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Background: Modern statistical tools provide the ability to compare the information content of observables and provide a 
path to explore which experiments would be most useful to give insight into and constrain theoretical models.

Purpose: In this work we study three such tools in the context of nuclear reactions with the goal of constraining the optical 
potential.

Method: The three statistical tools examined are: i) the principal component analysis; ii) the sensitivity analysis based on 
derivatives; and iii) the Bayesian evidence. We first apply these tools to a toy-model case, comparing the form of the 
imaginary part of the optical potential. Then we consider two different reaction observables, elastic angular distributions 
and polarization data for reactions on 48Ca at two different beam energies.

Results: For the toy-model case, we find significant discrimination power in the sensitivities and the Bayesian evidence, 
showing clearly that the volume imaginary term is more useful to describe scattering at higher energies. When comparing 
between elastic cross sections and polarization data using realistic optical models, sensitivity studies indicate that both 
observables are roughly equally sensitive but the variability of the optical model parameters is strongly angle dependent. 
The Bayesian evidence shows some variability between the two observables, but the Bayes factor obtained is not sufficient 
to discriminate between angular distributions and polarization.

Conclusions: From the cases considered, we conclude that in general elastic scattering angular distributions have similar 
impact in constraining the optical potential parameters compared to the polarization data. The angular ranges for the 
optimum experimental constraints can vary significantly with the observable considered.

Keywords: uncertainty quantification, nucleon elastic scattering, transfer nuclear reactions, optical potential 
fitting

I. INTRODUCTION

Nuclear reactions offer an incredibly versatile probe 
into nuclear structure, nuclear astrophysics, and nuclear 
applications beneficial to society and are particularly im­
portant in the context of rare isotopes [1], One of the 
most important ingredients in predicting observables for 
nuclear reactions is the optical potential. The optical 
potential is an effective interaction between two compos­
ite nuclei that incorporates the complexity of the rnany- 
body problem into a multi-component multi-parameter 
complex form. The imaginary part of the optical poten­
tial accounts for all the processes that can take flux away 
from the incident elastic channel into other channels not 
included in the simplified model. In this work, we will 
focus on nucleon optical potentials, between either a pro­
ton or a neutron and a target nucleus (UNa)• Because 
of its effective nature, the nucleon optical potential de­
pends on the mass and charge of the target (A, Z), and 
the energy of the beam (Eb).

While there are many efforts to derive the optical po­
tential starting from the NN interaction (e.g. [2-5]),
for practical purposes, when computing reactions observ­
ables for A > 20, phenomenological optical potentials 
are typically used [6-8]. These are obtained from fitting

* Electronic address: nunes@nscl.msu.edu

primarily elastic-scattering data, although other observ­
ables such as analyzing powers and total cross sections 
are sometimes also included in the fitting protocol.

Over the last few years, there has been substantial 
progress on quantifying uncertainties in nuclear reactions 
[9-11]. We have implemented and applied the Bayesian 
Markov Chain Monte Carlo method (MC-MC-) to a va­
riety of reactions [9], In [10], we compared the results 
obtained using the Bayesian approach to the standard %2- 
minimization techniques widely used in the field. Note 
that x2 minimization does not in itself provide any un­
certainty but it is common to assume a normal distri­
bution and extract confidence bands from the %2 func­
tion around the minimum. What we showed in [10] 
is that the uncertainties extracted in this manner were 
much smaller than those obtained using the Bayesian ap­
proach. When we confronted these uncertainties with 
the data, the empirical coverage demonstrated that for 
high confidence, the x2-nrinimization technique largely 
underestimates the uncertainties, while the Bayesian ap­
proach provides an accurate account. These differences 
could be tracked back to the wrong assumption in the 
X2-minimization technique of a Gaussian distribution for 
the parameters. In addition, when inspecting the correla­
tion between parameters, the %2 minimization introduces 
many types of correlations, while in the Bayesian ap­
proach, only a couple of parameters were found to corre­
late strongly. As we argue in [10], due to the grid searches 
in the standard %2 minimization, correlations were en-



2

hanced as compared to those obtained in the Bayesian 
MCMC framework. With these conclusions in mind, we 
have continued the work on uncertainty quantification 
using exclusively Bayesian statistics.

