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a b s t r a c t

We develop a structural VAR in which an occasionally-binding constraint generates
censoring of one of the dependent variables. Once the censoring mechanism is triggered,
we allow some of the coefficients for the remaining variables to change. We show
that a necessary condition for a unique reduced form is that regression functions for
the non-censored variables are continuous at the censoring point and that parameters
satisfy some mild restrictions. In our application the censored variable is a nominal
interest rate constrained by an effective lower bound (ELB). According to our estimates
based on U.S. data, once the ELB becomes binding, the coefficients in the inflation
equation change significantly, which translates into a change of the inflation responses
to (unconventional) monetary policy and demand shocks. Our results suggest that the
presence of the ELB is indeed empirically relevant for the propagation of shocks. We
also obtain a shadow interest rate that shows a significant accommodation in the early
phase of the Great Recession, followed by a mild and steady accommodation until liftoff
in 2016.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic stochastic general equilibrium (DSGE) models are widely used in central banks, by regulators, and in academia
o study the effects of monetary and macroprudential policies and the propagation of shocks in the macro economy.
he most recent vintage of these models involves occasionally-binding constraints arising from, for instance, an effective
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ower bound (ELB) on nominal interest rates. Agents’ decision rules in these models typically exhibit ‘‘kinks’’, meaning the
lasticity of the choice variables, say output or prices, with respect to the underlying state variables changes drastically
hen the constraint becomes binding. We used this observation in Aruoba et al. (2021), henceforth ACHSV, to approximate
uch decision rules through piecewise-linear and continuous (PLC) functions. The model solution has the form of a
ector autoregression (VAR) with a censored dependent variable and regime switching coefficients. The regime shift
s endogenous and it is linked to the censoring mechanism. For instance, in a model with an ELB constraint, the VAR
oefficients switch once the interest rate reaches the lower bound.
Our paper develops a structural VAR (SVAR) that mimics the PLC-DSGE model solution, but can be used independently

f an optimization-based structural model to study the propagation of shocks in settings where an observable is subject to
n occasionally-binding constraint. Throughout this paper, we focus on an application that features nominal interest rates
hat are constrained by an ELB.1 An important empirical question is whether the propagation of shocks works differently
hen the economy reaches the ELB because interest rates no longer can fall in response to adverse shocks and agents
ay adjust their behavior in light of the constraint. In densely parameterized models such as time-varying coefficient
tructural VARs (TVC-SVARs), these effects are empirically difficult to measure because for many countries we only have
few years of ELB observations available. This makes it challenging to obtain precise estimates. Our proposed model is
ble to avoid this problem because the coefficient shift that takes place once the constrained becomes binding is controlled
y a low-dimensional vector of additional parameters.
There is a small, but growing literature on multivariate time series models with a censored interest rate variable,

ncluding Iwata and Wu (2006), Ikeda et al. (2020), Mavroeidis (2020), Carriero et al. (2021) and Johannsen and Mertens
(2021). All of these models distinguish between a shadow rate, y∗1,t in our notation, and the actual interest rate y1,t =

max{y∗1,t , c}. The models differ, however, in terms of assumptions about the extent to which model coefficients are allowed
to change when the economy reaches the ELB.

The key departure of our paper from the existing literature is the assumption that the coefficients that characterize the
behavior of the private-sector variables y2,t (output gap and inflation in our application) as a function of lagged dependent
variables and current structural shocks are allowed to switch once the ELB becomes binding. We define the endogenous
regime indicator variable st = I{y1,t > c}. The regime-dependency of the coefficients is akin to capturing nonlinearities
in decision rules that arise in a DSGE model with occasionally-binding constraints.

