 0. For instance, the familiar /(-, S-, and T- 
matrix respectively correspond to2

u = and (5)

But any other nonsingular parametrization (L, u) of the asymptotic 
limit (3) is equally valid.3 The corresponding R-matrix can be ob­
tained using the Mdbius transformation (see also Appendix A)

1 The boundary condition (3) can be extended to the (long-range) Coulomb po­
tential. See, e.g., Eq. (SI 1) in Ref. [29],

2 The matrices are determined only up to scalar multiples. Lucchese [33] uses
a different convention for the S-matrix (u------u) and T-matrix parametrization
(T----- jtT).

3 For example, by swapping the rows in u associated with L [e.g., given by Eq. (5)] 
one obtains the matrix u parametrizing E-1.

Kc.E (It.E) Uoi + U\\Lc,e 
Uoo + UioLc.E

(6)

which is related to the phase shift via /Q,e = tanS^E.
In Appendix B we give the technical details for solving the 

(radial) Schrodinger equation numerically to determine the basis 
wave functions in Eq. (1), including a generalization of Eq. (6) to 
transform from a given L-matrix to any other L'-matrix—not just 
the /(-matrix.

We determine the coefficients cj,1 £ in Eq. (1) using the general 
(complex) KVP. Given (L, u) and a trial wave function (i*| -y^triai) sub­
ject to the boundary condition (3), the general KVP provides a sta­
tionary approximation to Le,E = L^g/AA using the functional [33]4

Ai [ I’Atrial) ] = Lc.E ~ — (^trial I - E | Atrial) - (7)

with the reduced mass ji % ApAt/(Ap + At)mn, mass number of 
the projectile Ap = 1 (here, a neutron with mass mn) and target At, 
respectively, as well as the Hamiltonian H(0) = — V2/(2//) + V(0) 
in coordinate space. A derivation similar to the one in Refs. [29,39] 
for the /(-matrix shows that the functional (7) is indeed stationary 
about exact solutions to the Schrodinger equation, i.e., /Su[|Vh',£> + 
|SVq',E>] = le.E + (Sie.E)2, although it does not provide an upper or 
lower bound in general.

We impose the normalization constraint c(e' ]E = 1 on the 
EC trial wave function (1) to fulfill the boundary condition (3) 
required by the general KVP. Constrained optimization of the func­
tional (7) using a Lagrange multiplier X then leads to the system 
of (N/, + 1) linear equations

(8)

and eventually to the desired stationary solution [29]

(9a)

(9b)

In Eq. (8), 1 (1T) is an all-ones column vector (row vector), and L^g 
and Q,g are vectors respectively containing the L-matrices of the 
basis wave functions and the unknown coefficients c|)£. Further, 
we have defined the JV/, x JV/, kernel matrix

N 2/u 
p detu

[2Aij - Bij] ,

Aij = (’Ac.E^i) | V(0) | f t,E(fij)) ,

Bij = (’AcE^i) | V (A ) + V {9 j) | lAt,E(fij)) -

(10a)

(10b)

(10c)

which can be efficiently evaluated for a variety of different (L,u) 
at once, as discussed in Appendix C. Hence, the stationary approx­
imation to Le.E reads

Nb
[A.eIkvp = c(i) Lm 

lc,elc,e
i=1

t a M)
c.e

Lj=1
(ID

4 Lucchese [33] considers electron-nucleus scattering in atomic units, wherein the 
electron mass mc = 1 and thus /.i « 1. For optical potentials the bra-states are to be 
complex conjugated (as indicated by the asterisk).
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Equations (8) to (11) are the main expressions of our emula­
tor. They reduce to the ones derived in Ref. [29] for the K-matrix 
KVP (i.e., L = I<) with Af = p. Hence, the discussion of the com­
putational complexity in Ref. [29] also applies to our emulator for 
each (L,u).

The EC trial wave function (1) renders the kernel matrix AU|"g 
increasingly ill-conditioned as the number of basis wave functions 
Nr increases. To control the numerical noise due to the explicit 
matrix inversion in the algebraic solution (9), Furnstahl et al. [29] 
added a small regularization parameter to the diagonal elements 
of AU™£. Although this simple approach typically works well in 
practice, we find that solving instead the system of equations (8) 
numerically using a least-squares solver [to circumvent explicit 
matrix inversion] is less sensitive to numerical noise—especially at 
low energies. The least-squares solver uses a different regulariza­
tion method, where singular values less than a given cutoff ratio 
times the largest singular value are considered zero. In the cases 
we studied, this cutoff ratio could be as small as the machine ep­
silon to avoid potential fine-tuning.

