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Background: Modern statistical tools provide the ability to compare the information content of observables and provide a
path to explore which experiments would be most useful to give insight into and constrain theoretical models.

Purpose: In this work we study three such tools in the context of nuclear reactions with the goal of constraining the optical

potential.

Method: The three statistical tools examined are: i) the principal component analysis; ii) the sensitivity analysis based on
derivatives; and iii) the Bayesian evidence. We first apply these tools to a toy-model case, comparing the form of the
imaginary part of the optical potential. Then we consider two different reaction observables, elastic angular distributions
and polarization data for reactions on 48Ca at two different beam energies.

Results: For the toy-model case, we find significant discrimination power in the sensitivities and the Bayesian evidence,
showing clearly that the volume imaginary term is more useful to describe scattering at higher energies. When comparing
between elastic cross sections and polarization data using realistic optical models, sensitivity studies indicate that both
observables are roughly equally sensitive but the variability of the optical model parameters is strongly angle dependent.
The Bayesian evidence shows some variability between the two observables, but the Bayes factor obtained is not sufficient
to discriminate between angular distributions and polarization.

Conclusions: From the cases considered, we conclude that in general elastic scattering angular distributions have similar
impact in constraining the optical potential parameters compared to the polarization data. The angular ranges for the
optimum experimental constraints can vary significantly with the observable considered.

Keywords: uncertainty quantification, nucleon elastic scattering, transfer nuclear reactions, optical potential

fitting

I. INTRODUCTION

Nuclear reactions offer an incredibly versatile probe
into nuclear structure, nuclear astrophysics, and nuclear
applications beneficial to society and are particularly im-
portant in the context of rare isotopes [1], One of the
most important ingredients in predicting observables for
nuclear reactions is the optical potential. The optical
potential is an effective interaction between two compos-
ite nuclei that incorporates the complexity of the rnany-
body problem into a multi-component multi-parameter
complex form. The imaginary part of the optical poten-
tial accounts for all the processes that can take flux away
from the incident elastic channel into other channels not
included in the simplified model. In this work, we will
focus on nucleon optical potentials, between either a pro-
ton or a neutron and a target nucleus (UNA)* Because
of its effective nature, the nucleon optical potential de-
pends on the mass and charge of the target (A, Z), and
the energy of the beam (Eb).

While there are many efforts to derive the optical po-
tential starting from the NN interaction (e.g. [2-5]),
for practical purposes, when computing reactions observ-
ables for 4 > 20, phenomenological optical potentials
are typically used [6-8]. These are obtained from fitting
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primarily elastic-scattering data, although other observ-
ables such as analyzing powers and total cross sections
are sometimes also included in the fitting protocol.

Over the last few years, there has been substantial
progress on quantifying uncertainties in nuclear reactions
[9-11]. We have implemented and applied the Bayesian
Markov Chain Monte Carlo method (MC-MC-) to a va-
riety of reactions [9], In [10], we compared the results
obtained using the Bayesian approach to the standard %2-
minimization techniques widely used in the field. Note
that x2 minimization does not in itself provide any un-
certainty but it is common to assume a normal distri-
bution and extract confidence bands from the %2 func-
tion around the minimum. What we showed in [10]
is that the uncertainties extracted in this manner were
much smaller than those obtained using the Bayesian ap-
proach. When we confronted these uncertainties with
the data, the empirical coverage demonstrated that for
high confidence, the x2-nrinimization technique largely
underestimates the uncertainties, while the Bayesian ap-
proach provides an accurate account. These differences
could be tracked back to the wrong assumption in the
X2-minimization technique of a Gaussian distribution for
the parameters. In addition, when inspecting the correla-
tion between parameters, the %2 minimization introduces
many types of correlations, while in the Bayesian ap-
proach, only a couple of parameters were found to corre-
late strongly. As we argue in [10], due to the grid searches
in the standard %) minimization, correlations were en-



hanced as compared to those obtained in the Bayesian
MCMC framework. With these conclusions in mind, we
have continued the work on uncertainty quantification
using exclusively Bayesian statistics.

