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We develop an algorithm to construct approximate decision rules that are piecewise-linear 
and continuous for DSGE models with an occasionally-binding constraint. The functional 
form of the decision rules allows us to derive a conditionally optimal particle filter (COPF) 
for the evaluation of the likelihood function that exploits the structure of the solution. 
We document the accuracy of the likelihood approximation and embed it into a particle 
Markov chain Monte Carlo algorithm to conduct Bayesian estimation. Compared with a 
standard bootstrap particle filter, the COPF significantly reduces the persistence of the 
Markov chain, improves the accuracy of Monte Carlo approximations of posterior moments, 
and drastically speeds up computations. We use the techniques to estimate a small-scale 
DSGE model to assess the effects of the government spending portion of the American 
Recovery and Reinvestment Act in 2009 when interest rates reached the zero lower bound.
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1. Introduction

Dynamic stochastic general equilibrium (DSGE) models with financial frictions are widely used in central banks, by 
regulators, and in academia to study the effects of monetary and macroprudential policies and the propagation of shocks 
in the macro economy. The most recent vintage of these models involves occasionally-binding constraints arising from 
financial frictions and the effective lower bound (ELB) on nominal interest rates. In order for these models to be usable for 
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a quantitative analysis, they need to be solved numerically, and their parameters need to be estimated based on historical 
data.

Two types of solution approaches for models with occasionally-binding constraints have been used in the literature. 
The first group of solution algorithms can be broadly classified as global methods. Agents’ decision rules (or value func-
tions associated with optimization problems) are represented by a family of flexible functions—for example, Chebyshev 
polynomials—or by a discrete mapping on a finite state-space domain. The flexible functions are parameterized by coeffi-
cients that are chosen such that the resulting decision rules (approximately) satisfy the model’s equilibrium conditions and 
solve the underlying intertemporal optimization problems. Examples of this approach include Christiano and Fisher (2000), 
Adam and Billi (2007), Fernández-Villaverde et al. (2015), Maliar and Maliar (2015), Nakata (2016), Gust et al. (2017), Aruoba 
et al. (2018), Mendoza and Villalvazo (2020), and Atkinson et al. (2020).

The second type of solution approaches are variants of the extended perfect-foresight path (EPFP) method that build on 
Fair and Taylor (1983). These algorithms rely on the assumption that, after H periods, the system reverts back to the steady 
state in which the constraint, say, is non-binding. With an initial guess about whether the constraint is binding in periods 
t + h, h = 1, . . . , H , it is possible to solve the dynamic system for the values of the endogenous variables. One can then 
compare the initial guess about the duration of the binding regime to the backward solution and iterate until consistency 
is achieved. Because the computations are based on the initial state, the previously described steps need to be repeated 
for every t in a multi-period simulation. Variants of this approach have been used in Eggertsson and Woodford (2003), 
Christiano et al. (2015), Guerrieri and Iacoviello (2015), Kulish et al. (2017), Holden (2019), and Boehl (2019). The Guerrieri 
and Iacoviello (2015) paper is accompanied by a popular model solution toolbox called OccBin that implements a variant of 
the EFPF approach. We will refer to OccBin in various instances throughout our paper.

Given the model solution, one then constructs a state-space representation for an estimable empirical model. The so-
lution itself generates the state transition equations. A set of measurement equations can then be specified that links the 
state variables with the observables. Because the model solution is nonlinear, so is the state-space representation. Thus, a 
nonlinear filter is required to compute the likelihood function. For instance, in the context of DSGE models with an ELB 
constraint, Gust et al. (2017) and Aruoba et al. (2018) use a particle filter in combination with a global solution to construct 
likelihood functions. Guerrieri and Iacoviello (2017) use an EPFP solution for a model in which the number of observables 
equals the number of structural shocks and combine it with an inversion filter that essentially solves for the innovations as 
a function of the observables conditional on an initial state.

Against this backdrop, the contribution of our paper is to construct an alternative model solution that (i) is able to 
capture an important aspect of the nonlinear decision rule generated by an occasionally-binding constraint, (ii) can be 
solved quickly, and (iii) allows us to derive an accurate and fast filter for the evaluation of the likelihood function that 
exploits the structure of the solution. The procedure is efficient and can be run on a desktop computer in a reasonable 
amount of time. For instance, estimating the small-scale New Keynesian model in our empirical application using data from 
1984 to 2018 takes about 18 hours on a single core.

The basic idea of the proposed solution method is to approximate agents’ decision rules globally by piecewise-linear 
functions that are continuous but have a kink along the locus of the state space in which a constraint becomes binding. 
The coefficients of the decision rules are determined to ensure that the model’s equilibrium conditions are (approximately) 
satisfied. The equilibrium conditions typically take the form of nonlinear expectational difference equations. We require 
that the (potentially transformed) state variables enter the occasionally-binding constraint linearly. For the remaining equi-
librium conditions a (log)linearization is optional. In determining the decision rule coefficients, we take into account that 
the constraint could either be binding or non-binding in the next period. Thus, we are capturing precautionary behavior. 
Importantly, the decision rule coefficients only have to be computed once (as opposed to for each period t separately as in 
the EPFP approach). Compared with higher-order Chebyshev polynomials, the piecewise-linearity and continuity at the kink 
drastically reduce the number of coefficients that need to be determined and hence simplify computations.

Our solution method is motivated by the observation that more densely parameterized nonlinear decision rules look 
approximately piecewise-linear in a number of DSGE models. For instance, in Aruoba et al. (2018) we considered a New 
Keynesian DSGE model and stitched together higher-order Chebyshev polynomials along the locus in the state space where 
the ELB constraint becomes binding. We found that the decision rules on both sides of the kink are approximately linear. 
In the Online Appendix we solve a consumption-savings model with an occasionally-binding borrowing constraint and 
demonstrate that a global solution technique produces approximately piecewise-linear decision rules. Moreover, in Section 3
we solve a simplified version of the New Keynesian DSGE model with an ELB constraint and show that the piecewise-linear 
structure is exact.

To solve the nonlinear filtering problem, we develop a conditionally optimal particle filter (COPF). A particle filter is 
a stochastic algorithm that approximates the distribution of a vector of hidden states st conditional on the sequence of 
observations Y1:t available in time t by a swarm of M particle values and weights {s jt , W j

t }Mj=1. Because of its stochastic 
structure, repeated runs of the filter generate a distribution of likelihood values. An important property of the particle filter 
is that the average likelihood across repeated runs is equal to the exact likelihood (unbiasedness). The tuning of the particle 
filter determines the precision of the approximation. A key step in the specification of the algorithm is the mutation of time 
t − 1 particle values into time t particle values. We show how, in the case of a piecewise-linear DSGE model solution, the 
mutation step can be executed optimally, conditional on the stage t − 1 particle values.
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In a sequence of numerical illustrations based on a small-scale New Keynesian DSGE model with an ELB constraint, we 
document important properties of our solution algorithm and the COPF likelihood approximation. We show that, compared 
to a naive bootstrap particle filter (BSPF), which mutates particle values by simulating the model solution forward, our COPF 
drastically reduces the variance of the likelihood approximation holding the runtime fixed. In practice, this allows users 
to run the COPF with far fewer particles than the BSPF, which in turn speeds up the computations. When we embed the 
more accurate COPF into a random walk Metropolis–Hastings (RWMH) algorithm, we are able to significantly reduce the 
persistence of the resulting Markov chain and therefore improve the accuracy of Monte Carlo approximations of moments 
of the posterior distribution.

A key feature of our paper is that it integrates model solution, likelihood approximation, and Bayesian estimation. There 
are a few papers that assess the interplay of existing model solution and likelihood evaluation techniques in Monte Carlo 
experiments. The ones most closely related to our work are Cuba-Borda et al. (2019) and Atkinson et al. (2020).1 Cuba-
Borda et al. (2019) take a simple consumption-savings model subject to a borrowing constraint and illustrate that less 
accurate solution methods affect inference even when the inversion filter is available. They also show that, as one increases 
the measurement error variance in the BSPF, the likelihood misspecification becomes more problematic, making it harder 
to retrieve the parameter values that govern the data generating process (DGP). In their setting, measurement error and 
solution approximation error make it difficult for the econometrician to identify the model regime that generates the data, 
and this incorrect classification of regimes leads to a bias in parameter estimates. In our empirical application, one of the 
observed time series allows us to exactly identify the regime, and we modify the COPF to capture this feature.

Atkinson et al. (2020) compare the performance of a fully nonlinear solution and a variant of the BSPF for estimation, 
with the approximated solution using OccBin and the inversion filter. They simulate data from a DSGE model that includes 
more frictions and shocks than the model used for estimation. As such, their estimated model is misspecified with respect 
to the DGP. Their results show that the nonlinear approach performs slightly better than the OccBin approach, but the 
differences are small. Moreover, relative to the pseudo-true parameters, the estimates from both approaches show biases 
in some key parameters, such as the degree of price rigidities. Since the OccBin-inversion filter approach can be scaled up 
easily and is faster, they argue that building a bigger and less misspecified model using this approach may be preferable. 
Similarly, our method offers scalability, even without multicore processing or distributed computing, and allows for more 
general model structures and state-space representations than the inversion filter.

Based on U.S. data from 1984 to 2018 on output growth, inflation, interest rates, and the government-spending to 
GDP ratio, we estimate a small-scale DSGE model using our proposed piecewise-linear and continuous (PLC) solution in 
combination with the COPF. From the estimated model, we compute dollar-for-dollar government spending multipliers 
associated with the increase in government spending that was part of the 2009 American Recovery and Reinvestment 
Act (ARRA). The counterfactual output levels are computed by lowering the exogenous government spending process in the 
model by an amount that is commensurable to the ARRA intervention, setting expansionary policy shocks during that period 
to zero, and keeping all other exogenous processes at their historical levels. We find that the ex-post multiplier associated 
with the combined fiscal and monetary policy intervention in 2009 and 2010, when the United States was at the ELB, was 
around one over a one- to two-year horizon.

The remainder of the paper is organized as follows. Section 2 describes the small-scale New Keynesian DSGE model with 
ELB constraint used in the subsequent analysis. In Section 3 we solve a simplified version of the New Keynesian model 
and show that the resulting decision rules are piecewise-linear and continuous. We also provide a comparison to the Oc-
cBin solution. In Section 4, we describe how to impose continuity on piecewise-linear decision rules and derive a canonical 
form for the DSGE model solution. Section 5 discusses how the decision rule coefficients are determined to approximately 
satisfy the model’s equilibrium conditions. The COPF is derived in Section 6. Section 7 presents some numerical experi-
ments to document the accuracy of the likelihood approximation through the COPF, and Section 8 contains the empirical 
analysis. Finally, Section 9 concludes. Derivations and further implementation details are provided in the Online Appendix. 
The Appendix also contains a section that shows how to solve a consumption-savings model with an occasionally-binding 
borrowing constraint using the techniques proposed in this paper and compares our PLC solution to an “exact” solution and 
a solution constructed with OccBin.

2. A prototypical New Keynesian DSGE model

We will illustrate our solution and filtering methods based on a prototypical New Keynesian DSGE model. The model is 
identical to the one used in Aruoba et al. (2018). Variants of this model have been widely studied in the literature, and 
its properties are discussed in detail in Woodford (2003). To make this paper self-contained and introduce some important 
notation, we briefly describe the preferences and technologies of the agents in Section 2.1 and summarize the equilibrium 
conditions in Section 2.2.

1 Boehl (2019) combines his model solution, which is a variant of the EPFP, with a variant of an ensemble Kalman filter. His paper presents an application 
but does not focus on accuracy comparisons of solution and estimation methods.
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2.1. Preferences and technologies

Households. Households derive utility from consumption Ct relative to an exogenous habit stock and disutility from hours 
worked Ht .2 The households maximize

Et

[ ∞∑
s=0

βsdt+s

(
(Ct+s/At+s)

1−τ − 1

1− τ
− H1+1/η

t+s

1 + 1/η

)]
, (1)

subject to the budget constraint

PtCt + Tt + Bt = PtWtHt + Rt−1Bt−1 + Pt Dt + Pt SCt .