In addition to these numerical instabilities, the general KVP 
is prone to spurious singularities known as Kohn (or Schwartz) 
anomalies [37,40], which occur at energies where the func­
tional (7) does not provide a (unique) stationary approxima­
tion (11). (See Section 3.1 for several illustrations.) For the realistic 
potentials studied here, we find that neither real KVPs, such as the 
one for the K-matrix, nor complex KVPs, such as the one for the 
S-matrix [41,42], can guarantee anomaly-free results [33].

We therefore emulate a wide range of matrices associated with 
different scattering boundary conditions simultaneously using the 
general KVP and assess their consistency. As pointed out in Ap­
pendix D, however, not all KVPs (with EC trial wave functions) 
provide independent stationary approximations—we derive a sim­
ple condition to identify those. Results that do not pass the con­
sistency checks, e.g., SS-1 = 1 [33,43], are disregarded by our 
anomaly detection algorithm and the remaining ones averaged 
over in an attempt to obtain anomaly-free results. If none of the 
KVPs evaluated are consistent, our algorithm iteratively adapts the 
size of the training set, which usually shifts the Kohn anomalies in 
each iteration. We refer to this approach as the “mixed approach." 
More details on detecting and removing Kohn anomalies are pre­
sented in Appendix E.

3. Results and discussion

3.1. Realistic real potentials

We apply our emulator first to three real potentials as test 
cases. Specifically, we consider nucleon-nucleon (NN) scattering in 
the 'So channel5 based on the Minnesota potential [44],

y (r) = VoR + Vos , (12)

and the local chiral potential at next-to-next-to-leading order 
(N2LO) developed by Gezerlis et al. [45] with regulator cutoff 
Ro = 1.0 fm and spectral-function cutoff A = lOOOMeV. The Min­
nesota potential allows for direct comparisons with the emulators 
constructed in Refs. [29,31], and the chiral potential is commonly 
used in quantum Monte Carlo calculations of atomic nuclei and nu­
clear matter (see, e.g., Refs. [46,47] for recent reviews). The latter 
potential depends on 8 parameters (i.e., NN low-energy couplings)

5 The spectroscopic notation 'S0 indicates that the angular momentum £ = 0 (“S”) 
and the total spin S = 0 of the two nucleons couple to the total angular momentum 
7 = 0.

in the 'So channel.6 Both were constructed to reproduce 'So scat­
tering phase shifts.

We also consider the scattering states of n + 10Be based on the 
real Woods-Saxon potential with the spin-orbit (IS) term added, 
i.e.,

Vis d
V(r) = — Vo /ws(r; R, a) +1 • s — — /ws(n R, a) (13)

r dr
with the function

which was fit in Ref. [48] to low-lying states in 11 Be, including 
the dg/2 resonance.7 * Equation (13) is commonly used to describe 
the interaction of the valence nucleon(s) with the core nucleus in 
halo nuclei, such as nBe(n + 10Be) in reaction models [11,13,48], or 
16Be(n + n + 14Be) in decay studies [17,49], We consider here the 
dg/2 channel (rather than s 1/2) because the breakup calculations 
in Ref. [48] identified this channel as the dominant one for this 
scattering process (see Figure 1 in Ref. [48]).

For the Minnesota potential (12), we follow Furnstahl et al. 
[29] and train our emulator on the set of points (Vqr, Vqs) = 
{(0.,-291.85), (100., 8.15), (300.,-191.85), (300., 8.15)} in
units of MeV, while the other (nonlinear) parameters are fixed at 
their best fit values, i.e., kr = 1.487 fm-2 and ks = 0.465 fm-2 [44]. 
For the other two potentials, we randomly select the training 
points within a ±20% interval (in the appropriate units) of the 
parameters’ best fit values, as given in Table I of Ref. [45] for the 
chiral potential (Nr = 4) and Table I of Ref. [48] for the Woods- 
Saxon potential (13) with fixed Vls = 21 MeVfirT2 (Nr = 6). In all 
cases, we emulate the scattering phase shifts at the best fit values.

Fig. 1 shows the emulated phase shifts (a-c) and their absolute 
residual (d-f) relative to the exact scattering solution as a func­
tion of the center-of-mass energy. From left to right, the columns 
correspond to the results obtained for the Minnesota, chiral, and 
Woods-Saxon potential, respectively. Each panel depicts the emu­
lated results based on the KVPs for the I<~, T-, and T-1-matrix, 
as well as our mixed approach as solid lines. The KVPs for the 
other canonical matrices (i.e., K~\ S, and S-1) do not provide 
complementary stationary solutions (as discussed in Appendix D) 
and therefore are not shown.

