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Biocompatible molecules with electronic functionality provide a promising substrate for biocompat-
ible electronic devices and electronic interfacing with biological systems. Synthetic oligopeptides
composed of an aromatic π-core flanked by oligopeptide wings are a class of molecules that can
self-assemble in aqueous environments into supramolecular nanoaggregates with emergent optical
and electronic activity. We present an integrated computational-experimental pipeline employing
all-atom molecular dynamics simulations and experimental UV-visible spectroscopy within an active
learning workflow using deep representational learning and multi-objective and multi-fidelity Bayesian
optimization to design π-conjugated peptides programmed to self-assemble into elongated pseudo-
1D nanoaggregates with a high degree of H-type co-facial stacking of the π-cores. We consider as
our design space the 694,982 unique π-conjugated peptides comprising a quaterthiophene π-core
flanked by symmetric oligopeptide wings up to five amino acids in length. After sampling only 1181
molecules (∼0.17% of the design space) by computation and 28 (∼0.004%) by experiment, we iden-
tify and experimentally validate a diversity of previously unknown high-performing molecules and
extract interpretable design rules linking peptide sequence to emergent supramolecular structure and
properties.

1 Introduction
Self-assembling π-conjugated peptides containing a π-core
flanked by peptide wings represent a highly tailorable molec-
ular building block for the bottom-up self-assembly of biocom-
patible supramolecular networks capable of long-range charge
transport1–12. Specific peptide sequences can promote secondary
structures within the multi-molecular assemblies akin to beta
sheets and guide the quadrupolar association of the π-cores into
π-stacked nanostructures with long-range electronic delocaliza-
tion. Wielding control over the molecular self-assembly of these
nanomaterials to tailor the emergent structural, optical, and elec-
tronic properties can enable their functional applications as bio-
compatible, peptide-based field-effect transistors, photoconduc-
tors, or solar cells2,4,7,13. The availability of 20 distinct nat-
ural amino acids and various π-cores make these systems ex-
tremely tunable and versatile in their optical and electronic prop-
erties14–16. For example, we have previously tuned the steric vol-
ume of amino acids directly adjacent to the π-core to engineer
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tighter or looser packing of the assemblies15,17 and controlled
the supramolecular chirality of the nanoaggregates by modulat-
ing the length of an alkyl spacer between the peptide wings and
the π-core18. However, most of these materials have been devel-
oped by serendipity, intuition, or minor iterative modifications of
existing molecules. Systematic data-driven screening approaches
present the potential for much deeper and more efficient explo-
ration of sequence space and the discovery of molecules with su-
perior structural and functional properties.

The primary goal of the present work is to discover members
of the Xn-quaterthiophene-Xn (Xn-4T-Xn) family of π-conjugated
peptides capable of self-assembling into pseudo-1D nanoaggre-
gates with in-register stacking of the quaterthiophene π-cores
guided by the Xn peptide wings containing n=1-5 amino acids.
Overlap of the π-cores is a structural prerequisite to supramolec-
ular π electron delocalization and the emergence of charge trans-
port functionality. We chose to explore the quaterthiophene π-
core due to its demonstrated applications in organic electronic
field-effect transistors and photovoltaics19,20 and also our pre-
vious measurements of high charge mobilities in oligopeptide-
quaterthiophene conjugates14. The peptide wing containing
n=1-5 amino acids is denoted as Xn, where each X is one of
the 20 natural amino acids. We limit the wing length to a maxi-
mum of five residues in order to simplify synthetic manipulation.
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We place two additional design constraints on the peptide wings.
First, we require the oligopeptides to be head-to-tail invariant
such that they are chemically symmetric about the quaterthio-
phene core: one peptide wing is mirror symmetric to the other
and each molecule possesses two C-termini. This symmetry im-
poses parity between the left and right sides of the molecular
building blocks to promote the formation of linear supramolec-
ular aggregates. Second, we require that the Xn sequence contain
at least one acidic residue (i.e., Asp, Glu) and no basic residues
(i.e., Arg, His, Lys). The acidic side-chains together with the two
carboxyl C-termini allows us to wield pH control of the oligopep-
tide protonation state such that they possess a formal negative
charge of at least (-4)e at high pH and are formally charge neu-
tral at low pH. It has been previously shown through molecular
modeling calculations and fluorescence correlation spectroscopy
that intermolecular Coulombic repulsion and enhanced molecu-
lar solvation at high pH disfavors assembly and maintains the sys-
tem as a mixture of monomers and small oligomers21. Acidifica-
tion protonates the ionizable groups to eliminate the Coulombic
repulsion and serves as a trigger for large-scale supramolecular
assembly. Under these two constraints, the Xn-4T-Xn family com-
prises 694,982 unique molecules possessing oligopeptide wings
containing between n=1-5 amino acids. The design challenge is
to discover the members of this design space that self-assemble
into the most highly ordered linear nanoaggregates.

The large volume of sequence space means that no more than
a tiny fraction of molecular candidates can be experimentally ex-
plored due to the time and labor costs associated with oligopep-
tide synthesis and assays. Edisonian trial-and-improvement ex-
perimental search is therefore highly inefficient and limited.
Chemical intuition can help focus the search, but prior knowl-
edge is restricted to a small number of previously studied candi-
dates and also introduces human bias that can impede the discov-
ery of high-performing, non-intuitive solutions. Computational
modeling presents a means to conduct high throughput in sil-
ico screening of molecular space. For example, Frederix et al.
identified design rules for the assembly of tripeptide sequences
by exhaustively simulating all possible amino acid combinations
using coarse grained molecular dynamics simulation22. For more
complicated molecules and larger molecular search spaces, ex-
haustive enumeration becomes intractable and it is profitable to
combine computational screening with data-driven modeling and
active learning. The essence of this approach is to train on-the-fly
sequence-property relationships over all computational screening
data collected to date and use these models to guide subsequent
rounds of the computational screen within a virtuous feedback
loop23–27. For example, Li et al. used machine learning algo-
rithms such as random forests, gradient boosting, and logistic
regression to predict the assembly and formation of hydrogels
from possible peptidic precursors28. Nagasawa et al. employed
artificial neural networks and random forests for the discovery
of conjugated polymers for organic photovoltaic applications29.
In the context of π-conjugated peptides, we previously combined
coarse-grained molecular simulation with deep representational
learning and Bayesian optimization to identify molecules pre-
dicted to exhibit superior assembly into pseudo-1D linear aggre-

gates30 and we recently synthesized and tested perylene dimide
based peptide-π conjugated materials based on quantitative struc-
ture property relation models trained over molecular simulation
data17,31.

A deficiency of data-driven virtual screening is the weak cou-
pling between computation and experiment. High-throughput
virtual screening using computation is used as an initial coarse
filtration of the design space that identifies a manageably small
number of candidates for synthesis and testing in a subsequent
low-throughput experimental screen32,33. The serial nature of
this process means that there is no provision to incorporate ex-
perimental feedback into the data-driven search of the design
space. This is a lost opportunity since the experimental data can
serve as a source of high-quality information to better guide the
search and correct for approximations and uncertainties inherent
in the computational models. A hybrid data-driven search com-
prising parallel computational and experimental screens has the
potential to offer the best of both worlds – high-throughput ap-
proximate computation to achieve broad coverage of the design
space and low-throughput experimentation directed towards the
most promising candidates. The enabling component of such a
procedure is a data-driven model capable of constructing on-the-
fly sequence-property relationships from experimental and com-
putational screens that operate asynchronously and in parallel
and measure/predict different properties of the molecular sys-
tem. The trained model is then used within an active learning
paradigm to select the most promising molecules for subsequent
rounds of computational and experimental screening.