In a recent work [11], we looked into ways to reduce
the uncertainty from the optical potential by diversify-
ing the data sets or by choosing data with optimum in-
formation content. Namely we investigated which parts
of the angular distribution matter for constraining the
cross sections, and whether data at nearby energies adds
further restrictions on the parameters. We have also in-
vestigated the possibility of including polarization data
through iT%1. To diagnose whether including different
sets of data mattered, we compared directly the widths
of the 95% confidence intervals. However comparing di-
rectly two confidence intervals obtained from constraints
using two different sets of data has serious ambiguities:
what is the appropriate confidence level to make this
comparison? and at what angle should the conclusion be
drawn? Ultimately we would like to be able to establish
without ambiguity which data set (or sets) contain maxi-
mum information, resulting in minimum uncertainty. For
that, we turn to a wider set of diagnostic tools.

Borrowing from statistical methods applied in many
other fields, in this work we inspect three different ap-
proaches: i) the principal component analysis that can
help to identify whether there is a combination of ob-
servables that can simplify the problem; ii) a sensitiv-
ity analysis based on derivatives of the the optical po-
tential parameters with respect to observables, and iii)
the Bayesian evidence that integrates the likelihood over
the model space to quantify the information content of a
given observable.

These statistical methods are not new; they have been
widely applied to other fields and in the last few years
have been ported into the nuclear domain. Sensitivity
studies continue to provide insight into which parame-
ters have the largest impact on the observables considered
(see [12—-14] for recent applications to nuclear structure).
The principal component analyses, coming from the di-
agonalization of the sensitivity matrix, identify the best
combinations of parameters or observables that should
be considered to reduce the dimensionality of the model
space. It is often used to construct emulators (e.g. [15—
17]). Finally, the Bayesian factor, the ratio of the ev-
idence associated with two models, provides an imple-
mentation of Occam’s razor: the simplest theory com-
patible with data should be used [18]. It is also used
to discriminate between the information content of dif-
ferent data. Although calculating the Bayesian evidence
is numerically challenging, there are already examples of
applications to effective field theory [19] and to nuclear
structure [14].

This paper is organized in the following manner. In
section IT we introduce the three statistical tools. Section
III focuses on a simple toy model to illustrate these same
tools. This is followed by the application of these tools
to compare the information contained in elastic angular

distributions and polarization data (Section IV). Finally
conclusions are drawn in Section V.

II. STATISTICAL METHODS

In this section, we briefly describe three diagnostic
tools to quantify the information content of a given set
of scattering data.

A. Principal Component Analysis

The optical potential imprints itself on many reaction
observables. As such we can consider a principal com-
ponent analysis (PCA) on observable space. Parameter
space is randomly sampled N times, generating a pa-
rameter set x; for each run used to calculate a set of
observables y;. The parameters and observable data are
standardized (i.e, mean-centered with a standard devia-
tion of 1). We denote the standardized parameters and
observables as T and ¢, respectively. The observable co-
variance matrix, C, is then calculated as:

Cab = ~—5a U6 - (1)

The principal components of observable space (ep) are the
eigenvectors of C. The eigenvalues A, corresponding to
the eigenvectors ep can be used to organize the principal
components. A larger value of A\, means that a larger
percentage of the variance in the data is captured by the
corresponding ep. To visualize the composition of the
eigenvectors, e, we construct the weight matrix,

Woap = |@a : 6b|7 (2)

where ¢, is the a'" unit vector in the observable space

basis. Each column in W is normalized to unity:

/Z W2 =1 (3)

We can then assign a weight, w,, to an observable, y,:
wa = Y | Wy (4)
b

This weight serves as a measure of the importance of the
observable across the various principal components and it
is often used to identify the most impactful observables.