Overall, our emulator reproduces well the exact phase shifts. 
The absolute residuals typically are <0.01°, except for the Min­
nesota potential at the low energies where the phase shift is large. 
As expected, the K-matrix KVP (orange lines) reproduces the phase 
shifts obtained by Furnstahl et al. [50] for the Minnesota poten­
tial, including the noticeable Kohn anomaly at E & 13 MeV. The 
I-1-matrix KVP is anomalous at E & 59 MeV. In the energy range 
shown, we also find such an anomaly for the chiral interaction 
at E & 61 MeV, and for the Woods-Saxon potential at E & 8 MeV. 
Additional Kohn anomalies, however, may be present and only no­
ticeable when using extremely fine energy grids [29]. Fig. 1 em­
phasizes the need for efficient anomaly removal algorithms beyond 
proof-of-principle calculations, where the exact scattering solution 
as a reference is not available.

Such an algorithm is implemented in our emulator (see Sec­
tion 2). Depicted by the red lines in Fig. 1, the mixed approach 
is capable of detecting and removing Kohn anomalies by assess­
ing the consistency of the results obtained from a set of different

6 Only two independent (spectroscopic) low-energy couplings contribute to the 
'So channel, which are given by linear combinations of the couplings mentioned in 
the text. For details see, e.g.. Appendix A in Ref. [45],

7 The spectroscopic notation ds/2 indicates that the angular momentum 1 = 2
(“d”) is coupled to a total angular momentum of the valence particle j = 5/2.

/ws(n R,a) = 1 ± exp (14)
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Minnesota potential: 1Sq
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Fig. 1. Phase shifts (a-c) and the associated absolute residuals (d-f) with respect to the exact solution for the different KVPs (see legend) as a function of the center-of-mass 
energy: Minnesota potential (12) (left column), local chiral potential [45] at N2LO (center column), and Woods-Saxon potential with spin-orbit term (13) (right column). 
Both, the Minnesota and chiral potential, are used for NN scattering, whereas the Woods-Saxon potential is used for n + 10Be scattering. The dotted vertical lines highlight 
the (approximate) locations of the detected Kohn anomalies. Notice that the algorithm proposed here (red lines) is capable of removing these anomalies. See the main text 
for more details.

KVPs and (if necessary) adaptively removing basis wave functions 
from the training set used for emulation. In this specific case, 
we have simultaneously emulated the complementary matrices 
L = (K, T, 3 1), as shown in the figure, as well as the three addi­
tional matrices specified in Appendix E. No changes in the training 
set were necessary to mitigate these Kohn anomalies.

3.2. Realistic optical potential

We also apply our emulator to a realistic optical potential for 
40Ca(n.n) scattering at E = 20MeV in the center-of-mass frame. 
Parametrizations of optical potentials (see, e.g., Ref. [51]) typically 
contain real and imaginary terms of the Woods-Saxon form:

V(r) = —Vv /ws(r; Rv*av) ~ iWv fws(r\ Rw. aw),
d (15)

— iAa&W& — /ws(n Rd• ad) ■ dr
We do not consider the spin-orbit term in Eq. (15) and assume in 
the following Rw = Rv and aw =av, as in Ref. [51], To train the 
emulator, we randomly select JV/, points for the remaining seven 
parameters, i.e., 0 = {Vv, Rv,av,Wv,Wd, Rd.ad], within a ±20% 
interval (in the appropriate units) centered around the Koning- 
Delaroche (KD) parameterization [51] at E = 20MeV. This ap­
proach allows us to probe a realistic region of the parameter space.

Fig. 2 shows (a) the emulated differential cross sections (mixed 
approach) and (b) their corresponding average relative residuals 
as a function of the scattering angle 6— which is not to be con­
fused with the parameter set of the interaction, V(0). The exact 
scattering solutions serve as the reference for the residuals and 
their mean value is depicted by the black-dotted line in panel (a). 
We emulate the differential cross section at 500 randomly selected 
points in the parameter space similar to the training phase, and 
determine the bands shown in panel (b) as the range spanned by 
the 50% limit (i.e., median) and (upper) 95% limit of the residuals. 
The solid lines in both panels correspond to the average results 
for the emulators with JV/, = 4 (red lines), JV/, = 6 (orange lines), 
JV/, = 8 (green lines), and JV/, = 10 (blue lines), respectively. We in­
clude partial-wave channels with angular momentum l ± 10 in the 
calculations.