Here β is the discount factor, dt is an exogenous shock to the discount factor, 1/τ is the intertemporal elasticity of substi-
tution, and η is the Frisch labor supply elasticity. Pt is the price of the final good. The households receive the real wage Wt

in exchange for labor services. Bt is the quantity of nominal bonds, which pay gross interest Rt . Furthermore, the house-
holds receive profits Dt from the firms and pay lump-sum taxes Tt . SCt is the net cash inflow from trading a full set of 
state-contingent securities.
Firms. The final-goods producers generate aggregate output Yt by aggregating intermediate goods Yt( j), j ∈ [0, 1]. Under 
the assumption of perfect competition and free entry, the demand for the intermediate inputs and the price of the aggregate 
final good are given by

Yt( j) =
(
Pt( j)

Pt

)−1/ν

Yt and Pt =
⎛
⎝ 1∫

0

Pt( j)
ν−1
ν dj

⎞
⎠

ν
ν−1

, (2)

respectively. We define inflation as πt = Pt/Pt−1.
Intermediate good j is produced by a monopolist who has access to the production technology

Yt( j) = At Ht( j), (3)

where At is an exogenous productivity process that is common to all firms and Ht( j) is the firm-specific labor input. 
Intermediate-goods-producing firms face quadratic price adjustment costs of the form

ACt( j) = φ

2

(
Pt( j)

Pt−1( j)
− π̄

)2

Yt( j),

where φ governs the price stickiness in the economy and π̄ is a baseline rate of price change that does not require the 
payment of any adjustment costs. In our quantitative analysis, we set π̄ = π∗ , where π∗ is the target inflation rate of the 
central bank. Firm j chooses its labor input Ht( j) and the price Pt( j) to maximize the present value of future profits

Et

[ ∞∑
s=0

βs Q t+s|t
(
Pt+s( j)

Pt+s
Yt+s( j) − Wt+sHt+s( j) − ACt+s( j)

)]
. (4)

Here, Qt+s|t is the time t value to the household of a unit of the consumption good in period t + s, and is treated as 
exogenous by the firm.

Government policies. Monetary policy is described by an interest rate feedback rule. Because the ELB constraint is an 
important part of our analysis we introduce it explicitly as follows:

Rt = max
{
1, R∗

t e
σRεR,t

}
, R∗

t =
[
rπ∗

(
πt

π∗

)ψ1
(

Yt

γ Yt−1

)ψ2
]1−ρR

RρR
t−1. (5)

Here R∗
t is the systematic part of monetary policy which reacts to an inflation gap and an output growth gap, r is the 

steady-state real interest rate, π∗ is the target-inflation rate, γ is the long-run growth rate of the economy, and εR,t is a 
monetary policy shock.

The government consumes a stochastic fraction of aggregate output. We assume that government spending evolves ac-
cording to

2 The habit stock is proxied by the level of technology At , which ensures that the economy evolves along a balanced growth path. Since we will not 
focus on it in the subsequent analysis, we do not make a money-holding motive, such as valuing transaction services from real money balances, explicit in 
the description of the environment. Such a motive is necessary to make the ELB a relevant constraint in a model like this.
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Gt =
(
1− 1

gt

)
Yt (6)

where gt is an exogenous process. The government levies a lump-sum tax Tt (or provides a subsidy if Tt is negative) to 
finance any shortfalls in government revenues (or to rebate surpluses). Its budget constraint is given by

PtGt + Mt−1 + Rt−1Bt−1 = Tt + Mt + Bt . (7)

Exogenous shocks. The model economy is perturbed by four exogenous processes. Aggregate productivity evolves according 
to

ln At = lnγ + ln At−1 + ln zt, where ln zt = ρz ln zt−1 + σzεz,t . (8)

Thus, on average, the economy grows at the rate γ , and zt generates exogenous stationary fluctuations of the technology 
growth rate around this long-run trend. We assume that the government spending shock follows the AR(1) law of motion

ln gt = (1 − ρg) ln g∗ + ρg ln gt−1 + σgεg,t . (9)

The shock to the discount factor evolves according to

lndt = ρd lndt−1 + σdεd,t . (10)

The monetary policy shock εR,t is assumed to be serially uncorrelated. We stack the four innovations into the vector εt =
[εz,t, εg,t , εd,t, εR,t]′ and assume that εt ∼ iidN(0, I).

2.2. Equilibrium conditions

Because the exogenous productivity process has a stochastic trend, it is convenient to characterize the equilibrium con-
ditions of the model economy in terms of detrended consumption ct ≡ Ct/At and detrended output yt ≡ Yt/At .

It is well known that the New Keynesian model features multiple equilibria. In one of the equilibria, the so-called 
targeted-inflation equilibrium, the endogenous variables fluctuate around the steady state in which inflation equals the 
value targeted by the central bank. Another important equilibrium is the so-called deflation equilibrium where the economy 
fluctuates around the so-called deflation steady state in which nominal interest rates are zero.3 In the remainder of the 
paper we mostly focus on the targeted-inflation equilibrium, though we also discuss a deflation equilibrium in Section 3. 
The former is essentially the equilibrium that arises in linearized New Keynesian DSGE models, adjusted for the presence of 
the ELB constraint. The corresponding steady state is given by

π∗, r∗ = γ

β
, R∗ = r∗π∗, y∗ = [

(1− ν)gτ∗
] 1

τ+1/η , c∗ = y∗
g∗

. (11)

Without loss of generality, for any variable xt we can define the percentage deviations from this steady state as x̂t =
ln xt − ln x∗ . Using this notation we can substitute xt by x∗ex̂t and obtain4:

1 = Et

[
eR̂t−π̂t+1−ẑt+1+d̂t+1−d̂t−τ (ĉt+1−ĉt )

]
(12)(

1− ν − χhc
τ∗ y

1
η∗ eτ ĉt+ 1

η ŷt
)

+ νφπ∗(π∗eπ̂t − π̄ )eπ̂t − φ

2

(
π∗eπ̂t − π̄

)2

= νφβπ∗Et

[(
e−τ (ĉt+1−ĉt )+d̂t+1−d̂t+ ŷt+1− ŷt+π̂t+1

)(
π∗eπ̂t+1 − π̄

)]
1 =

[
1

eĝt
− g∗π2∗

φ

2

(
eπ̂t − 1

)2
]
e ŷt−ĉt .

The first equation is the consumption Euler equation, the second equation is the optimality condition for the firms, and the 
third equation is the aggregate resource constraint. The monetary policy rule can be expressed as

R̂t = max
{
(1− ρR)

[
ψ1π̂t + ψ2( ŷt − ŷt−1 + ẑt)

] + ρR R̂t−1 + σRεR,t, − ln(rπ∗)
}
. (13)

More compactly, the equilibrium conditions of the DSGE models can be expressed as a system of expectational difference 
equations of the form

Et
[
R( ŷt, ĉt, π̂t, R̂t, ŷt+1, ĉt+1, π̂t+1, R̂t+1, . . .)

] = 0, (14)

where R(·) captures residuals in the equilibrium conditions.

3 See, for instance, Benhabib et al. (2001), Aruoba and Schorfheide (2016) and Aruoba et al. (2018) for a discussion of multiplicity of equilibria in this 
model.
4 Introducing x̂t does not imply that we are log-linearizing all of the equilibrium conditions. It is foremost a reparameterization. However, in our model 

it happens to be the case that the consumption Euler equation and (abstracting from the max operator) the monetary policy rule are log-linear.
100



S.B. Aruoba, P. Cuba-Borda, K. Higa-Flores et al. Review of Economic Dynamics 41 (2021) 96–120
3. Solving a simplified version of the DSGE model

In order to highlight some important features of the proposed solution method, we first consider a highly simplified 
version of the DSGE model introduced in Section 2 that can be (almost) solved analytically.5 In particular, we will show that 
the PLC form emerges as the exact solution to the simplified DSGE model. We also discuss the multiplicity of solutions and 
provide a comparison to OccBin.

On the model described in the previous section we impose the parameter restrictions τ = 1, γ = 1, η = ∞, g∗ = 1, 
π̄ = π∗ , ψ1 = ψ , ψ2 = 0, ρR = 0, σz = 0, σg = 0, and ρd = 0. We log-linearize the equilibrium conditions (except for the ELB 
constraint) around the targeted inflation steady state in (11) and regard the resulting equations as the model to be solved. 
Some details of the calculations are relegated to the Online Appendix.
Equilibrium conditions. The log-linearized equilibrium conditions for the simplified model are of the form

−ĉt = E[d̂t+1] − d̂t −E[ĉt+1] + R̂t −E[π̂t+1]
π̂t = βE[π̂t+1] + κ ĉt (15)

R̂t = max
{
ψπ̂t + σRεR,t, − ln(rπ∗)

}
.

Under parameterizations in which monetary policy is active, i.e., ψ > 1, the model has typically two stationary solutions in 
which (R̂t , ̂ct , π̂t) are independently and identically distributed (iid) over time. These correspond to the targeted-inflation 
and the deflation equilibria defined in the previous section.

In both equilibria expected consumption and inflation are time-invariant and can be replaced by μc = Et[ĉt+1] and 
μπ = Et[π̂t+1]. Thus, setting the expected value of the residual function to zero, and conducting a few basic algebraic 
manipulations, we obtain:

R̂(εd,t, εR,t) = max

{
1

1+ ψκ

[
ψκμc + ψ(κ + β)μπ + ψκσdεd,t + σRεR,t

]
, − ln(rπ∗)

}
ĉ(εd,t, εR,t) = −R̂(εd,t , εR,t) + μc + μπ + σdεd,t (16)

π̂ (εd,t, εR,t) = −κ R̂(εd,t, εR,t) + κμc + (κ + β)μπ + κσdεd,t .

Here we replaced R̂t , ĉt , and π̂t by decision rules that are time-invariant functions of the state variables (εd,t , εR,t).

Constructing a solution. In order to solve the system (16) we need to find constants μc and μπ such that

μc =E[c(εd,t , εR,t)] and μπ = E[π(εd,t , εR,t)].
Because of the max operator in the monetary policy rule, this requires the computation of the mean of a truncated Normal 
random variable. We rotate the vector of innovations [εd,t , εR,t]′ to separate the component that enters the monetary policy 
rule from a second component that is orthogonal:

η1,t = 1

ση
(ψκσdεd,t + σRεR,t), η2,t = 1

ση
(σRεd,t − ψκσdεR,t), ση =

√
(ψκσd)

2 + σ 2
R . (17)

By construction, the innovations η1,t and η2,t are also N(0, 1).
Using the expression for η1,t in (17) we can rewrite the interest rate rule as

R(η1,t) = max

{
1

1 + ψκ

[
ψκμc + ψ(κ + β)μπ + σηη1,t

]
, − ln(rπ∗)

}
. (18)

Define the cutoff value

η̄1 = − 1

ση

[
(1 + ψκ) ln(rπ∗) + ψκμc + ψ(κ + β)μπ

]
(19)

such that R(η1,t) = − ln(rπ∗) whenever η1,t ≤ η̄1. Using the formula for the mean of a truncated standard normal random 
variable, we obtain

E[R(η1,t)] = −�N(η̄1) ln(rπ∗) (20)

+ 1

1+ ψκ

[(
1 − �N(η̄1)

)(
ψκμc + ψ(κ + β)μπ

) + σηφN(η̄1)

]
.