B. Sensitivity study with derivatives

Looking at the impact of variations of the observ-
ables on the parameters can help determine which op-
tical model parameters are most sensitive to changes in
specific observables, and therefore which observables are



most important for constraining the optical model. A
simple approach is to consider directly the covariance C;,
of an observable g, and a parameter z;:

1
TG . (5)

Co =53

We note that C;, relates to the obhservable covariance
matrix through [16]:

6o =3 <9”“ > Cho (6)

Oy
This relation can be inverted to provide the sensitivity:

(5o ) =ty ™)

9Ya

which quantifies the variation in parameter x; caused by
a variation in the observable y,.

C. Bayesian evidence

As opposed to the frequentist tools based on covariance
matrices, Bayesian statistics is based on probability dis-
tributions. For some hypothesis, H, data, d and model,
M, Bayes’ theorem is expressed as:

pldlH, M)p(HIM) .
M)

p(Hld, M) =

which states that the posterior probability for the hy-
pothesis, p(H|d, M), taking the data and some assump-
tions about the model into account, is equal to the like-
lihood function, p(d|H, M) (the sampling distribution of
the data assuming the hypothesis is correct), times the
prior probability, p(H|M) (the physical knowledge of the
model without any external information) divided by the
Bayesian evidence p(d|M).

While in previous works we have focused on evaluating
the posterior distributions of parameters and subsequent
confidence intervals of observables, in this work, we fo-
cus on the Bayesian evidence. This normalization factor
provides a quantification of the information content of a
given set of data. For a given model M with a certain
number of parameters «, the Bayesian evidence is the
integral of the likelihood function times the prior distri-
bution over the entire parameter space:

p(dIM) = / p(dlo, M)p(alM)dons . (9)

Qrm

The explicit calculation of this integral is difficult and
computationally demanding as it involves multidimen-
sional integration over all parameters. While the likeli-
hood function might be sharply peaked within the prior
range, long tails in the distributions can provide signifi-
cant contributions to the evidence integral.

In some applications, the Bayesian evidence integral
is approximated analytically (e.g. [19]). This approxi-
mation is valid when the likelihood function is unimodal
and the corresponding parameters are Gaussian. How-
ever, in our case, these conditions are not met (see for
example Fig. 1 and 2 in Section III). Therefore, to ob-
tain the Bayesian evidence for the optical model, we use
the Monte-Carlo approximation to sample full space [20].
Then the integral in Eq. (9) becomes:

N
PIM) = = 3 pldls, M) (10)

O(iil

where N parameter sets, «;, are drawn randomly from
the prior distribution. In practice, when sampling from
a prior distribution, it is also important to ensure that
the sampled parameters are within the physical region of
parameter space. In our application, this means that the
optical model parameters should be positive.

III. TOY-MODEL

We have conceived a simple case study to illustrate the
capabilities of the statistical tools discussed in Section II.
From decades of phenomenology, it is standard to param-
eterize the imaginary component of the optical potential
with a volume term (Woods-Saxon shape parameterized
with Wy, 7y, ay for the depth, radius and diffuseness)
and a surface term (derivative of a Woods-Saxon shape
parameterized with W, r,, a,). When using these two
components in fits, studies have found that the relative
importance of these two components depends strongly on
the incident energy of the projectile: at higher energies
it is typically the volume term that dominates. We use
this known feature to set up our toy models.

We consider proton elastic scattering on *¥Ca at Ej,p =
9 MeV and 65 MeV within two extreme optical-models:
the surface model that includes only the surface term Wy
(while setting W, = 0) and the volume model that in-
cludes only the volume term W, (while setting W, = 0).
We use mock data generated from the global optical po-
tential [8] at the appropriate energy, and include a 10%
error, similarly to what was done in [11]. For calibra-
tion, we perform the MCMC simulation with 1600 pulls,
allowing in each case six parameters to vary. The param-
eters for the surface model are V, r, a for the real part and
W, rs,as for the imaginary, and the parameters for the
volume model are V| r, a for the real part and W, r,,, a,
for the imaginary term. The parameters for the spin-
orbit term and the Coulomb force were kept fixed and set
to the values in [8]. In addition, wide Gaussian priors,
centered at the values of [6], are used as in previous work
[11], which ensures that the process is data driven. Cal-
culations are performed with the suite of codes QUILT-
R [21] (more details on the MCMC calculations can be
found in [9]).
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FIG. 1. 48Ca(p,p) at 9 MeV parameter posterior distribu-

tions: surface model (orange) and volume model (blue).

