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A microscopic description of the interaction of atomic nuclei with external electroweak probes 
is required for elucidating aspects of short-range nuclear dynamics and for the correct interpreta
tion of neutrino oscillation experiments. Nuclear quantum Monte Carlo methods infer the nuclear 
electroweak response functions from their Laplace transforms. Inverting the Laplace transform is 
a notoriously ill-posed problem; and Bayesian techniques, such as maximum entropy, are typically 
used to reconstruct the original response functions in the quasielastic region. In this work, we present 
a physics-informed artificial neutral network architecture suitable for approximating the inverse of 
the Laplace transform. Utilizing simulated, albeit realistic, electromagnetic response functions, we 
show that this physics-informed artificial neutral network outperforms maximum entropy in both the 
low-energy transfer and the quasielastic regions, thereby allowing for robust calculations of electron 
scattering and neutrino scattering on nuclei and inclusive muon capture rates.

I. INTRODUCTION

Electron scattering experiments are powerful tools 
to simultaneously investigate the short- and long-range 
many-body dynamics of atomic nuclei. These experi
ments contributed to demonstrating the limitations of 
an independent particle picture of the nucleus that fails 
to provide a fully quantitative description of atomic nu
clei [1]. At large momentum transfer, the large excess 
of neutron-proton correlated pairs with respect to the 
proton-proton and neutron-neutron pairs has highlighted 
the importance of the tensor component of the nuclear 
interaction and the interplay between nucleonic and par- 
tonic degrees of freedom [2-4]. The field has experienced 
a renewed interest also in view of its interplay with high- 
precision measurements of neutrinos and their oscilla
tions [5]. This is the main focus of the accelerator-based 
neutrino oscillation program, which includes ongoing ex
periments such as NOvA [6] and T2K [7] and planned 
ones such as DUNE [8] and Hyper-K [9]. Nuclear tar
gets are utilized in the detectors to increase the event 
rate. Hence, the determination of oscillation parame
ters requires accurate theoretical calculations of neutrino- 
nucleus interactions in a broad range of energy, in which 
a variety of reaction mechanisms are at play [10-12].

In the low-energy regime, the inclusive lepton-nucleus 
cross section is dominated by coherent scattering, exci
tations of low-lying nuclear states, and collective modes. 
At energies on the order of hundreds of MeV, the leading 
mechanism is quasielastic (QE) scattering, in which the 
probe interacts primarily with individual nucleons bound 
inside the nucleus. Corrections to this leading mechanism 
arise from processes in which the lepton couples to inter
acting nucleons, via nuclear correlations and two-body 
currents.

The inclusive lepton-nucleus scattering cross section

is completely determined by the electroweak response 
functions, which hold all information about the dynam
ics of the nuclear target. The Green’s function Monte 
Carlo (GFMC) method [13] has been successfully em
ployed to compute the electromagnetic, neutral-current, 
and charged-current response functions of 4He and 12 C in 
the QE region, up to moderate values of the momentum 
transfer [14-17] and the muon capture rates of 4He and 
3H [18]. These calculations have unambiguously demon
strated the importance of properly treating nuclear cor
relations and meson exchange currents even for QE kine
matics. Within this approach, the electroweak response 
functions are inferred from their Laplace transforms, de
noted as Euclidean responses, that are estimated during 
the GFMC imaginary time propagation. Retrieving the 
energy dependence of the response functions from their 
Euclidean counterparts is nontrivial.

The maximum entropy method (MaxEnt) [19, 20] has 
been extensively employed to retrieve the energy depen
dence of the electroweak response functions. Despite its 
success in the QE region, MaxEnt appears to be inad
equate to precisely reconstruct the low-energy structure 
of the nuclear response functions. In Ref. [15], experi
mental inputs on the low-lying nuclear transitions have 
been utilized to properly describe the longitudinal elec
tromagnetic responses of 12C in the low-energy region. 
A comparison between GFMC and exact Faddeev re
sults for the 3H muon capture rate has contributed to 
exposing the shortcomings of MaxEnt in reconstruct
ing the charged-current response functions near the nu
clear breakup threshold, corresponding to energies of few 
MeVs [18]. In addition, although heuristics have been 
used, to the best of our knowledge there is no rigorous 
way to propagate the statistical uncertainties of the Eu
clidean response into the response function and to quan
tify the systematic errors due to the approximate inver
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sion of the Laplace transform. These errors would prop
agate into the GFMC estimates of lepton-nucleus cross 
sections and are critical for informative comparisons with 
experiments.