5 A similar model was solved in Mendes (2011).
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Here �N(·) and φN (·) are the cumulative density function (cdf) and the probability density function (pdf) of a standard 
Normal random variable. Taking expectations of the second and third equation in (16) and substituting out E[R̂(εd,t , εR,t)] =
E[R(η1,t)] using (20) leads to the following nonlinear system of equations:

μc = 1− �N(η̄1)

1+ ψκ

[
μc + (1 − ψβ)μπ

]
− σηφN(η̄1)

1+ ψκ
+ �N(η̄1)

[
ln(rπ∗) + μc + μπ

]
. (21)

μπ = 1− �N(η̄1)

1+ ψκ

[
κμc + (κ + β)μπ

]
− κσηφN(η̄1)

1+ ψκ
+ �N(η̄1)

[
κ ln(rπ∗) + κμc + (κ + β)μπ

]
,

where η̄1 is given in (19). Conditional on η̄1 the system is linear in (μc, μπ) which means that it can be reduced to a 
single nonlinear equation in terms of η̄1 that needs to be solved numerically. This equation typically has two solutions, 
which generate the targeted-inflation and deflation equilibrium, respectively.
Properties of the solution. (i) The decision rules are piecewise-linear and continuous for each (μc, μπ). Plugging the expres-
sion for R̂(εd,t, εR,t) = R(η1,t) in (20) into the consumption and inflation decision rules in (16) and using the relationship 
between the εt ’s and ηt ’s in (17), we can rewrite the decision rules for consumption and inflation as follows:

c(η1,t, η2,t) =
⎧⎨
⎩

1
1+ψκ

[
μc + (1 − ψβ)μπ

]
+ (

γd,1 − 1
1+ψκ

)
σηη1,t + γd,2σηη2,t if η1,t > η̄1

ln(rπ∗) + μc + μπ + γd,1σηη1,t + γd,2σηη2,t otherwise
(22)

π(η1,t, η2,t) =
⎧⎨
⎩

1
1+ψκ

[
κμc + (κ + β)μπ

]
+ κ

(
γd,1 − 1

1+ψκ

)
σηη1,t + κγd,2σηη2,t if η1,t > η̄1

κ ln(rπ∗) + κμc + (κ + β)μπ + κγd,1σηη1,t + κγd,2σηη2,t otherwise

Here, the γ constants are functions of the structural parameters obtained from (17) by re-arranging the equations to express 
the εt ’s as a function of the ηt ’s. The ELB becomes binding at the locus in the state space defined by

η̄1 = η1,t = 1

ση
(ψκσdεd,t + σRεR,t). (23)

The second innovation, η2,t , does not enter the policy rule and therefore cannot push the economy toward the ELB. The 
decision rules are piecewise-linear functions of the innovations η1,t and η2,t . The slope coefficients associated with η1,t

change when the economy hits the ELB at η1,t = η̄1, whereas the slope coefficients for η2,t do not change. We verify in the 
Online Appendix that the decision rules are also continuous at η1,t = η̄1, meaning that for each η2,t and for each sequence 
ηn
1,t −→ η̄1 as n −→ ∞:∣∣c(ηn

1,t, η2,t) − c(η̄1, η2,t)
∣∣ −→ 0 and

∣∣π(ηn
1,t, η2,t) − π(η̄1, η2,t)

∣∣ −→ 0. (24)

Because the transformation between (εd,t , εR,t) and (η1,t , η2,t) is continuous, the continuity result also holds for the decision 
rules ĉ(εd,t , εR,t) and π̂ (εd,t , εR,t), expressed in terms of the original state variable, as (ψκσdε

n
d,t + σRε

n
R,t)/ση −→ η̄1.

(ii) The law of motion given by the interest rate rule (18) and the consumption and inflation decision rules (22) is coherent and 
complete for each (μc, μπ) and each realization of the innovations (η1,t, η2,t). The system takes the form of a linear simultaneous 
equations model with regime switches. The concepts of coherency and completeness were introduced by Gourieroux et al. 
(1980) and more recently studied in the context of ELB applications by Mavroeidis (2020) and Ascari and Mavroeidis (2020). 
Coherency requires that given any innovation (η1,t , η2,t) there exists a solution to the system of equations. Completeness 
refers to the uniqueness of that solution. Define

R(1)
t = 1

1+ ψκ

[
ψκμc + ψ(κ + β)μπ + σηη1,t

]
and R(2)

t = − ln(rπ∗).

Coherency and completeness require that: (a) η1,t > η̄1 implies Rt = R(1)
t is a solution to the maximization on the right-

hand side of (20), whereas Rt = R(2)
t is not. Likewise, it is required that (b) η1,t < η̄1 implies Rt = R(2)

t is a solution to the 
maximization on the right-hand side of (20), whereas Rt = R(1)

t is not. Coherency and completeness follows directly from 
the linearity of R(1)

t with respect to η1,t and the definition of η̄1 in (19) and require no further restrictions on the domain 
of the innovations.

(iii) Solutions for μc and μπ . The means μc and μπ together with the cutoff value η̄1 are determined by the nonlinear 
system of equations (19) and (21). To understand the properties of the nonlinear system, assume that ψ > 1, i.e., monetary 
policy is active, and ση = 0, i.e., there is no uncertainty. First, suppose we start with the conjecture that η̄1 = −∞. Then 
(21) simplifies to

μc = 1
[
μc + (1− ψβ)μπ

]
, μπ = 1

[
κμc + (κ + β)μπ

]

1+ ψκ 1+ ψκ

102



S.B. Aruoba, P. Cuba-Borda, K. Higa-Flores et al. Review of Economic Dynamics 41 (2021) 96–120
which is solved by

μc = 0, μπ = 0. (25)

Recall that the system was expressed in deviations from the targeted-inflation steady state. Thus if μc = μπ = 0, then the 
means of consumption and inflation are equal to the steady state. The analysis is completed by noting that (19) implies that 
indeed η̄1 = −∞ as initially assumed.

Second, suppose we start from the conjecture that η̄1 = +∞. Then (21) simplifies to

μc = ln(rπ∗) + μc + μπ, μπ = κ ln(rπ∗) + κμc + (κ + β)μπ ,

which implies

μc = − 1

κ
(1 − β) ln(rπ∗), μπ = − ln(rπ∗). (26)

Substituting the means into (19), we obtain η̄1 = (ψ − 1) ln(rπ∗)/ση > 0. Thus, as ση −→ 0, η̄1 −→ +∞ as required. In this 
case, the system is in the so-called deflation steady state and the ELB constraint is always binding.

Once we allow for uncertainty, ση > 0, then the means in (25) and (26) no longer solve the system of equations (19)
and (21). However, for values of ση that are not “too large,” one can obtain solutions that are “close” to the ones derived 
above. Due to the nonlinearity of the �N (·) and φN (·) functions, these solutions can only be computed numerically.

Comparison to OccBin solution. It is instructive to compare the above solution to the one generated by OccBin. OccBin 
requires the choice of a reference regime. Because subsequently we focus on the targeted inflation equilibrium in which the 
ELB is non-binding with high probability, we impose that the ELB is non-binding in the reference regime. Consider a generic 
period t . The OccBin solution is based on the assumption that for τ ≥ T the economy will be in the reference regime. 
Given the lack of dynamics in the simple model, we can choose T = t + 1 and assume that the regime will remain in the 
targeted-inflation steady state: R̂t+1 = 0, ĉτ = 0, and π̂τ = 0. For period t , the algorithm draws the shocks (εd,t , εR,t) and 
solves the system (15) under the restrictions that d̂t+1 = 0, Et[ĉt+1] = 0 and Et [π̂t+1] = 0. The solution is identical to (18)
and (22) with μc = μπ = 0 imposed. Thus, in the context of our stylized model the difference between our solution, which 
happens to be exact, and the OccBin solution is that the latter does not take into account the uncertainty about the regime 
in period t + 1.

Summary. We draw the following conclusions from the analysis of the simplified DSGE model. First, the log-linearized 
model has static solutions that are exact and in which the decision rules for consumption and inflation are piecewise-linear 
and continuous. We use this as a motivation for subsequently considering a class of approximate solutions with PLC deci-
sion rules for richer nonlinear DSGE models with occasionally-binding constraints. Second, although we approximated the 
equilibrium conditions around the targeted-inflation steady state, because of the nonlinearity generated by the occasionally-
binding constraint, for ση > 0 the decision rules do not pass through the steady state around which the model was initially 
approximated. In fact, because the decision rules are flexible enough to have unrestricted intercepts, we can also generate 
the deflation equilibrium which is far away from the targeted-inflation steady state. Third, an important difference between 
our proposed PLC solution and the OccBin solution is that our decision rule coefficients capture uncertainty about the future.

4. PLC decision rules and the canonical form

In the analysis of the simplified model in the previous section, the PLC decision rules emerged from the analytical so-
lution of the model. For more elaborate DSGE models, we will parameterize a family of piecewise-linear decision rules and 
then impose coefficient restrictions that guarantee that the decision rules are continuous at the kink, where the constraint 
changes from being slack to being binding. The remaining free coefficients of the decision rules can then be used to (ap-
proximately) satisfy the equilibrium conditions of the model by setting the residual functions (close) to zero. A discussion 
of how to do this numerically is deferred to Section 5.

4.1. PLC decision rules

Let X = [x1, X ′
2] ∈ X be an n × 1 vector of non-redundant state variables. We assume that X also contains a constant. 

Here x1 is one particular element of X that enters the characterization of the locus of points in the state space at which 
the constraint becomes binding and the decision rules have their kink. The reason for separating out one of the X elements 
will become clear below. Let Y denote a k ×1 vector of control variables. As we make explicit below, we assume Y depends 
on x1 and X2 linearly where the coefficients may depend on whether the constraint is binding or not.

We assume that there is a linear(ized) scalar-valued function h
(
x1, X2, Y

)
that determines whether the constraint is 

binding:

h
(
x1, X2, Y

) =
{

> 0 if constraint is non-binding (n)

≤ 0 if constraint is binding (b)
. (27)
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The h(·) function may depend on the state variables (x1, X2) and some of the elements in Y . Because the function is 
assumed to be linear, we write it as

h(x1, X2, y) = γ1x1 + γ ′
2X2 + γ ′

Y Y . (28)

The γ ’s are not free coefficients. They are obtained from the equilibrium conditions of the DSGE model. In the simplified 
model of Section 3 we set x1 = 1, X2 = [εd, εR ]′ , and y = [ĉ, π̂ ]′ such that h(x1, X2, y) = ln(rπ∗) +εR +ψ ĉ with γ1 = ln(rπ∗), 
γ ′
2 = [0, 1]′ , and γ ′

Y = [0, ψ].
We define the kink function x1 = �(X2) such that [�(X2), X ′

2]′ ∈X characterizes the locus of points in the state space for 
which h

(
�(X2), X2, Y (�(X2), X2)

) = 0, that is, the constraint is just binding. Here Y (·) denotes the assumed piecewise-linear 
decision rules for the control variables. The linearity of h(·) in (28) and the assumed piecewise-linearity of the decision 
rules for y imply that �(X2) is a linear function and we parameterize it as

�(X2) = δ′X2, (29)

where δ is a (n − 1) × 1. The δ coefficients will be determined as functions of the decision rule coefficients and the co-
efficients of the constraint function h(·). So far we have not yet made a determination whether the constraint is slack if 
x1 < δ′X2. In the simplified model the equilibrium kink function is given by (23).

Returning to the control variables, we assume the decision rules for each yi are of the piecewise-linear form

Y i(x1, X2) =
{

αi
1,1x1 + αi

1,2
′
X2 if x1 ≥ �(X2)

αi
2,1x1 + αi

2,2
′
X2 if x1 < �(X2)

i = 1, . . . ,k , (30)

where each decision rule has 2n unknown coefficients. The decision rules are exactly linear if αi
1,1 = αi

2,1 and αi
1,2 = αi

2,2. 
The specification in (30) makes the benefit of using the kink function �(·) clear: given the state variables x1 and X2, we can 
easily determine on which side of the constraint we need to be, even when the constraint contains some control variables. 
In the simplified model the equilibrium decision rules are given by (22). Once we replace the ηt ’s by the εt ’s we obtain the 
same form as (30), where the α coefficients were determined such that the decision rules satisfy the equilibrium conditions 
of the model.