) i.3U J./3 uwo

u.e r.4 X.0
rs (fm) as (fm) rw (fm]

ul3
aw (fm)

FIG. 2: 48Ca.(p,p) at 65 MeV parameter posterior distribu-
tions: surface model (orange) and volume model (blue).

Figs. 1 and 2 display the parameter posterior distri-
butions for the surface model (orange) and the volume
model (blue) for 48C-a. at £)ab = 9 MeV and 65 MeV,
respectively. It is immediately obvious that changing the

shape of the imaginary term affects the real part of the
interaction: while the mean of the priors for V,r, a are
the same in both calculations, there are large shifts in
the peaks of the posterior distributions for these param-
eters. This is nothing new to the field: the system finds a
different minimum depending on the shape of the imag-
inary term. The posteriors of the imaginary parameters
can also have significantly different widths. For example
for 65 MeV, both Ws and »s have very broad distribu-
tions compared to their counterparts Wv and rw, while
the distribution for as is narrower than that for aw. From
these distributions alone it is not possible to decide which
model would be more appropriate to describe each reac-
tion.

One might next consider the observable itself. Fig.3 a)
and b) contain the 95% confidence intervals for the an-
gular distributions of 48Ca(p,p) at 9 MeV and 65 MeV,
respectively, using either the surface model (orange) or
the volume model (blue). For the 9 MeV reaction, the
confidence intervals for the surface and the volume model
are roughly the same throughout the angular range. A
close inspection of the widths of the confidence intervals
at 65 MeV show that at forward angles (within the first
couple of diffraction peaks) the volume model provides a
narrower uncertainty compared to the surface one, while
at backward angles the confidence intervals for the vol-
ume model are slightly wider than those generated with
the surface model. Still, we are left not knowing which
model is best to describe the data.

We next consider the weights wa generated from the
principal component analysis as described in Sec. 1L
Pulling from the posterior distributions, we construct the
observable  covariance matrix for specific angles, which
is subsequently diagonalized to obtain the principal com-
ponents of observable space and the respective weights as
described in Section II. Plotted in Fig. 4 are the weights
corresponding to the surface model (orange) and the vol-
ume model (blue), for 48Ca(p,p) at 65 MeV, at three dif-
ferent angles corresponding to the forward direction, the
first peak of the angular distribution, and the backward
direction. In both models, all components are of roughly
equal weight and no principal component pops out in the
analysis. The same result is obtained if a fine discretiza-
tion is included over the whole angular range. For all
our applications for the elastic angular distributions and
other reaction observables, the weights resulting from the
observable PCA are approximate equal. This makes PCA
less useful in reducing the dimensionality of the observ-
able space. For this reason we do not include PCA in the
applications discussion in Section IV.

More interesting are the sensitivities /  \ introduced

in Section II. As for the PCAs, the sets of parameters
are drawn from the posterior distributions (Figs. | and
2) and the respective covariance matrices are then com-
puted as described in Section II . The average, {§=*), is
obtained for the elastic angular distributions for angles
in the range 6 = 20 — 165° in intervals of 5°.
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FIG. 4: Principal component analysis for 48Ca(p,p) at 65
MeV using data. Shown are the weights ufd obtained for
three different scattering angles: a) for the surface model and
b) for the volume model.