In recent years, an increase in available computing re
sources has been accompanied by a prodigious rise of 
techniques based on machine learning (ML), which are 
now ubiquitous in physics [21]. Within low-energy nu
clear physics, artificial neural networks (ANNs) have 
been used to estimate ground state energies and radii 
of nuclei by using results from no-core shell model calcu
lations [22, 23]. Gaussian process emulators were used 
in Ref. [24] for Bayesian model mixing in order to 
predict bound nuclides between silicon and titanium. 
The authors of Ref. [25] represent the deuteron’s wave 
function with ANNs. In Ref. [26] ANNs were used to 
model the Jastrow correlator of A < 4 nuclei. Several 
works have demonstrated that ML approaches are suit
able for solving inverse problems [27, 28]. In particu
lar, Refs. [29, 30] utilized ANNs to recover the electron 
single-particle spectral density in the real frequency do
main from the fermionic Green’s function in the imag
inary time domain. The same problem was tackled in 
Ref. [31] by utilizing an Adams-Bashforth residual ANN. 
In both cases, the ANN approaches have been found to 
outperform MaxEnt implementations.

In this work we develop a novel ANN architecture suit
able for approximately inverting the Laplace transform of 
realistic nuclear electromagnetic response functions, sim
ilar to those computed with the GFMC method. The 
simulated responses utilized in the training dataset ex
hibit a sharp Gaussian peak corresponding to the low- 
energy elastic transition and an asymmetric broad peak 
in the QE region. The positions, heights, and widths of 
these two peaks are modeled consistently with their en
ergy and momentum transfer behavior as measured by 
electron-scattering experiments. In contrast to previous 
approaches, we incorporate physics-grounded constraints 
into the neural-network architecture and use an entropic 
cost function. We demonstrate an improved accuracy of 
the inversion in the low w region with increased robust
ness to noise as compared with MaxEnt techniques.

This work is organized as follows. In Sec. II we state 
the problem to be solved and discuss the relevant features 
of the nuclear electromagnetic responses. In Sec. III we 
describe our ML algorithm. In Sec. IV we present our 
results, and in Sec. V we discuss our conclusions.

II. NUCLEAR RESPONSES

In the one-photon exchange approximation, the inclu
sive electron-nucleus scattering cross section can be ex
pressed in terms of the longitudinal and transverse re
sponse functions, RL(q, w) and RT(q, w), respectively, 
where q and w are the electron momentum and energy 
transfers. The response functions encode all information

on nuclear structure and dynamics and are defined as

R«(q,w) = ^ (q,w)lf)flj«(q,w)l°)
f W

xS(Ef — w — Eq),

for a = L,T. In Eq. (1), |0) and |f) represent the initial 
and final nuclear states of energies Eq and Ef, respec
tively, and jL(q, w) and jT(q, w) are the electromagnetic 
charge and current operators, respectively.

A direct calculation of Ra(q, w) requires evaluating all 
of the individual transition amplitudes induced by the 
charge and current operators and is therefore impractical 
except for very light nuclear systems [32, 33]. The use 
of integral transform techniques has proven helpful in 
circumventing these difficulties. One such approach is 
based on the calculation of the Euclidean response [34], 
which corresponds to the Laplace transform

Ea(q,T)=/ dwe-"TRa(q,w). (2)
J 0

Fixing the intrinsic energy dependence of the charge and 
current operators to the QE peak, wqE = \Jq2 + m2 —m, 
where m denotes the mass of the nucleon, one can express 
the Euclidean responses as ground-state expectation val
ues

Ea(q,T) = (0|jt (q,wQE)e-(H-Eo)Tj(q,wQE)|0),

where H is the nuclear Hamiltonian. These expectation 
values can be evaluated by using the GFMC method on a 
uniform grid of nT imaginary-time points [14, 34]. A set 
of noisy estimates for Ea(q, t,) can be obtained by per
forming independent imaginary-time propagations, from 
which the average Euclidean response Ea(q, -q) and the 
covariance Cj between the data at t = t, and t = Tj can 
be readily estimated [15]. Note that, in general, the co
variance matrix C is nondiagonal because of correlations 
among the imaginary-time points.

Problem statement and the MaxEnt approach

In addition to the imaginary time T = [t1, •• • , t„t ], 
we discretize the continuous variables w on nu grid 
points and thus define Q = [w1; • • • , w„u ] and the kernel 
K(wi: Tj) = e-UiTj Aw,, where Aw, is the discretization 
width at w,. Dropping, for simplicity, the momentum 
transfer dependence and the subscript a of the response 
functions, we can rewrite the Laplace transform of Eq. (2) 
in the compact matrix form

E (T) = K (Q, T) R(Q),

where E(T) € R”T, R(Q) E Rn^, and K(Q, T) E 
R”t xn“. The response function can thus be formally (for 
an appropriate definition of •-1) recovered by

R(Q) = K (Q, T)E (T). (3)
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However, the inversion of K(Q, T) is numerically unsta
ble because of the exponentially small tails in the kernel 
function for large w. Retrieving the response function 
from noisy GFMC estimates of E(t) involves significant 
difficulty; widely different response functions can corre
spond to very similar Euclidean responses.