The specification of a dynamic multivariate model with censoring and regime-dependent coefficients faces two
challenges: parsimony and the existence of a unique reduced form. We show in this paper that these challenges are closely
connected. The existence of a unique reduced form is referred to in the literature on censored simultaneous equations
models as coherency and completeness; see Mavroeidis (2020). In every period t we can compute two hypothetical values
for yt = [y1,t , y′2,t ]

′: one is based on the st = 1 coefficients and the other one is based on the st = 0 coefficients. For yt
to be uniquely determined, it is necessary that only one of these two values has the property that the indicator function
I{y1,t > c} coincides with the st that was used to compute yt . Typically, this uniqueness cannot be achieved without
restricting the domain of the structural innovations ϵt .2

We prove three theoretical results. (i) To obtain uniqueness without domain restrictions for ϵt , it is necessary that the
reduced-form regression functions are continuous whenever st switches between 0 and 1. The continuity requirement
automatically imposes parsimony. We show that in a VAR with an n-dimensional vector yt , the restriction reduces the
number of free coefficients for the second regime from (n − 1) × (k + n), where k is the number of regressors in each
private-sector equation, to n−1. (ii) Continuity is not sufficient for uniqueness without further coefficient restrictions. We
provide a set of parameter restrictions for our SVAR specification that are necessary and sufficient to obtain uniqueness
for all ϵt . (iii) We show that once continuity is imposed, the private sector equations can be rewritten as a simultaneous
relationship between y1,t , y2,t , and the shadow rate y∗1,t with constant coefficients on current and lagged variables. Thus,
in our application the piecewise-linear private-sector regression functions can be re-interpreted as agents reacting to a
linear combination of the actual interest rate y1,t and the shadow rate y∗1,t . Results (i) and (iii) are new. Conditional on
having established (iii), it can be shown that (ii) reproduces a result in Mavroeidis (2020).

There is a debate in the literature whether lags of the censored interest rate y1t or the shadow rate y∗1t should appear
in the conditional mean function. While this does not matter for the aforementioned theoretical results, it affects the
estimation and identification of the model. In the DSGE model literature, authors often use lagged actual interest rates
in the specification of the monetary policy rule, e.g., ACHSV, which means that the lagged actual interest rate becomes a
state variable for private-sector decisions. This is the approach we follow in the empirical analysis.

Our empirical model also allows for stochastic volatility in the structural shocks. We use a bootstrap particle filter
(BSPF) to integrate out the latent volatility from the likelihood function. We combine the likelihood function with a prior
distribution and conduct Bayesian inference. Due to the presence of censoring, cross-regime coefficient restrictions, and

1 We use the concept of effective instead of zero lower bound (ZLB). In a DSGE model that explicitly models money demand, such as the one
in Aruoba and Schorfheide (2011), an interest rate less than zero means a monetary equilibrium ceases to exist. One can generalize these models
o include storage cost of physical money and allow for the interest rate to go below zero. In fact the Bank of Japan and the European Central
ank, among other central banks, have been able to reduce their policy rates below zero. Nonetheless, it remains plausible to assume that there is
bound beyond which it becomes very difficult to lower interest rates further and this is what the literature considers to be the ELB.
2 In a VAR setting, the domain restriction would also be dependent on the lagged values of y .
t
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tochastic volatility, the posterior distribution of the model parameters is non-standard. We use a sequential Monte Carlo
SMC) algorithm to draw from the posterior distribution; see Herbst and Schorfheide (2014, 2015) for DSGE applications
nd Bognanni and Herbst (2018) for an application to an SVAR with exogenous regime switches. Because the likelihood
unction inside the posterior sampler is evaluated using the BSPF, the resulting algorithm belongs to the SMC2 family,
tudied by Chopin et al. (2013).
Abstracting from the nonlinearities generated by the censoring of the nominal interest rates, piecewise-linear regres-

ion equations for private-sector variables, and stochastic volatility, the specification of the SVAR follows the three-variable
odel estimated in Baumeister and Hamilton (2018), henceforth BH. While the prior distribution for the VAR coefficients

s not identical to the one used by BH, the elicitation for the coefficients that describe the contemporaneous interaction
etween output, inflation, and interest rates follows a similar logic. The prior combines beliefs about aggregate demand
nd supply elasticities formed based on a simple New Keynesian DSGE model with beliefs about directions of impulse
esponses. As in BH, in the absence of observations from the ELB regime, our model is only set-identified. However, as
hown in Mavroeidis (2020), the ELB regime generates additional identifying information and in our case leads to point
dentification.