Scattering Angle 0 [deg]

Fig. 2. Differential cross section (a) and average relative residual (b) for 40Cam, n) 
scattering at 20 MeV using the mixed approach with 500 random sampling points 
and four different basis sizes (see legend) as a function of the scattering angle 9. 
The solid lines depict the average results for the mixed approach using N/, = 4 (red), 
Nt, = 6 (orange), N/, = 8 (green), and % = 10 (blue) basis points. The shaded bands 
span the range between the 50% limit (i.e., median) and (upper) 95% limit of the 
residuals. The black-dashed line represents the mean value of the exact scattering 
solutions. For more details see the main text.

As shown in Fig. 2, the accuracy of the emulator roughly im­
proves by an order of magnitude when increasing the size of the 
training set by increments of two, from JV/, = 4 to 10. But the accu­
racy can also vary by more than an order of magnitude within the 
500 sampled points. Furthermore, increasing the scattering angle 
tends to decrease the accuracy, which is lowest at the backward 
angles where the differential cross section is smallest. Neverthe­
less, for JV/, ± 6, the emulator residual does not exceed the ex-
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Fig. 3. Comparison of the MCMC results obtained for the mixed approach using Nb = 8 (red) and the exact solution (black) for 40Cam, n) scattering at 20MeV: (a) posterior 
distributions for the parameters Vv, Rv, Wd, and R,j along the diagonal, and correlations between each pair of parameters in the off-diagonal; (b) the median value of the 
differential cross section as a function of scattering angle (lines) and the corresponding 95% confidence interval (C.I., shaded area). These MCMC calculations correspond to 
20,000 accepted parameters sets.

perimental uncertainty, typically of the order of ^10% (see, e.g., 
Refs. [52,53]).

3.3. Uncertainty quantification for optical models

In this section we explore Bayesian parameter estimation and 
uncertainty quantification of an optical model using our emulator— 
as a step toward systematic studies in the future. For the proof- 
of-principle calculation we consider again 40Ca(n, n) scattering at 
20 MeV8 and use the mixed approach with Nj,= 8 training points. 
The real and imaginary volume depths and radii of the optical po­
tential (i.e., Vv, Rv, Wd, and Rj) are constrained based on mock 
data generated from the KD potential [51] (see Ref. [54] for more 
details), whereas the other optical model parameters are fixed at 
the original KD values. Each parameter’s prior is taken to be a 
normal distribution with mean set to the KD potential value and 
width of 50% of the mean, similar to previous studies [8-10], and 
the likelihood is the standard exponentiated x2 ■ The uncertainty 
quantification is performed through Markov Chain Monte Carlo 
(MCMC) sampling with 20,000 accepted parameters sets from a 
single Markov chain. We also obtain 95% confidence intervals for 
the differential cross sections, defined as the smallest interval over 
which the posterior distribution integrates to 0.95.

Fig. 3 shows the results of the parameter estimation based on 
the mixed approach (red lines) and the exact scattering solution

Additional results for 40Cam, n) scattering at 5 MeV are provided in Appendix F.

(black lines). Panel (a) gives the posterior distributions for the 
four varied parameters along the diagonal, with contour plots dis­
playing the correlations between each pair of parameters in the 
off-diagonal panels (also known as corner plot). Panel (b) com­
pares the resulting 95% confidence intervals for emulated vs. exact 
differential cross sections. Apart from statistical fluctuations, the 
emulator reproduces well the exact calculations of the parameter 
posterior distributions, correlations, and the confidence intervals 
for the angular distributions. Remarkably, our mixed approach ob­
tained anomaly-free results without adapting the training set in all 
of our MCMC runs.

The mean values of the posterior distributions match the KD 
parameters, as expected, and the uncertainties of the parameters 
and the differential cross sections are similar to what has been 
obtained in previous studies [8,54], Note that the same reaction 
has been studied in Ref. [54] at slightly lower energy but with a 
larger set of parameters allowed to vary in the MCMC sampling.

4. Summary and outlook

Motivated by the recent Letter by Furnstahl et al. [29], we con­
structed an efficient emulator for two-body scattering observables 
using the general KVP [33] and trial wave functions derived from 
EC. Our emulator does not only consider the K-matrix KVP (as in 
Ref. [29]), but rather simultaneously evaluates an array of KVPs as­
sociated with different (complex) scattering boundary conditions. 
This approach allows us to systematically detect and remove spu-

5
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rious singularities known as Kohn anomalies, which can render 
applications of the KVP and other variational principles ineffective; 
especially when used for Monte Carlo sampling of a model’s pa­
rameter space. If only the /(-matrix KVP is evaluated, our emulator 
resembles the one constructed in Ref. [29] although with reduced 
numerical noise.