Several algorithms have been developed for approxi
mately inverting the Laplace transform by using prior 
knowledge about the solution. Arguably the most robust 
and popular of these is MaxEnt [19, 20], which has been 
used to reconstruct the (smooth) energy dependence of 
the nuclear response functions around the QE peak [15
17]. Within MaxEnt, the solution of the inverse prob
lem is the response function that maximizes the poste
rior probability P(R\E) (i.e., the conditional probabil
ity of R(Q) given E(T)). Bayes’ theorem states that 
the posterior probability is proportional to the product 
P(E|R) x P(R), where P(E|R) is the likelihood function 
and P( R) is the prior probability, containing information 
about the response function to be reconstructed. Argu
ments based on the central limit theorem show that the 
asymptotic limit of the likelihood function is given by 
P(E|R) K exp(—x2/2), where

nT
x2 = ^ (E(Ti) — E(Ti)) C-1 (E(Tj) — E(Tj)) . (4)

i,j = 1

Since the response functions are positive and normaliz
able, they can be interpreted as probability distributions. 
The principle of maximum entropy states that the val
ues of a probability distribution are to be assigned by 
maximizing the entropy, which is defined by

S = ^ — M(wi) — R(wi) l^ ^j Aw,.

(5)
The positive-valued M(w) is the default model and en
codes our prior knowledge about R(w) in the absence 
of data. The entropy measures how much the response 
function differs from the model. It vanishes when R(w) = 
M(w) and is negative when R(w) = M(w).

MaxEnt improves upon the standard x2 minimization 
by using the prior information, whereby R( w) can be in
terpreted as a probability distribution. For given E(t,), 
Cj, and default model M(w,), the response functions are 
found minimizing the quantity

Q ^x2 — aS' (6)

where a is a fixed parameter that controls the relative 
importance between the entropy and the error terms. De
spite its tendency to underfit the data [35], in this work 
we adopt the historic MaxEnt approach [36], which con
sists in choosing a so that x2 = nT. On the other hand, 
the more sophisticated classic MaxEnt [37] and Bryan 
MaxEnt [19]—both relying on the probability P(a|E) 
to determine a - tend to overfit the data since P(a|E)

is evaluated only approximately in practice [38, 39]. In 
general, the arbitrariness in choosing a prevents a robust 
reconstruction of the rich structure that characterizes the 
low-w region of R(w), without running the risk of over
fitting E(t) and hence causing spurious oscillation in the 
reconstructed response function.

III. PHYSICS-INFORMED NEURAL 
NETWORK

As mentioned in the preceding section, the inversion 
of K(Q, T) is numerically unstable, and retrieving R(Q) 
from E(T) is an ill-posed inverse problem. To overcome 
this difficulty, we seek an approximate solution by de
signing a physics-informed neural network, which we dub 
“Phys-NN,” that is suitable for finding a controlled ap
proximation R(Q) for the right-hand side of Eq. (3).

A. The Phys-NN model

To model R(Q), we start by constructing a set R of 
basis functions that takes into account the physics of the 
problem, while being as broadly applicable as possible. 
Note that each term in the matrix K(Q, T), is propor
tional to e-Tj Ui and therefore a reasonable choice to cap
ture its structure is the Gaussian kernel basis, defined 
as

^(x,^,a) 1 (x-m)2,— e 2ct2 , x E R .
V2na

(7)

Finding the location and the scale of the Gaussian kernel, 
denoted by ^ E R and a > 0, respectively, is part of 
the ML training problem. The first layer of the neutral 
network, whose architecture is displayed in Fig. 1, takes 
as input the nT-dimensional vector E(T). To form a basis 
for each E(t), we apply nn Gaussian units of the form (7), 
where nn is a hyperparameter. We then contract these 
Gaussian units with the resulting hidden layer outputs 
multiplied by weights w,,j to obtain the output associated 
with w,. Formally, the Phys-NN is given by

f (E (T); 0)

- n^ nn
W1,j (Tj), j,aj',k)

j=1 k=1

nT nn
13 ^nw ^(E(Tj), ^j',k, aj,k)

- j = 1 k=1
(8)

where we use 0 = (^, a, W) to denote the collection of 
training parameters ^, a E RnT xnn and W E RnwXnT. 
We can express Eq. (8) componentwise by

nT nn
f ^,'^3 ^(E(Tj), j, aj,k), * = 1, . . . ,nw.

j=1 k=1
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FIG. 1: Schematic overview of the Phys-NN approach

In order to ensure that the response function is positive 
for all lu e Cl, the output is passed through an exponen
tial function, and the final approximation of the response 
functions is given by

J_ /(EMlO) 
Ml

The normalization factor Mi ensures that the integral 
of R(il;6)) coincides with E(t0), so that the output of 
the Phys-NN automatically satisfies the sum rule of the 
response function.

