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Background: The nuclear fission process is a dramatic example of the large-amplitude collective 
motion in which the nucleus undergoes a series of shape changes before splitting into distinct frag­
ments. This motion can be represented by a pathway in the many-dimensional space of collective 
coordinates. The collective action along the fission pathway determines the spontaneous fission 
half-lives as well as mass and charge distributions of fission fragments.
Purpose: We study the performance and precision of various methods to determine the minimum- 
action and minimum-energy fission trajectories in the collective space.
Methods: We apply the nudged elastic band method (NEB), grid-based methods, and Euler- 
Lagrange approach to the collective action minimization in two- and three-dimensional collective 
spaces.
Results: The performance of various approaches to the fission pathway problem is assessed by 
studying the collective motion along both analytic energy surfaces and realistic potential energy 
surfaces obtained with the Skyrme-Hartree-Fock-Bogoliubov theory. The uniqueness and stability 
of the solutions is studied. The NEB method is capable of efficient determination of the exit points 
on the outer turning surface that characterize the most probable fission pathway and constitute the 
key input for fission studies. This method can also be used to accurately compute the critical points 
(i.e., local minima and saddle points) on the potential energy surface of the fissioning nucleus that 
determine the static fission path. The dynamic programming method also performs quite well and 
it can be used in many-dimensional cases to provide initial conditions for the NEB calculations. 
Conclusions: The NEB method is the tool of choice for finding the least-action and minimum- 
energy fission trajectories. It will be particularly useful in large-scale fission calculation of superhea.vy 
nuclei and neutron-rich fissioning nuclei contributing to the astrophysical r-process recycling.

I. Introduction

Fission is a fundamental nuclear decay that is impor­
tant in many areas of science, ranging from structure and 
stability of heavy and superheavy nuclei [1-3] to studies 
devoted to physics beyond the standard model of particle 
physics [4] and the synthesis of heavy elements [5-7].

Theoretically, the nuclear fission process is an example 
of the nuclear large-amplitude collective motion originat­
ing from the single-particle motion of individual nucleons. 
Due to the complexity of this process, our understand­
ing of nuclear fission is still incomplete. For the state of 
affairs in this field, we refer to the recent review [8, 9[.

When it comes to realistic predictions, the self- 
consistent nuclear energy density functional (EDF) 
method [10, 11] has proven to be very successful in terms 
of quantitative reproduction of fission lifetimes and frag­
ment yields. Unfortunately, realistic self-consistent fis­
sion calculations in a multidimensional collective space, 
based on the microscopic input, are computationally ex­
pensive when it comes to large-scale theoretical fission 
surveys. Given the computational cost of microscopic 
methods and the large number of fissioning nuclei that 
are, e.g., expected to contribute to the astrophysical r-

process nucleosynthesis, calculations have mostly relied 
on simple parametrizations or highly phenomenological 
models. The new perspective is offered by state-of-the- 
art theoretical frameworks and modern computational 
techniques that promise to speed up the calculations to 
be able to carry out quantified global fission surveys for 
multiple inputs [9].

This study is concerned with finding the optimal path­
way during the tunneling motion phase of spontaneous 
fission (SF). Such a trajectory, dubbed the least-action 
path (LAP), is obtained by minimizing the collective ac­
tion in a many-dimensional collective space [12, 13]. A 
number of techniques have been proposed to deal with 
this challenging task. In the early application [14], the 
trial pathways were assumed in a parametrized form and 
the LAP was obtained by minimizing the penetration in­
tegral with respect to the variational parameters. Grid- 
based techniques such as the dynamic-programming [15] 
and Ritz [16] methods have been used in numerous EDF 
calculations of LAPs [17-23]. In Refs. [24-29] LAPs were 
obtained by solving the eikonal equation by the method 
of characteristics. Effectively, this method can be related 
to a quantum mechanical propagation in imaginary time 
that amounts to solving the classical equations of motion
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in an inverted potential. Within this approach, only one 
trajectory, called the escape path, arrives at the outer 
turning surface with zero velocity. Other trajectories, 
corresponding to different initial conditions, cannot reach 
the outer turning surface.

In this paper, we compare grid-based approaches to 
the LAPs with the nudged elastic band (NEB) method 
that was originally formulated in the context of molecular 
systems [30-33]. In NEB, the minimum action path 
can be obtained iteratively by continuously shifting the 
pathway to the nearest minimum action path [34-36]. 
A similar approach is a growing string method [37]. To 
provide more insights, we also employ the Euler-Lagrange 
(EL) method to compute the stationary action path.

In addition to the LAP, another characteristic trajec­
tory in the collective space is the minimum-energy path 
(MEP), sometimes referred to as the static path. The 
MEP can serve as a first, rough approximation to the 
LAP. It is obtained by computing the steepest descent 
line on the potential energy surface, which passes through 
the local minima and saddle points. To find the MEP, a 
flooding, or watershed, algorithm has been applied [38— 
42]. The NEB approach can also be adopted to find the 
MEP and saddle points [43]. (For a review of modern 
optimization methods for finding MEPs, see [44, 45].)