We investigated the EC-driven general KVP in detail and derived 
analytic expressions to transform the emulator equations of differ­
ent KVPs efficiently into one another. In particular, we showed that 
the stationary solutions of two KVPs are identical if a simple con­
dition is fulfilled [see the discussion of Eq. (D.5)[.

We demonstrated the efficacy of the proposed algorithm for 
removing Kohn anomalies by emulating scattering phase shifts 
obtained from the Minnesota, a local chiral, and the real Woods- 
Saxon potential. For each potential, we found anomalies in at least 
one of the applied KVPs, which the algorithm reliably detected 
and removed—without adapting the size of the training set. This 
emphasizes that Kohn anomalies need to be dealt with in prac­
tice, even in proof-of-principle calculations, but doing so does not 
require the exact scattering solution. The basic concept of the algo­
rithm is general and might also be applicable to other variational 
methods [31]. Furthermore, we showed that, although the emu­
lator’s rate of convergence can be sensitive to the details of the 
interaction and the size of the training set, the high accuracies ob­
tained with our KVP-based emulator are well-suited for scattering 
calculations.

After these test applications to real potentials, we studied 
the EC convergence for emulating differential cross sections in 
40Ca(n, n) scattering at 20MeV using the realistic KD optical poten­
tial. A training set with JV/, = 6 — 10 wave functions, typically, was 
enough to obtain high-accuracy results for this observable. Next, 
we performed Bayesian parameter estimation for the optical model 
by optimizing the emulated differential cross section to reproduce 
mock data calculated from the KD potential. The sampled distribu­
tion functions for the model parameters and the differential cross 
section obtained with the emulator were in excellent agreement 
with those calculated from the exact scattering solution.

Important future avenues include the extension of our emu­
lator to scattering in coupled partial-wave and reaction channels, 
with coordinate and momentum space interactions, as well as the 
inclusion of the (long-range) Coulomb interaction [29,31,39], Tech­
nically more challenging will be the extension to emulating three- 
and higher-body scattering observables, where the computational 
efficiency of emulators is vital for rigorous uncertainty quantifica­
tion. Recent developments in this direction [55,56], however, are 
promising and will benefit from the insights into the EC-driven 
general KVP provided here. As the number of efficient emulators 
for scattering observables increases [29,31,57], it will be impor­
tant to benchmark the different emulators quantitatively, e.g., in 
terms of accuracy, computational speedup, and susceptibility to 
anomalous behavior. These advances set the stage for construct­
ing next-generation optical models using emulators for scattering 
observables in the ERIE era.
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Appendix A. Mobius transformation

The Mobius (or linear fractional) transformation refers to the 
function (for more details, see, e.g., Ref. [59])

A,(z)
Q01 + Gil Z 

d00 + QlO Z
(A.l)

generated by the nonsingular 2x2 matrix a. We have chosen 
the order in which the coefficients a,j appear such that Eq. (6) 
reads K(L) = £U(L). If a was singular (i.e., deta = 0), then Eq. (A.l) 
would be just a constant,

on
«10
Qqi
(loo
undefined

if Qio 7^ 0,
if Qio = 0 and ago ^ 0, 
if ago = dig = 0,

(A.2)

and thus not strictly considered a Mobius transformation. £a(z) 
has the properties

£a (z) = 4a (z) , with A ^ 0, (A3a)

£a (z —> oo) = — , if the limit exists, (A.3b)
aio

AT1 (z) = Ah A) - and (A.3c)

4,(A,(z)) = A,b(z). (Ajd)

Further, it can be efficiently implemented using (mostly) linear al­
gebra operations; e.g.,

Aib(z) = -A bTaT with J P 
Q '

(A.4)

Note that the vector representation of a fraction is only determined 
up to an arbitrary factor A 4 0. In this work, we use the Mobius 
transformation to relate different asymptotic limit parametriza- 
tions with one another.

Appendix B. Solving the radial Schrodinger equation

We write the radial Schrodinger equation for a given angular 
momentum £ and center-of-mass energy £ as a system of coupled 
first-order differential equations,

and numerically solve it for each of the JV/, partial-wave de­
composed potentials V(r;01),..., and V (r; 0^b) using the explicit 
Runge-Kutta method in Scipy’s integrate.solve_ivp(). The relative 
and absolute tolerance are each set to 1CT9 or less. As initial val­
ues for the solver we set 0(e) = 0 and (by choice) 0'(e) = 1, where 
the value of the derivative will be rescaled later on by imposing 
an asymptotic boundary condition, and e > 0 is a numerical value 
close to zero. We solve the radial Schrodinger equation up to the
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matching radius rm « oo located outside the range of the potential. 
At rm, we smoothly match the numerical solution to the free-space 
solution parametrized by <p^e\r) = <f>f^ree\r) + Lt,E<f>{yEree\r), 
with