B. Simulated data

is the Gaussian’s cumulative distribution function. The 
values of Nqe, oqe, and a are obtained according to 
arguments based on the scaling of the response func
tions [40].

First, we sample the variable q, corresponding to the 
momentum transfer, from a uniform distribution between 
100 and 700 MeV. Consistent with non-relativistic cal
culations of the electromagnetic response functions, we 
assume that cvqe = q2/(2'mN) + e, where mjv is the nu
cleon mass and e = 25 MeV is the nuclear binding. A 
suitable definition for the QE region corresponds to the 
interval Q = [—1,1] for the scaling variable. Hence, in the 
non-relativistic case, the width of the QE peak is approx
imately 2qkF/niN, and we take the Fermi momentum

To train the Phys-NN, we use two distinct datasets 
of physically meaningful E(iv), E(t) pairs that are sim
ulated as follows. The responses belonging to the first 
dataset—a few of which are displayed in Fig. 2—are char
acterized by a single asymmetric peak, corresponding to 
the QE reaction mechanism, modeled by a skew-normal 
distribution

Rqe(u) = VqE </>(w, wqE, o-qe)T (—--------,
\ OQE /

where cvqE, oqe) is the Gaussian density defined in 
Eq. (7) and

0.010

0.005

0.000

1 + erf
FIG. 2: Training data examples of response functions 

exhibiting a single asymmetric QE peak.
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0.005

0.000

cv [MeV]

FIG. 3: Training data examples of response functions 
characterized by an EL narrow peak in addition to the 

QE peak.

to be kF = 225 MeV [41]. In the simulated responses, 
we encode this behavior by allowing 20% fluctuations of 
ctqe around its central value 2qkF/mN. The height of 
the quasielastic peak is Vqe/oqe and Vqe guarantees 
that Eqe(cv) is normalized to unity. The skewness pa
rameter a is randomly sampled between 2 and 10—the 
normal distribution is recovered for a = 0. This interval 
has been chosen to reproduce the typical asymmetry dis
played by the electromagnetic responses of light nuclei.

As shown in Fig. 3, the responses belonging to the 
second dataset exhibit two distinct peaks, corresponding 
to the elastic (EL) and QE transitions, namely, EEl(^) + 
Eqe(cv). The elastic transition contributes in the low cc 
region, and it is characterized by a Alike peak centered 
at cvel = <t/(2Ma), with Ma ~ 4rojv being the mass 
of the 4He nucleus. We model the EL response with a 
Gaussian distribution

A-el(w) = </>(w, cvEl, cel),

where ctEl is uniformly sampled between 5 and 10 MeV 
to get a much narrower peak than the QE one. The in
tegrated strength of the EL transition is proportional to 
the square of the elastic transition form factor Fel(<?)- 
Inspired by the sum-of-Gaussians parameterization of 
Eel (9) in Ref. [42], we sample NEl proportional to 
e~iq~, where we take 7 = 400 MeV to reproduce the 
low-momentum behavior of FEL(q) for the 4He nucleus. 
A direct consequence of this choice is that the strength 
of the EL peak decreases with the momentum transfer. 
Consistent with the one-peak case, we enforce the nor
malization

E(t0) = J duj (Rel(v) + Rqe(w)) = 1.

The response functions are conveniently tabulated on 
a uniform c0 grid between 0 and 2 GeV with nu = 2000. 
The corresponding Euclidean responses are obtained by 
numerically integrating i?.(cv). Since the simulated re
sponse are smooth functions of tv, the numerical inte
gration error on the Euclidean responses is smaller than 
10~5. To mimic the statistical error of GFMC- calcula

tion, we “corrupt” the simulated E(t) by adding stochas
tic noise [30]:

E{r.i) + e.i, (9)

where e, are independent samples from a Gaussian distri
bution with mean zero and standard deviation a. Con
sistent with typical GFMC calculations of the Euclidean 
electromagnetic responses of 4He, we take a = 10~4 in 
most of our tests.