4.2. Imposing continuity on piecewise-linear decision rules

We now turn to imposing continuity on the decision rules at the kink, which means we impose the restriction that the 
two parts of each decision rule are equal to each other along the kink. Doing so will restrict a subset of the unknown α
and δ coefficients. Continuity at x1 = δ′X2 requires that for each i = 1, ..., k

αi
1,1δ

′X2 + αi
1,2

′
X2 = αi

2,1δ
′X2 + αi

2,2
′
X2 ∀X2,

which generates (n − 1) restrictions for each i:

αi
1,1δ

′ + αi
1,2

′ = αi
2,1δ

′ + αi
2,2

′
. (31)

Next, we impose restrictions that make the �(·) and Y (·) functions consistent with the constraint in (27). The condition 
h[g(X2), X2, Y

(
�(X2), X2

)] = 0, which represents the kink in terms of the h(·) function, can be written as

γ1δ
′X2 + γ ′

2X2 +
k∑

i=1

γ i
Y (αi

1,1δ
′X2 + αi

1,2
′
X2) = 0 ∀X2,

which leads to another set of (n − 1) restrictions:

γ1δ
′ + γ ′

2 +
k∑

i=1

γ i
Y (αi

1,1δ
′ + αi

1,2
′
) = 0. (32)

Counting all unknowns and restrictions, we have k(n + 1) degrees of freedom.6 Let us assume the coefficients αi
1,1, α

i
1,2, 

and αi
2,1 for each decision rule are free and collect them in the vector ϑ of size k(n + 1)

ϑ = [α1
1,1, . . . ,α

k
1,1,α

1
1,2

′
, . . . ,αk

1,2
′
,α1

2,1, . . . ,α
k
2,1]′. (33)

6 There are 2n α coefficients for each decision rule and (n − 1) δ coefficients, which yield 2nk + n − 1 unknowns. With (n − 1) restrictions for each 
decision rule as derived in (31) and the (n − 1) restrictions in (32), we get (k + 1)(n − 1) restrictions. Subtracting the number of restrictions from the 
number of unknowns, we get k(n + 1).
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In other words, we treat all the decision rule coefficients for the “1” regime and the coefficient in front of x1 in the 
“2” regime as free. The remaining decision rule coefficients in the “2” regime, αi

2,2, i = 1, . . . , k, as well as all of the δ
coefficients are determined as functions of these free coefficients, which we now turn to. In our application the choice 
of which coefficients go in to ϑ is driven by numerical considerations. The “1” regime corresponds to the ELB not being 
binding. In the targeted-inflation equilibrium, a good starting value for the numerical procedure that is used to determine 
ϑ is given by the decision-rule coefficients of a log-linear approximation that ignores the ELB constraint.

Conditional on ϑ , we can rewrite (32) as(
γ1 +

k∑
i=1

γ i
Yαi

1,1

)
︸ ︷︷ ︸

a(ϑ)

δ′(ϑ) +
(
γ2 +

k∑
i=1

γ i
Yαi

1,2

)
︸ ︷︷ ︸

−B ′(ϑ)

= 0

and solve for δ as

δ′(ϑ) = 1

a(ϑ)
B ′(ϑ), (34)

where a(ϑ) is a scalar and B(ϑ) is a (n − 1)-dimensional vector. By combining (34) with (31) we obtain an expression for 
the constrained decision rule coefficients αi

2,2:

αi
2,2

′
(ϑ) = (αi

1,1 − αi
2,1)

(
1

a(ϑ)
B(ϑ)

)
+ αi

1,2
′
. (35)

The last step is to determine which part of the decision rule in (30) corresponds to the part of the state space where 
the constraint is slack and which part where the constraint is binding. Take h

(
x1, X2, Y (x1, X2)

)
for some x1 and X2. Let us 

derive how its sign depends on the sign of (x1 − δ(ϑ)′X2). First, assume x1 > δ′(ϑ)X2, then

h
[
x1, X2, Y (x1, X2)

] = γ1x1 + γ ′
2X2 +

k∑
i=1

γ i
Y (αi

1,1x1 + αi
1,2

′
X2) (36)

=
(
γ1 +

k∑
i=1

γ i
Yαi

1,1

)
︸ ︷︷ ︸

c(ϑ)

x1 +
(
γ ′
2 +

k∑
i=1

γ i
Yαi

1,2
′
)

︸ ︷︷ ︸
D ′(ϑ)

X2,

where c(ϑ) is a scalar and D(ϑ)′ is a (n − 1)-dimensional vector, which can be evaluated given model parameters and free 
decision-rule coefficients. Collecting the δ terms, we notice that the restriction in (32) implies c(ϑ)δ′(ϑ) + D ′(ϑ) = 0, or 
D ′(ϑ) = −c(ϑ)δ′(ϑ). Using this on (36), we get

h[x1, X2, Y (x1, X2)] = c(ϑ)[x1 − δ′(ϑ)X2]. (37)

Since we assumed x1 > δ′(ϑ)X2 above in the derivations, we conclude that h(·) > 0 if and only if c(ϑ) > 0. In other words, 
if c(ϑ) > 0, then the “1” regime in (30) corresponds to the constraint being slack.

4.3. Example: the full New Keynesian model

We now adapt the generic notation so far to the New Keynesian model with ELB constraint described in Section 2. 
We partition the state space as x1,t = R̂t−1 and X2,t = [1, ŷt−1, ̂zt , ̂dt, ̂gt , eR,t]′ , and we have n = 7.7 As for the choice 
of control variables to approximate, we have a few options. We approximate the decision rules π̂ (x1, X2) and ŷ(x1, X2)

directly and let the remaining control variables ĉ and R̂ follow exactly from the equilibrium conditions. Specifically, given 
x1, X2, ŷt = ŷ(x1, X2) and π̂t = π̂ (x1, X2), ĉ(x1, X2) follows from solving the aggregate resource constraint for ĉt . R̂(x1, X2)

is obtained by plugging ŷ(x1, X2) and π̂ (x1, X2) into the monetary policy rule in (13). Thus, we set Y (·) = [
ŷ(·), π̂ (·)]′ and 

k = 2.
The ELB constraint can be written in terms of the variables defined so far as R̂t + ln(r∗π∗) ≥ 0, which leads to the h(·)

function

h
(
x1,t, X2,t, Yt(·)

) = (1 − ρ)
[
ψ1π̂ (·) + ψ2( ŷ(·) − ŷt−1 + ẑt)

] + ρR R̂t−1 + eR,t + ln(r∗π∗). (38)

Thus, the γ coefficients in (28) are

7 In principle, one of the other state variables could have been chosen as x1. However, we found it natural to use the lagged interest rates, because all 
else being equal, higher lagged interest rates move the economy away from the ELB constraint.
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γ1 = ρR , γ ′
2 = [ln(r∗π∗), −(1 − ρR)ψ2, (1− ρR)ψ2, 0, 0] , γ ′

Y = [(1 − ρR)ψ1, (1− ρR)ψ2] ,

and we can write c(ϑ) in (36) as

c(ϑ) = ρR + (1− ρR)ψ1α
π
1,1 + (1 − ρR)ψ2α

y
1,1.

If απ
1,1 and α y

1,1 are both positive, then c(ϑ) is also positive because the remaining structural parameters are positive 
under standard parameterizations. Thus, we label the “1” regime as the regime where the ELB is slack, “n” (non-binding), 
and the “2” regime as the “b” (binding) regime. We check that c(ϑ) is indeed positive every time we solve the model.

4.4. Canonical form

The final step in preparing the model solution for filtering is to cast the solution in the following canonical form:

st =
{

�0(n) + �1(n)st−1 + �η(n)ηt if η1,t < ζ(st−1)

�0(b) + �1(b)st−1 + �η(b)ηt otherwise,
(39)

which is a VAR for st with endogenous regime switching. The innovations ηt are a function of the structural innovations εt . 
This transformation is done so that the first element of ηt , η1,t , is a linear combination of structural shocks that determines 
whether the constraint is binding in period t . Precise definitions of ηt , the impact matrices �η(·) and the threshold function 
ζ(·) will be provided below. Recall that we used the rotated ηt shocks also in the construction of the solution to the 
simplified DSGE model in Section 3 and its decision rules (22) were written in the canonical form.

Equation (39) will serve as a transition equation in a state-space model. Thus, the vector st needs to include all variables 
(whether or not they are directly approximated) that are necessary for the construction of the measurement equations and 
all variables necessary to determine the transition of such variables, which are all the state variables. The canonical form 
resembles a regime-switching VAR with a “binding” (b) and “non-binding” (n) regime. However, the regime transition is not 
determined by an exogenous Markov process. Instead, it is determined by the realization of the shock innovations.8 Whether 
the coherency and completeness conditions are satisfied – recall that we showed in Section 3 that they are satisfied for the 
simplified New Keynesian model – depends on the structure of the �(·) matrices and is model specific. The construction of 
the canonical form for the New Keynesian DSGE model of Section 2 is outlined in the Online Appendix.

4.5. Measurement equations

The key requirement for the conditionally optimal particle filter that is developed in Section 6 is that the conditional 
mean function (given st−1) of the observables is piecewise-linear. This is guaranteed if the state-transition equation has the 
canonical form (39) and the measurement equation is linear in st as in

yot = A0 + Asst + ut, ut ∼ N(0, ς�u), (40)

where yot is the vector of observable variables, ut is a vector of measurement errors, and the constant ς allows us to scale 
the measurement error covariance.

The small-scale New Keynesian DSGE model is typically estimated using output growth yogr,t , inflation πo
t , and interest 

rates Ro
t . Starting from st = [

ŷt , π̂t , R̂t , ̂zt , ̂dt, ̂gt , eR,t
]′
, we define the augmented vector s̃t = [s′t, ŷt−1]′ and add the trivial 

equation ŷt−1 = ŷt−1 to the canonical form in (39). Because the ŷt−1 identity is linear, the structure of the canonical form 
is preserved. Assuming that output growth is measured in quarter-on-quarter percentages, and inflation and interest rates 
are measured in annualized percentages, we obtain

yogr,t = 100 ln(γ ) + 100( ŷt − ŷt−1 + ẑt) + σu,yuy,t

πo
t = 400 ln(π∗) + 400π̂t + σu,πuπ,t (41)

Ro
t = 400 ln(R∗) + 400R̂t + σu,RuR,t .

In addition, we will include a measure of the consumption-output ratio, constructed from data on government spending 
Gt . The consumption output ratio is Ct/Yt = 1 − Gt/Yt . We define cyot as linearly detrended 100 · ln(1 − Gt/Yt). Because in 
our model 1 − Gt/Yt = 1/gt , we obtain the additional measurement equation

cyot = −100 ln g∗ − 100ĝt + σu,cuc,t . (42)

8 Aruoba et al. (2020) estimate a structural VAR that takes the form of (39). Chen (2017) and Bianchi and Melosi (2017) use an exogenous regime-
switching process to characterize the ELB dynamics. Such models can be solved using the tools proposed by Farmer et al. (2011). Benigno et al. (2016)
endogenize the regime-switching probability in a model of financial crisis, but, unlike in our paper, the transition from one to the other regime remains 
partly decoupled from the realization of the fundamental shocks.
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Thus, we are treating the exogenous process ĝt as observed in the estimation. Because the law of motion of ĝt is linear, the 
PLC structure of the empirical model is maintained.

5. PLC model solution

In this section, we describe how the free coefficients ϑ in the PLC decision rules, as defined in (33), are determined. 
We first discuss the equilibrium conditions that define the objective function that we will minimize to find the optimal ϑ
coefficients. We then describe the choice of the solution grid, the integration method and the optimization.

Equilibrium conditions. More formally, let us rewrite the equilibrium conditions in (14) generically as

H [ f0(·),X] = 0, ∀X ∈ X , (43)

where f0(X) corresponds to the optimal decision rules. In the context of the New Keynesian DSGE model, these decision 
rules are given by ŷ(·), π̂ (·), ĉ(·), and R̂(·). Because ĉ(·) and R̂(·) can be directly determined by plugging ŷ(·) and π̂ (·) into 
the equilibrium conditions, in our model f0(·) = [ ŷ(·), π̂ (·)]. The precise definition of H [ f0(·),X] for our New Keynesian 
DSGE model is provided in the Online Appendix.

We approximate f0(X) by PLC decision rules g(X; ϑ) ∈ G , where ϑ contains the free coefficients that are necessary 
to characterize the PLC function and G is the set of all PLC functions. To determine ϑ , we minimize the norm of the 
vector-valued function H [g(X;ϑ),X] over a set of M grid points S obtained using a sparse Smolyak grid:

ϑ = argmin
ϑ

1

M

∑
X∈S

‖H [g(X;ϑ),X; θ ]‖2.