7(0,free)
Pc.E prN 1 / Uoo 

\UlO
Uoi
till

( idpr) \ 
\-r}dpr)J (B.2)

Here, jt(pr) and pe(pr) denote the spherical Bessel function and 
Neumann function, respectively. Notice that the asymptotic limit 
of the free-space solution (B.2) is defined in Eq. (4). The (ar­
bitrary) constant A/-1 = p is chosen following Ref. [29]. Given 
a parametrization u, we determine the value of the L-matrix 
in terms of the inverse logarithmic derivative with respect to r, 
R(rm) = <f>(rm)/<f>'(rm), as follows

(B.3)

and then rescale 4>(r) by the factor More details
can be found, e.g., in Ref. [60].

The numerical solution matched to any asymptotic boundary 
condition of the form (3) is an equally valid solution of the radial 
Schrodinger equation for r A e. In practice, we choose a partic­
ular boundary condition (e.g., with L = S) for the matching. To 
efficiently transform wave functions normalized by this asymptotic 
limit parametrization (L, u) to another (L',u')} we use the analytic 
expressions derived in the following. Notice that primes [e.g., as in 
0g(r)[ no longer indicate derivatives.

We consider the identity in the asymptotic limit

0o (r) + L0i (r) = C' [<p'0 (r) + L' 0, (r)] , (B.4)

which implies that 0'(r) = C,-1(L)0(r), and solve for the scalars 
C' and L' as a function of L. For brevity, we omit subscripts that 
indicate (E, £, 0, ). Equating the coefficients of the sine and cosine 
functions in Eq. (B.4) leads to the desired transforms9

uii — u10K(I)
detu Ujj - u'wK(L)‘to1C'(I) _ (K(I)) _ ^

with I<(L) as defined in Eq. (6),

(B.5)

(B.6)

c = tin u 11
—u 10 — tl 10

and d = detu'
0

0
detu (B.7)

These expressions can be rewritten as L'(L) = £uu/-i (L) and 
C(L) =fucd(L), with the generating matrix

ucd = detu / detu'
V 0

(uu' ^00 \ 
detc / (B.8)

using the properties (A.3) of the Mdbius transformation. The gen­
erating matrix (B.8) is singular if, and only if, detc = (uu'^ho = 0, 
as expected. In that case, C'(L) = (ucd)oi/(ucd)oo is a constant 
(i.e., independent of L) because of the property (A.2) and (ucd)io = 
0. As discussed in Appendix D, this case has important implications 
for the results obtained from the two KVPs associated with (L, u) 
and (L',u')t respectively. Explicit expressions relating the matrices 
(K, S, I), as special cases of Eq. (B.5), can be found in Table 3.1 of 
Ref. [60].

9 Equation (B.5) can also be obtained by noting that the K-matrix (6) is indepen­
dent of whether (L. u) or (!', u') is used to parametrize the asymptotic limit of the 
radial wave function.

Appendix C. Efficient evaluation of kernel matrices

Constructing the kernel matrix AU™1 a 2A,j — B,j as defined in 
Eqs. (10) for emulating scattering observables with local potentials 
in coordinate space involves the evaluation of overlap integrals of 
the functional form

= y dr^(r)y(r;^)^j(r). (C.l)

o
These integrals can be evaluated to a high accuracy using Gauss- 
Legendre quadrature rules distributed across multiple intervals. 
The matrix B,j = f,j[V(r; 0,) + V(r;0j)] only depends on the in­
teractions used for training and thus needs to be evaluated only 
once (for a given u), whereas A,j = f,j[V(r; 0)] has to be evaluated 
each time the emulator is invoked after the training phase.

Our emulator applies a set of KVPs with different boundary 
conditions. Instead of constructing the kernel matrix for each KVP 
individually, we make use of the analytic transform for the wave 
functions derived in Appendix B to relate two kernel matrices as­
sociated with (L, u) and (V, u'), respectively. This amounts to the 
element-wise (i.e., Hadamard) matrix product:

AU™'1 =C'-1(L,)C'-1(Lj)•v-l r-\, detu
detu'

AU,!"'. (C.2)

where the subscripts index the basis wave functions used for train­
ing. While the first two factors on the right-hand side of Eq. (C.2) 
transform the wave functions in the integrals of A,j and B,j, as dis­
cussed in Appendix B, the third factor from the left corrects for the 
different determinants in Eq. (10). Note that a general expression 
for the inverse of a Hadamard product does not exist. In conclu­
sion, by using the analytic transform (C.2) combined with Eq. (B.5) 
we need to explicitly evaluate the kernel matrix only once each 
time the emulator is invoked, which allows us to efficiently evalu­
ate an array of different KVPs.