For each of the one-peak and two-peaks cases, we gen
erate a total of 500, 000 pairs (Rk(Q), Ek(T)) € Rn“+"T 
of responses and corresponding Euclidean responses, 
which we then partition into training (T), validation (V), 
and test/out-of-sample (©) datasets. The one-peak and 
two-peaks test datasets comprise 1, 000 pairs each; the 
combined test dataset is just the union of these two sets. 
We use 80% and 20% of the remaining data for training 
the network and validation, respectively. Since MaxEnt 
is relatively slow—-taking about 5 seconds to perform 
one inversion of the Laplace transform—-our comparison 
is limited to the test dataset.

C. Training

Values for the parameters 6 are found by the standard 
supervised learning approach of approximately solving

(io)
I I fcEl

by using a minibatch-based stochastic gradient descent 
procedure to minimize an empirical loss function. Our 
overall objective in Eq. (10) is the average loss over the 
|T| points in the training set. For each data and model 
output, we employ a loss function that is the sum of a 
response cost and a Euclidean cost,

f(%,#&,%) = A&) + 7gXg(%, %),

where pR, > 0 are user-defined parameters. The re
sponse cost is defined according to the entropy measure 
of Eq. (5), namely

Sr{R,R) =
E ^A(w,) - A(w,) - A(w,)ln Aw,, (11)

and ensures that the reconstructed response functions are 
close to the original ones. The Euclidean cost, which is 
aimed at aligning the Laplace transform of R(Q;0) with 
the original Euclidean response, is the reduced y2 per 
degrees of freedom

X^(E, A) = - ^ (E(Tj) - E(T,)y . (12)
" ” ,=1 ^ /
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Compared with Eq. (4), in Eq. (12) we have assumed a 
diagonal covariance matrix, with the diagonal elements 
corresponding to variance of the independent Gaussian 
distributions of Eq. (9): a2 = a2 = 10-8 for all j. This 
assumption can be easily relaxed when dealing with cor
related data. We evaluate E(T; d) = K(T, 0)R(0; d) by 
using a simple trapezoidal rule

A?,) = ^ . (13)
i=i

As discussed in the following section, the positive val
ues of yR and ye are chosen to compensate for the fact 
that xE (E, R) is typically much larger than the entropy
SR (R,R).

Since the inversion of the Laplace transform is an ill- 
posed problem, there are many response functions whose 
Laplace transform are compatible with the original Eu
clidean responses. Consequently, there are instances in 
which xE is small even when the reconstructed response 
is not similar to the original one, leading to potential in
stabilities in the minimization procedure. To tame this 
behavior, we split the training into two phases.

In the first phase, we take yR = 107 and yE = 10-7 and 
optimize the network using the Adam [43] optimizer with 
a learning rate of 10-3. Since yR > YE, the entropy re
sponse cost dominates the loss function and drives the re
constructed response functions close to the original ones. 
Once the SR has reduced significantly, we enter the sec
ond phase of the optimization, where we keep yR = 107 
but increase the relative importance of the Euclidean cost 
by taking yE = 1 so that Phys-NN learns to keep the 
Laplace transform of the response function close to the 
original Euclidean response. Reducing the learning rate 
in the second phase to 10-5 is necessary in order to keep 
the reconstructed response functions close to the optimal 
ones find in the previous phase.

The neural-network variants are implemented in 
Python 3.6 by using TensorFlow 2.0 libraries [44]. Train
ing, validation, and testing are performed by using 
NVIDIA Tesla V100 SXM2 with 32GB HBM2 and 
NVIDIA Tesla K80 with dual GPUs hosted at Argonne’s 
Joint Laboratory for System Evaluation and Leadership 
Computing Facility.

IV. RESULTS

We consider three realizations of Phys-NN that differ 
in the datasets used for training, validation, and testing 
purposes: one-peak data only, two-peak data only, and 
combined one-peak and two-peak data. We quantify the 
accuracy of our approach using three metrics averaged 
over the associated test/out-of-sample dataset O. We 
use the average entropy

Sr
1 yi sR(Rk, Rk %

kEO

with the entropy SR defined in Eq. (11), as well as the
average reduced %E,

xE = jo ^ xE (Ek, -Rk),
1 1 kEO

with xE defined in Eq. (12). We also employ a metric RR 
for the response functions, which is defined as an average 
over |O| terms of the form

RR(Rk,Rk) Ei=i(Rk (^i) — Rk (wj))2
Ei=l(RRk (wi) — Rk (w))2

(14)

A. Out-of-sample tests

The values for the three testing metrics for the single
peak, two-peak, and combined datasets are listed in Ta
ble I. For both Phys-NN and MaxEnt, the one-peak re
constructions are the closest to their original inputs, the 
two-peak reconstructions are the worst, and the com
bined dataset reconstructions rest between those of the 
other two datasets. This behavior is not unexpected, 
since the response functions characterized by two peaks, 
with the EL one in the low-w region, are notoriously more 
difficult to reconstruct than those having a single broad 
QE peak.