In this work, we develop and deploy a hybrid computa-
tional/experimental active learning approach for the data-driven
design of Xn-4T-Xn π-conjugated oligopeptides capable of self-
assembling into pseudo-1D linear aggregates. We perform high-
throughput computational screening using all-atom molecular dy-
namics simulations that predict the structural morphology of the
self-assembled oligopeptide nanoaggregates. We conduct low-
throughput experimental oligopeptide synthesis and characterize
their assembly using UV-visible spectroscopy. We integrate the
computational and experimental screening results to construct
on-the-fly sequence-property models that performs asynchronous
on-demand selection of the next batch of samples for compu-
tational or experimental screening. After sampling only 1181
(∼0.17%) of the 694,982 molecules in the design space by com-
putation and only 28 (∼0.004%) by experiment, we discover and
experimentally validate a diversity of previously unknown high-
performing oligopeptides capable of spontaneously assembling
supramolecular aggregates with a high degree of H-type character
and extract interpretable design rules linking peptide sequence to
emergent supramolecular structure and properties.

2 Methods
In this section, we first present a high-level overview of the hybrid
computational/experimental active learning workflow schemati-
cally illustrated in Fig. 1. We then present the methodological
details of each component. For the interested reader, a more com-
prehensive explication of the theoretical underpinnings of these
techniques, discussion of their numerical implementation, and
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the codes used to conduct this work are provided in the ESI†:
Supporting Methods34.

2.1 Overview

We operate a high-throughput computational screening loop to
perform all-atom molecular dynamics (MD) simulations to pre-
dict the structural morphology of the self-assembled nanoaggre-
gates produced by particular Xn-4T-Xn sequences. The results of
the computational screen are used to fit two surrogate sequence-
property models relating oligopeptide sequence to the radius of
gyration Rg and number of intermolecular contacts κ within the
structure. The computational loop seeks to simultaneously max-
imize κ and Rg to produce pseudo-1D nanoaggregates with in-
register π-stacking. We do not a priori know the appropriate
relative weights of κ and Rg and so adopt an a posteriori opti-
mization strategy in which we map out the family of Pareto opti-
mal solutions populating the κ-Rg Pareto frontier36. We construct
the sequence-property models over a low-dimensional embedding
of the molecular design space extracted using regularized au-
toencoders37 (RAE) and fit the models using Gaussian process
regression38 (GPR). The GPR predictions are passed to multi-
dimensional Bayesian optimization39,40 (BO) routines to select
the next most promising molecules to simulate for the computa-
tional screen.

We simultaneously operate a low-throughput experimental
screening loop. In this loop, we synthesize Xn-4T-Xn oligopeptides
and characterize their assembly by the blue-shift λ in the mode
of the UV-visible spectrogram between the unassembled (high-
pH) and assembled (low-pH) states as a quantitative measure
of the degree of H-type (i.e., co-facial) aggregation. Again we
construct a surrogate sequence-property model relating oligopep-
tide sequence to the spectral shift where we use the same low-
dimensional embedding furnished by the RAE. Importantly, the
regression model we use to fit this relationship is a multi-fidelity
GPR (mfGPR)41 that we train over both the experimental mea-
surements and the computational predictions. Despite measuring
different observables of the molecular system – κ and Rg vs. λ –
the mfGPR can make use of the voluminous computational pre-
dictions to supplement the scarce experimental measurements to
furnish a higher accuracy sequence-property model for the spec-
tral shifts than would be possible using the experimental data
alone. The computational and experimental screening loops op-
erate asynchronously and in parallel and the data-driven GPR
models are continually updated with each new batch of screen-
ing data.

The goal of the hybrid computational/experimental screen-
ing process is to discover and experimentally validate Xn-4T-Xn

molecules with unprecedentedly large values of λ indicative of
exceptional in-register π-stacking and H-type character that is
a prerequisite for supramolecular electronic delocalization and
emergent optical and electronic functionality.

2.2 All-atom molecular dynamics simulations

All-atom molecular dynamics simulations of Xn-4T-Xn molecules
were conducted using the GROMACS 2019.2 simulation suite42.

Simulations were initialized in the unassembled state by ran-
domly placing 24 Xn-4T-Xn molecules within a 10×10×10 nm3

simulation box with three-dimensional periodic boundary condi-
tions and then solvating the system with TIP3P water43. Pep-
tides were modeled in the electrically neutral state correspond-
ing to low-pH conditions and treated with the AMBER99SB-ILDN
forcefield44. The system was relaxed to T = 300 K and P =
1 bar by steepest descent energy minimization, NVT equilibra-
tion45 and NPT46 equilibration. We subsequently conducted 200
ns NPT production runs to observe the spontaneous assembly of
supramolecular nanoaggregates. Production runs were of suffi-
cient duration that structural metrics of nanoaggregate formation
stabilized over the course of the run (Fig. S1 in the ESI†). Simu-
lation snapshots were extracted and saved every 1 ps for analysis.

The fitness of a particular Xn-4T-Xn molecule was defined within
our molecular simulations based on its ability to form pseudo-1D
linear nanoaggregates with in-register stacking of the π-cores. We
quantified this structurally via the average number of contacts per
molecule κ and the radius of gyration Rg

47 of the self-assembled
nanoaggregates averaged over the terminal 50 ns of our produc-
tion runs. An intermolecular contact is defined according to our
previously reported “optical distance” doptical

i, j that measures the
minimum intermolecular distance between any pair of thiophene
rings within the π-cores of molecules i and j 30,48–50. We have
previously shown that adopting a threshold of doptical

i, j < 0.7 nm
by which to define an intermolecular contact assures close prox-
imity and in-register π-stacking between at least one pair of thio-
phene rings30,49–51. Our computational active learning loop ulti-
mately aims to explore the Pareto frontier of molecules and dis-
cover well assembling π-conjugated peptides that possess good
thiophene π-π stacking (i.e., large κ) within high-aspect ratio lin-
ear nanoaggregates (i.e., large Rg). In general, we found max-
imization of either objective function alone was insufficient to
promote in-register stacked pseudo-1D nanoaggregates: high κ

in the absence of high Rg corresponds to globular structures with
promiscuous multi-molecular π-stacking, whereas high Rg in the
absence of high κ corresponds to weakly associated elongated
threads lacking π-core overlaps. As we will show, the hybrid com-
putational/experimental active learning framework learns the ap-
propriate balance between κ and Rg that is most predictive of
high-performing experimental candidates with large values of λ .