Appendix D. Relationships between Kohn variational principles 
and Kohn anomalies

In this Appendix we inspect the relationship between two ar­
bitrary KVPs associated with (L, u) and (V, u'), respectively, and 
show that their stationary solutions are identical (up to numeri­
cal noise) if the cross matrix c defined in Eq. (B.7), and thus the 
generating matrix (B.8), is singular (i.e., detc = detued = 0). For 
instance, this applies to (L, L') = (I, S) and (K~\ I-1), as well as 
combinations drawn from the generalized T-matrix KVP,

cos T sin T
— sin r + i cos r cos r + i sin r

and generalized S-matrix KVP,

/ — sin r — i cos r cos r — i sin rur = \ sin r — i cos r — cost— i sin r

which reduce to the matrices given in Eq. (5) for the T-matrix and 
S-matrix, respectively, when r = 0. (See also Refs. [61,62] and the 
overview of the KVPs in Ref. [63].)

In Appendix C we have shown that C'(L) = C is a constant if 
detc = 0. Hence, in that case, the kernel matrices for the two KVPs 
are directly (not just element-wisely) proportional to one another 
and Eq. (C.2) reads

AU™'1 =CAU(U), with C = C'-2^. (D.3)
detu7

Since Eq. (B.6), on the other hand, reduces to

7
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I'd) UU | L
uu'-^oo

(D.4) Ur = with
71 3 77

-------- < T < -------- .
2 2

(E.l)

due to the property (A.2) of the Mobius transformation and 
(uu,-1)io = detc, we find that the sets of coefficients c, for the 
two KVPs [determined by Eq. (9a)[ are equal: the first term from 
the left in Eq. (D.4) cancels with the corresponding term from the 
Lagrange multiplier, while the factor C in the second term cancels 
with the prefactor C-1 of the kernel matrix’s inverse. Furthermore, 
Eqs. (C.2) and (D.4) together with ci = 1 imply that the station­
ary approximations for the ['-matrix obtained from two KVPs are 
identical, i.e.,

[I'Ikvp = L' ([L]kvp) (for detc = 0), (D.5)

where [L]kvp is given by Eq. (11). For KVPs with detc ^ 0, the 
two approximations are not equal in general, unless the trial wave 
function is an exact scattering solution, in which case Eq. (D.5) is 
generally fulfilled.

For real potentials, we moreover find that the coefficients c, 
and values of the stationary solutions for two KVPs with (L, L') = 
(S, S-1) are complex conjugated: i.e., [S]i<yp = [S-1]^. This iden­
tity follows from AUlu 1 = AU*(U) and S-1 = S* (unitarity), and is 
generally fulfilled by exact scattering solutions.

Kohn (or Schwartz) anomalies occur at energies E > 0 where 
det AUlul = 0 or ^jJ(AUlu,)jl1 = O.10 In either case, no (unique) 
stationary approximation for the L-matrix can be obtained from 
the functional (7). Generally, Kohn anomalies reduce the KVP’s ac­
curacy over a finite range of the phase space (e.g., the energy) 
since the stationary solution becomes unstable as det AU(U) or 

(AU(U))A1 becomes vanishingly small (in absolute value). This 
can be seen in Fig. 1.

Our findings imply that the KVPs for (L, L') with singular 
cross matrices c [and, for real potentials, also (L, V) = (S, S-1)] 
are equally subject to these Kohn anomalies and that deviations 
from Eq. (D.5) are due to numerical noise, e.g., from inverting 
ill-conditioned kernel matrices. Apart from these cases, however, 
we find for real potentials that complex KVPs (e.g, the S-matrix 
KVP) typically are less prone to Kohn anomalies than real KVPs 
(e.g, the K-matrix KVP) because their kernel matrices are complex, 
which means that both the real and imaginary part of det AU(U) or 

(AU(U))A1 need to approach zero simultaneously. (See also the 
discussion in Ref. [33].) For optical potentials, on the other hand, 
the kernel matrices are complex whether a real or a complex KVP 
is used.

Appendix E. Diagnostic tools for Kohn anomalies

The construction and usage of the parameter matrix (E.l) is moti­
vated by the generalized T- and S-matrix KVP (see Appendix D for 
details), which are redundant for EC trial wave functions. We then 
compute the relative residuals of, eg, the estimated S-matrices, 
defined as

5(Li, L2) = max
sq i) sq 2)

Sdi)
(E.2)

for all considered KVPs without repetitions to avoid trivial cases 
where L\ = L2.n For instance, given the KVP estimates for 
L = (K,T,T~1) we would determine S(K,T), S(K,T_1), and 
5(T, T-1). The expressions for the transformations S(L) are dis­
cussed in Appendix B.