This paper is organized as follows. In Sec. II we de­
fine the basics concepts of the nuclear EDF approach as 
applied to nuclear fission. Section III describes the path- 
optimization methods used. The results of our calcula­
tions and an analysis of trends are presented in Sec. IV. 
Finally, Sec. V contains the conclusions of this work.

II. Nuclear EDF approach to spontaneous fission

The main ingredients for a theoretical determina­
tion of SF lifetimes are the collective potential en­
ergy surface (PES) and the inertia tensor. To com­
pute the PES, one solves the constrained Hartree-Fock- 
Bogoliubov (HFB) equations with the realistic energy 
density functional in the space of collective coordinates 
q = {%}. These are usually represented by the expec­
tation values of the quadrupole moment operator Q20 
(elongation), quadrupole moment operator Q22 (triaxial- 
ity), octupole moment operator Q30 (mass-asymmetry), 
and the particle-number dispersion term A2T(Ar;-(ArT)2) 
(r = n,p) that controls dynamic pairing correlations 
[18, 46, 47]. In some cases one also considers the hex- 
adecapole moment Q40 (necking coordinate) [48]. That 
is, in practical applications, we consider 2-5 collective 
coordinates which describe the collective motion of the 
system. Figure 1 shows a representative PES of 256Em 
in the space of Q20 = (Q20) and Q30 = (Qso).

The collective inertia (or mass) tensor Mij(q) is ob­
tained from the self-consistent densities by employing the 
the adiabatic time-dependent HFB approximation (ATD- 
HFB) [52-54]. In this study, we use the non-perturbative

cranking approximation [52]:

h2
Ea + E'd

(1)

where % is the collective coordinate, % represents the 
time derivative of </*, and Ea are one-quasiparticle ener­
gies of HFB eigenstates |a). The matrices F'1 are given 
by

(2)
% 0%

where A and B are the matrices of the Bogoliubov trans­
formation, and p and k are particle and pairing density 
matrices, respectively, determined in terms of A and B. 
Derivatives of the density matrices with respect to collec­
tive coordinates are calculated by employing the three- 
point Lagrange formula. It is important to remark that 
rapid variations in Mij are expected in the regions of 
configuration changes (level crossings) due to strong vari­
ations of density derivatives in (2) associated with struc­
tural rearrangements [14, 17].

Since SF is a quantum-mechanical tunneling process 
and the fission barriers are usually both high and wide, 
the SF lifetime is obtained semi-classically [13] as l\/2 = 
In 2/{nP), where n is the number of assaults on the fission 
barrier per unit time and P is the penetration probability 
given by

P=(l + exp[2S(Lmin)]r\ (3)

where Lm-m is the path that minimizes the fission action 
integral calculated along the one-dimensional trajectory 
L(s) in the multidimensional collective space:

1 fSout
S(L) = -y (4)

where

S(s) = (IWs) - Eo) (5)

with Veff(s) and A4eff(s) being the effective potential en­
ergy and inertia along the fission path L(s), respectively. 
Veg can be obtained by subtracting the vibrational zero- 
point energy from the total HFB energy. (In the exam­
ples considered in this paper we assume the zero-point en­
ergy to be zero.) The integration limits sin and sout cor­
respond to the classical inner and outer turning points, 
respectively, defined by Heff(s) = E0 on the two extremes 
of the fission path, see Fig. 1. The collective ground state 
(g.s.) energy is E0, and ds is the element of length along 
L(s). A one-dimensional path L(s) can be defined in the 
multidimensional collective space by specifying the col­
lective variables q(s) as functions of path’s length s. The 
expression for A4eff is [55]:

u
(6)
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256Fm Fission

FIG. 1. Potential energy surface of 256Fm calculated with nuclear EDF method using the D1S parametrization of the Gogny 
interaction [49] in the space of two collective coordinates: Q20 (elongation) and Q30 (mass asymmetry). The static fission 
pathways are marked by solid lines: red (symmetric pathway) and green (asymmetric pathway). The outer turning line (OTL) 
is indicated, together with the outer turning points associated with the static pathways. For simplicity, we assume that the 
inner turning point corresponds to the ground-state configuration (i.e., Eq = 0). The high-energy region that is practically not 
accessible during collective motion is indicated in black. The intersections of fission pathways with outer turning points are 
indicated by dots; these are important for determining fission fragment yields [50, 51].