In a recent work [11], we looked into ways to reduce 
the uncertainty from the optical potential by diversify­
ing the data sets or by choosing data with optimum in­
formation content. Namely we investigated which parts 
of the angular distribution matter for constraining the 
cross sections, and whether data at nearby energies adds 
further restrictions on the parameters. We have also in­
vestigated the possibility of including polarization data 
through iTu. To diagnose whether including different 
sets of data mattered, we compared directly the widths 
of the 95% confidence intervals. However comparing di­
rectly two confidence intervals obtained from constraints 
using two different sets of data has serious ambiguities: 
what is the appropriate confidence level to make this 
comparison? and at what angle should the conclusion be 
drawn? Ultimately we would like to be able to establish 
without ambiguity which data set (or sets) contain maxi­
mum information, resulting in minimum uncertainty. For 
that, we turn to a wider set of diagnostic tools.

Borrowing from statistical methods applied in many 
other fields, in this work we inspect three different ap­
proaches: i) the principal component analysis that can 
help to identify whether there is a combination of ob­
servables that can simplify the problem; ii) a sensitiv­
ity analysis based on derivatives of the the optical po­
tential parameters with respect to observables, and iii) 
the Bayesian evidence that integrates the likelihood over 
the model space to quantify the information content of a 
given observable.

These statistical methods are not new; they have been 
widely applied to other fields and in the last few years 
have been ported into the nuclear domain. Sensitivity 
studies continue to provide insight into which parame­
ters have the largest impact on the observables considered 
(see [12-14] for recent applications to nuclear structure). 
The principal component analyses, coming from the di- 
agonalization of the sensitivity matrix, identify the best 
combinations of parameters or observables that should 
be considered to reduce the dimensionality of the model 
space. It is often used to construct emulators (e.g. [15­
17]). Finally, the Bayesian factor, the ratio of the ev­
idence associated with two models, provides an imple­
mentation of Occam’s razor: the simplest theory com­
patible with data should be used [18]. It is also used 
to discriminate between the information content of dif­
ferent data. Although calculating the Bayesian evidence 
is numerically challenging, there are already examples of 
applications to effective field theory [19] and to nuclear 
structure [14].

This paper is organized in the following manner. In 
section II we introduce the three statistical tools. Section 
III focuses on a simple toy model to illustrate these same 
tools. This is followed by the application of these tools 
to compare the information contained in elastic angular

distributions and polarization data (Section IV). Finally 
conclusions are drawn in Section V.

II. STATISTICAL METHODS

In this section, we briefly describe three diagnostic 
tools to quantify the information content of a given set 
of scattering data.

A. Principal Component Analysis

The optical potential imprints itself on many reaction 
observables. As such we can consider a principal com­
ponent analysis (PCA) on observable space. Parameter 
space is randomly sampled N times, generating a pa­
rameter set Xi for each run used to calculate a set of 
observables yi. The parameters and observable data are 
standardized (i.e, mean-centered with a standard devia­
tion of 1). We denote the standardized parameters and 
observables as X and y, respectively. The observable co­
variance matrix, C, is then calculated as:

Cab = N^_ 1 yTyb . (1)

The principal components of observable space (eb) are the 
eigenvectors of C. The eigenvalues Ab corresponding to 
the eigenvectors eb can be used to organize the principal 
components. A larger value of Ab means that a larger 
percentage of the variance in the data is captured by the 
corresponding eb. To visualize the composition of the 
eigenvectors, eb, we construct the weight matrix,

Wab = • eb|, (2)

where yo is the ath unit vector in the observable space 
basis. Each column in W is normalized to unity:

EW& = 1 (3)

We can then assign a weight, wa, to an observable, yo:

wa = ^ Ab|Wab | . (4)
b

This weight serves as a measure of the importance of the 
observable across the various principal components and it 
is often used to identify the most impactful observables.