Let V be the set of pairs (Li, L2) that fulfill the relative con­
sistency check S(Li, L2) < sre|, with sre| = 10-1. Since such a con­
sistency check alone does not allow one to disentangle whether 
Li, L2, or both are anomalous, we estimate the S-matrix by the 
weighted sum of averages

m (mixed) 
KVP

<y(Li, ii) =
8{L\,L2) -1

^(L'vL))eP sq\' !->)M-l

(E3a)

(E3b)

if at least one consistency check passes (see also Ref. [65]). A small 
regularization parameter is added to 8(L\,L2) to prevent a poten­
tial division by zero. If all checks fail, we partition the training 
set with Nb wave functions in batches of size Np < JV/,,12 re­
move one batch at a time from the training set (i.e., then of size 
Nt — Np), and repeat the process iteratively. This usually shifts the 
Kohn anomalies in each iteration. The iterative process is com­
putationally efficient because AU(U) only needs to be sliced, not 
recomputed. Different ways of partitioning the training set can be 
straightforwardly implemented.

For instance, suppose N/, = 6 and Np = 3, we would first re­
move the basis wave functions with indices i = (1,2,3) and run 
the consistency checks; if all checks fail again, we add the basis 
wave functions with i = (1,2, 3) back to the training sets and re­
move the ones with i = (4, 5, 6) next. If all checks fail once more, 
our algorithm signals that Kohn anomalies could not be mitigated 
for the given training set and terminates. This can happen in prac­
tice, eg, if all KVPs considered are anomalous at overlapping re­
gions in the phase space.

As illustrated in Fig. 1, Kohn anomalies can readily be spotted 
when the emulated scattering observable of interest is plotted as a 
function of a continuous variable such as the energy and scatter­
ing angle—or likewise when the exact scattering solution is known. 
Since this is not the case in practice and Monte Carlo sampling can 
be performed at a fixed energy or scattering angle, a different (i.e., 
automated) method to detect and remove Kohn anomalies is re­
quired for such applications.

Our method works as follows. For a given (£, E, Nb), we simul­
taneously evaluate the complementary KVPs for L = (K, T, I-1) 
and LT = (L3o=, Leer, Lgo°) associated with asymptotic boundary 
conditions drawn from

10 Note that the analytic derivation of the stationary approximation (9) in Ref. [29] 
assumes that £jJ(AUlul)y1 in the Lagrange multiplier (9b) does not vanish.

Appendix F. Additional results

We provide here additional results for 40Ca(n,n) scattering at 
E = 5 MeV. Fig. 4 shows the posterior distributions for the four 
varied parameters, similar to Fig. 3 but at the lower energy. The 
differential cross sections and 95% confidence intervals for the ex­
act scattering solution and emulator are in good agreement, as are 
the means and standard deviations (see Table 1), and the correla­
tions of the parameters.

11 See also Refs. [33,43,64] for similar approaches. If S(L1,L2) is not well-defined, 
e.g., S(L]) = 0, one could consider the absolute instead of the relative residual in 
Eq. (E.2).
12 The size of the last batch will be slightly larger than Np if the integer division 
Nb/Np has a nonzero remainder.
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A
C?

# # ^ ^ C * f

Vv [MeV] Rv [fm] Wd [MeV] Rd [fm]

Fig. 4. Comparison of the MCMC results obtained for the mixed approach using Nt, = 8 (red) and the exact solution (black) for 40Cam, n) scattering at 5 MeV: (a) posterior 
distributions for the parameters Vv, Rv, Wd, and R,j along the diagonal, and correlations between each pair of parameters in the off-diagonal; (b) the median value of the 
differential cross section as a function of scattering angle (lines) and the corresponding 95% confidence interval (C.I., shaded area). These MCMC calculations correspond to 
20,000 accepted parameters sets.

Table 1
Mean values (p) and standard deviations (Ap) for the four parameters varied in 
the MCMC optimization of 40Cam, n) scattering at 5 MeV as obtained from the EC- 
driven emulator (mixed approach) and the exact scattering solution. Note that the 
values for the radii are given for Ri = nA1/3.

Parameter Emulated Exact

P &P P Ap

Vv [MeV] 54.82 8.95 5239 7.94
Rv [fm] 3.97 038 4.07 0.34
Wv [MeV] 7.79 1.11 7.97 1.00
Rw [fm] 4.44 0.21 4.40 0.18
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