In the simplified DSGE model in Section 3 we were able to find two sets of decision rule coefficients ϑ that set H[·] exactly 
equal to zero for all X and generate what we called the targeted-inflation equilibrium and the deflation equilibrium. In 
the numerical illustrations of Section 7 and the empirical application of Section 8 we will focus on the targeted-inflation 
equilibrium by choosing starting values for the ϑ optimization that generate the decision rules for a linearized version of 
the model without ELB constraint.9

Solution grid. There are two popular ways to choose the solution grid. In the collocation approach, the grid points typically 
come from a grid that is constructed using a tensor product of grids for each state variable, which in turn are constructed 
using the roots of a set of complete polynomials. It is well known that tensor product grids used to approximate the solution 
of nonlinear models suffer from the curse of dimensionality. Maliar and Maliar (2014, 2015) propose a series of techniques 
based on stochastic simulations to construct lower dimensional grids that represent the ergodic distribution of the model. 
However, these simulation-based methods require a time-consuming iterative procedure, and, in general, there does not 
seem to be a guarantee for the convergence of the grid and the approximate solution.

For our application, where we need to solve the model with different parameters tens of thousands of times, neither 
the collocation approach that uses tensor grids, nor the iterative approach that uses the ergodic distribution seem feasible. 
Coleman et al. (2018) propose the use of random and quasi-random grids on a fixed hypercube, because they are easier 
and faster to construct but lack the dimensionality reduction. Smolyak grids (Krueger and Kubler (2004), Malin et al. (2011), 
Judd et al. (2014)) offer a balance in this trade-off, combining the advantages of a fixed and predetermined domain and the 
dimensionality reduction of sparse grid methods.

In constructing the grid S , we follow Judd et al. (2014) and build a sparse Smolyak grid.10 The Smolyak grid is a sparse 
grid defined on the interval [−1, 1]. To use it in an application, it has to be scaled so that it represents the space of X. The 
scaling of the grid amounts to picking minimum and maximum values for each state variable. The extrema correspond to 
−1 and 1 in the original domain of the Smolyak grid, respectively. One of the properties of the Smolyak grid is it places 
grid points at the edges of the domain – at −1 and 1. Thus, we recommend picking values for the scaling that are not too 
extreme in order to have some mass on both sides of the grid point.

In the context of the New Keynesian DSGE model, we proceed as follows. For the exogenous state variables in X, except 
for the discount factor shock dt , we linearly scale the grid so that it starts from the 10th percentile and goes to the 90th
percentile of the distribution of each state variable. In the dt dimension, we use an asymmetric grid where the grid is 
centered at the unconditional mean of zero, and the upper bound of the grid is at the 10th percentile. Unlike for the other 
shocks, we set the lower bound to −4 standard deviations below the mean. This asymmetry ensures that our solution is 
accurate in the range of values for the dt shock that will be necessary to match the U.S. data in our empirical application.11

9 While some progress has been made in Ascari and Mavroeidis (2020) studying parameter and innovation domain restrictions that guarantee coherency 
and completeness, formal results for general DSGE models with endogenous state variables and continuously distributed innovations remain elusive.
10 One interpretation of our approach is that we are using the sum squared residual over the Smolyak grid as a proxy for integrating the squared residual 
function over the ergodic distribution. Monte Carlo experiments in Heiss and Winschel (2008) in the context of the calculation of the likelihood function 
of a mixed logit model, which also involves evaluating an integral without a closed-form expression, show that using a Smolyak grid provides superior 
performance over simulation techniques.
11 Using the same symmetric grid for dt leads to essentially no ZLB in the ergodic distribution of the model, which is a very well-known result for these 
models. See, for example, Boehl and Strobel (2020).
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For the endogenous state variable ŷt−1, we use the same scaling as the exogenous state ẑt , since we have verified that 
they have similar dispersion when simulating the model. Finally, for R̂t−1, we use the observed nominal interest rate data. 
Because we want to analyze the ELB, the grid is scaled so that its minimum value matches the ELB with R̂t−1 = − ln(r∗π∗), 
which happens to be the 10th percentile in the data. The maximum value is matched to the 90th percentile of the nominal 
interest rate in the data. For this variable in particular, we scale the grid so that the middle of the Smolyak grid coincides 
with the steady state at R̂t−1 = 0.

Integration and minimization. Expectations in the residual functions as in (14) are computed using the monomial integra-
tion rule M2 as in Judd et al. (2010). For a generic expression Et[v(xt+1)], our implementation with four random variables 
requires computing v(·) at 33 nodes and taking a weighted average. In our experience, this method produces results that 
are very similar to using a Gauss-Hermite integration for each random variable. As an example, with 5 nodes per random 
variable, the latter approach would make it necessary to evaluate v(·) at 625 nodes and increase running time considerably.

To minimize the objective function, we utilize the Levenberg–Marquardt algorithm, which is particularly effective in 
solving nonlinear least squares problems like ours, with the Jacobians evaluated analytically. As an initial guess for the 
algorithm, we use the decision rules from a log-linear approximation. Because the log-linear decision rules are a special 
case of the PLC decision rules—recall that we defined the model variables in log-deviations from the steady state—we can 
denote them by g(0)(X). We find the free coefficients ϑ0 (with αi

11 = αi
21 and αi

12 = αi
22 for all i = 1, ..., k) that generate 

the same decision rules and use this to initialize the minimization algorithm.

Interpretation of PLC decision rules. We offer two interpretations of the PLC decision rules. First, they can be viewed as an 
approximation to the optimal decision rules f0(X). In fact, our motivation for constructing PLC rules was that the decision 
rules computed in Aruoba et al. (2018) with Chebyshev polynomials for a New Keynesian DSGE model that is essentially 
identical to the model in Section 2, appeared to be almost piecewise-linear.

Second, the PLC rules can be viewed as describing the behavior of boundedly-rational agents. In principle, bounded 
rationality can take many forms. The basic notion is that decision making is constrained by agents’ abilities to gather, 
retain, and process decision-relevant information. Boundedly-rational agents may also be unable to solve a complicated 
mathematical problem. Under this interpretation, the PLC rules can be viewed as more easily computable decisions that 
have the additional benefit of being linear, except when the constraint in the model becomes binding.

6. Particle filters for PLC models

The state-space representation associated with the PLC solution comprises the nonlinear transition equation (39) and 
the linear measurement equation (40). The state-space representation provides a joint density for the states st and the 
observations yt (omitting the o superscript):

p(Y1:T , S1:T |θ) =
T∏

t=1

p(yt |st, θ)p(st |st−1, θ), (44)

where Yt1:t2 and St1:t2 denote the sequences yt1 , . . . , yt2 and st1 , . . . , st2 and θ is the vector of model parameters. Of par-
ticular interest are the sequence of estimates p(st |Y1:t) of the state vector and the likelihood function, which is defined 
as

p(Y1:T |θ) =
T∏

t=1

p(yt |Y1:t−1, θ) =
T∏

t=1

∫ ∫
p(yt |st , θ)p(st |st−1, θ)p(st−1|Y1:t−1, θ)dstdst−1. (45)

These objects can be obtained from a nonlinear filter. We describe below how p(st |Y1:t, θ) and p(yt |Y1:t−1, θ) can be 
efficiently approximated by a particle filter.12

6.1. Generic particle filter

A particle filter represents the density p(st |Y1:t, θ) through a swarm of particles {s jt , W j
t }Mj=1. Following the notation in 

Herbst and Schorfheide (2015) we now use h(·) to denote a function of st for which an expected value is supposed to be 
computed. E[h(st)|Y1:t, θ] can be approximated by Monte Carlo averages of the form 1

M

∑M
j=1 h(s jt )W

j
t . The approximation 

typically holds in the form of a Law of Large Numbers and a Central Limit Theorem. The particle filter can be implemented 
using the following algorithm13:

12 Surveys and tutorials can be found, for instance, in Arulampalam et al. (2002), Cappé et al. (2007), Doucet and Johansen (2011), and Creal (2012). 
Kantas et al. (2014) discuss using particle filters in the context of estimating the parameters of state-space models. Textbook treatments of the statistical 
theory underlying particle filters can be found in Cappé et al. (2005), Liu (2001), and Del Moral (2013).
13 Exposition and notation are based on Herbst and Schorfheide (2015).
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Algorithm 1 (Generic particle filter).

1. Initialization. Draw the initial particles from the distribution s j0
iid∼ p(s0|θ) and set W j

0 = 1, j = 1, . . . , M .
2. Recursion. For t = 1, . . . , T :

(a) Forecasting st . Draw s̃ jt from density gt(s̃t |s jt−1, θ) and define the importance weights

ω
j
t = p(s̃ jt |s jt−1, θ)

/
gt(s̃

j
t |s jt−1, θ). (46)

(b) Forecasting yt . Define the incremental weights

w̃ j
t = p(yt |s̃ jt , θ)ω

j
t . (47)

The predictive density p(yt |Y1:t−1, θ) can be approximated by

p̂(yt |Y1:t−1, θ) = 1

M

M∑
j=1

w̃ j
t W

j
t−1. (48)

(c) Define the normalized weights

W̃ j
t = w̃ j

t W
j
t−1

/
1

M

M∑
j=1

w̃ j
t W

j
t−1. (49)

(d) Selection. Resample the particles, for instance, via multinomial resampling. Let {s jt }Mj=1 denote M iid draws from a 

multinomial distribution characterized by support points and weights {s̃ jt , W̃ j
t } and set W j

t = 1 for j =, 1 . . . , M . An 
approximation of E[h(st)|Y1:t, θ] is given by h̄t,M = 1

M

∑M
j=1 h(s jt )W

j
t .

3. Likelihood Approximation. The approximation of the log-likelihood function is given by

ln p̂(Y1:T |θ) =
T∑

t=1

ln

⎛
⎝ 1

M

M∑
j=1

w̃ j
t W

j
t−1

⎞
⎠ . (50)

The most important choice in the configuration of the algorithm is the proposal density gt (s̃t |s jt−1, θ). Different choices 
of the proposal density lead to different versions of the particle filter.

6.2. Bootstrap particle filter

The BSPF was originally proposed by Gordon and Salmond (1993). It uses the state-transition equation as the proposal 
density, that is, gt(s̃t |s jt−1, θ) = p(s̃t |s jt−1, θ). This choice is attractive because it is straightforward to implement the fore-
casting step by forward simulation of the transition equation and the importance weights simplify to ω j

t = 1. A well-known 
disadvantage is that the proposal distribution is blind and hence ignores information about st contained in the current 
observation yt . This can lead to a large variance of the incremental weights ω̃ j

t . This problem is exacerbated if the measure-

ment error variance is small and p(yt |s̃ jt ) has thin tails, or if the model is inappropriately parameterized or misspecified 
and therefore has difficulties predicting yt one step ahead. Because the BSPF has been used in the DSGE model literature 
(see Fernández-Villaverde and Rubio-Ramírez (2007), An and Schorfheide (2007) and Herbst and Schorfheide (2015)), we 
will include it as a benchmark.

6.3. Conditionally optimal particle filter

The proposal density for the COPF utilizes information in yt with the goal of minimizing the variance of the incremental 
weights ω̃ j

t . It is given by

g∗
t (s̃t |s jt−1, θ) = p(s̃t |yt, s jt−1, θ) ∝ p(yt |s̃t, θ)p(s̃t |s jt−1, θ). (51)

Combining the formula for g∗
t (s̃t |s jt−1, θ) with the expressions for the importance weights ω j

t in (46) and the incremental 
weights ω̃ j

t in (47), we obtain
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ω̃
j
t = p(yt |s̃ jt , θ)p(s̃ jt |s jt−1, θ)

p(s̃ jt |yt, s jt−1, θ)
= p(yt |s jt−1). (52)

The second equality follows from Bayes Theorem. It can be shown that conditional on {s jt−1} the proposal density 
g∗
t (s̃t |s jt−1, θ) minimizes the variance of the incremental weight w̃ j

t in (47).
While direct sampling from the conditionally optimal proposal density is elusive for most nonlinear state-space models, 

we can derive a convenient formula for the piecewise-linear state-transition equation (39). Note that, conditional on st−1, 
the current state st is determined by ηt . It turns out, that it is more convenient to derive a conditionally optimal proposal 
density for ηt , denoted by g∗

t (ηt |s jt−1, θ).
In order to state the result, we have to define the following objects:

ν
j
t (·) = yt − A0 − As

(
�0(·) − �1(·)s jt−1

)
(53)

η̄
j
t (·) =

(
ς I + �′

η(·)A′
s�

−1
u As�η(·)

)−1
�′

η(·)A′
s�

−1
u ν

j
t (·)

�̄(·) = ς
(
ς I + �′

η(·)A′
s�

−1
u As�η(·)

)−1
.