The least-action path (LAP) Lm[n is obtained by min­
imizing the action integral (4) with respect to all possi­
ble trajectories L that connect the lines/surfaces of in­
ner turning points Sin and outer turning points sout [17]. 
However, as discussed in Refs. [24, 25] and this paper, 
only the pathways related to the exit points are station­
ary. The MEP can instead be described as the union of 
steepest descent paths from the saddle point (s) to the 
minima. The corresponding trajectory q(s) satisfies

fs « vr(9(s)) (7)

which characterizes a path of steepest descent on a sur­
face V(q) [56]. For the NEB, one finds the MEP by 
allowing the elements of the path to follow the gradient 
of the PES in their immediate vicinity. We shall assume 
that the PES in the tunneling region is free from dis­
continuities associated with rapid configuration changes 
[57-59]. This assumption is usually valid because of non­
vanishing pairing correlations inside the potential barrier. 
It is also to be noted that, as in any optimization/min­
imization approach, the stationary path determined nu­
merically corresponds to a local action minimum, which 
is not guaranteed to be the global minimum. Moreover, 
there could be many stationary pathways representing 
different fission modes, see Fig. 2. To simplify notation, 
we assume in the following discussions that the station­

ary action path found by our algorithms is indeed the 
LAP.

Since S(s) = 0 on the outer turning surface V(q) = E0, 
it follows that paths moving on the surface V(q) = 0 do 
not contribute to the action. This is illustrated in Fig. 
2 by the path connecting the g.s. and, for example, the 
purple star labeled (3). Such a path consists of the cyan 
curve - the exit trajectory - and the green dashed line, 
connecting (1) with (3) through the OTL, which results 
in the same action integral as the exit trajectory.

III. Methods / algorithms

All path-optimization methods described in the follow­
ing subsections, bar the EL method, have a reference 
implementation included in the python package, PyNEB 
[61].

III.l. Nudged Elastic Band

The NEB method was originally formulated to provide 
a smooth transition of a molecular system on a potential 
energy surface from the reactant to the product state [31- 
33]. Upon application of this variant of the NEB method, 
one obtains the MEP as well as a series of "images" of the
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FIG. 2. Illustration of two stationary action paths (repre­
senting competing fission modes) from the g.s. to the OTL 
(marked white) on the PES given by Eq. (12). The cyan line 
shows the primary path (1). The secondary path (2) is in­
dicated by the black line. The corresponding exit points are 
marked by stars. The green dashed line connects the exit 
point (1) with the point (3) on the OTL; the action along the 
dashed path is zero. The inset shows the spring force and 
the action force acting on the image i on the NEB for the 
intermediate (not fully converged) grey path. For the video 
illustrating the NEB determination of both LAPs, see the 
supplemental material (SM) [60].

molecular system as it transitions along the path. The 
NEB technique has been subsequently refined, with im­
proved numerical stability [35] and a more accurate de­
termination of a saddle point [34] being two key advances 
towards a more widely applicable numerical approach for 
MEP determination.

To obtain the LAP, the procedure must be modified 
such that the images move towards the minimum of the 
action [62] which amounts to replacing the standard gra­
dient of the PES with the gradient of the action

9, = (8)

with respect to the image qt. With this prescription, the 
images will settle to the LAP in the collective space.

While the NEB method will, by design, drive the line 
of images towards either the MEP or LAP, the itera­
tive scheme chosen greatly impacts the total number of 
iterations required before the solution converges. In the 
early implementations, a simple velocity Verlet algorithm 
[63] was used to adjust the position of the images step 
to step [31-35]. This approach is robust and relatively 
stable, though the convergence can be slow for flatter sur­
faces where the images are not pulled strongly to their 
optimal positions. To aid this process, the Fast Inertial 
Relaxation Engine (FIRE) was proposed [64] to acceler­
ate convergence without sacrificing stability. The method

was subsequently updated [65] to further improve perfor­
mance. Indeed, in our tests, the inertial algorithm reg­
ularly outperforms the velocity Verlet algorithm by an- 
order-of-magnitude reduction in iterations at the same 
convergence criteria.

With this, our implementation of the NEB approach is 
defined. The algorithm itself is outlined in Algorithm 1 in 
SM [60]. The force used in the optimization step for each 
image, F°pt, is constructed by adding the perpendicular 
component of the action gradient to the spring force F\ 
between the images,

Fi = &(l<Zi+l ™~ Qi\ - \<li - Qi-l\)Ti: (9)

where k is a tunable parameter that controls the strength 
of the spring force and t* is the unit vector tangent to 
the line of images from image i — 1 to image i + 1. The 
spring force on the endpoints is defined differently:

F\ = k\q2 — <7i |, = k\qN — qN_1\. (10)
The total force acting on the interior images is then

p°pt _ pk
(11)

The NEB approach is illustrated in Fig. 2 for the case 
of bimodal tunneling from the g.s. minimum to the OTL 
on an analytic PES defined by:

V(g) = 3.17 + - 3e"^+^)

--(3x + y), (12)

where q = (x, y). The inset shows the forces on the 
images of the NEB grey path, which has not converged 
yet to the black path. The spring force F\ keeps the 
images from drifting too much from each other, while 
the perpendicular part of the action gradient gf- pushes 
them towards the nearest stationary action path. This 
example shows that the NEB algorithm, depending on 
the initial locations of the images, will converge to a local 
stationary path, not necessarily the least action path.