2.3 Chemical space embedding

Each Xn-4T-Xn molecule in our design space is differentiated by
the identity of the peptide wing containing between one and five
amino acids. We represent each candidate molecule as a linear
amino acid graph where each node is an amino acid and the
edges reflect their linear connectivity (Fig. S2 in the ESI†). The
molecular design space of 694,982 molecules is large, discrete,
and high-dimensional. It is possible to perform active learning di-
rectly over this space using, for example, kernel models23,52–57,
but superior search efficiencies can be achieved by first project-
ing the molecular design space into a smooth, continuous, low-
dimensional space that is more amenable to the construction of
robust regression models and deployment of optimization algo-

Journal Name, [year], [vol.], 1–15 | 3



Fig. 1 Schematic of the hybrid computational/experimental active learning workflow for the discovery of self-assembling Xn-4T-Xn π-conjugated
peptides. We perform separate computational and experimental active learning loops within a shared low-dimensional latent space embedding of
the molecular design space learned using regularized autoencoders (RAE). Each active learning loop then consists of three parts. (i) Evaluating the
quality of a given molecule k in the Xn-4T-Xn design space by either performing high-throughput all-atom molecular dynamics simulations to measure
the average number of contacts per molecule κ(k) and radius of gyration Rg

(k) of the self-assembled nanoaggregate or low-throughput experimental
synthesis and measurement of the blue-shift λ (k) in the mode of the UV-vis spectrum. (ii) Fitting surrogate models using Gaussian process regression
(GPR) to predict the performance of untested candidates given the accumulated simulation and experimental data collected to date. Two separate
GPRs are maintained for the two computational objectives GPRκ and GPRRg . We build a multi-fidelity GPR (mfGPR) as our experimental surrogate
model GPRλ that also incorporates data from the computational GPRs to improve prediction accuracy beyond what would be possible from the limited
experimental data alone. (iii) Employing Bayesian optimization (BO) to interrogate the GPR model and select the next most promising molecular
candidates for computation as those lying on the κ-Rg Pareto frontier and for experimentation as those with large values of λ . The molecular renderings
in this figure, and throughout the paper, are generated using the Visual Molecular Dynamics (VMD) software 35.

rithms26,30. We learn a bespoke latent space for the Xn-4T-Xn

family using a regularized autoencoder37 (RAE) trained on our
entire molecular design space (Fig. S3 in the ESI†). An RAE
is a deterministic variant of the popular variational autoencoder
(VAE) architecture58 that possesses the potential advantage of en-
abling more expressive flexibility in the data distribution within
the low-dimensional embedding by not assuming or enforcing
a prior (generally Gaussian) distribution over the latent dimen-
sions. We do not perform a training/validation/testing split since
the purpose of our RAE model is to provide a low-dimensional la-
tent space embedding of the complete design space of all 694,982
candidate molecules for downstream active learning, not as a pre-
dictive tool for out-of-sample inference beyond this design space.
As such, we do not use the decoder to generate new candidate
molecules and it is therefore not a disadvantage for our appli-
cations that the latent distribution is not approximately Gaus-
sian distributed, which is generally desirable for efficient gener-
ative sampling. We have previously demonstrated an application
of RAEs in the data-driven design of small drug-like cardiolipin-
selective molecules59. This encoder-decoder architecture consists
of a message passing neural network60,61 encoder and a decoder
performing explicit graph matching to ensure end-to-end invari-
ance of node permutations. The encoder62–64 accepts graphical
representations of the Xn peptide sequences the nodes of which

are featurized by the 553 single amino acid physiochemical prop-
erties contained in the AAindex database and the edges of which
are featurized by the 135 pairwise amino acid contact potentials
and mutation matrices65. The bottleneck layer defining the in-
terface between the trained encoder and decoder contains a non-
linear latent embedding of the molecular design space ξξξ learned
by the encoder that preserves relationships between molecular
candidates and is sufficiently informative for the decoder to ac-
curately reconstruct the molecular graphs (Fig. S4 in the ESI†).
We determine an appropriate dimensionality d=32 for the latent
space using exploratory hyperparameter tuning optimizing the
RAE reconstruction loss66,67. This low-dimensional latent space
defines a smooth and continuous representation ξξξ of the molec-
ular design space over which fit (mf)GPR surrogate models and
conduct BO-enabled active learning.

2.4 Computational active learning

The goal of the computational active learning loop is to drive com-
putational discovery of candidate Xn-4T-Xn molecules that simul-
taneously maximize the average number of contacts per molecule
κ and the radius of gyration Rg of the self-assembled aggregates.
This amounts to searching for molecules residing upon the κ-Rg

Pareto frontier, for which the dual objective functions necessi-
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tate a multi-objective optimization strategy. We seeded the ac-
tive learning screen by conducting MD simulations of 228 initial
candidate molecules. To ensure broad initial sampling of the can-
didate space, we selected 100 molecules as those residing closest
to the centroids of a 100-cluster k-means partitioning of the RAE
latent space. The remaining 128 molecules were hand-selected to
comprise a diversity of peptide wing lengths, residue hydropho-
bicity, aromaticity, polarity, and presence of heteroatoms. We
used the computational predictions of κ and Rg to train two inde-
pendent Gaussian process regression (GPR) surrogate models38

κ̂ = f (ξξξ ) and R̂g = g(ξξξ ) that perform supervised learning of map-
pings from the latent space coordinates to the two structural ob-
servables. The predictions of the two GPRs are passed to a multi-
objective BO routine that seeks to simultaneously maximize κ and
Rg using the method of random scalarizations39,40. The trained
GPRs for κ and Rg are used to construct two independent BO up-
per confidence bound (UCB)68 acquisition functions defining the
relative desirability of each candidate Xn-4T-Xn molecule in max-
imizing each of these two objectives. We then collapse these two
acquisition functions into a single scalarized acquisition function
constructed as a randomly weighted linear sum. The scalarized
acquisition function is then used to perform univariate Bayesian
optimization. A particular random scalarization corresponds to a
particular choice of relative weightings between the two design
objectives and defines a vector within the 2D κ-Rg space along
which to maximize. Under sufficiently many repeated random
scalarizations, the random vectors span the κ-Rg Pareto frontier to
discover a family of Pareto optimal solutions. We perform batched
selection over different random scalarizations and choices of the
UCB hyperparameter balancing the BO exploit-explore tradeoff to
propose 25 new candidate molecules per round. MD simulations
of these 25 molecules are performed and the three part active
learning cycle is iteratively repeated. We assess convergence of
the iterative screen by monitoring the set of Pareto optimal points
that define the κ-Rg Pareto frontier and terminate sampling once
the Pareto frontier ceases to advance with additional rounds of
sampling. We conducted 38 rounds of computational screening
over which we considered 1181 candidate molecules. A full ac-
counting of the molecules identified in each round of the compu-
tational active learning loop is provided in the Data Availability
statement34.