I is the identity matrix. Recall that ς scales the measurement error variance. We use the argument (·) to indicate that the 
expressions are obtained either based on 

(
�0(n), �1(n), �η(n)

)
or 

(
�0(b), �1(b), �η(b)

)
. Here ν j

t (·) is the error made in 
forecasting yt based on s jt−1. η̄

j
t (·), and �̄(·) are the posterior mean vector and covariance matrix of ηt |(yt , s jt−1) absent any 

truncation—that is, for ζ(s jt−1) being +∞ or −∞. Moreover, let

D j
t (n) = (2π)−ny/2|�u|−1/2|ς I + �η(n)′A′

s�
−1
u As�η(n)|1/2 (54)

×exp

{
−1

2
ν

j
t (n)′(ς�u + As�η(n)�′

η(n)A′
s)

−1ν
j
t (n)

}

×�N
(
(ζ(st−1) − η̄

j
1,t(n)/

√
�̄11(n)

)
,

D j
t (b) = (2π)−ny/2|�u|−1/2|ς I + �η(b)′A′

s�
−1
u As�η(b)|1/2

×exp

{
−1

2
ν

j
t (b)

′(ς�u + As�η(b)�′
η(b)A′

s)
−1ν

j
t (b)

}
(
1− �N

(
(ζ(st−1) − η̄

j
1,t(b))/

√
�̄11(b)

))
.

It can be shown that p(yt |s jt−1) = D j
t (n) + D j

t (b).
The characterization of the conditionally optimal proposal density is summarized in Proposition 1. A proof of the propo-

sition is provided in the Online Appendix.

Proposition 1. Suppose the state-transition equation is given by (39), ηt ∼ N(0, I), η1,t is a scalar, and the measurement equation is 
given by (40). Draws from the conditionally optimal proposal densities g∗

t (s̃t |s jt−1, θ), j = 1, . . . , M, defined in (51) can be generated 
as follows:

1. Let

ξ
j
t =

{
‘n’ with prob. λ j

t

‘b’ with prob. 1− λ
j
t

, where λ
j
t = D j

t (n)

D j
t (n) + D j

t (b)
.

2. If ξ j
t = ‘n’ then generate ηt from the distribution

η
j
1,t ∼ N

(
η̄

j
1,t(n), �̄11(n)

)
I{η j

1,t ≤ ζ(s jt−1)}, η
j
2,t |η j

1,t ∼ N(η̄
j
2|1(n, η

j
1,t), �̄2|1(n)) (55)

and let

s̃ jt = �0(n) + �1(n)s jt−1 + �η(n)η
j
t .

If ξ j
t = ‘b’ then generate η j

t from the distribution

η
j
1,t ∼ N

(
η̄

j
1(b), �̄11(b)

)
I{η j

1,t > ζ(s jt−1)}, η
j
2,t |η j

1,t ∼ N
(
η̄

j
2|1(b, η

j
1,t), �̄2|1(b)

)
(56)

and
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s̃ jt = �0(b) + �1(b)s
j
t−1 + �η(b)η j

t .

3. The incremental particle weight is ω̃ j
t = D(n) + D(b). �

Vanishing measurement errors. It is instructive to examine what happens as ς −→ 0. For the conditional density of yt |st−1

to be nonsingular in the limit, it has to be the case that the number of rotated structural innovations is at least ny . Formally, 
the covariance matrices As�η(·)�′

η(·)A′
s have to be non-singular. Suppose that ny = nη and (As�η(·)) are invertible ny ×ny

matrices. This means, ignoring the truncation, under the invertibility assumption, we can solve for the innovations ηt as a 
function of (yt , s

j
t−1):

η
j
t∗(·) = (As�η(·))−1(yt − As(�0(·) + �1(·)st−1)).

Now consider what happens if we let the measurement error variance converge to zero. First, the expressions in (53)
remain well defined in the limit as ς −→ 0:

η̄
j
t −→ η

j
t∗(·), �̄(·) −→ 0.

The posterior variance converges to zero and the posterior mean converges to the innovation η j
t∗(·) that generates the 

observed yt conditional on s jt−1. For the limit behavior on D j
t (n), the crucial term is

lim
ς−→0

�N
(
(ζ(s jt−1) − η̄

j
1,t(n))/

√
�̄11(n)

) =
{

1 if ζ(s jt−1) − η̄
j
1,t(n) ≥ 0

0 otherwise
.

This term measures whether it is possible to explain yt using the (n) coefficients, accounting for the fact that the n regime 
is only active if η̄ j

1,t(n) ≤ ζ(s jt−1). A similar analysis can be conducted for the term D j
t (b). Thus, for each particle j, there are 

four possible cases (ignoring equalities):

Case 1 : η̄
j
1,t(n) < ζ(s jt−1), η̄

j
1,t(b) < ζ(s jt−1)

Case 2 : η̄
j
1,t(n) > ζ(s jt−1), η̄

j
1,t(b) > ζ(s jt−1)

Case 3 : η̄
j
1,t(n) < ζ(s jt−1), η̄

j
1,t(b) > ζ(s jt−1)

Case 4 : η̄
j
1,t(n) > ζ(s jt−1), η̄

j
1,t(b) < ζ(s jt−1).

In Case 1 D j
t (b) = 0 and λ j

t = 1. Here, only the (n) decision rules can rationalize the data conditional on s jt−1. Case 2 is the 
opposite: D j

t (n) = 0, λ j
t = 0, and only the (b) decision rules can rationalize the data. Under Case 3, both D j

t (n) and D j
t (b)

are strictly positive, 0 < λ
j
t < 1, and both decision rules could explain the data. Finally, in Case 4 yt is inconsistent with 

s jt−1, and none of the decision rules can explain the data. If each j = 1, . . . , M falls into Case 4, then the particle-filter based 
likelihood approximation for this particular parameterization of the DSGE model will be zero. Note that, if the measurement 
error variance is strictly greater than zero, (potentially very large) measurement errors could also rationalize the data under 
Case 4.14

The previous calculations highlight that, unlike for the BSPF, the weights of the COPF do not degenerate if one decreases 
the measurement error variance. In this case, if As�η(·) is a square matrix, the COPF specializes to the inversion filter that 
solves for the innovations as a function of yt and s jt−1. Because our model is piecewise-linear, this inversion may have one, 
two, or no solution(s).
Perfectly observed regimes. Our ELB application has the special feature that the observation yt identifies the regime. Let 
yt = [y′

1,t, y2,t]′ , where y2,t corresponds to the nominal interest rate. Suppose the ELB is binding in the b regime and 
non-binding in the n regime. Then, the ex post regime probability λ j is independent of s jt−1 and given by the indicator 
function.

λ j = I{y2,t > c}. (57)

While the distribution of yt is continuous in the n regime, for the binding regime the continuous part of the distribution 
concentrates in the lower-dimensional subspace defined by y2,t = c. Thus, the formulas for D j

t (b) in (54) and the moments 
of the distribution of η j

t in Proposition 1 in the b regime have to be adjusted to account for the reduced dimensionality of 
the continuous part of the yt distribution. Further details are provided in the Online Appendix.

14 The four cases distinguished here are closely connected to the coherency and completeness conditions discussed in Section 3. Previously, we asked 
whether conditional on a realization of ηt the vector st , using the notation of the canonical form (39), is uniquely determined. If the condition is not 
satisfied, then p(st |st−1, θ) is not well defined. In addition, for the filtering it matters whether in the absence of measurement errors, there exist one or 
more ηt ’s that can rationalize the data.
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Table 1
DGP and prior.

Parameter DGP Prior distribution

Density P(1) P(2) HPD Low HPD High

τ 2.00 G 2.00 0.20 1.67 2.32

κ 0.13 B 0.10 0.05 0.02 0.17

ψ1 2.60 fixed at 2.60

ψ2 0.98 fixed at 0.98

ρR 0.80 B 0.80 0.10 0.65 0.96

ρg 0.91 B 0.80 0.10 0.65 0.96

ρd 0.97 B 0.80 0.10 0.65 0.96

ρz 0.37 B 0.40 0.20 0.08 0.73

σR 0.0019
√
IG 0.005 4.00 0.003 0.010

σg 0.0025
√
IG 0.005 4.00 0.003 0.010

σd 0.020
√
IG 0.01 4.00 0.005 0.020

σz 0.0058
√
IG 0.01 4.00 0.005 0.020

η 0.72 fixed at 0.72

ν 0.10 fixed at 0.10

χH 1.00 fixed at 1.00

g∗ 1.27 G 1.20 0.20 0.88 1.63

rAnet 0.22 G 1.00 0.40 0.39 1.64

gamQnet 0.33 N 0.50 0.25 0.09 0.91

piAnet 0.75 N 2.50 1.00 0.87 4.14

Notes: G is Gamma distribution; B is Beta distribution; IG is Inverse Gamma 
distribution; and N is Normal distribution. P(1) and P(2) are mean and stan-
dard deviations for Beta, Gamma, and Normal distributions. The IG distribution 
is parameterized as scaled inverse χ2 distribution with density p(σ 2|s2, ̃ν) ∝
(σ 2)−ν̃/2−1 exp[−ν̃s2/(2σ 2)], where P(1) is 

√
s2 and P(2) is ν̃ . The density of 

σ is obtained by the change of variables σ = √
σ 2. HPD(Low,High) refers to 

the boundaries of 90% highest prior density intervals. We use the following 
parameter transformations: β = exp{−rANet/400}, γ = exp{gamQnet/100}, and 
π∗ = exp{piAnet/400}.

7. Numerical illustrations

We now illustrate the proposed filtering method based on data simulated from the DSGE model of Section 2. First, we 
compare the distribution of the stochastic likelihood approximation conditional on a particular parameter θ between the 
proposed COPF and the basic BSPF. It has been shown in the literature that likelihood approximations of particle filters 
are unbiased; see Herbst and Schorfheide (2015). In view of the unbiasedness, a low-variance approximation is preferable 
to a high-variance approximation. Jensen’s inequality implies that log likelihood approximations are downward biased. The 
magnitude of the bias is connected to the variability of the likelihood approximation: the larger the variance, the larger also 
the downward bias.

Second, we embed the particle filter approximation of the likelihood function into a Metropolis-Hastings algorithm. It has 
also been shown in the literature that if the exact likelihood function is replaced by a noisy but unbiased estimate, MCMC 
algorithms still converge to the exact posterior distribution. However, there is no free lunch: the larger the variability of the 
likelihood approximation, the slower the convergence. In the numerical illustrations below, we will compare the speed of 
convergence as measured by the degree of serial correlation in the parameter draws, across different versions of the particle 
filter.

Throughout this section, we assume that all variables, including interest rates, are measured with error and that therefore 
regime (ELB binding versus non-binding) is not perfectly observed. Thus, conditional on the states st , yt has a continuous 
distribution; see (40) and (41). All computations reported below are executed on a single core of PC with an Intel Xeon CPU 
E5-2687Wv3 at 3.10 GHz running Windows 10 (64bit) and JuliaPro 1.5.3.

7.1. Accuracy of likelihood approximation

We simulate a sample of T = 140 observations from the DSGE model, loosely parameterized based on the empirical 
estimates reported in Section 8. The parameter values are summarized in the second column of Table 1. The sample size 
matches the one used in the empirical application in Section 8. We select a subsample from a long simulation in which the
ELB binds approximately 10% of the periods.

We begin by comparing the accuracy of the particle-filter-based likelihood approximation using the same parameter 
values that were used to generate the data. The likelihood evaluation is conditional on a vector of initial states which are 
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Notes: Density plots are based on Nrun = 100 runs of the BSPF (M = 1, 000 is dotted and M = 10, 000 is dashed) and 
COPF (M = 400, solid), respectively.