For the endpoint, i = N, one can choose to either fix 
the position of the image or to allow the image to move 
towards the outer turning surface. In the second case, a 
harmonic restraint term is added to the spring force to 
construct

-#19)-#) (13)

where f = —W/|W| and g determines the strength 
of the harmonic restraint term [62]. This force pulls the 
endpoint i = N very quickly to the outer turning surface 
and helps find the optimal outer turning point.

The default iteration scheme used in our implementa­
tion is the inertial algorithm mentioned above, though a 
standard Verlet minimizer is also included in the PyNEB 
python package [61]. The structure of the NEB solver is 
modular and allows for the simple replacement of compo­
nents like the minimizer, allowing for easy checks on the 
convergence and parameters that describe the iterative 
scheme.
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III.2. Grid-Based Methods

Some traditional methods to compute the LAP begin 
by computing the PES and the collective inertia on a 
grid of collective coordinates. The calculation of the 
LAP is then reduced to finding the path through the 
grid points that minimizes a discrete approximation of 
the action. Two methods that we have benchmarked 
are the dynamic programming method (DPM) [15], and 
Dijkstra’s algorithm (DA) [66]. Here, both will be de­
scribed for two-dimensional (2D) grid, with points la­
belled by q{j = (xi,yj) (i = j = 1.........\l .
Both methods can be straightforwardly extended to a 
higher-dimensional grid.

Dynamic programming is a general mathematical tech­
nique for solving multi-decision problems by breaking the 
problem down into simpler overlapping sub-problems. It 
was first adapted to the action integral minimization in 
Ref. [15] and used in [17] to determine the LAP. This 
adaptation is what we refer to as the DPM.

The DPM approximates the LAP between an initial 
point, qin, and a final point, qfin. This method finds 
paths that traverse diagonally from a given cell: from cell
qtj, only cells qi+can be reached, for j = 1.........\l.
The allowed cells are highlighted in red in Fig. 3. The 
LAP from qin to qfin is constructed iteratively as follows: 
for a cell q^, there are M possible paths, each passing 
through a cell at ay_ i. The LAP from qin to q,t is se­
lected and stored in memory. This is repeated for every 
cell with x = Xi, for a total of M possible paths. Once 
<jrfin is reached, there are only MN paths (out of a total 
of MN paths), and the LAP is selected from these. The 
DPM algorithm is detailed in Algorithm 2 in SM [60].

Dijkstra’s method [66] is similar to DPM, in that it 
breaks down the large optimization problem into a set 
of smaller problems. Given a cell q^, the action to ev­
ery neighbor qVy is calculated as if the path to qVy 
passes through q^. If this action integral is smaller than 
that along the current path to qVy, qv.y is said to come 
from q{j. This is repeated, starting from qin, until qfin 
is reached. Figure 3 shows the nearest-neighbors of q^ 
(the cell marked in green) in a blue square. Dijkstra’s 
algorithm is described in Algorithm 3 in the SM [60].

Dijkstra’s algorithm can find paths that pass through 
multiple cells with the same xi value, or even paths that 
backtrack. DPM cannot find such paths. However, DPM 
can find paths that jump from qtJ to qi+1j,, for any /, 
while Dijkstra’s algorithm is limited to j' = j — 1, j, j + 1 
(see Fig. 3). For fission calculations, one frequently takes 
the x coordinate as the quadrupole moment Q20, and 
fission can be viewed as collective motion in which Q20 

continuously increases towards scission. So, the paths 
that Dijkstra’s algorithm can find, that DPM cannot, are 
rather unlikely. In general DPM tends to find paths with 
a smaller action than Dijkstra’s algorithm, see Sec. IV.

M
Qfin

3

FIG. 3. Different types of paths that can be found in the 
different grid-based methods. The single node can reach 
the red (blue) regions in DPM (Dijkstra’s algorithm). The 
initial and final points are marked.

III.3. Euler Lagrange Equations

In order to find the LAP for the functional (4) using 
the EL equations [67], we first parametrize the trajectory 
q by a time variable t, i.e., q = q(t) with t G [0, f/]. This 
is done in order to explicitly account for the arclength 
ds = (^dqf)1/2. In terms of t, the action integral (4) 
reads:

g(T) =
rtf ,---------------------  , n v 1 /2

J y2(Vrfr[<?(*)] -e0)(^2MiikftolcMjj dt

£(q, q)dt,

(14)

where % = dqt/dt, and £ is the corresponding La- 
grangian. The associated EL equation can be written 
aa:

d£ _ d / d£\
dqi dt X dqi J ’

(15)

with the boundary conditions: q(t = 0) = qin (the initial 
location) and q(t = tf) = qfin (the final location).