Fig. 5 contains the results for these sensitivities using
the surface model in panels a) and b), and using the vol-
ume model in panels c¢) and d). Along the x-axis are the
various angular bins and along the y-axis are the optical
potential parameters considered in the Bayesian MC-MC-.
The darker reds and darker blues correspond to large pos-
itive and large negative sensitivities, respectively. Results
for the reaction at 9 MeV show that in the surface model,
it is mostly I-Fs that is constrained by the data, although
there is still significant sensitivity to as. At higher ener-
gies the imaginary term is no longer constrained in the
surface model, only the real depth becomes sensitive. On
the contrary, for the volume model at 9 MeV, the angu-
lar distribution using the volume model is not able to
constrain the imaginary depth and is mostly sensitive
to the imaginary diffuseness. Depending on the model,

Energy 9 MeV 65 MeV
Evidence (surface) 1.06 0.02
Evidence(volunre) 0.65 0.13

Bayes Factor 0.6 6.9

TABLE I: Bayesian evidence (multiplied by 1CP3) for the sur-
face model (2nd row) and the volume model (3rd row) for both
beam energies considered (1st row). The ratio between the
Bayesian evidence of the volume model over that with the
surface model is in the 4th row (the Bayes' factor).

11
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FIG. 5: Parameter sensitivities for 48Ca(p,p): a) surface
model at 9 MeV, b) surface model at 65 MeV, c) volume
model at 9 MeV and d) volume model at 65 MeV.

one might also make different choices for which angles to
measure in the angular distribution.

Our final tool in the tool-set is the Bayesian evidence
and Bayes factor for model selection [22]. As defined in
Section II, the Bayesian evidence provides a direct mea-
sure of the information content of a given model in light of
a set of data. It serves as a tool to compare different mod-
els. As mentioned earlier, our problem is not amenable
to an analytic treatment of the evidence integral thus it
is very important to collect enough statistics to ensure
convergence of the integral. We have studied the conver-
gence of the evidence with the number of pulls and find
that very large statistics need to be collected. The num-
bers presented in Table I correspond to 1,500,000 pulls
from a Gaussian distribution 20% wide, that still ensures
that the parameters do not become negative, so they can
be restricted to the physical region. The Bayesian evi-



Observable | E (MeV)| V (MeV) r (fm) a (fim) W, (MeV) rs (fim) as (fm)
do 12.0 [59.48 (4.12)[1.173 (0.052)]0.699 (0.051)[9.476 (0.960)[1.294 (0.084)[0.571 (0.049)
iTh 12.0 (6065 (5.22)[1.159 (0.057)[0.699 (0.067)[9.704 (0.954)|1.273 (0.079)[0.595 (0.080)
do 21.0 [55.57 (4.11)]1.178 (0.052)]0.661 (0.057)|7.857 (0.767)]1.297 (0.083)[0.572 (0.051)
iTh 921.0 |57.16 (4.44)|1.165 (0.047)]0.691 (0.046)|8.011 (1.007)|1.260 (0.073)[0.579 (0.076)

TABLE II: Characteristics of the posteriors for the two 48Czau(p,p) elastic observables considered; the second column is the beam
energy; the next three columns provide the means (standard deviations) for the depth, radius and diffuseness of the real part
of the optical potential; the last three columns provide the means (standard deviations) for the depth, radius and diffuseness

of the imaginary surface terms of the optical potential.

dence for the surface model is larger than that for the
volume model for the reaction at 9 MeV, as one might
expect. In contrast, the Bayesian evidence for the vol-
ume model is larger than that for the surface model at
65 MeV and clearly indicates that the volume model will
contain more information than the surface model at this
energy.

Opverall, we find varying success between the statisti-
cal methods investigated in this toy problem. The differ-
ences in the Bayesian parameter posterior distributions
and observable confidence intervals along with the princi-
pal component analysis do little to discriminate between
the surface and volume models considered. On the other
hand, we see that the parameter sensitivities and the
Bayesian evidence have significant power in discriminat-
ing between the two models. These tools will now be
applied to realistic cases.