B. Sensitivity study with derivatives

Looking at the impact of variations of the observ­
ables on the parameters can help determine which op­
tical model parameters are most sensitive to changes in 
specific observables, and therefore which observables are
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most important for constraining the optical model. A 
simple approach is to consider directly the covariance Cia 
of an observable ya and a parameter Xi:

Cia = N _ 1 Xi ya . (5)

We note that Cia relates to the observable covariance 
matrix through [16]:

In some applications, the Bayesian evidence integral 
is approximated analytically (e.g. [19]). This approxi­
mation is valid when the likelihood function is unimodal 
and the corresponding parameters are Gaussian. How­
ever, in our case, these conditions are not met (see for 
example Fig. 1 and 2 in Section III). Therefore, to ob­
tain the Bayesian evidence for the optical model, we use 
the Monte-Carlo approximation to sample full space [20]. 
Then the integral in Eq. (9) becomes:

C i (6)

This relation can be inverted to provide the sensitivity:

(ta) = C“C-‘ (7)

which quantifies the variation in parameter Xi caused by 
a variation in the observable ya.

1
P(d|M) = — M) (l0)

ai=1

where N parameter sets, ai, are drawn randomly from 
the prior distribution. In practice, when sampling from 
a prior distribution, it is also important to ensure that 
the sampled parameters are within the physical region of 
parameter space. In our application, this means that the 
optical model parameters should be positive.

C. Bayesian evidence III. TOY-MODEL

As opposed to the frequentist tools based on covariance 
matrices, Bayesian statistics is based on probability dis­
tributions. For some hypothesis, H, data, d and model, 
M, Bayes’ theorem is expressed as:

P(H |d, M) p(d|H, M)p(H |M)
p(d|M)

(8)

which states that the posterior probability for the hy­
pothesis, p(H|d, M), taking the data and some assump­
tions about the model into account, is equal to the like­
lihood function, p(d|H, M) (the sampling distribution of 
the data assuming the hypothesis is correct), times the 
prior probability, p(H|M) (the physical knowledge of the 
model without any external information) divided by the 
Bayesian evidence p(d|M).

While in previous works we have focused on evaluating 
the posterior distributions of parameters and subsequent 
confidence intervals of observables, in this work, we fo­
cus on the Bayesian evidence. This normalization factor 
provides a quantification of the information content of a 
given set of data. For a given model M with a certain 
number of parameters a, the Bayesian evidence is the 
integral of the likelihood function times the prior distri­
bution over the entire parameter space:

p(d|M)= / p(d|a, M)p(a|M)daM . (9)

The explicit calculation of this integral is difficult and 
computationally demanding as it involves multidimen­
sional integration over all parameters. While the likeli­
hood function might be sharply peaked within the prior 
range, long tails in the distributions can provide signifi­
cant contributions to the evidence integral.

We have conceived a simple case study to illustrate the 
capabilities of the statistical tools discussed in Section II. 
From decades of phenomenology, it is standard to param­
eterize the imaginary component of the optical potential 
with a volume term (Woods-Saxon shape parameterized 
with Wv ,rw ,aw for the depth, radius and diffuseness) 
and a surface term (derivative of a Woods-Saxon shape 
parameterized with Ws, rs, as). When using these two 
components in fits, studies have found that the relative 
importance of these two components depends strongly on 
the incident energy of the projectile: at higher energies 
it is typically the volume term that dominates. We use 
this known feature to set up our toy models.

We consider proton elastic scattering on 48Ca at Elab = 
9 MeV and 65 MeV within two extreme optical-models: 
the surface model that includes only the surface term Ws 
(while setting Wv = 0) and the volume model that in­
cludes only the volume term Wv (while setting Ws = 0). 
We use mock data generated from the global optical po­
tential [8] at the appropriate energy, and include a 10% 
error, similarly to what was done in [11]. For calibra­
tion, we perform the MCMC simulation with 1600 pulls, 
allowing in each case six parameters to vary. The param­
eters for the surface model are V, r, a for the real part and 
Ws, rs, as for the imaginary, and the parameters for the 
volume model are V, r, a for the real part and Wv, rw, aw 
for the imaginary term. The parameters for the spin- 
orbit term and the Coulomb force were kept fixed and set 
to the values in [8]. In addition, wide Gaussian priors, 
centered at the values of [6], are used as in previous work 
[11], which ensures that the process is data driven. Cal­
culations are performed with the suite of codes QUILT- 
R [21] (more details on the MCMC calculations can be 
found in [9]).
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FIG. 1: 48Ca(p,p) at 9 MeV parameter posterior distribu­
tions: surface model (orange) and volume model (blue).
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FIG. 2: 48Ca.(p,p) at 65 MeV parameter posterior distribu­
tions: surface model (orange) and volume model (blue).