In order to numerically solve Eq. (15) we use the shoot­
ing method [68]. That is, we start at the initial position 
qin and vary the direction and orientation of the initial 
“velocity” q(t = 0). We use a numerical differential equa­
tion solver to propagate the solution until we find an 
initial condition that satisfies q(tf) = qfin. Finding such
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initial conditions can present some challenges, which we 
discuss in the SM [60].

The EL approach is equivalent to what is done in 
Ref. [24] where the eikonal equation is solved by the 
method of characteristics. Each different trajectory ob­
tained by varying q(t = 0) corresponds to one of the 
characteristics of the leading order (cf. Eqs.(2.8) and 
(4.3) of [24]). It is worth noting that if the imaginary 
part of the phase of the wave function W(q) is negligi­
ble, as is the case of the motion in the deep subbarrier 
region, then the eikonal equation for W is a valid ap­
proximation [12]. The trajectories corresponding to the 
stationary functional (4) are equivalent to the solutions 
of the eikonal equation for W (see Eqs. (11) and (13) of 
[12]). A connection between the eikonal equation, the 
dynamic programming approach, and a variational prin­
ciple in the context of geometrical optics is discussed in 
Ref. [69].

IV. Results

IV. 1. Analytic surfaces: Illustrative examples

We benchmark the performance of the NEB method by 
comparing the LAP found using NEB (denoted as NEB- 
LAP) to the paths found using the DPM, DA, and EL 
approaches for analytic surfaces defined in terms of the 
position vector q = (x,y). Throughout this section, we 
assume a constant inertia Mij = Ay - Within the NEB 
framework, the action functional (4) can develop some 
noise as the NEB algorithm approaches the final action. 
This noise is a function of the NEB hyperparameters and 
the optimization method used. All surfaces discussed in 
this section are released as example cases with PyNEB 
[61].

In the analytic cases, the NEB is initialized by fixing 
an initial and final points qin and qfln, respectively, and 
defining a linear trajectory connecting them. The NEB 
algorithm is then iterated until convergence is reached. 
Grid-based methods use a grid spacing of Ax = 0.1 along 
the x-axis and Ay = 0.005 along the y-axis for all ana­
lytic surfaces. Details of the numerical methods used for 
solving the EL equations for all surfaces are discussed 
in SM [60]. The action values for each surface consid­
ered are included in Table I. Action integrals in Table I 
are evaluated using linearly interpolated trajectories over 
500 uniformly-distributed points.

We compute both LAP and MEP in the NEB frame­
work. Since the MEP is a solution of Eq. (7), images 
along the path converge to critical points on the surface 
depending on the position of the boundary images at qin 
and qfln. Critical points on the surface V(q) contained 
in the MEP can be extracted by calculating Vb along 
the path and are classified by computing the eigenvalues 
of the Hessian at those points.

First, we consider the symmetric 6-Camel Back poten-

TABLE I. Action integrals for the 6-Camel-Back (CB-S and 
CB-A) and Muller-Brown (MB) surfaces. The integrals have 
been calculated using a linear spline interpolation evaluated 
at 500 points along each trajectory.

NEB-MEP NEB-LAP DPM EL DA
CB-S 5.522 5.518 5.524 5.536 5.563
CB-A 6.793 6.404 6.405 6.407 6.886
MB 28.491 22.875 22.909 22.871 23.427

FIG. 4. The symmetric camel-back PES VcB-s(q) normal­
ized to its global minimum together with the calculated NEB- 
MEP (red), NEB-LAP (magenta), DPM (black), EL (cyan), 
and DA (lime) trajectories. Black stars indicate saddle points 
and yellow crosses mark local minima.

tial (CB-S) [45] defined as

^CB-s(g) = (4-2.1^ + ^T^)^+Tt/+4(^-l)^ (16)

In this example, we seek the LAP connecting the local 
minimum located at qin = (1.70, —0.79) to the local min­
imum located at qfln = (-1.70, 0.79). Figure 4 shows the 
CB-S PES normalized to zero at its global minimum to­
gether with the calculated NEB-MEP, NEB-LAP, DPM, 
EL, and DA trajectories. The action integrals along these 
trajectories are listed in Table I. The MEP and the LAPs 
computed by using the NEB, EL, DPM, and DA methods 
are very similar. However, the DA trajectory slightly de­
viates from the other ones. This is because DA is more 
constrained by the grid spacing than DPM: regardless 
of the grid spacing, DA can only consider its immediate 
neighbors, while DPM does not have this constraint (see 
Fig. 3 and III.2).