Fig. 1. Density of log-likelihood approximations.

the true initial states associated with the simulated observations. We consider two values for the scaling parameter for the 
measurement errors, ς : 0.15 and 0.10. The smaller ς is, the larger is the penalty for deviations between model-predicted 
and actual observations. Thus, small measurement errors can be provided as a stress test for the filter in case the model (or 
its parameterization) is at odds with the data.

The accuracy of the filter depends on the number of particles M . For the COPF, we set M = 400, and, for the BSPF, we 
consider M = 1, 000 and M = 10, 000. Starting from the benchmark of the BSPF with M = 1, 000, the choice of M = 400
for the COPF approximately equalizes the run times of the two filters, which is about 0.9 seconds for ς = 0.15.15 We run 
the COPF and the BSPF Nrun = 100 times, respectively, and construct kernel estimates of the likelihood from the repeated 
runs, which are depicted in Fig. 1. The more concentrated the densities, the more accurate the likelihood approximation. 
Holding the run time fixed, the COPF is substantially more accurate than the BSPF. Raising the number of particles from 
1,000 to 10,000 increases the run time of the BSPF roughly tenfold. For ς = 0.15 this leads to roughly the same accuracy as 
the COPF. In other words, for a pre-specified level of accuracy the COPF is ten times faster than the BSPF.

Because the BSPF ignores the information in yt when generating the proposal draws s̃ jt , the variance of the particle 
weights increases as ς falls. This, in turn, translates into an increase in the variance (and by virtue of the concave transfor-
mation also the bias) of the log-likelihood approximation, which is clearly visible by comparing the dotted densities across 
panels for the two different values of ς . The precision of the COPF, on the other hand, increases as ς falls. When ς −→ 0, 
it is possible to uniquely determine the innovations η j

t conditional on s jt−1 during non-ELB periods, because the number of 
observables equals the number of shocks.

Fig. 2 depicts standard deviations of log-likelihood approximations as a function of the mean log-likelihood value across 
Nrun = 100 runs of the filter for ς = 0.15 and ς = 0.10. Each dot (or asterisk) in the two scatter plots corresponds to 
a different parameter value θ i .16 Two important findings emerge. First, as we have seen already from Fig. 1, the COPF 
likelihood approximation is less dispersed than the BSPF approximation. The accuracy gain from the conditionally optimal 
proposal density increases as the measurement error variance decreases, because the BSPF performance deteriorates. Second, 
while the accuracy of the COPF is independent of the log-likelihood value associated with the posterior draw θ i , the accuracy 
of the BSPF approximation deteriorates the further the θ i draw is in the tails of the posterior distribution.

7.2. Particle MCMC

We now embed the particle filter likelihood approximations in a standard single-block RWMH algorithm. The particle 
RWMH algorithm operates on an enlarged probability space that includes all the random variables that are generated when 
running the particle filter; see Herbst and Schorfheide (2015) for a textbook exposition and Andrieu et al. (2010) for a formal 
analysis. The use of an enlarged probability space leads to an increase in the persistence of the Markov chain generated by 
the posterior sampler. The noisier the likelihood approximation, the larger the persistence of the resulting Markov chain. 
A high degree of serial correlation is undesirable, because it leads to very noisy Monte Carlo approximations of posterior 
moments. We will show that the use of an accurate particle filter such as the COPF can alleviate this problem.

15 The absolute run times depend on the programming language – Julia in our case – and the efficiency of the code. We are mainly interested in the 
relative run times. The code for the COPF and BSPF is almost identical, except that the COPF requires a few additional steps to evaluate the expressions in 
Proposition 1, which implies that for the same M , the COPF is slower than the BSPF.
16 The parameter values are obtained from a preliminary run of the particle Markov chain Monte Carlo (PMCMC) algorithm in Section 7.2.
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Notes: Standard deviations of log-likelihood approximations are based on Nrun = 100 runs of the two filters. Each dot 
(or asterisk) corresponds to a particular θ i . We are using M = 1, 000 particles for the BSPF (asterisks) and M = 400
particles for the COPF (dots).

Fig. 2. Comparison of log-likelihood approximations.

Under some regularity conditions, the sequence of posterior draws generated from a RWMH algorithm satisfies a Cen-
tral Limit Theorem (CLT) for dependent processes. The numerical accuracy of the Monte Carlo approximation of posterior 
means depends on the long-run covariance matrix of the sequence of parameter draws θ i , i = 1, . . . , N . The larger the 
autocorrelation of these draws, the less precise the Monte Carlo approximation.

The RWMH algorithm requires a covariance matrix for the proposal distribution (we use a multivariate normal dis-
tribution) that is constructed as follows. We start from a log-linearized version of the DSGE model that ignores the ELB 
constraint and sets the measurement error variance to zero (ς = 0). In this case the likelihood function can be evaluated 
with the Kalman filter (KF). We conduct two preliminary MCMC runs using the linearized model. The first run is based 
on a diagonal covariance matrix with scaled prior variances on the diagonal and the second run is based on the posterior 
covariance matrix of the first run. Finally, we compute the posterior covariance matrix from the second run and denote it 
by ˆ̄V θ . The particle MCMC runs using the nonlinear DSGE model are based on c ˆ̄V θ where c = 0.1.

For the estimation of the nonlinear model we set the scale of the measurement error variance to ς = 0.15 and keep 
the number of particles at M = 400 for the COPF and M = 1, 000 for the BSPF. Thus, according to the left panel of Fig. 2, 
the standard deviation of the log-likelihood approximation of the COPF is around 1 whereas the standard deviation for the 
BSPF ranges from 3 to 5. We generate 22,000 draws from the posterior distribution and discard the first 2,000 draws. The 
overall run time using the two filters is approximately 5 hours and 45 minutes for both filters. Note that the codes for the 
COPF-RWMH and the BSPF-RWMH algorithms are identical, except for the more complicated way of generating draws from 
gt(s̃t |s jt−1, θ) and evaluating ω̃ j

t in the COPF likelihood approximation.
Using a scaling of c = 0.1, the acceptance rate for the proposed draws is 32% for the COPF-RWMH algorithm. Herbst and 

Schorfheide (2015) documented that for the estimation of small-scale linearized DSGE models, an acceptance rate between 
15% and 30% is associated with the most accurate Monte Carlo approximations of posterior means. Replacing the COPF by 
the BSPF while keeping the scale factor c = 0.1, the acceptance rate drops to 4.3%. The lower acceptance rate is caused by 
the noisier likelihood approximation.17

The first row of Fig. 3 compares posterior densities constructed from the output of the COPF- and BSPF-RWHM algorithms 
for two representative parameters: τ and ρd . The posterior densities for τ look similar and both peak near the “true” 
parameter values depicted by the solid vertical line. For the parameter ρd , the posterior density obtained from the BSPF is 
slightly to the left of the COPF density and its peak is further away from the “true” value. Apparently the BSPF chain has not 
fully converged yet. It moves slowly due to the low acceptance rate and needs more draws to fully explore the high-density 
area of the posterior.

The second row of Fig. 3 shows the autocorrelation functions for the τ i and ρ i
d sequences. Here, stark differences emerge. 

While under the BSPF-based sampler the autocorrelation at lag 100 is still around 0.8 for the ρ i
d sequence, it is only 0.28 

for draws from the COPF-RWMH. Suppose the autocorrelation function of the draws is given by ρ j , where j is the temporal 
displacement among the draws. Then the variance of the mean of the draws is given by Vπ [h(θ)](1 + ρ)/(1 − ρ), where 
Vπ [h(θ)] is the posterior variance of h(θ) and (1 + ρ)/(1 − ρ) can be viewed as an inefficiency factor that arises due to 
the serial correlation of the draws. A reduction from ρ = 0.81/100 = 0.998 to ρ = 0.281/100 = 0.987 lowers the inefficiency 
factor from approximately 1,000 to 150. This implies only 15% of the draws are required to achieve the same accuracy of 

17 The acceptance rate could be increased by decreasing c, but it does not cure the persistence problem because the chain moves very slowly due to the 
smaller size of the accepted steps.
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Notes: ME scale ς = 0.15, proposal covariance scale c = 0.1, N = 22, 000 draws (drop first 10%). COPF: number of 
particles M = 400. BSPF: number of particles M = 1, 000. Top row: kernel density estimates of posterior distribu-
tions based on MCMC output. Vertical lines indicate true parameter values. Center row: autocorrelation functions 
of posterior draws based on COPF and BSPF. Bottom row: scatter plots of autocorrelations BSPF vs. COPF for various 
lags. Solid line is 45 degree line.

Fig. 3. Posterior draws: density and autocorrelation.

posterior mean approximations with the COPF-based sampler as with the BSPF-based sampler, or, holding the numbers of 
draws fixed across samplers, the COPF-based sampler delivers Monte Carlo approximations that are six times as accurate (in 
terms of sampling variance).

The last row of Fig. 3 compares autocorrelations for lags 10, 20, 30, and 40 for all estimated parameters. The solid lines 
are 45-degree lines. The two panels show that the COPF is able to reduce the autocorrelation for all estimated parameters, 
and hence it drastically improves the performance of the MCMC algorithm.

To summarize, in our likelihood approximation exercise we found that for a pre-specified level of accuracy, the COPF is 
at least ten times faster than the BSPF. When used inside a RWMH algorithm we showed that the COPF is able to reduce 
the persistence of the Markov chain considerably which leads to substantially more accurate Monte Carlo approximations 
of posterior moments. The COPF enables us to accurately estimate a DSGE model with an occasionally-binding constraint 
without supercomputing capabilities in a relatively short amount of time.
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8. Empirical application

We now estimate the small-scale New Keynesian DSGE model based on quarterly U.S. data using the previously devel-
oped model solution and filtering techniques and conduct a fiscal policy experiment. The estimation results are summarized 
in Section 8.1, and the fiscal policy analysis appears in Section 8.2.

8.1. Estimation

The DSGE model is estimated based on data on quarterly GDP growth (quarterly %), the log consumption-GDP ratio 
(scaled by 100), GDP deflator inflation (annualized %), and nominal interest rates (annualized %) with data from 1984:Q1 
to 2018:Q4. The data for the estimation was extracted from the FRB St. Louis FRED database (vintage 2019-10-30). Output 
growth is defined as real gross domestic product (GDPC1) growth converted into per capita terms. Our measure of popula-
tion is Civilian Noninstitutional Population (CNP16OV). We compute population growth rates as log differences and apply an 
eight-quarter backward-looking moving average filter to the growth rates to smooth out abrupt changes in the population 
growth series. In constructing a measure of the consumption-GDP ratio, we define consumption as the difference between 
output and government spending. Thus, our measure of consumption includes investment and net exports. Government 
spending is constructed as real government consumption expenditures and gross investment (GCEC1). We remove a linear 
trend from the log consumption-GDP ratio to correct for different time trends in the price deflators of the GDP components. 
Inflation is defined as the log difference in the GDP deflator (GDPDEF), and the interest rate is the average effective federal 
funds rate (FEDFUNDS) within each quarter. During the period 2009:Q1 to 2015:Q4, when the effective federal funds rate 
was between 0 and 25 basis points, we set the interest rate exactly equal to zero and regard the ELB as binding.

The prior distribution used for the estimation is identical to the one in Table 1. We absorb the initial values of the latent 
state variables into the parameter vector and specify prior distributions over the initial states; see Table A-1 in the Online 
Appendix.18 We fix a number of parameters prior to estimation. Because our sample does not include observations on labor 
market variables, we fix the Frisch labor supply elasticity. Based on Ríos-Rull et al. (2012), who provide a detailed discussion 
of parameter values that are appropriate for DSGE models of U.S. data, we set η = 0.72. The parameter ν , which captures 
the elasticity of substitution between intermediate goods, is not separately identifiable from the slope of the Phillips curve 
κ which in turn determines the adjustment cost parameter φ. We set ν = 0.1, which generates a markup of 10%. We 
fix the preference parameter at χH = 1. It determines steady-state hours worked and is neither relevant for the model 
dynamics nor identifiable based on our observables. We also fix the monetary policy coefficients ψ1 and ψ2 at 2.60 and 
0.98, respectively, which are values estimated in Aruoba and Schorfheide (2016).