Figs. 1 and 2 display the parameter posterior distri­
butions for the surface model (orange) and the volume 
model (blue) for 48C-a. at £)a,b = 9 MeV and 65 MeV, 
respectively. It is immediately obvious that changing the

shape of the imaginary term affects the real part of the 
interaction: while the mean of the priors for V, r, a are 
the same in both calculations, there are large shifts in 
the peaks of the posterior distributions for these param­
eters. This is nothing new to the field: the system finds a 
different minimum depending on the shape of the imag­
inary term. The posteriors of the imaginary parameters 
can also have significantly different widths. For example 
for 65 MeV, both Ws and rs have very broad distribu­
tions compared to their counterparts Wv and rw, while 
the distribution for as is narrower than that for aw. From 
these distributions alone it is not possible to decide which 
model would be more appropriate to describe each reac­
tion.

One might next consider the observable itself. Fig.3 a) 
and b) contain the 95% confidence intervals for the an­
gular distributions of 48Ca(p,p) at 9 MeV and 65 MeV, 
respectively, using either the surface model (orange) or 
the volume model (blue). For the 9 MeV reaction, the 
confidence intervals for the surface and the volume model 
are roughly the same throughout the angular range. A 
close inspection of the widths of the confidence intervals 
at 65 MeV show that at forward angles (within the first 
couple of diffraction peaks) the volume model provides a 
narrower uncertainty compared to the surface one, while 
at backward angles the confidence intervals for the vol­
ume model are slightly wider than those generated with 
the surface model. Still, we are left not knowing which 
model is best to describe the data.

We next consider the weights wa generated from the 
principal component analysis as described in Sec. II. 
Pulling from the posterior distributions, we construct the 
observable covariance matrix for specific angles, which 
is subsequently diagonalized to obtain the principal com­
ponents of observable space and the respective weights as 
described in Section II. Plotted in Fig. 4 are the weights 
corresponding to the surface model (orange) and the vol­
ume model (blue), for 48Ca(p,p) at 65 MeV, at three dif­
ferent angles corresponding to the forward direction, the 
first peak of the angular distribution, and the backward 
direction. In both models, all components are of roughly 
equal weight and no principal component pops out in the 
analysis. The same result is obtained if a fine discretiza­
tion is included over the whole angular range. For all 
our applications for the elastic angular distributions and 
other reaction observables, the weights resulting from the 
observable PCA are approximate equal. This makes PCA 
less useful in reducing the dimensionality of the observ­
able space. For this reason we do not include PCA in the 
applications discussion in Section IV.

More interesting are the sensitivities / \ introduced
in Section II. As for the PCAs, the sets of parameters 
are drawn from the posterior distributions (Figs. 1 and 
2) and the respective covariance matrices are then com­
puted as described in Section II . The average, {$=*-), is 
obtained for the elastic angular distributions for angles 
in the range 6 = 20 — 165° in intervals of 5°.
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FIG. 3: Angular distribution 95% confidence intervals for for 48Ca.(p,p) at (a) 9 MeV and (b) 65 MeV: surface model 
(orange) and volume model (blue). Mock data generated with [8] (black circles).

(a) (b)

FIG. 4: Principal component analysis for 48Ca(p,p) at 65 
MeV using data. Shown are the weights uta obtained for 
three different scattering angles: a) for the surface model and 
b) for the volume model.