As indicated by Fig. 4, the final action values for the 
LAP obtained by the NEB, DPM, and EL methods agree 
well with the MEP. However, the MEP and LAP are not 
necessarily equivalent in general; the MEP can be viewed 
as an approximation of the LAP. A detailed discussion on 
the conditions for the MEP to be an LAP is contained in
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FIG. 5. Similar as in Fig. 4 but for the asymmetric camel- 
back surface Vcb-a(<7). For the video illustrating the NEB 
determination of both LAP and MEP, see the SM [60].

the SM [60]. To see the MEP limitations, we consider an 
asymmetric variant of the Camel-Back potential (CB-A)

Vcb-a(<z) = VcB-s(q) + —y (17)

where the end points of the local minima are qin = 
(1.70, -0.8) and qfln = (-1.70,0.76). Figure 5 shows 
the MEP trajectory which is markedly different from the 
LAP solutions and corresponds to an appreciably larger 
action integral. Still, the MEP can be used for finding 
critical points (minima and saddles) on the surface.

The Muller-Brown potential is a canonical example of 
a PES used in theoretical chemistry [62, 70, 71]. The 
Muller-Brown surface shown in Fig. 6 is defined as

4
Vmb(<Z) = )2 + f>i(x-x0i)(y-y0i ) + Cj(y-y0i )2 ,

i= 1
(18)

where we use the same set of parameters as in 
Ref. [70], namely: A = (-200,-100,-170,15),
a = ( —1, —1, —6.5,0.7), b = (0,0,11,0.6), c =
( — 10,—10,—6.5,0.7), Xq = (1,0, —0.5, —1), and y0 = 
(0,0.5,1.5,1). The MEP follows the bent trajectory that 
goes through the critical points: two saddle points and 
one local minimum. This trajectory markedly differs 
from the LAPs, which are in a rough agreement. The 
MB surface highlights a problem with the DPM. As men­
tioned in Sec. Ill, the DPM can only search a single di­
rection of each coordinate axis of the domain. In the case 
of the Muller-Brown surface, the DPM cannot search for 
trajectories bending back in the negative-x direction. As 
seen in the inset of Fig. 4, the NEB, EL, and DA meth­
ods start their trajectories moving backwards in x from 
the initial point qin. The DPM path, on the other hand, 
always moves in the positive-x direction. Consequently,

FIG. 6. Similar as in Fig. 4 but for the shifted Muller-Brown 
surface. The inset shows the LAP pathways close to the initial 
point qin. The yellow dashed line shows the vertical. As can 
be seen, all paths except for the DPM curve start by moving 
to the left of the vertical.

the action integral along the DPM path is slightly larger 
than in the other methods.

IV.2. Realistic calculations

To illustrate the performance of the NEB method and 
other approaches to the LAP in realistic cases, we car­
ried out nuclear EDF calculations for 232 U in two collec­
tive coordinates and 240Pu in three collective coordinates. 
In the particle-hole channel we used the Skyrme func­
tional SkM* [72], which is often employed in fission stud­
ies. The particle-particle interaction was approximated 
by the mixed density-dependent pairing force [73].

In the case of 232U, we considered two collective co­
ordinates q = (Q20, Qso) and for 240Pu we took three 
collective coordinates q = (Q20, Q30, A2). The axial 
quadrupole and octupole moment operators are defined 
as in Ref. [74]:

Qxo(r,0) = Af\^—^—rxPx(cos6) (19)

where is the Legendre polynomial, AA = sj, and 
A"3 = 1. The collective coordinate A2 = A2n + A2p defined 
in Sec. II represents the dynamic pairing fluctuations. 
The value of A2t= 0 corresponds to static HFB pairing.

As in Ref. [18], to render collective coordinates dimen­
sionless, we use dimensionless coordinates x* defined as

Xi = y—, (20)

where are the scale parameters used in determining 
numerical derivatives of density matrices in Eq. (2). Here 
we took SQ20 = 1 b, SQso = 1 b3/2 and <5A2 = 0.01 MeV.
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Tiuo dimensional case: SF of 232 U

The PES was computed by solving the HFB equations 
using the parallel axial solver HFBTHO(v3.00)[75]. The 
large stretched harmonic oscillator basis of N = 25 ma­
jor shells was used to guarantee good convergence. We 
adopted a 458 x 501 grid with 0 < Q20 < 457 b and 
0 < Qsq < 50 b3/2. To apply the NEB method, which 
involves local gradient calculations at arbitrary values 
q, we interpolate the PES and the inertia tensor on the 
mesh. Because the grid is two dimensional, a cubic spline 
interpolator suffices. Close to the Q30 = 0 axis, we take 
into account the mirror symmetry of the PES by setting 
V(—Q30) = V(Q30). Finally, since NEB updates oc­
casionally push an image outside of the computed PES 
mesh, we extended the PES to grow exponentially with 
the distance outside the mesh, to smoothly push images 
back into the evaluated region.