2.5 Experimental active learning

The experimental active learning loop aims to maximize the blue-
shift λ in the mode of the UV-visible spectrogram between the
unassembled (high-pH) and assembled (low-pH) states. The
magnitude of this spectral shift λ has been experimentally shown
to correlate with co-facial H-type assembly that results in forma-
tion of the desired pseudo-1D linear stacks14,69,70. We seeded
the experimental search with a set of 11 molecules hand se-
lected from the 228 molecules comprising the initial computa-
tional round to comprise a diversity of oligopeptide wing lengths
and predicted values of κ and Rg. We note that these 11 ini-
tial molecules originated from the subset of 128 human-selected
molecules from our initial computational round, rather than from

the subset of 100 molecules identified via k-means clustering. We
trained a GPR model λ̂ = h(ξξξ ) to predict the spectral shift λ as
a function of latent space coordinates. In this case we have only
a single objective function λ but we wish to construct a multi-
fidelity surrogate model incorporating both direct experimental
measurements of λ and computational predictions of κ and Rg.
The rationale is that the computational predictions for κ and Rg

should be correlated with and predictive of the experimental mea-
surements of λ . This is expected to be the case since κ and Rg are
structural measures of the degree of in-register π-stacking in elon-
gated nanoaggregates that are prerequisites for H-aggregate char-
acter manifested in measurements of λ . A multi-fidelity model
trained to learn a nonlinear mapping from the low-fidelity compu-
tational predictions to high-fidelity experimental measurements
can take advantage of the abundant computational data to pro-
duce a superior model than that obtained by training over only
the sparse experimental data alone. Indeed, by the terminal
round of experimental active learning, incorporation of compu-
tational screening data within the multi-fidelity paradigm leads
to a ∼27% improvement in the predictive accuracy of our surro-
gate model compared to a single-fidelity model fitted only over
the experimental observations (Fig. S5 in the ESI†). This pre-
dictive improvement highlights the capabilities of our mfGPR to
leverage plentiful low-fidelity data from our computational κ and
Rg metrics to improve our predictive performance for our target
high-fidelity objective in λ . We observe that the flexibility of the
mfGPR framework enables this information transfer even in situ-
ations where the low- and high-fidelity observables are measur-
ing different properties, are only weakly correlated or even anti-
correlated, and where the degree of correlation may change over
the domain71. The only requirement is that the low-fidelity re-
sponse surface is informative of the high-fidelity response surface
and that this relationship can be extracted from the data within
the mfGPR model.

We construct multi-fidelity surrogate models fusing the compu-
tational (low-fidelity) and experimental (high-fidelity) data us-
ing the multi-fidelity Gaussian process regression (mfGPR) for-
malism41. The mfGPR model is then passed to a standard BO
routine39 employing an expected improvement (EI) acquisition
function39,72,73 and the Kringing believer74 batched sampling.
We use the BO to propose a batch of molecules for the next round
of sampling, which we manually down-select to 8-9 molecules
for experimental synthesis and characterization. By incorporating
“human-in-the-loop” curation of the selected molecules we hope
to balance purely data-driven candidate proposal with chemical
intuition and thereby incorporate some degree of prior knowl-
edge and human experience into the search process without, we
hope, imposing too much bias on the search. The success of
this collaborative human-machine paradigm has been previously
demonstrated in the data-driven discovery of molecular organic
light emitting diodes33. The experimental measurements are fed
back into the low-throughput experimental active learning loop
that is executed asynchronously and in parallel with the high-
throughput computational loop. We execute three rounds of ex-
perimental active learning over the course of the 38 rounds of
computational active learning that are executed at computational
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rounds 0, 14, and 22. Given the good performance of the can-
didates studied in the third experimental round together with
the relatively modest advances in the Pareto frontier observed
over computational rounds 23-38, we elected to terminate our
experimental screen after its third round. A full accounting of
the molecules identified in each round of the experimental active
learning loop is provided in Table 1 and have been made available
as detailed in the Data Availability statement34.

2.6 Nonlinear manifold learning of low-dimensional assem-
bly pathways

After completing the hybrid computational/experimental screen
we subjected the ensemble of 1181 molecular simulation trajecto-
ries of Xn-4T-Xn candidate molecules to nonlinear dimensionality
reduction in order to resolve the structural assembly pathways.
In doing so, we sought to gain mechanistic understanding of the
molecular assembly mechanisms differentiating the top perform-
ing molecules identified by our screen. We performed nonlinear
dimensionality reduction using diffusion maps manifold learn-
ing75,76 to project the configurational coordinate space into a
low-dimensional space preserving the leading high-variance col-
lective dynamics of the system30,48,77–80. Diffusion maps take
as an input a pairwise distance matrix measuring the configura-
tional similarity between all 118,100 simulation snapshots har-
vested from the ensemble of 1181 simulation trajectories. We de-
fine these pairwise distances using the smooth overlap of atomic
positions (SOAP) kernel81–84 between the heavy atoms constitut-
ing the 4T π-cores as a distance metric that is naturally invariant
to rotations, translations, and permutations of atoms, and which –
as a π-core-centric metric – can be applied between oligopeptides
with different wing lengths. The influence of the wings is implic-
itly retained through their impact on the configurations adopted
by the π-cores. A density-adaptive variant of diffusion maps85

is then applied to furnish embeddings of the assembly trajecto-
ries into a 2D manifold that exposes the assembly pathways and
mechanisms followed by the various Xn-4T-Xn molecules. We note
that our diffusion maps furnish a low-dimensional embedding of
the configurational coordinate space traversed by our MD simu-
lations, and that this embedding is completely independent of
the low-dimensional embedding of the molecular design space fur-
nished by the RAE that is employed within our active learning
protocol.

2.7 Oligopeptide synthesis

General Information. N,N-Dimethylformamide (DMF) was pur-
chased from Sigma-Aldrich. N-Methyl-2-pyrrolidone (NMP) was
obtained from Advanced ChemTech. Dichloromethane (DCM)
and n-hexane were freshly distilled prior to storage. All solvents
were stored over 4 Å molecular sieves and were subsequently
degassed by sparging with nitrogen gas at least 30 min prior
to use. O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hex-
afluorophosphate (HBTU) was purchased from Oakwood Prod-
ucts Inc. Tetrakis(triphenylphosphine)palladium was obtained
from Strem Chemicals. Wang resin (preloaded with amino acid)
and Fmoc-protected amino acids were obtained from Advanced

Chem Tech. 5-Bromo-2-thiophenecarboxylic acid was obtained
from Accela Chem Bio Co. Ltd. All other reagents and starting
materials were obtained from Sigma-Aldrich and were used as
received. Details of the synthesis for individual oligopeptides is
provided in the ESI†: Peptide Synthesis.

Electrospray Ionization Mass Spectrometry (ESI-MS). ESI
samples were collected using a Thermo Finnigan LCQ Deca Ion
Trap Mass Spectrometer in negative mode. Samples were pre-
pared in a 1:1 MeOH:water solution with 1% ammonium hydrox-
ide. ESI spectra for each synthesized peptide are provided in the
ESI†: ESI Spectra.

Reverse-Phase HPLC. HPLC purification was performed on
an Agilent 1100 series (semipreparative/analytical) and a Varian
PrepStar SD-1 (preparative) instrument using Luna 5 µm parti-
cle diameter C8 with TMS end-capping columns with silica solid
support. An ammonium formate aqueous buffer (pH 8) and ace-
tonitrile were used as the mobile phase. HPLC traces for each
synthesized peptide are provided in the ESI†: Analytical HPLC
Traces.

General Solid-Phase Peptide Synthesis (SPPS). All peptides
were synthesized using the standard Fmoc solid-phase technique
with Wang resin preloaded with Fmoc-protected amino acids. To
the resin in a peptide chamber, Fmoc-deprotection was accom-
plished by adding a 20% piperidine solution in DMF twice (suc-
cessive 5- and 10-min treatments) followed by washing with NMP
× 3, methanol × 3, and DCM × 3. For the amino acid couplings,
3.0 equiv of the Fmoc-protected amino acid was activated with
2.9 equiv of HBTU and 10 equiv of diisopropylethylamine (DI-
PEA) in NMP, and this solution was added to the resin beads. The
reaction mixture was allowed to mix for 45-60 min, after which
the beads were rinsed with NMP, methanol, and DCM (3 times
each). The completion of all couplings was monitored using a
Kaiser test on a few dry resin beads, repeating the same amino
acid coupling if needed. The general procedure for amino acid
coupling was repeated for each additional amino acid until the
desired peptide sequence was obtained.