For Phys-NN, the one-peak response function metrics 
1 — RR and SR are on the order of 10-5. The reduced 
x2 is also close to one; smaller values indicate potential 
overfitting [45]. When reconstructing responses belong
ing to the two-peak dataset, we observe slightly worse, 
although still satisfactory, performance compared with 
the one-peak case, as quantified by the larger values of 
all three metrics; for the combined dataset, xE is only 
slightly larger than 2.

In Table I one can see in what ways Phys-NN outper
forms MaxEnt: both the 1 — RR and SR values obtained 
with MaxEnt are significantly worse, up to two orders of

TABLE I: Phys-NN and MaxEnt testing metrics SR, 
1 — RR, and xE for the one-peak, two-peak, and 

combined datasets. The standard errors on the last 
digit of xE are given in parentheses.

1 - RR
x10-4

xE Sr

x10-4

One-peak 0.42
Phys-NN
1.171(13) 0.72

Two-peak 9.04 3.220(87) 9.16
Combined 0.61 2.335(14) 3.66

One-peak 29.7
MaxEnt
1.015 (1) 60.4

Two-peak 84.8 1.016 (1) 107
Combined 57.2 1.015 (1) 83.7
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FIG. 4: Box plots of (left) R2, (middle) and (right) SR for the Phys-NN and MaxEnt methods. The top and 
bottom rows refer to the one-peak and two-peaks datasets, respectively. The line in the middle of the box denotes 

the median, and the box represents the range between the 25% and 75% quantiles. Whiskers cover the area between 
the 1% and 99% quantiles; data beyond these whiskers are outliers and are indicated by circles.

magnitude, than those of Phys-NN. This is a clear indi
cation that Phys-NN captures the energy dependence of 
the response functions better than does MaxEnt. Since 
historic MaxEnt finds the optimal response function by 
fixing a of Eq. (6) so that x% = 1, it is not surprising 
that MaxEnt’s reduced y2 values are closer to one than 
those found by Phys-NN. As evidenced by the other two 
metrics, because of the ill-posed nature of the problem, 
achieving x% ~ 1 does not guarantee an accurate recon
struction of the original response functions.

To further examine the performance of Phy-NN and 
MaxEnt, in Fig. 4 we display box plots of the distribu
tions of the 1 - R?r, Sr, and x% metrics for the one-peak 
(top row) and two-peak (bottom row) datasets. Consis
tent with the results listed in Table I, for both Phy-NN 
and MaxEnt, the one-peak 1 - R?r and Sr distributions 
are narrower and centered on smaller values than are the 
two-peak ones, while the combined dataset results are in
termediate between the two. Since Phys-NN is trained 
to keep the reconstructed response function as close as 
possible to the original ones, we observe a much smaller 
spread of 1 - R?r and Sr values compared with MaxEnt. 
This behavior, which is exhibited across the one-peak, 
two-peak, and combined datasets, provides additional 
support for Phys-NN’s reconstruction performance.

Because the historic MaxEnt algorithm is based on 
minimization, the resulting distributions of x% for both 
the one-peak dataset and the two-peak dataset are nar
row and centered on one. The spread associated with 
the Phys-NN results is larger. To investigate correlations

between mrd Sr, in Fig. 5 we show scatter plots for 
the one-peak and two-peak datasets. Some correlation is 
visible in the Phys-NN results, displayed in the top two 
panels, especially for the two-peak dataset. Conversely, 
the MaxEnt scatter plots show no correlation between 
X% and Sr, since the Xe values are relatively constant 
around one, even for widely different Sr. The correla
tions between an(f 1 ™~ Rr exhibit an almost identical 
pattern and are thus not included here.

Direct comparison of Phys-NN and MaxEnt outputs 
is presented in Fig. 6, where we display the Phys-NN 
best (left panels), average (central panels), and worst 
(right panels) reconstructed response functions, accord
ing to the Sr values of the Phys-NN results, and the 
corresponding Euclidean responses from the one-peak 
dataset. Here, the training is performed on the com
bined dataset, to better test whether Phys-NN is able 
to learn how to simultaneously reconstruct one-peak and 
two-peak response functions. The uncertainty associated 
with the random initialization of the Phys-NN parame
ters is estimated by performing ten independent training 
procedures, each corresponding to a distinct random seed 
used by the training procedure. We gather the predic
tions obtained from each of these ten runs to estimate 
the error band displayed by the shaded area in Fig. 6. 
Not only the best and the average but also the worst 
response functions reconstructed with the Phys-NN are 
in better agreement with the original ones than are those 
obtained with the MaxEnt algorithm. The Laplace trans
form of the Phys-NN response functions are also in ex-
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cellent agreement with the original Euclidean responses: 
the x% values are 1.071, 0.902, and 1.834 for the best, 
average, and worst reconstructions, respectively. As dis
cussed previously, by design the MaxEnt x% values are 
all very close to one.