24
21
18
15
12
9
6
3
0

Q20 (b)

FIG. 7. The PES of 232U in the (Q20, Qso) plane calculated 
with SkM*. Solid lines mark the LAPs and MEP obtained 
with the constant inertia tensor; dotted lines correspond to 
the non-perturbative inertia tensor. The OTL is shown in 
white. The blue, orange, purple and black curves represent 
the LAPs calculated using the NEB, DPM, EL, and DA meth­
ods, respectively. The green curve is the MEP, which was also 
calculated using NEB.

Figure 7 shows the two-dimensional PES of 232U. The 
least action fission pathway which goes from the g.s. at 
qin=(24b, 0) to the exit point qfln=(281b, 37b3/2) is 
calculated using the methods explained in Sec. III. To 
select the endpoint qfln, we compute the LAP using DPM 
for all points on the OTL, and select the point with the 
lowest action integral. This point is then used as the 
exit point for the other methods. While NEB does not 
require a fixed endpoint in general, we fix the endpoint 
here in order to facilitate inter-method comparison. The 
MEP path is calculated using the NEB method.

The action integral computed with different methods

is shown in Table II. When computing the action, we 
interpolate the paths using a linear spline interpolator, 
and the action integral is computed using 500 evaluations 
along the path. This reduces the differences in the action 
that may arise from using a different number of points 
along the path (for instance, NEB gives a similar path to 
DPM using as few as 30 images). For all paths, we com­
pute the action using the inertia tensor evaluated along 
the path. As can be seen, the action values computed 
for 232U using different methods agree well, with DA be­
ing the worst performer. As seen in Fig. 7 and Table II 
the MEP is very close to the LAP. This is because the 
static fission pathway (i.e., MEP) is fairly straight and 
the fission valley is well delineated. Note that perfect 
agreement is not expected, and in fact was not observed 
for the analytic surfaces, either. This is due in part to 
the different approximations used in each method — for 
DPM and DA, this is the grid spacing; for NEB, this 
is the number of images and approximate treatment of 
derivatives; and for EL, this is a variety of simplifications 
described in Sec. 3 in the SM [60]. Additional variation 
in the quality of the interpolator further hampers agree­
ment beyond what is listed.

TABLE II. Action integrals for 232LT computed with different 
methods. The paths computed using the constant and non-
perturbative inertia tensor 
respectively.

are labelled as "con.” and “n.-p.”,

NEB-MEP NEB-LAP DPM EL DA
232-q COD.

n.-p.
174.5 174.2

173.6
174.2
173.3

174.9
175.0

175.8
178.5

240pu con. 
n.-p.

19.09 18.98
16.54

19.21
16.47

19.01
18.18

22.85
30.50

Three dimensional case: SF of 240Pu

The SF of 240Pu in several collective coordinates was 
studied in Ref. [18] where the details pertaining to the 
computation, grid size, etc., can be found. Between the 
g.s. minimum and the fission isomer (FI), the fission 
pathway is affected by triaxial degrees of freedom. Be­
tween the FI and the outer turning surface (OTS), how­
ever, the predicted fission trajectory is axial. In this pa­
per, we consider the fission of the FI of 240Pu so the OTS 
corresponds to the FI energy.

For three-dimensional tunneling, the system of equa­
tions that must be solved to construct a global spline in­
terpolator is too large for practical applications. Instead, 
we use piecewise linear interpolation. The PES at Ao = 0 
for 240Pu shown in Fig. 8 varies very smoothly in the bar­
rier region where the potential energy is larger than the 
energy of the FI, and so this interpolation scheme is rea­
sonable.
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FIG. 8. The PES for 240Pu in the space of collective coor­
dinates Q20, Q30 with A2 = 0. Only the region beyond the 
fission isomer is shown. The energy is normalized to the en­
ergy of the fission isomer. The OTL is shown in white. The 
MEP (green) practically coincides with the LAPs calculated 
with the constant inertia using the NEB (blue), DPM (or­
ange), and EL (purple) methods.

FIG. 9. The PES for 240Pu in the collective coordinates Q20, 
Q30 and A2. The 2D cross section at A2 = 0 shown in Fig. 8 is 
indicated. The blue, orange, and purple curves are the LAP, 
calculated using the NEB, DPM, and EL methods, respec­
tively. The non-perturbative inertia tensor was used for the 
dashed curves. The OTS is indicated by the dark blue contour 
surface.