We start out by estimating the log-linearized version of the DSGE model that ignores the ELB constraint, setting the 
measurement error variances of the state-space model to zero. Draws from the posterior are generated by a single-block 
RWMH algorithm. In an initial run, we use a diagonal matrix with the prior variances to configure the covariance matrix 
of the proposal distribution. In the main run, we use the estimated posterior covariance matrix ˆ̄V from the initial run to 
construct a proposal covariance matrix � with the scaling factor c = 0.3. We generate N = 110, 000 draws, discarding the 
first 10,000.

For the estimation of the nonlinear version of the model we assume that interest rates are observed without error. Thus, 
conditional on Ro

t , it is known whether the ELB is binding or not; see (57). We maintain the assumption that the remaining 
variables are observed subject to a measurement error and set the scale factor for their measurement error variances 
to ς = 0.001. We generate N = 55, 000 draws from the posterior distribution of θ using the particle RWMH algorithm, 
discarding the first 5,000 draws. We use a scaling of c = 0.1 for the covariance matrix of the proposal distribution. The 
likelihood function is approximated using the COPF with M = 250 particles. The resulting acceptance rate of the particle 
RWMH algorithm is 17%, and the run time is approximately 18 hours on a single core, which comes to about 1.2 seconds 
per draw.19

The parameter estimates are summarized in Table 2. The table reports posterior means and lower and upper endpoints 
of highest posterior density (HPD).20 The parameter estimates are similar to the ones reported elsewhere in the literature 
for variants of the small-scale New Keynesian DSGE model. The estimated slope of the Phillips curve is κ̂ = 0.18. The 
government spending shock is close to a unit-root process (ρ̂g = 0.97), and the estimated autoregressive parameter of the 
discount factor shock is ρ̂d = 0.93. Thus, innovations to these processes will have a long-lasting effect. One of the outputs 
of the estimation is the set of filtered values for the exogenous variables. We use these explicitly in our policy experiment 
and discuss them in the next section.

18 This approach has the advantage that uncertainty about the initial state does not add to the variability of the particle-filter-based likelihood approxi-
mation conditional on a parameter θ i .
19 If we reduce the number of particles from M = 250 to M = 150 the run time falls to approximately 12 hours and 30 minutes, yielding very similar 
approximation of the posterior distribution.
20 We compared these estimates with those obtained from a linearized model using the Kalman Filter and data that exclude the ELB episode. The most 
noteworthy difference is in σd , which needs to be larger when the ELB episode is used in order to deliver large (negative) and persistent shocks that take 
the economy to the ELB.
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Table 2
Posterior distribution (PLC / COPF).

Parameter Mean HPD Low HPD High

τ 1.98 1.74 2.24

κ 0.18 0.13 0.22

ρR 0.79 0.77 0.82

ρg 0.97 0.95 0.99

ρd 0.93 0.92 0.95

ρz 0.32 0.17 0.48

100σR 0.18 0.15 0.20

100σg 0.26 0.23 0.28

100σd 3.16 2.48 3.81

100σz 0.61 0.53 0.69

g∗ 1.27 1.26 1.29

rAnet 0.74 0.35 1.15

gamQnet 0.38 0.26 0.49

piAnet 2.56 2.22 2.89

Notes: The estimation period is 1984:Q1 to 2018:Q4. 
The following parameters are fixed during the estima-
tion: ψ1 = 2.6, ψ2 = 0.98, η = 0.72, ν = 0.10, and χH =
1.00. We use the following parameter transformations: 
β = exp{−rANet/400}, γ = exp{gamQnet/100}, and π∗ =
exp{piAnet/400}. HPD(Low,High) refers to the boundaries 
of 90% highest posterior density intervals. COPF configu-
ration: number of particles M = 250, ME scale ς = 0.001, 
proposal covariance scale c = 0.1, N = 55, 000 draws 
(drop first 10%), acceptance rate is 17%, run time is ap-
proximately 18 hours.

8.2. Fiscal policy analysis

The recent literature has emphasized that the effects of expansionary fiscal policies on output may be larger if the 
economy is at or near the ELB; see, for instance, Eggertsson (2011) and Christiano and Eichenbaum (2012). In the absence 
of the ELB, a typical interest rate feedback rule implies that the central bank raises nominal interest rates in response 
to rising inflation and output caused by an increase in government spending. This monetary contraction raises the real 
interest rate, reduces private consumption, and overall dampens the stimulating effect of the fiscal expansion. If, however, 
the economy remains at the ELB despite the expansionary fiscal policy, then the increase in inflation that results from the 
fiscal expansion reduces the real rate. In turn, current-period demand is stimulated, amplifying the positive effect on output. 
We will use our model to provide a quantitative assessment of this effect.

Because our model solution is nonlinear, the effect of a fiscal intervention depends on the initial condition and the size 
of the intervention. We use the Great Recession and the subsequent period in the U.S. as our laboratory and consider a fiscal 
intervention that is calibrated to a portion of the ARRA of February 2009 as we explain below. Our analysis is conducted 
from an ex post perspective, where we extract the historical shocks that make our model match the realized U.S. data, 
which include both a fiscal and monetary intervention, and ask what would have happened if one or both of the policy 
interventions were not implemented.

ARRA of February 2009 consisted of a combination of tax cuts and benefits; entitlement programs; and funding for 
federal contracts, grants, and loans. We focus on the third component, because it can be interpreted as an increase in gt . 
We model the ARRA spending as a one-period positive shock of δARR A to the demand shock process, where we calibrated 
δARRA = 0.0077 using data on the disbursement of ARRA funds, as we explain in the Online Appendix. This one-time shock 
is roughly 2.7σg , and, since ĝt is highly serially correlated, the effect of the shock will slowly decay over time. Since the 
disbursement of ARRA was spread over the year and was not done instantly, we assume that the ARRA innovation to 
government spending took place in the third quarter of 2009.

We use the COPF to obtain estimates of the exogenous shock processes for the period 2009:Q3 through 2011:Q2. The 
subsequent results are based on the mean estimator of the DSGE model parameters. The panels in the first two rows of 
Fig. 4 show the filtered monetary policy and government spending innovations and the levels of the government spend-
ing, technology growth, and discount factor shock processes. Recall that, in the model εR,t and εg,t are N(0, 1) random 
variables. The level processes in the second row of the figure are standardized by the unconditional standard deviations of 
the corresponding AR(1) processes. For the government spending and the monetary policy shocks, we distinguish between 
intervention and no-intervention paths.

According to the estimated model, the drop in output during the Great Recession is generated by drastic falls in the 
technology growth and discount factor shock processes. Because of the stylized structure of the DSGE model, these two 
shocks also absorb the contribution of financial shocks and financial accelerator effects. While the technology growth shock 
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Notes: The vertical line corresponds to 2009:Q3, which is the date of the ARRA intervention. Intervention (solid) 
versus no-intervention paths (dashed). Along the no-intervention path, we set monetary policy shocks to zero and 
lower the innovation to the government spending shock in 2009:Q3 by the size of the ARRA intervention. Dotted 
lines represent paths in the absence of exogenous shock innovations from 2009:Q3 onwards. The level processes 
in the second row of the figure are standardized by the unconditional standard deviations of the corresponding 
AR(1) processes. Inflation and the interest rate are expressed in terms of annualized percentage rates.

Fig. 4. Ex post policy analysis.

is not very persistent (ρ̂z = 0.32) and reverts back to zero by the end of 2009, the mean reversion of the discount factor 
shock is very slow, and it remained below 2 standard deviations until the end of 2010. Meanwhile the government spending 
process is positive, indicating that fiscal policy started to become expansionary (relative to the historical average) in 2008. 
The filtered monetary policy innovations ε̂R,t|t turn out to be negative past 2009:Q3, which captures an effort by the Federal 
Reserve to keep the policy rate lower than what the policy rule implies. This is how our model, which abstracts from 
explicitly modeling unconventional monetary policies implemented in this period (quantitative easing, forward guidance), 
handles the existence of these policies in the data.

Because the actual path of the government spending shock already contains the effect of fiscal expansion due to ARRA, 
we compute the counterfactual path by subtracting the effect of ARRA from the filtered demand shock ĝt|t using

ĝCt|t = ĝt|t − ρt−T∗
g δARR A for t = T∗, T∗ + 1, ..., T∗ + 7, (58)

where T∗ corresponds to 2009:Q3, the period the ARRA intervention is implemented in. The magnitude of the ARRA inter-
vention is reflected in the difference between the intervention (dashed) and no-intervention (solid) government spending 
innovation depicted in the top left panel of Fig. 4. The ARRA intervention shifts ĝt persistently downward as shown in the 
center left panel of the figure. To measure the effect of the combined fiscal and (unconventional) monetary policy, we set 
the counterfactual monetary policy shocks to zero.

The main finding is depicted in the bottom panels. The ex post effect of the intervention is defined as Xo − XC , where 
Xo is the observed value of a generic variable and XC is the counterfactual path along which the policy intervention is 
removed.21 In the figure, the ex post effect is given by the gap between the no intervention and the intervention path. In 
the absence of the ARRA and monetary interventions, output and inflation would have been persistently lower than they 

21 Details on the algorithm to compute the effects of the policy interventions are reported in the Online Appendix.
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Table 3
Ex post multipliers.

Intervention 1Q 4Q 8Q

Fiscal only 0.40 0.58 0.63

Fiscal + monetary 0.40 0.93 1.09

Notes: Ex post analysis is conditional on filtered 
2009:Q3 - 2011:Q2 shocks. The pure fiscal multi-
pliers are obtained by setting the monetary policy 
shocks to zero, whereas the combined fiscal and 
monetary multipliers are based on leaving the mon-
etary policy shocks at their filtered values.

actually were. In particular, annualized inflation would have been 60 basis points lower, and annualized output growth 
would have been 43 basis points lower, on average, over these eight quarters.

Based on the output and government spending paths, we can also compute cumulative dollar-for-dollar multipliers

μH =
∑H

τ=1(Y
o
T∗−1+τ − Y C

T∗−1+τ )∑H
τ=1(G

0
T∗−1+τ − GC

T∗−1+τ )
where H = 1, ...,8,

which are reported in Table 3. The pure fiscal multipliers are obtained by setting the monetary policy shocks to zero, 
whereas the combined fiscal and monetary multipliers are based on leaving the monetary policy shocks at their (negative) 
filtered values. After one year, the ex post multiplier associated with the combined fiscal and monetary policy intervention 
is around 0.9 according to our estimated model. The ex post fiscal-only multiplier is around 0.6, which implies that the 
accompanying (unconventional) expansionary monetary policy amplified the fiscal multiplier considerably according to our 
analysis.

The red dotted lines in the second-row panels of Fig. 4 represent the post-2009:Q3 path of the exogenous shock processes 
in the absence of further innovations, which is the expected path conditional on 2009:Q3 innovation. Subsequent technology 
innovations had only small effects, keeping its process roughly in line with expectations. However, additional negative 
discount factor innovations, explain the very low interest rates after 2010:Q2. In the absence of the adverse discount factor 
shocks, interest rates would have moved away from the ELB, providing additional scope for the Fed to boost the effects of a 
fiscal expansion by keeping interest rates at zero.

9. Conclusion

Likelihood-based estimation of nonlinear DSGE models is computationally challenging. While it is becoming easier for 
economists to access powerful computer clusters that enable massive parallel computation, the ability to solve and estimate 
models on a desktop computer remains useful and desirable. Computations can often be simplified and accelerated consid-
erably by taking shortcuts in regard to model solution or estimation techniques. The goal of this paper has been to develop 
a new solution method that captures important aspects of the nonlinearity generated by occasionally-binding constraints 
and, at the same time, allows for efficient filtering and likelihood-based estimation. The piecewise-linearity of the decision 
rules allows us to solve the model faster and to derive a conditionally optimal proposal distribution for a particle filter. This 
filter delivers a much more accurate likelihood approximation than a standard bootstrap particle filter and enables us to 
estimate a nonlinear New Keynesian DSGE model with a ELB constraint in a relatively short amount of time on a single core 
processor.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .red .2020 .12 .003.
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