Fig. 5 contains the results for these sensitivities using 
the surface model in panels a) and b), and using the vol­
ume model in panels c) and d). Along the x-axis are the 
various angular bins and along the y-axis are the optical 
potential parameters considered in the Bayesian MC-MC-. 
The darker reds and darker blues correspond to large pos­
itive and large negative sensitivities, respectively. Results 
for the reaction at 9 MeV show that in the surface model, 
it is mostly I-Fs that is constrained by the data, although 
there is still significant sensitivity to as. At higher ener­
gies the imaginary term is no longer constrained in the 
surface model, only the real depth becomes sensitive. On 
the contrary, for the volume model at 9 MeV, the angu­
lar distribution using the volume model is not able to 
constrain the imaginary depth and is mostly sensitive 
to the imaginary diffuseness. Depending on the model,

Energy 9 MeV 65 MeV
Evidence (surface) 1.06 0.02
Evidence(volunre) 0.65 0.13

Bayes Factor 0.6 6.9

TABLE I: Bayesian evidence (multiplied by 1CP3) for the sur­
face model (2nd row) and the volume model (3rd row) for both 
beam energies considered (1st row). The ratio between the 
Bayesian evidence of the volume model over that with the 
surface model is in the 4th row (the Bayes’ factor).

II
°-0°°25

m

m
i=ii
1-1.00

Ea,
m

i
°-0°°25

m

FIG. 5: Parameter sensitivities for 48Ca(p,p): a) surface 
model at 9 MeV, b) surface model at 65 MeV, c) volume 
model at 9 MeV and d) volume model at 65 MeV.

one might also make different choices for which angles to 
measure in the angular distribution.

Our final tool in the tool-set is the Bayesian evidence 
and Bayes factor for model selection [22]. As defined in 
Section II, the Bayesian evidence provides a direct mea­
sure of the information content of a given model in light of 
a set of data. It serves as a tool to compare different mod­
els. As mentioned earlier, our problem is not amenable 
to an analytic treatment of the evidence integral thus it 
is very important to collect enough statistics to ensure 
convergence of the integral. We have studied the conver­
gence of the evidence with the number of pulls and find 
that very large statistics need to be collected. The num­
bers presented in Table I correspond to 1,500,000 pulls 
from a Gaussian distribution 20% wide, that still ensures 
that the parameters do not become negative, so they can 
be restricted to the physical region. The Bayesian evi-
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Observable E (MeV) V (MeV) r (fm) a (fm) W, (MeV) r, (fm) a, (fm)

dn
iTn

12.0
12.0

59.48 (4.12) 
60.65 (5.22)

1.173 (0.052) 
1.159 (0.057)

0.699 (0.051) 
0.699 (0.067)

9.476 (0.960) 
9.704 (0.954)

1.294 (0.084) 
1.273 (0.079)

0.571 (0.049) 
0.595 (0.080)

dn
iTn

21.0
21.0

55.57 (4.11) 
57.16 (4.44)

1.178 (0.052) 
1.165 (0.047)

0.661 (0.057) 
0.691 (0.046)

7.857 (0.767) 
8.011 (1.007)

1.297 (0.083) 
1.260 (0.073)

0.572 (0.051) 
0.579 (0.076)

TABLE II: Characteristics of the posteriors for the two 48Ca(p,p) elastic observables considered; the second column is the beam 
energy; the next three columns provide the means (standard deviations) for the depth, radius and diffuseness of the real part 
of the optical potential; the last three columns provide the means (standard deviations) for the depth, radius and diffuseness 
of the imaginary surface terms of the optical potential.

dence for the surface model is larger than that for the 
volume model for the reaction at 9 MeV, as one might 
expect. In contrast, the Bayesian evidence for the vol­
ume model is larger than that for the surface model at 
65 MeV and clearly indicates that the volume model will 
contain more information than the surface model at this 
energy.

Overall, we find varying success between the statisti­
cal methods investigated in this toy problem. The differ­
ences in the Bayesian parameter posterior distributions 
and observable confidence intervals along with the princi­
pal component analysis do little to discriminate between 
the surface and volume models considered. On the other 
hand, we see that the parameter sensitivities and the 
Bayesian evidence have significant power in discriminat­
ing between the two models. These tools will now be 
applied to realistic cases.

IV. COMPARING ELASTIC ANGULAR 
DISTRIBUTIONS WITH POLARIZATION DATA

We now use the tools introduced above to explore the 
information content of two types of reaction observables. 
In this field it is generally easier to measure the elastic 
angular distributions than polarization data. However 
one might ask whether polarization data are best to con­
strain the optical model. In this context, we have stud­
ied 48Ca(n,n) at 12 MeV and 48Ca(p,p) at 12 MeV and 
21 MeV, and illustrate in this section the usefulness of 
using sensitivities and evidence in the analysis of these 
reactions.