We estimate our model based on quarterly U.S. data from 1984:Q1 to 2018:Q4. The vector yt in our empirical
nalysis comprises the federal funds rate as the censored variable, output gap, and inflation. Based on the inspection
f the posterior distribution and a marginal data density (MDD) comparison between a restricted and an unrestricted
pecification, we find evidence in favor of a kink in the inflation regression function. A comparison of impulse response
unctions (IRFs) conditional on 1999:Q1 data (the U.S. was far away from the ELB) and conditional on 2009:Q1 data (the
.S. was at the ELB) yields the following findings: a negative monetary policy shock that creates the same size response
n the shadow rate is more inflationary at the ELB on impact. This shock also generates a slightly larger response of the
utput gap, though credible intervals conditional on the two dates overlap. The response of inflation to a negative demand
hock differs significantly when the ELB is non-binding and binding: Inflation falls in the former case but it slightly rises in
he latter case. The difference between the responses persists for about three years. The output gap responses to demand
nd supply shocks do not significantly differ at and away from the ELB.
Our paper is related to several strands of the literature. From a methodological perspective, the paper most closely

elated to our work is Mavroeidis (2020). He also considers an SVAR with a censored dependent variable, or an
ccasionally-binding constraint, to capture the ELB constraint on nominal interest rates. He specifies the private sector
quations as simultaneous relationship between the censored variable y1,t , the latent variable y∗1,t , and y2,t . As discussed
bove, it turns out that our model with continuity imposed on the private-sector regression functions is identical to his
pecification, except in the following dimensions: our empirical specification allows for heteroskedastic structural shocks,
hich is important for inference on switches in the conditional mean function. Mavroeidis’ specification allows for both

ags of y1,t and the latent variable y∗1,t on the right-hand side of the VAR specification, whereas we stay close to the DSGE
odel specification in ACHSV and only use the former. A detailed comparison is provided in a separate subsection of our
aper.
Building on an older literature on simultaneous equations models with censored dependent variables, e.g., Nelson

nd Olsen (1978), Gourieroux et al. (1980), and Blundell and Smith (1989), the emphasis in Mavroeidis (2020) is on
he identifying information that the censoring provides for the propagation of structural shocks. Important for the
dentification is whether, in the case of the ELB application, the private-sector variables respond to the actual censored
nterest rate or the uncensored shadow interest rate. In our application, we let inflation and output gap respond to
onetary policy shocks,3 even if the economy is at the ELB, which is similar in spirit to the censored SVAR specification

n Mavroeidis (2020) in which agents respond to a shadow rate. The identifying information encoded in the censoring
echanism is implicitly exploited in our Bayesian estimation through the updating of the SVAR coefficients based on the

ikelihood function.
Our empirical application focuses on the propagation of structural shocks in the U.S. at and away from the ELB. In this

egard, it is closely related to Debortoli et al. (2019), Ikeda et al. (2020), and Johannsen and Mertens (2021). Debortoli
t al. (2019) estimate an SVAR with exogenously time-varying coefficients (TVC-SVAR) using longer-term interest rates
hat do not reach the ELB. Based on their densely parameterized model, they do not find discernible differences between
esponses at and away from the ELB, which leads them to conclude that the ELB is empirically irrelevant. Our model
llows for time-variation in coefficients in a much more parsimonious way and enables us to detect a significant change in
oefficients that alters in particular the propagation of shocks to inflation. The analyses in Ikeda et al. (2020) and Johannsen
nd Mertens (2021) focus on the propagation of monetary policy shocks whereas we also consider supply and demand
hocks. Our results on monetary policy shocks are qualitatively consistent with Johannsen and Mertens (2021) who find
hat monetary accommodation during the recent ELB spell in the U.S. would have provided more stimulus than in other
imes.

The remainder of the paper is organized as follows. The specification of our SVAR with a censored dependent-variable
nd state-dependent regression functions is presented in Section 2. Our prior distribution for the SVAR parameters is
iscussed in Section 3. The likelihood function is derived in Section 4 and the SMC algorithm to implement the posterior
omputations is summarized in Section 5. Section 6 presents the empirical analysis and Section 7 concludes. Theoretical
erivations and additional empirical results are relegated to the Online Appendix.