IV. COMPARING ELASTIC ANGULAR
DISTRIBUTIONS WITH POLARIZATION DATA

We now use the tools introduced above to explore the
information content of two types of reaction observables.
In this field it is generally easier to measure the elastic
angular distributions than polarization data. However
one might ask whether polarization data are best to con-
strain the optical model. In this context, we have stud-
ied *Ca(n,n) at 12 MeV and *¥Ca(p,p) at 12 MeV and
21 MeV, and illustrate in this section the usefulness of
using sensitivities and evidence in the analysis of these
reactions.

As before, in this section we use mock data, gener-
ated from the global optical potential [8] including a 10%
error, following [11] (see Section IV D for a comparison
with real data). For the polarization data, we introduced
a lower limit for the error, determined by 5% of the max-
imum ¢7; value. We initialized the optical potential pa-
rameters using the global optical model [6], and use wide
Gaussian priors as before.

Next, we inspect the parameter posterior distributions.
Instead of showing the full posterior distributions we
summarize in Table I the means and standard deviations
for the six parameters when considering *¥Ca(p,p) at 12
MeV and 21 MeV. We show the results when using ei-
ther g—g data or iT%1 data in the optimization procedure.

We find that the distributions are mostly overlapping,
indicating that the angular distributions and the polar-
ization data lead to very similar minima in parameter
space. Some posteriors present a semi-bimodal structure
or extended tails. This is reflected in slight differences in
the means and standard deviations shown in Table I1. Ul-
timately both sets of data lead to an identical likelihood
function and therefore similar goodness of fit.

A. Confidence intervals resulting from the fit

In Fig. 6, we show the 95% confidence intervals for
elastic angular distributions (top) and the polarization
distributions (bottom) obtained when either the elastic
angular distribution data are used (orange interval) or
the polarization data are used (blue interval). Figs. 6(a)
and (c) correspond to *¥Ca(p,p) at 12 MeV while Figs.
6(b) and (d) correspond to *®Ca(p,p) at 21 MeV. Ex-
pectedly, confidence intervals are narrower for the elas-
tic angular distribution when elastic angular distribution
data are used. The same principal is true when polar-
ization data are used: confidence intervals are narrower
for i1 1. However, these results alone do not provide suf-
ficient basis to establish which data set contains more
information and provide a better constraint on the opti-
cal model. These conclusions are also true for **Ca(n,n)
at 12 MeV (not shown).

B. Sensitivity study with derivatives

We next consider the sensitivities to understand which
observables lead to the largest variation in the parame-
ters. These sensitivities are drawn from the posteriors
obtained using both the angular distribution and polar-
ization data as constraints in the MCMC. Fig. 7 dis-
plays the sensitivities for *Ca(nn) at 12 MeV (panel
a); *®¥Ca(p,p) at 12 MeV (panel b) and *¥Ca(p,p) at 21
MeV (panel ¢). Comparing the sensitivity of the angular
distributions (Fig. 7 left) with the sensitivity of the po-
larization data (Fig. 7 right), it is only for **Ca(p,p) at
12 MeV that there is an indication that the polarization
data offers a better constraint.

For the other cases the most notable feature is that the
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FIG. 7: Sensitivity matrix for data and i7u data: a)

48Ca(n,n) at 12 MeV; b) 48Ca(p,p) at 12 MeV and c)
48Ca(p,p) at 21 MeV. More details can be found in the text.