As before, in this section we use mock data, gener­
ated from the global optical potential [8] including a 10% 
error, following [11] (see Section IV D for a comparison 
with real data). For the polarization data, we introduced 
a lower limit for the error, determined by 5% of the max­
imum iTn value. We initialized the optical potential pa­
rameters using the global optical model [6], and use wide 
Gaussian priors as before.

Next, we inspect the parameter posterior distributions. 
Instead of showing the full posterior distributions we 
summarize in Table I the means and standard deviations 
for the six parameters when considering 48Ca(p,p) at 12 
MeV and 21 MeV. We show the results when using ei­
ther ddn data or iTn data in the optimization procedure.

We find that the distributions are mostly overlapping, 
indicating that the angular distributions and the polar­
ization data lead to very similar minima in parameter 
space. Some posteriors present a semi-bimodal structure 
or extended tails. This is reflected in slight differences in 
the means and standard deviations shown in Table II. Ul­
timately both sets of data lead to an identical likelihood 
function and therefore similar goodness of fit.

A. Confidence intervals resulting from the fit

In Fig. 6, we show the 95% confidence intervals for 
elastic angular distributions (top) and the polarization 
distributions (bottom) obtained when either the elastic 
angular distribution data are used (orange interval) or 
the polarization data are used (blue interval). Figs. 6(a) 
and (c) correspond to 48Ca(p,p) at 12 MeV while Figs. 
6(b) and (d) correspond to 48Ca(p,p) at 21 MeV. Ex­
pectedly, confidence intervals are narrower for the elas­
tic angular distribution when elastic angular distribution 
data are used. The same principal is true when polar­
ization data are used: confidence intervals are narrower 
for iTn. However, these results alone do not provide suf­
ficient basis to establish which data set contains more 
information and provide a better constraint on the opti­
cal model. These conclusions are also true for 48Ca(n,n) 
at 12 MeV (not shown).

B. Sensitivity study with derivatives

We next consider the sensitivities to understand which 
observables lead to the largest variation in the parame­
ters. These sensitivities are drawn from the posteriors 
obtained using both the angular distribution and polar­
ization data as constraints in the MCMC. Fig. 7 dis­
plays the sensitivities for 48Ca(n,n) at 12 MeV (panel 
a); 48Ca(p,p) at 12 MeV (panel b) and 48Ca(p,p) at 21 
MeV (panel c). Comparing the sensitivity of the angular 
distributions (Fig. 7 left) with the sensitivity of the po­
larization data (Fig. 7 right), it is only for 48Ca(p,p) at 
12 MeV that there is an indication that the polarization 
data offers a better constraint.

For the other cases the most notable feature is that the



7

* Data

20 40 60 80 100 120 140 160 180
6 (deg)

20 40 60 80 100 120 140 160 180
6 (deg)

M 0.0

20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180
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FIG. 6: 95% confidence intervals calculated using data (red bands) or iT\\ data (blue bands) in the optimization procedure: 
a) d.a/dflfor 48Ca.(p,p) at 12 MeV; b) d.a/d.fl for 48Ca.(p,p) at 21 MeV; c) ?'Tn for 48Ca.(p,p) at 12 MeV; d) ?'Tn for 48Ca.(p,p) 
at 21 MeV.

_jaL

H do/cKl

tl.00
0.75
10.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00

11.00 
0.75 
0.50 
0.25 
0.00 
-0.25

1-0.50 
-0.75 
-1.00

FIG. 7: Sensitivity matrix for data and iTu data: a) 
48Ca(n,n) at 12 MeV; b) 48Ca(p,p) at 12 MeV and c) 
48Ca(p,p) at 21 MeV. More details can be found in the text.

increases significantly, particularly at forward angles for 
and 9 % 100 degrees for iTu. At this higher energy, 

we find that both observables are capable of constraining 
the parameters of the real part of the optical potential, 
in addition to the imaginary term. These quantitative 
results are consistent with the common understanding in 
the field.