General N-Acylation Procedure for Peptides. Following our
previous procedure18, a solution containing 3 equiv of 5-Bromo-
2- thiophenecarboxylic acid, HBTU (2.9 equiv), and DIPEA (10
equiv) in NMP was mixed with the oligopeptide-bound resin for 3
h. The completion of the N-acylation was assessed using a Kaiser
test on a few dry resin beads. The resin was washed with NMP,
methanol, and DCM (3 times each).

General on-Resin Stille Coupling Procedure. The solid-
supported N-acylated oligopeptide (1 equiv) was transferred to
a Schlenk flask equipped with a reflux condenser. The resin was
dried under vacuum. Pd(PPh3)4 (4 mol %, relative to resin load-
ing) was added to the reaction vessel. An approximately 15 mM
solution of the 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.50
equiv) was prepared in DMF and was added to the reaction flask
via syringe. The mixture was heated to 80◦C for 18 h and was ag-
itated constantly by bubbling nitrogen through the solution. The
mixture was allowed to cool to room temperature. The peptide
was subjected to the general cleavage and workup procedure to
yield the crude product and then further purified by HPLC.

General Peptide Cleavage and Workup Procedure. Follow-
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ing dimerization, the resin was returned to the peptide chamber
and again subjected to a wash cycle: 2×NMP, 2×methanol, and
2×DCM. The resin was then treated with 9.5 mL of trifluoroacetic
acid, 250 µL of water, and 250 µL of triisopropylsilane for 3 h.
The peptide solution was filtered from the resin beads, washed
three times with DCM, and concentrated by evaporation under
reduced pressure. The crude peptide was then precipitated from
the solution with 40-50 mL of diethyl ether and isolated through
centrifugation. The resulting pellet was triturated with diethyl
ether to yield the crude product, which was dissolved in approx-
imately 20-25 mL of water. 30 µL of potassium hydroxide (1
M) was added if needed to solubilize the peptides in water and
lyophilized.

2.8 UV-visible spectroscopy

UV-vis spectra were obtained using a Varian Cary 50 Bio UV-vis
spectrophotometer. Spectroscopic samples were prepared by di-
luting the peptide solution to the appropriate concentration in
Millipore water to achieve an optical density near 0.1, 0.2, and
0.3 in the monomeric/basic solution. The pH was then adjusted
by adding 20 µL of 1M KOH (basic) followed by addition of 40
µL of 1M HCl (acidic). Approximate concentration of the pep-
tides were 2.25 µM, 4.50 µM, and 6.75 µM for optical density of
0.1, 0.2, and 0.3 respectively.

3 Results and Discussion

3.1 Hybrid computational/experimental active learning dis-
covers novel high-performing oligopeptides

We report in Fig. 2 the results of our hybrid computa-
tional/experiment active learning screen to the molecular design
space of 694,982 Xn-4T-Xn candidate molecules. We conduct 38
rounds of computational screening to simulate a total of 1181 Xn-
4T-Xn molecules interleaved with three rounds of experimental
screening in which we synthesize and test a total of 28 molecules.
A full accounting of the molecules identified in each round of the
computational and experimental active learning loops are pro-
vided as detailed in the Data Availability statement34. Round 0
of the computational and experimental screens commence simul-
taneously, respectively screening 228 and 11 molecules. The two
screens then proceed asynchronously and in parallel. The high-
throughput computational loop considers 25 candidate molecules
per round and iterates more rapidly than the low-throughput ex-
perimental screen that considers 8-9 molecules per round. We
track the progress of the experimental screen via the measured
spectral blue shifts λ upon assembly as a measure of the preva-
lence of H-type co-facial π-stacking (Fig. 2a). We track the
progress of the computational screen via the advancement in the
κ-Rg Pareto frontier that we quantify through the mean distance
from the origin of all ni molecules cumulatively simulated over
the first i rounds (Fig. 2a,b),

d(i)
Pareto =

1
ni

ni

∑
k=1

√
(κ(k))2 +(R(k)

g )2. (1)

We recall that large values of the average number of π-core con-
tacts per molecule κ and radius of gyration of the self-assembled

aggregates Rg are anticipated to lead to correlate with the forma-
tion of pseudo-1D nanoaggregates with high degrees of H-type
character.

Round 1 of the experimental screen is performed upon com-
pleting computational Round 14, at which time a total of 578
candidate molecules have been computationally assessed. These
computational screening data are passed to the experimental sur-
rogate model and Bayesian optimization within the multi-fidelity
hybrid computational/experimental active learning framework in
order to better inform the design of experimental Round 1 than
would be possible by analyzing the 11 experimental data points
alone. Under our human-in-the-loop selection protocol, we se-
lected nine molecules for Round 1 of experimental screening by
filtering a 35-molecule list outputted from our BO routine. Down-
selection was performed on the basis of high anticipated perfor-
mance based on our previous experimental and computational
work15,30 and maintenance of a diversity of peptide wing com-
positions and lengths. This human-in-the-loop selection process
serves as a simple means to inject prior knowledge into the data-
driven search process, which can be particularly valuable in the
early stages of the search where the models are trained over small
numbers of data points, by directing the search process to regions
of molecular design space that are anticipated to be particularly
profitable.

Round 2 of the experimental screen is conducted after com-
pleting computational Round 22, at which point we have simu-
lated 780 candidate molecules. Again, the totality of these com-
putational screening data are used to augment the multi-fidelity
experimental surrogate model and used to pick eight candidate
molecules for experimental testing down-selected from the 75
top candidates proposed by the BO routine. We inject one ad-
dition piece of human intuition into the down-selection process
by making a single Tyr to Ala amino acid mutation of one of the
predicted sequences – YEVGA to AEVGA – based on prior under-
standing that aromatic side chains are known to π-stack with the
π-cores and therefore liable to disrupt favorable in-register 4T
stacking30. This modification is substantiated by both observ-
ing low-ranking candidates possessing bulky aromatic residues in
the first two experimental rounds (EYIQG: rank 18/28, VEF: rank
23/28, GFGFD: rank 25/28) along with previous experimental
work noting the presence of aromatic residues resulting in re-
duced UV-vis blue-shifts15.