An analogous pattern emerges in the two-peak dataset. 
In this case, the best and the average Phys-NN responses, 
represented in the left and central of Fig. 7, respectively, 
are in excellent agreement with the original ones. Only 
minor discrepancies are visible in the worst reconstruc
tion, displayed in the right panels. Although larger than 
in the one-peak case, the Phys-NN reduced values are 
more than satisfactory: the values for the best, average, 
and worst reconstructions are 1.102, 1.024, and 6.996, 
respectively. This behavior is reflected in the excellent 
agreement between the original and reconstructed Eu
clidean responses. On the other hand, despite the Max
Ent values for again being very close to one, MaxEnt 
consistently fails to resolve the EL peak in the low-energy 
region. In addition, it often yields QE peaks that are 
shifted to higher energy transfer than in the original re
sponse functions.

Among the shortcomings of the MaxEnt technique, 
the most problematic is probably its poor performance 
in the low-energy transfer region. The results shown in 
Fig. 7 clearly indicate that Phys-NN performs much bet
ter there. To quantify this behavior, we define an in
dependent entropy, SR{w), by restricting the integral of 
Eq. (11) to an interval of 5 MeV around each value of 
the energy transfer grid in.,, in the region 0 < in < 200

1.0 1.5 1.0 1.5

x% x%

FIG. 5: Correlation plots of versus SR as obtained 
with the Phy-NN (top row) and MaxEnt (bottom row) 

algorithm. The left and right columns refer to the 
one-peak dataset and the two-peak dataset, 

respectively. The reference lines indicate the median 
and Sr values.

MeV. First, we compute SR(u>) for all the responses in 
the test datasets; then we calculate the average and the 
standard error of this quantity, displayed by the shaded 
areas in Fig. 8 for the one-peak (left panel) and two-peak 
(right panel) case. The Phys-NN results are consistently 
below the MaxEnt ones, indicating better reconstruction 
performance for both one-peak and two-peak data. This 
fact will likely have important implications for GFMC- 
calculations of the inclusive lepton-nucleus cross section 
in the low-energy regime.

B. Predictions on noisier inputs

An important feature of any reconstruction technique 
is its robustness to the noise level of the input Euclidean 
response functions. We analyze how the performance of 
the Phys-NN and MaxEnt methods deteriorate when the 
standard deviation of the Gaussian noise of Eq. (9) is in
creased from a = 10~4 to a = 10~3. For the results in 
this section, we indicate the dataset used for training by 
including the training data standard deviation in paren
theses. Training is always done on the combined dataset, 
and the training strategy and hyperparameters are un
changed from those used for the noise level a = 10~4.

In Fig. 9 we compare sample reconstructed response 
functions when the noise on the input Euclidean is in
creased from a = 10~4 to a = 10~3. In both the one-peak 
(top panel) and two-peak (bottom panel) response, Max
Ent clearly is more susceptible to the increased noise level 
than is Phys-NN. In the one-peak case, MaxEnt(10~3) 
significantly overestimates the height of the QE peak and 
shifts its maximum to higher energies compared with the 
original response function; this behavior is not present 
in the Phys-NN reconstructions. In the two-peak case, 
Phys-NN captures the EL peak in the low-energy region 
for both values of a. On the other hand, the MaxEnt re
construction, already not fully satisfactory for a = 10~4, 
fails to reproduce the EL peak for a = 10~3. As with the 
one-peak case, for this higher noise level MaxEnt(10~3) 
overestimates the height QE peak, and its position is 
shifted toward higher energies than in the original re
sponse function.

To further quantify these results, we calculate the 
change in the entropy due to the increase in the noise 
level in the input in the test dataset. The average val
ues of SR obtained from Phys-NN and MaxEnt calcula
tions are plotted in Fig. 10. We observe that the change 
in the entropy due to the increase in the noise level is 
one order of magnitude larger for MaxEnt than that for 
Phys-NN(10~3). In Fig. 10, we also report results for 
Phys-NN(10~4), obtained by training Phys-NN on the 
low-noise data. In this case, the entropies increase by 
4.00x 10~4 and 51.3x 10~4 for the one-peak and two-peak 
test datasets, respectively. While still a significant im
provement compared with MaxEnt, the results for Phys- 
NN) 10-4) are not as good as those obtained by Phys- 
NN(10~3). We conclude that Phys-NN is able to capture
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FIG. 6: Comparison between the Phys-NN and MaxEnt reconstructions for the one-peak dataset. The top row 
displays the response functions and the bottom row the corresponding Euclidean responses.
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FIG. 7: Same as Fig. 6 for the two-peaks dataset.
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from noisier Euclidean responses. We note that it is ben
eficial to be able to train on a set of responses having 
noise levels comparable to those of the target Euclidean 
responses.