Although we do not include details, we did perform 
a similar analysis for 208Pb(n,n) at 30 MeV, 208Pb(p,p) 
at 30 MeV and 208Pb(p,p) at 61 MeV. The results ob­
tained for the sensitivities for these reactions also show 
variability with beam energy: there are larger sensitivi­
ties to the elastic angular distributions for 208Pb(p,p) at 
30 MeV (mostly on Ws and as) compared to the polar­
ization data. At 208Pb(p,p) at 61 MeV, the opposite is 
true.

C. Bayesian evidence and Bayes factor

sensitivity occurs at different angles. We can also com­
pare the sensitivities for 48Ca(n,n) and 48C-a(p,p) at 12 
MeV: our results suggest that neutrons offer a better con­
straint on the optical potential parameters at these ener­
gies, specifically for the imaginary term. At 12 MeV, the 
sensitivity of either observable to the real part is weak. 
At 21 MeV, the sensitivity of the parameters to 48Ca(p,p)

Finally, we consider directly the Bayesian evidence to 
contrast the information content of cross section angu­
lar distribution data and polarization data within our 
model. N = 1,500,000 is used to compute the evidence 
p(d\M) for all cases. These are then averaged over angle 
to obtain p(d\M). The results are provided in Table IIP 
the evidence obtained for cross section data (column 2) 
can be easily compared to that obtained for the polar-
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Reaction p{da/dQ\M) p(,Tn|A4) R
48Ca(n,n) at 12 MeV 0.833 0.905 1.09
48Ca(p,p) at 12 MeV 1.039 1.208 1.16
48Ca(p,p) at 21 MeV 1.207 0.602 0.50
208Pb(n,n) at 30 MeV 0.132 0.052 0.39
208Pb(p,p) at 30 MeV 1.437 0.403 0.28
208Pb(p,p) at 61 MeV 0.051 0.073 1.44

TABLE III: Bayesian evidence averaged over angle (multi­
plied by 1CP3) for the different reactions considered: using 
only cross section data (2nd column), using only polariza­
tion data (3rd column), and the ratio between the averaged 
Bayesian evidence using polarization data over that with cross 
section data (the Bayes’ factor).

ization data (column 3). The Bayes’ factor, defined as 
the ratio R = p(iTu\M)/p(da/dfl\M) of the two aver­
age evidences, is shown in the last column. Although we 
did not show the details of the calibrations for the reac­
tions on Pb, we include in the table the results for the 
evidence obtained for 208Pb(n,n) at 30 MeV, 208Pb(p,p) 
at 30 MeV and 208Pb(p,p) at 61 MeV using the same 
setup at was used for the 48Ca reactions.

For each reaction considered, the evidence for da/dS} 
data and for iTu data are of the same order of magnitude. 
We can also compare evidences for the same reaction at 
different energies. Clearly, in the context of this opti­
cal model, the cross section distribution for 48Ca(p,p) at 
12 MeV has less information than 48Ca(p,p) at 21 MeV 
and the cross section distribution for 208Pb(p,p) at 30 
MeV has more information than 208Pb(p,p) at 61 MeV. 
Although beyond the scope of this work, a study includ­
ing a wider range of target nuclei and beam energies is 
necessary to understand systematic trends.

We should highlight that the evidence is essentially a 
very different measure than the J^p-. The sensitivities in 
this work were obtained from averages over the poste­
rior distributions and therefore show the rate of change 
in the region of parameter space defined by the poste­
rior distributions. The evidence is an integral over the 
full parameter space, weighted by the likelihood. Longer 
tails in the likelihood result in larger evidence. Larger 
information content as measured in the model evidence, 
does not necessarily translate to tighter constraints on 
the parameters themselves. Both tools should be used in 
concert.

D. Comparing real data and mock data

All results presented so far involve mock data. The 
choice for mock data in this work is based on the control 
it provides: we can produce data at any energy, simulta­
neously have elastic angular distributions and polariza­
tion data across the whole angular range. However one 
might be concerned that results with mock data do not

-1.(1

0 (deg)

FIG. 8: 48Ca.(p,p) at 14 MeV 95% confidence intervals calcu­
lated using data (orange bands) or iTu data (blue bands) 
in the optimization procedure: a) da/d.Q, and b) iTu. Data 
from [23].

represent the real world. It is understood that the KD 
parameterization cannot exactly reproduce elastic scat­
tering data for a given case. Our point here is that KD 
is close enough to reality to provide a good illustration 
for these new statistical tools.