We continue to conduct an additional 16 rounds of computa-
tional screening (Rounds 23-38) while experimental Round 2 is
being completed in anticipation of possibly conducting a fourth
experimental round. As illustrated in Fig. 2a, we observe a rel-
atively rapid expansion of the computational exploration of the
κ-Rg design space over the course of computational Rounds 0-

20, which we quantify by d(i)
Pareto defining the mean distance from

the origin of all molecules cumulatively simulated over the first i
rounds. This trend, however, plateaus at dPareto≈3.3 by Round 29
and exhibits only a 0.7% increase in dPareto relative to Round 22.
This observation is mirrored by a relatively modest advancement
of the Pareto frontier between Rounds 23-38 (Fig. 2b). Experi-
mentally, the mean spectral shift λ in experimental Round 2 is
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Fig. 2 Progress and convergence of the hybrid computational/experimental active learning screen for high-performing Xn-4T-Xn molecules within
the design space of 694,982 candidates. (a) A total of 38 computational rounds of screening are performed and interleaved with three rounds of
experimental screening. The experimental screens are conducted at computational Rounds, 0, 14, and 22. Convergence of the computational screen
is tracked by d(i)

Pareto, the mean distance from the origin of all molecules cumulatively simulated over the first i rounds within the computational κ-Rg
Pareto plot (see panel b), as a measure of the advancement of the optimal frontier (red circles). Convergence of the experimental screen is tracked by
the measured spectral blue shift λ quantifying the degree of H-type co-facial π-stacking within the self-assembled nanoaggregates (blue violin plots).
Violin plots enclose the range of λ values measured each experimental round and the central white tick denotes the mean λ value for the round. The
gray shaded area represents the computational rounds used to verify convergence of the active learning but not used to inform any additional rounds of
experimental design. (b) Round-by-round advancement of the computational κ-Rg Pareto frontier over the course of the 38 screening rounds. Within
each frame, the points corresponding to Xn-4T-Xn candidates collected within that round are shown in red, those points collected in previous rounds
are shown in gray, the Pareto frontier defined by the Pareto optimal points is shown as a black solid line, and the shaded green area indicates the
advancement of the Pareto frontier relative to Round 0.

46% better than Round 0, and the top performing Round 2 can-
didate has a 3% better spectral shift compared to that in Round
0. The diminishing returns evinced by the computational dPareto

and the successful discovery of a molecule with superior λ im-
pelled us to terminate our search after experimental Round 2 /
computational Round 38.

In all, we simulated 1181 molecules comprising ∼0.17% of the
694,982 molecules constituting the Xn-4T-Xn design space, cor-
responding to 236.2 µs of simulation time, and requiring ∼4.97
GPU-years of parallel compute. Experimentally, we synthesized
and characterized a total of 28 Xn-4T-Xn molecules over the course
of the course of eight months corresponding to exploration of
0.004% of the molecular space.

We present in Fig. 3 an embedding of all 1181 simulated
molecules and 28 experimentally tested molecules into the κ-
Rg objective function space used to identify high-performing
molecules in the computational screening loop. Molecular ren-
derings of the self-assembled nanoaggregates provides qualita-
tive visual conformation that Xn-4T-Xn molecules producing ag-
gregates with large values of both κ and Rg do indeed tend to

self-assemble into pseudo-1D structures with good stacking of the
4T π-cores.

The primary result of our hybrid computational/experimental
active learning screen are experimental measurements of 28 Xn-
4T-Xn molecules reported in Table 1. The 11 Round 0 molecules
were selected based on human intuition and used to seed the ex-
perimental active learning. The nine Round 1 and eight Round
2 molecules are the result of our multi-fidelity active learning
search. Of these molecules, 26 are completely novel and on par
with known high-performing sequences14,70,86 while also pos-
sessing greater diversity amino acid sequences previously un-
known to correlate with good spectral blue shifts λ . The high
values of λ for these molecules are indicative of a high de-
gree of H-type co-facial stacking and the potential for long-
range supramolecular electronic delocalization and emergent op-
toelectronic functionality. Additionally, we were encouraged that
our active learning procedure spontaneously discovered DGG-4T-
GGD as a previously known high-performing candidate70,86. A
complete list of predicted κ and Rg values from the terminal com-
putational surrogate model and predicted spectral shift measure-
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Fig. 3 Embedding of the computational and experimental molecules sampled in the active learning screen into the κ-Rg objective function space.
(a) Embedding of the 1181 Xn-4T-Xn molecules explored in the computational screen. Points shown in the same color were sampled during the
same computational active learning round. The labels associated with each point corresponds to the Xn peptide wing sequence. (b) Highlighting
the 28 experimentally tested Xn-4T-Xn molecules (colored points) superposed onto all 1181 computationally simulated points (grey points). The
color indicates the round of experimental active learning within which the molecule was tested. Encircling the plot are snapshots from our molecular
simulation trajectories showing the terminal self-assembled nanoaggregates. The heavy atoms constituting 4T π-cores are rendered as gold space-filling
spheres and the Xn peptide wings as semi-transparent ball-and-stick representations. Molecules producing aggregates with large values of both κ and
Rg tend to self-assemble into pseudo-1D structures with good stacking of the 4T π-cores. For the experimentally tested candidates we also report the
measured values of the spectral blue shift λ . A full accounting of the computed κ and Rg values and measured λ values for all molecules considered
in our screen have been made available as detailed in the Data Availability statement 34.

ments λ from the terminal experimental surrogate model for all
694,982 molecules within the Xn-4T-Xn design space have been
made available as detailed in the Data Availability statement34.

3.2 Molecular design rules

Our rank-ordered list of 28 experimentally assayed candidates
exposes a number of oligopeptide design precepts, that is rela-
tionships between the placement/omission of particular amino
acids at specific positions along the oligopeptide wing and the
magnitude of the spectral blue shift λ quantifying the degree of
H-type co-facial association within the self-assembled nanoaggre-
gates. Despite the relatively small size of the experimental data
set, we were able to extract three statistically significant design

rules. First, the nine top-ranked molecules within the 28 assayed
candidates contain a distal Asp or Glu residue at the C-terminus
and a Gly or Ala residue in the position most proximate to the π-
core. A statistical analysis using a one-sided Mann-Whitney U
test87 reveals a statistically significant (p=0.0001) increase in
the measured blue shifts λ associated with the presence of the
(D/E)Xn(A/G) motif. In our prior work on π-conjugated oligopep-
tides, we typically synthesized the peptide wings with the ioniz-
able residue responsible for actuating pH-triggered assembly lo-
cated at the C-terminus to locate it as far away as possible from
the π-core: our motivation for this design choice was that the hy-
drophilic and polar nature of these residues which, together with
their steric bulk, was anticipated to disrupt good supramolecu-
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Table 1 Rank-ordered list of the 28 experimentally tested Xn-4T-Xn molecules sampled over the course of the active learning screen.

Rank Peptide wing, Xn Measured spectral shift, λ (nm) Discovery round Previously known?
1 DGG 55.06 ± 1.00 2 Yes 70,86

2 DG 53.42 ± 4.16 0 N
3 ESA 50.01 ± 0.53 2 N
4 EGG 49.97 ± 1.00 0 Yes 14

5 ETGG 45.80 ± 0.62 2 N
6 DGA 44.15 ± 1.49 2 N
7 DDDAA 42.07 ± 0.46 2 N
8 DVAA 41.65 ± 1.15 0 N
9 DSG 40.32 ± 1.15 1 N

10 AEVGA 40.15 ± 1.12 2 N
11 DVAG 35.70 ± 1.49 0 N
12 DNDN 29.58 ± 4.76 1 N
13 DANN 25.70 ± 0.32 2 N
14 VEFAG 21.75 ± 2.07 0 N
15 VEVEV 18.43 ± 0.62 0 N
16 VD 18.02 ± 2.66 0 N
17 AAD 15.98 ± 1.00 0 N
18 EYIQG 15.01 ± 7.18 1 N
19 EV 14.70 ± 1.20 0 N
20 DT 14.70 ± 1.20 1 N
21 AAED 13.68 ± 1.46 0 N
22 SSD 13.68 ± 1.15 1 N
23 VEF 11.99 ± 1.68 0 N
24 DLAG 11.49 ± 0.46 2 N
25 GFGFD 10.97 ± 1.77 1 N
26 DGL 10.25 ± 1.20 1 N
27 IDSV 7.70 ± 3.83 1 N
28 EN 4.33 ± 1.49 1 N