V. CONCLUSIONS

FIG. 8: Energy-dependent entropy for the Phys-NN and 
MaxEnt results for the one-peak (left panel) and 

two-peak (right panel) datasets.

the main characteristics of the response functions even

This work introduces Phys-NN, a physics-informed 
ANN approach to approximately invert the Laplace 
transform and reliably reconstruct the electromagnetic 
response functions of atomic nuclei from their corre
sponding Euclidean responses.

We train, validate, and test Phys-NN, using 1 mil
lion response functions that exhibit the same features as
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those measured in electron scattering experiments. Half 
of the simulated responses are characterized by a single 
asymmetric broad peak in the quasielastic region; the 
other half possess an additional sharp Gaussian peak to 
model the low-energy transfer elastic transition. Unbi
ased Gaussian noise (a = 1(U4) is added to the Eu
clidean responses to simulate the statistical error of typi
cal GFMC- calculations for the 4He nucleus. For training, 
we use a loss function with two terms. The first, inspired 
by the MaxEnt method, is an entropic loss to keep the re
constructed response functions close to the original ones. 
To avoid flat directions and improve the convergence of 
the optimization, we include a second term that seeks 
to keep the Laplace transform of the reconstructed re
sponses close to the input Euclidean responses.

On a test dataset independent of that used in the 
training, we demonstrate that Phys-NN significantly out
performs MaxEnt in terms of both the SR and 1 - R2r 
metrics, especially on response functions characterized 
by two peaks. Direct examination of the reconstructed 
responses shows that Phys-NN is capable of capturing 
the low-energy structures of the responses that are often 
completely missed by MaxEnt. We also find that Phys- 
NN better reproduces the position and height of the QE 
peak. Phys-NN produces about an order of magnitude 
improvement over MaxEnt in an energy-dependent en
tropy measure, especially for energy transfer up to 200 
MeV. This feature of Phys-NN is promising for the reli
able reconstruction of the low-energy structure of nuclear 
response functions and muon capture rates from GFMC- 
calculations of the Euclidean responses.

Our results show that Phys-NN is robust on a num
ber of levels. First, Phys-NN has only two hyperparam
eters (the number of ANN Gaussians and the learning

0.004

-----  Original

0.002

----- MaxEnt(lO-3)

100 150 200 250
w [MeV]

0.000

0.003

0.002

0.001

0.000

u) [MeV]

FIG. 9: Phys-NN and MaxEnt reconstruction 
performance with increasing level of noise in the input 

Euclidean responses.

-110

k?10-2

10-3

10 -4

J Phys-NN(l(r4) } MaxEnt 
{ Phys-NN(10-3)

IQ'* 10'S
Noise Level on Test dataset

FIG. 10: Change in the entropy from increasing the 
standard deviation of the Gaussian noise in the input 

Euclidean responses from a = 1(U4 to a = 1(U3.

rate), and the relatively small amount of validation data 
used for determining values for these proved to be suffi
cient. Second, the Phys-NN outputs from ten indepen
dent training trials show remarkably little spread among 
the predicted responses, indicating a desirable insensitiv
ity within the training process employed. We stress that 
the associated uncertainty bands do not represent the full 
theoretical error of our predictions, which in principle re
quires propagating the statistical errors of the Euclidean 
response through the response functions. In future work, 
we intend to include full uncertainty quantification and 
propagation by leveraging the linearity of the Laplace 
transform. Third, when deployed on noisier testing data, 
Phys-NN maintains its advantage over MaxEnt.

In addition to the Laplace transform, primarily uti
lized within the GFMC- method, the Lorentz kernel is 
commonly used in the nuclear physics community [46]. 
While initially restricted to light nuclear systems [47-49], 
its domain of applicability has recently been extended 
to study electron-nucleus interactions of medium-mass 
nuclei [50-52]. Similarly the Gaussian kernel has been 
found to be applicable in quantum algorithms with near- 
optimal computational cost to study the problem of spec
tral density estimation [53]. We plan on generalizing the 
Phys-NN method to accommodate the inversion of both 
the Lorentz and Gaussian kernels, with the goal of im
proving existing techniques.
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