sensitivity occurs at different angles. We can also com-
pare the sensitivities for 48Ca(n,n) and 48C-a(p,p) at 12
MeV: our results suggest that neutrons offer a better con-
straint on the optical potential parameters at these ener-
gies, specifically for the imaginary term. At 12 MeV, the
sensitivity of either observable to the real part is weak.
At 21 MeV, the sensitivity of the parameters to 48Ca(p.p)

increases significantly, particularly at forward angles for
and 9 % 100 degrees for i7u. At this higher energy,
we find that both observables are capable of constraining
the parameters of the real part of the optical potential,
in addition to the imaginary term. These quantitative
results are consistent with the common understanding in
the field.
Although we do not include details, we did perform
a similar analysis for 208Pb(n,n) at 30 MeV, 208Pb(p,p)
at 30 MeV and 208Pb(p,p) at 61 MeV. The results ob-
tained for the sensitivities for these reactions also show
variability with beam energy: there are larger sensitivi-
ties to the elastic angular distributions for 208Pb(p,p) at
30 MeV (mostly on Ws and as) compared to the polar-
ization data. At 208Pb(p,p) at 61 MeV, the opposite is
true.

C. Bayesian evidence and Bayes factor

Finally, we consider directly the Bayesian evidence to
contrast the information content of cross section angu-
lar distribution data and polarization data within our
model. &V = 1,500,000 is used to compute the evidence
p(d\M) for all cases. These are then averaged over angle
to obtain p(d\M). The results are provided in Table IIP
the evidence obtained for cross section data (column 2)
can be easily compared to that obtained for the polar-



Reaction plda/dO\M) p(,Tn|A4) R

48Ca(n,n) at 12 MeV 0.833 0.905 1.09
48Ca(p,p) at 12 MeV 1.039 1.208 1.16
48Ca(p,p) at 21 MeV 1.207 0.602 0.50
208Pb(n,n) at 30 MeV 0.132 0.052 0.39
208Pb(p.p) at 30 MeV 1.437 0.403 0.28
208Pb(p,p) at 61 MeV 0.051 0.073 1.44

TABLE III: Bayesian evidence averaged over angle (multi-
plied by 1CP3) for the different reactions considered: using
only cross section data (2nd column), using only polariza-
tion data (3rd column), and the ratio between the averaged
Bayesian evidence using polarization data over that with cross
section data (the Bayes’ factor).

ization data (column 3). The Bayes' factor, defined as
the ratio R = p(iTu\M)/p(da/dfI\M) of the two aver-
age evidences, is shown in the last column. Although we
did not show the details of the calibrations for the reac-
tions on Pb, we include in the table the results for the
evidence obtained for 208Pb(n,n) at 30 MeV, 208Pb(p,p)
at 30 MeV and 208Pb(p,p) at 61 MeV using the same
setup at was used for the 48Ca reactions.

For each reaction considered, the evidence for da/dS)
data and for i7u data are of the same order of magnitude.
We can also compare evidences for the same reaction at
different energies. Clearly, in the context of this opti-
cal model, the cross section distribution for 48Ca(p.p) at
12 MeV has less information than 48Ca(p,p) at 21 MeV
and the cross section distribution for 208Pb(p,p) at 30
MeV has more information than 208Pb(p,p) at 61 MeV.
Although beyond the scope of this work, a study includ-
ing a wider range of target nuclei and beam energies is
necessary to understand systematic trends.

We should highlight that the evidence is essentially a
very different measure than the J*p- The sensitivities in
this work were obtained from averages over the poste-
rior distributions and therefore show the rate of change
in the region of parameter space defined by the poste-
rior distributions. The evidence is an integral over the
full parameter space, weighted by the likelihood. Longer
tails in the likelihood result in larger evidence. Larger
information content as measured in the model evidence,
does not necessarily translate to tighter constraints on
the parameters themselves. Both tools should be used in
concert,

D. Comparing real data and mock data

All results presented so far involve mock data. The
choice for mock data in this work is based on the control
it provides: we can produce data at any energy, simulta-
neously have elastic angular distributions and polariza-
tion data across the whole angular range. However one
might be concerned that results with mock data do not

1.4
0 (deg)

FIG. 8: 48Ca.(p,p) at 14 MeV 95% confidence intervals calcu-
lated using data (orange bands) or i7u data (blue bands)
in the optimization procedure: a) da/d.Q, and b) i7u. Data
from [23].

represent the real world. It is understood that the KD
parameterization cannot exactly reproduce elastic scat-
tering data for a given case. Our point here is that KD
is close enough to reality to provide a good illustration
for these new statistical tools.