lar assembly of the π-cores14,15,70,88–91. Interestingly, our active
learning screen appears to have also learned this design rule with-
out any explicit human instruction and furnished post hoc support
for this intuitive choice. Similarly, our recent computational and
experimental work30,31,92. is consistent with prior chemical in-
tuition88 that the placement of small non-polar residues adjacent
to the π-core should promote good co-facial stacking of the cores.
Again, the active learning screen appears to have also learned this
design rule within the sequence-property surrogate model and is
consistent with a physical rationale that the small steric volume of
these amino acids is conducive to in-register π-stacking of the 4T
cores. It is more challenging, however, to differentiate between
the performance of Gly vs. Ala, with Gly leading to more favor-
able spectral shifts within a DGX motif – λDGG = (55.05±1.00)
nm and λDGA = (44.15±1.49) nm – whereas Ala performs better
within a DVAX motif – λDVAG = (35.70±1.49) nm and λDVAA =
(41.65±1.15) nm. The absence of a simple modular decomposi-
tion of the influence of each amino acid position in the Xn wing
reflects the complexity of the self-assembly process and the im-
portant role of multi-body interactions, amino acid context, and
wing length.

Second, consistent with the favorability of core-adjacent Gly
and Ala residues, the non-C-terminal amino acids within the Xn

peptide sequences of the top-performing molecules tend to also
be enriched in small hydrophobic residues such as Ala, Gly or
Val (one-sided Mann-Whitney U test, p-value=0.004). Inter-
estingly, residues containing polar hydroxyl groups such as Ser
and Thr are also over-represented within high-performing se-
quences when Ser or Thr are non-terminal residues and Asp or
Glu are C-terminal such as ESA: rank 3/28, ETGG: rank 5/28, and
DSG: rank 9/28 (one-sided Mann-Whitney U test, p-value=0.03).

Other polar residues like Asn also perform relatively well in the π-
core proximate position when Asp occupies the distal slot (DNDN:
rank 12/28; DANN: rank 13/28).

Third, the presence of larger hydrophobic and bulky aromatic
residues such as Leu, Ile, Phe, and Tyr at any location are
correlated with poorer performing candidates such as DLAG:
rank 24/28, DGL: rank 26/28, EYIQG: rank 18/28, and IDSV:
rank 27/28, with the poorest-performing candidates enriched
in these four amino acids (one-sided Mann-Whitney U test, p-
value=0.002). We have previously shown that favorable inter-
actions between these large hydrophobic residues and the aro-
matic π-cores can disrupt supramolecular association between the
cores30. This observation is also consistent with our prior obser-
vation that oligopeptides possessing oligophenylenevinylene π-
cores exhibited larger spectral blue shifts when the peptide wings
contained small Gly and Ala residues compared to larger Ile and
Val residues15.

Finally, although no Pro containing molecules were sampled
in the experimental screen, we note that a number of simu-
lated molecules containing a Pro residue lie at or near the κ-
Rg Pareto frontier and were highly ranked in predicted blue
shift λ by the terminal mfGPR surrogate model (e.g., DPG: rank
329/694,982, AEPP: rank 183/694,982, SDPD: rank 10/694,982,
EAP: rank 13/694,982, DDPA: rank 23/694,982, GEPG: rank
15/694,982). This finding is somewhat surprising because Pro
has been largely unexplored in previous experimental and com-
putational π-conjugated peptide studies. Proline, with its unique
conformational properties including its conformational rigidity
and absence of hydrogen bond donor capacity, appears to be quite
favorable in promoting good in-register stacking between the π-
cores and the formation of high-aspect ratio nanoaggregates. We
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suggest that experimental testing and further computational ex-
ploration of the molecular mechanisms underpinning these pre-
dictions may be a profitable avenue for future investigations.

3.3 Molecular assembly pathways

Having extracted design rules linking amino acid sequence to
the degree of H-type stacking within the nanoaggregates, we
then sought to analyze our library of molecular simulation tra-
jectories to resolve the molecular self-assembly pathways pro-
moted by the high-performing peptide sequences to gain mech-
anistic understanding of the link between sequence and the
emergent supramolecular structure. We hypothesized that the
ensemble of simulation trajectories for 1181 different Xn-4T-Xn

molecules collected over the course of our computational screen
may admit a low-dimensional clustering within the configura-
tional phase space of assembly pathways, and that the high-
performing molecules should follow similar assembly pathways
to reach the terminal pseudo-1D nanoaggregates. We report in
Fig. 4a-b a 2D embedding into the leading two collective vari-
ables ψψψ2 and ψψψ3 discovered by diffusion maps. By correlating
these collective variables with candidate physical observables, we
find ψψψ2 to be strongly correlated with the instantaneous radius of
gyration Rg of the system (ρ(ψψψ2,Rg) = 0.93) and ψψψ3 moderately
strongly correlated with the instantaneous number of contacts per
molecule κ (ρ(ψψψ3,κ) = 0.69). In addition to providing good phys-
ical interpretability of the low-dimensional manifold containing
the molecular assembly pathways learned by diffusion maps, the
emergence of two collective variables strongly correlated with κ

and Rg provides post hoc support for our selection of two observ-
ables as the dual objective functions of our computational screen
as the leading variables governing the long-time self-assembly dy-
namics.

In Fig. 4c-f we illustrate the temporal evolution of the self-
assembly pathways for particular Xn-4T-Xn molecules over the
ψψψ2−ψψψ3 manifold. Each molecular trajectory begins at the right-
most edge of the of the manifold corresponding to the initial
monodisperse state. Lateral leftward movement across the mani-
fold correspond to condensation of the system to smaller Rg val-
ues due to the formation of nanoaggregates. Vertical upward
movement corresponds to the accumulation of inter-molecular
contacts between the π-cores and an elevation in κ. The assembly
pathways of the top-performing candidates typically terminate in
the upper-left corner of the manifold that contains pseudo-1D
nanoaggreates containing κ≈3 intermolecular contacts and Rg≈2
nm corresponding to elongated linear stacks. We observe that
Rg necessarily decreases as the system self-assembles from dis-
persed monomers and that this behavior is not in conflict with
the active learning goals of maximizing Rg and κ of the self-
assembled nanoaggregates in order to promote high-aspect ra-
tio linear morphologies with good π-π stacking. One prototyp-
ical class of assembly pathways for high-performing molecules
is exemplified by EGG-4T-GGE (rank 4/28), which traverses the
upper edge of the manifold (Fig. 4c). This assembly route cor-
responds to the rapid formation of small oligomeric stacks, the
formation of which is likely promoted by the small size of the

peptide wing, that ultimately associate into an elongated aggre-
gate with good in-register and global stacking. DVAG-4T-GAVD
(rank 11/28) is another high-performing candidate that is proto-
typical of a different assembly route followed by high-performing
molecules (Fig. 4d). This pathway commences with an initial
rapid hydrophobic aggregation of the system corresponding to a
rapid leftward lateral motion over the manifold. The absence of
any early upward vertical motion is indicative of no initial sub-
stantive increase in κ due to the larger peptide wings seemingly
preventing good π-core stacking. This initial collapse is, however,
then followed by a more gradual structural ripening as the cores
do achieve good stacking and we observe late upward motion
over the manifold corresponding to an increase in κ.