We therefore pick an example to demonstrate that real 
data and mock data can lead to qualitatively similar re­
sults. For more detail in the comparison of mock and 
real data see [24]. We found data close to 48Ca(p,p) at 
12 MeV, corresponding to a reaction with protons at 14 
MeV [23]. In Fig. 8 we show the angular distribution 
of the cross section and the polarization for protons on 
48 C-a at 14 MeV and verify these are very similar to those 
shown in Fig.6 for the corresponding reaction at 12 MeV. 
As before, the orange bands (blue bands) correspond to 
the 95% confidence intervals when the elastic cross sec­
tion data (polarization data) are used in the fit. As in the 
case for mock data, here we also find that the uncertainty 
in the elastic angular distribution is smaller when da/dCl 
data is used. Conversely, the uncertainty in the iT\\ dis­
tribution is smaller when polarization data is used.

It should not be understood from this comparison that 
mock data can replace real data. Although qualitatively
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similar, there are significant quantitative differences in 
the posterior distributions obtained with mock data com­
pared to real data. Thus, in a practical application of 
these tools, one should always use real data in the statis­
tical analysis.

V. CONCLUSIONS

In this work we have explored three statistical tools 
in the context of nuclear scattering that allow us to go 
beyond uncertainty quantification toward understanding 
sensitivities of the parameters and information content 
of reaction observables. We consider the principal com­
ponent analysis in observable space, the parameter to 
observable sensitivities and the Bayesian evidence. To 
introduce these tools, we construct two limiting toy mod­
els, an optical model just with surface absorption and 
an optical model just with volume absorption. We per­
form standard MCMC calculations varying six optical 
model parameters, and constrain each model with the 
angular distributions for elastic scattering. We obtain 
the Bayesian parameter posteriors distributions and the 
associated confidence intervals for the angular distribu­
tions. We then apply the statistical tools and find that 
both sensitivities and Bayesian evidence provide impor­
tant insights in discriminating between models.

Next we repeat this process for realistic cases and us­
ing either dy or iTu to constrain the optical parame­
ters. We study 48Ca(n,n) at 12 MeV, 48Ca(p,p) at 12 
MeV and 48Ca(p,p) at 21 MeV. Neither the confidence 
intervals nor the parameter posterior distributions help 
in determining which observable is best to constrain the 
optical model parameters. We also did not find the prin­
cipal component analysis defined in terms of angles to 
be useful, since it produced roughly equal weights for all 
components.

In contrast, sensitivities provided important insights. 
For most examples studied, dy and iTu are sensitive to 
the same parameters, and to the same degree. However 
they provide constraints in different angular regions. The 
exception being the reaction 48Ca(p,p) at 12 MeV, for 
which the differential cross sections offer less sensitivity 
than the polarization data.

Finally, we also computed the Bayesian evidence for

each reaction. The integral over the parameter space had 
to be performed fully numerically, as the assumptions of 
Gaussian distributions for the analytic approximations 
were not valid. We found that in order to get converged 
values for the evidence, a much larger number of draws 
was necessary as compared to the statistics collected for 
the parameter posteriors and confidence intervals. We 
compared the values of the evidence, averaged over an­
gle, obtained when the cross section angular distribution 
was used as a constraint with those when using the po­
larization data. While Bayes’ factor (the ratio of the 
evidence using iTu over that using dy) shows some vari­
ability, for most reactions studied it is of order one, and 
therefore not significant. From our results, we conclude 
that, within our optical model, the information content 
of the differential cross sections and the polarization data 
is roughly the same.

The data we included (da/dQ and iTu) are both as­
sociated with the same elastic scattering channel. Fu­
ture plans include the application of these tools to situa­
tions where we scrutinize between data that are more dis­
similar, such as elastic scattering and charge-exchange, 
knockout or breakup. One essential ingredient for these 
advances is the speed-up in computations. In this re­
gard, recent work on emulators (e.g. [25, 26]) holds much 
promise.
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