We therefore pick an example to demonstrate that real
data and mock data can lead to qualitatively similar re-
sults. For more detail in the comparison of mock and
real data see [24]. We found data close to 48Ca(p,p) at
12 MeV, corresponding to a reaction with protons at 14
MeV [23]. In Fig. 8 we show the angular distribution
of the cross section and the polarization for protons on
48C-a at 14 MeV and verify these are very similar to those
shown in Fig.6 for the corresponding reaction at 12 MeV.
As before, the orange bands (blue bands) correspond to
the 95% confidence intervals when the elastic cross sec-
tion data (polarization data) are used in the fit. As in the
case for mock data, here we also find that the uncertainty
in the elastic angular distribution is smaller when da/dCI
data is used. Conversely, the uncertainty in the {7\ dis-
tribution is smaller when polarization data is used.

It should not be understood from this comparison that
mock data can replace real data. Although qualitatively



similar, there are significant quantitative differences in
the posterior distributions obtained with mock data com-
pared to real data. Thus, in a practical application of
these tools, one should always use real data in the statis-
tical analysis.

V. CONCLUSIONS

In this work we have explored three statistical tools
in the context of nuclear scattering that allow us to go
beyond uncertainty quantification toward understanding
sensitivities of the parameters and information content
of reaction observables. We consider the principal com-
ponent analysis in observable space, the parameter to
observable sensitivities and the Bayesian evidence. To
introduce these tools, we construct two limiting toy mod-
els, an optical model just with surface absorption and
an optical model just with volume absorption. We per-
form standard MCMC calculations varying six optical
model parameters, and constrain each model with the
angular distributions for elastic scattering. We obtain
the Bayesian parameter posteriors distributions and the
associated confidence intervals for the angular distribu-
tions. We then apply the statistical tools and find that
both sensitivities and Bayesian evidence provide impor-
tant insights in discriminating between models.

Next we repeat this process for realistic cases and us-
ing either g—g or i1 to constrain the optical parame-
ters. We study *Ca(n,n) at 12 MeV, *®Ca(p,p) at 12
MeV and *8Ca(p,p) at 21 MeV. Neither the confidence
intervals nor the parameter posterior distributions help
in determining which observable is best to constrain the
optical model parameters. We also did not find the prin-
cipal component analysis defined in terms of angles to
be useful, since it produced roughly equal weights for all
components.

In contrast, sensitivities provided important insights.
For most examples studied, g—g and T are sensitive to
the same parameters, and to the same degree. However
they provide constraints in different angular regions. The
exception being the reaction **Ca(p,p) at 12 MeV, for
which the differential cross sections offer less sensitivity
than the polarization data.

Finally, we also computed the Bayesian evidence for

each reaction. The integral over the parameter space had
to be performed fully numerically, as the assumptions of
Gaussian distributions for the analytic approximations
were not valid. We found that in order to get converged
values for the evidence, a much larger number of draws
was necessary as compared to the statistics collected for
the parameter posteriors and confidence intervals. We
compared the values of the evidence, averaged over an-
gle, obtained when the cross section angular distribution
was used as a constraint with those when using the po-
larization data. While Bayes’ factor (the ratio of the
evidence using 11 over that using g—g) shows some vari-
ability, for most reactions studied it is of order one, and
therefore not significant. From our results, we conclude
that, within our optical model, the information content
of the differential cross sections and the polarization data
is roughly the same.

The data we included (do/dQ2 and iTY,) are both as-
sociated with the same elastic scattering channel. Fu-
ture plans include the application of these tools to situa-
tions where we scrutinize between data that are more dis-
similar, such as elastic scattering and charge-exchange,
knockout or breakup. One essential ingredient for these
advances is the speed-up in computations. In this re-
gard, recent work on emulators (e.g. [25, 26]) holds much
promise.
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