Figure 9 shows the LAPs for 240Pu computed with 
the NEB, DPM, and EL methods in three dimensions 
(3D). The pathways begin at the FI minimum at 
Qin = (Q20 = 87b,Qg0 = Ob3/2,A2 = 0.0) and the 
exit point was chosen for DP in the same way as the 
232U results before. The NEB endpoint in this case was 
allowed to vary according to Eq. 13, better representing 
standard procedure for production runs. The exit points 
<7fln predicted by NEB (185.1 b, 18.4 b3/2,3.3 MeV), 
DPM (184.0b, 18.6b3/3,4.8MeV) and EL 
(179.8b, 17.7b3/2,0.0) then differ. When the col­
lective mass is held constant, all methods find very 
similar paths in the A2 = 0.0 plane, which are also 
shown in Fig. 8. The paths vary more when the 
non-perturbative inertia tensor is used, with the main 
difference between the NEB and DPM paths appearing 
in the region close to the FI minimum; beyond the 
saddle point, both paths are similar.

As seen in Table II, the NEB and DPM are in a good 
agreement. In general, one would expect a better perfor­
mance from NEB as this method is not constrained to a 
grid (this is true in the case of the analytic surfaces dis­
cussed in Sec. IV.l). However, in rare cases, the DPM 
produces a slightly lower action than the NEB. In such 
cases the NEB converges to an even lower action if is 
initialized with the DPM result. This suggests that for 
tunneling in more than 2D, a combination of NEB and 
DPM might be beneficial.

V. Conclusions

Finding the path that minimizes the action integral can 
be extremely challenging since it involves searching over 
the space of all continuous paths that fulfill the boundary 
conditions. Each method explored in this paper simpli­
fies such task in different ways. DPM and DA project 
the PES onto a finite grid and explore decisions in mak­
ing the path between the boundary conditions. In the 
EL approach the surface is modified in several ways to 
smooth the relation between initial conditions and the 
end point of the trajectory. The NEB method reduces 
the original search over continuous path into considering 
only piece-wise linear paths, the number of pieces given 
by the number of images. It is this simplification that 
makes the NEB robust and accurate, since the total ac­
tion now becomes a smooth function of the position of 
the images, a function that can straightforwardly be nu­
merically minimized by gradient descent methods.

A significant advantage of the NEB is that it can ac­
commodate any initial positions of the images, which 
speeds the convergence appreciably if a good prior guess 
of the LAP is provided. Other methods lack for such 
incorporation of prior knowledge. Finally, the resolution 
of the NEB for a rapidly varying surface can be adjusted 
locally by increasing the amount of images or spring con­
stants, while for DPM and DA the entire grid resolution 
would have to be increased, giving an appreciable toll on 
the computational cost.

For both analytic and realistic potential energy sur­
faces the NEB robustly produces a LAP. In the cases 
studied, NEB outperforms the EL and DA methods, and
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produces close results to those of the DPM with usually 
lower action integral. For many-dimensional tunneling, 
initiating the NEB method from the DPM path might be 
a winning strategy.

A huge advantage of the NEB over other methods is 
that it can efficiently and accurately estimate exit points. 
By exploring different initial conditions for the positions 
of the images which lead to distinct exit points, one can 
use the NEB method to study the phenomenon of mul­
timodal fission. An example of such an application is 
shown in video 1 in the SM [60]. Whilst other methods 
can find a least-action trajectory for an arbitrary final 
point placed on the OTL, as done, e.g., in Refs. [17-23], 
they cannot guarantee that this trajectory is stationary. 
All such trajectories can be gradually transformed into a 
stationary pathway by moving the final point along the 
OTL towards the exit point, see Fig. 2.

In this paper we also explored the minimum-energy (or 
static) path. We adjusted our NEB algorithm to gener­
ate MEPs, including the determination of local minima 
and saddle points. The necessary conditions for an MEP 
to also be an LAP are discussed in the SM [60]. Video 2 
in the SM [60] illustrates the way the NEB method gen­
erates LAP and MEP.

An important contribution of this work is providing 
a beta release of the PyNEB package, a python suite 
of codes that implement the NEB algorithm described 
in this paper. The package can be found in [61] to­
gether with the respective documentation and code sam­
ples serving as a tutorial for its use. A comprehensive 
investigation into the intricacies of the numerical imple­
mentations and performance of the package itself will ac­
company the version 1.0 release.

The NEB approach can be readily paired with accel­
erated DFT calculations, such as the recent applications 
of Gaussian process regression to PES emulation [71, 76]. 
In these works, a Gaussian process is used to emulate the 
PES and DFT calculations are only run if the Gaussian 
process is uncertain as to the actual PES value. As NEB 
is not a grid-based method, it can sensibly be paired with 
a Gaussian process emulator that is updated as necessary 
while NEB runs. In this way, the LAP can be deter­
mined using far fewer DFT evaluations than is necessary 
in DPM.

The ability to determine the exit points is essential for 
determining fission fragment yields [50, 51]. The min­
imum action provides information on SF half-lives. In 
this context, the NEB method described in this paper is 
expected to speed up the global calculations of nuclear 
fission for r-process simulations and studies of superheavy 
nuclei stability.
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