Trajectories that terminate within the bulk of the manifold and
far from the upper-left corner typically fail to form nanoaggre-
gates containing globally connected pseudo-1D stacks. DLAG-4T-
GALD (rank 24/28) is emblematic of a poor-performing molecule
that initially builds a reasonable number of intermolecular con-
tacts, but then fails to further condense into an in-register stacked
nanoaggregate (Fig. 4e). Differing only in a V to L mutation
relative to the high-performing DVAG-4T-GAVD, the presence of
the bulkier hydrophobic Leu residue appears to preclude struc-
tural ripening into the desired elongated stack. Finally, molecules
rich in large hydrophobic side chains such as EYIQG-4T-GQIYE
(rank 18/28) tend to exhibit moderate leftward motion over the
manifold corresponding to hydrophobic collapse but accompa-
nied with unfavorable downward motion indicative of the forma-
tion of very few intermolecular π-core contacts (Fig. 4f). This be-
havior can be attributed to the bulky aromatic hydrophobes that
stack against the π-cores and prevent the formation of core-core
contacts.

Whereas Fig. 4 provided anecdotal insights into the self-
assembly trajectories traced out by particular representative Xn-
4T-Xn molecules, in Fig. 5 we present the entire distribution of
trajectory end points for all molecules considered in our active
learning screen. In Fig. 5a-b we illustrate the end points of the
1181 molecules sampled in our computational screen colored by
the Rg and κ values of the terminal nanoaggregates and in Fig. 5c
the 28-molecule subset of these candidates that were experimen-
tally tested colored by the measured spectral blue shift λ . Fo-
cusing on the 28 experimental molecules, we observe observe a
clustering of 17 molecules in the upper left region of the mani-
fold that we bound by a purple box. As anticipated by the under-
standing exposed by the diffusion map, these molecules tend to
be high-performers comprising nine of the top 11 experimentally-
tested molecules with spectral blue shifts λ ≥35 nm. Further,
the molecules within the box possess a mean spectral shift of
λ=31 nm compared to the mean value for those outside the box
with λ=21 nm (one-sided Mann-Whitney U test, p-value = 0.07).
The correlation between (Rg,κ) and λ within the diffusion map
embedding provides a strong post hoc substantiation for the use
of the former measures as a computational proxy for the latter
within the active learning screen, and demonstrates the power
and value of the high-throughput computational screen in focus-
ing and guiding the low-throughput experimentation.
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Fig. 4 Two-dimensional diffusion map embedding of 118,100 simulation snapshots harvested from the molecular simulations of 1181 Xn-4T-Xn
molecules collected over the course of the computational active learning screen. Each point represents one simulation snapshot projected into a 2D
low-dimensional manifold spanned by the leading collective variables ψψψ2 and ψψψ3 learned by diffusion maps. Coloring the points by (a) the log radius
of gyration log(Rg) of the self-assembled nanoaggregate and (b) average number of contacts per molecule κ within the aggregate exposes the strong
correlation of the two learned collective variables with these two physical observables (ρ(ψψψ2,Rg) = 0.93, ρ(ψψψ3,κ) = 0.69). All assembly trajectories
commence in a monomeric dispersion contained at the rightmost edge of the manifold. Progression from right-to-left corresponds to a reduction in
Rg as the system self-assembles, and progression from bottom-to-top to the formation of more molecular contacts. The temporal progression of the
self-assembly pathways over the manifold for molecules (c) EGG-4T-GGE, (d) DVAG-4T-GAVD, (e) DLAG-4T-GALD, and (f) EYIQG-4T-GQIYE, in
which points are colored temporally. Grey points in panels c-f represent the embedding of 118,100 simulation snapshots shaded in panels c and e by
logRg, and panels d and f by κ. Insets show representative molecular renderings throughout the trajectory.

4 Conclusions
In this work, we have reported an integrated computa-
tional/experimental iterative design strategy to discover synthetic
π-conjugated oligopeptides within the Xn-4T-Xn family with the
capacity to self-assemble into highly-ordered linear aggregates
with in-register stacking of the π-cores. These supramolecular
assemblies are desirable as biocompatible nanoaggregates pos-
sessing emergent optoelectronic properties and potential appli-
cations as peptide-based field-effect transistors, photoconductors,
or solar cells. The Xn-4T-Xn design space consisting of symmetric
oligopeptide wings containing between one and five amino acids
comprises 694,982 candidate molecules, making its exhaustive
exploration impracticable by either simulation or experiment. By
fusing computational and experimental data streams within an in-
tegrated computational-experimental active learning framework,

we perform a data-driven efficient traversal the space of Xn-4T-
Xn peptides that minimizes computational and experimental bur-
den required to discover and validate new high-preforming can-
didates. Our platform employs a combination of all-atom molecu-
lar dynamics simulations, deep representational learning, single-
and multi-fidelity Gaussian process regression, and single- and
multi-objective Bayesian optimization. A computational active
learning loop serves as a high-throughput and cheaply available
experimental proxy used to refine a surrogate model that pre-
dicts the experimental performance of untested candidates. Us-
ing this platform, we discovered a diversity of high-performing
new molecules experimentally validated to form pseudo-1D lin-
ear nanoaggregates after sampling only 1181 molecules (∼0.17%
of the design space) by computation and 28 (∼0.004%) by ex-
periment. Subsequent interrogation of our experimental screen-
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Fig. 5 Terminal locations of the Xn-4T-Xn self-assembly trajectories over
the 2D diffusion map manifold. End points of the 1181 molecules con-
sidered in our computational screen colored by the (a) log of the radius
of gyration log(Rg) and (b) average number of contacts per molecule κ

computed over the terminal 50 ns of the trajectory. The 118,100 simula-
tion snapshots used to construct the diffusion map embedding are shown
in grey. (c) Terminal locations of the 28 experimentally tested molecules
colored by their measured spectral blue shift λ and annotated with the
sequence of the peptide wing. The purple box bounds a cluster of high-
performing experimental candidates residing in the upper-left region of
the manifold possessing high values of λ .

ing data exposed molecular design rules linking sequence to the
emergent structure and function of the self-assembled nanoaggre-
gates. Analysis of the computational screening results revealed
two prototypical assembly mechanisms and pathways shared by
the high-performing molecules: (i) hierarchical assembly of small
in-register supramolecular oligomers that undergo further assem-
bly into a single linear aggregate with ordered π-stacking and (ii)
rapid hydrophobic collapse followed by slow structural ripening
and the emergence of in-register ordering of the π-cores.

This work exposes new understanding of how variation in
oligopeptide sequence in π-conjugated peptides impacts assem-
bly behavior using an integrated experimental-computational ac-
tive learning platform. Our findings corroborate prior physico-
chemical understanding and chemical intuition of π-conjugated

peptide assembly, but also reveals new design rules and under-
standing of molecular assembly mechanisms. Our hybrid com-
putational/experimental active learning platform demonstrates
the power of tightly integrated collaboration between theory and
experiment, and this paradigm is transferable to other generic
molecular design and discovery applications.

Data Availability
Data providing a full accounting of all molecules simulated and
experimentally tested throughout the active learning process with
associated measurements for the average number of contacts κ,
radius of gyration Rg and spectral blue shift λ , and terminal
GPR and mfGPR predicted κ, Rg and λ ; neural network weights
and training codes; GPR training codes; RAE embeddings; active
learning workflow34.
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