3 This is also the case in DGSE model solutions; see ACHSV.
3
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We are using a structural vector autoregression (SVAR) to model the law of motion of the n× 1 vector ỹt . We express
he SVAR in terms of deviations from a mean µ and define4

yt = ỹt − µ.

here are two common ways of normalizing the coefficients of an SVAR: by setting the matrix of coefficients associated
ith the time t endogenous variables yt equal to the identity matrix, or by setting the matrix that governs the impact of the
tructural shocks ϵt equal to the identity matrix. We begin with the former normalization and call it the Φ representation:

yt = Φ1yt−1 + · · · +Φpyt−p +Φc +Φϵϵt , (1)

where ϵt ∼ N(0,D) is a vector of structural innovations and D is a diagonal matrix. Even though in the current specification
it is not separately identifiable from µ, we keep the intercept Φc in the notation. We will use it later when we introduce
regime-dependent private-sector behavior. Reduced-form innovations can be defined as

ut = Φϵϵt , ut ∼ N(0,Σ), where Σ = ΦϵDΦ ′

ϵ . (2)

Define the 1× k vector x′t = [y′t−1, . . . , y
′
t−p, 1], Φ = [Φ1, . . . ,Φp,Φc]

′, and Φϵ
= Φ ′

ϵ so that we can write the VAR as

y′t = x′tΦ + ϵ′tΦ
ϵ . (3)

Let A = (Φϵ)−1 and multiply (3) by A to re-normalize the VAR and obtain what we call the A representation of the VAR:

y′tA = x′tB+ ϵ
′

t , (4)

where B = ΦA.
Starting point for the subsequent analysis will be a third representation, which we refer to as AΦ representation. It

combines a monetary policy rule written in A form with the private-sector equations in Φ form and has been used, for
instance, in Del Negro and Schorfheide (2009). The Φ-form of the private-sector equations resemble the decision rules in
a DSGE model solution that are allowed to differ at and away from the ELB. This representation also facilitates our proof
of the existence of a unique reduced form; see Proposition 1 in Section 2.3.

Partition y′t = [y1,t , y′2,t ] and ϵ
′
t = [ϵ1,t , ϵ

′

2,t ], where y1,t corresponds to the interest rate and ϵ1,t is the monetary policy
shock. Moreover, partition B = [B·1, B·2], where B·1 is a column vector that stacks the coefficients of the y1,t equation
and the columns of the matrix B·2 stack the coefficients for the private-sector equations. Finally, partition A·1 = [A11|A21],
where we use | to indicate that the partitions are stacked. Using this notation, the monetary policy rule becomes

y1,tA11 + y′2,tA21 = x′tB·1 + ϵ1,t . (5)

Similarly, let Φ = [Φ·1,Φ·2] and Φϵ
·2 = [Φϵ

12,Φ
ϵ
22]. The private-sector behavior is described in Φ form:

y′2,t = x′tΦ·2 + ϵ1,tΦ
ϵ
12 + ϵ

′

2,tΦ
ϵ
22. (6)

In the remainder of this section we will extend the specification in (5) and (6) by allowing for censoring of y1,t ,
censoring-regime-dependent coefficients for the private-sector equations, and stochastic volatility.

2.1. Censoring

In order to capture the ELB constraint, which we assume to be zero, we introduce censoring. We use ỹ∗1,t to denote
the desired or shadow interest rate, let y∗1,t = ỹ∗1,t − µ1, and write the monetary policy rule as

y∗1,tA11 + y′2,tA21 = x′tB·1 + ϵ1,t . (7)

Here we replaced y1,t in (5) by y∗1,t . The relationship between y1,t and y∗1,t is given by

y1,t = max {y∗1,t ,−µ1}.

The µ1 threshold arises because y1,t = ỹ1,t − µ1 and the ELB constraint applies to the actual and not the demeaned
nominal interest rate. We will assume that both the central bank and the private sector react to lagged y1,t instead of y∗1,t .
However, we do allow agents to react to the monetary policy shock when the ELB is binding. Both of these assumptions
are consistent with the DSGE model in ACHSV. Thus, (6) remains unchanged. We define y∗t

′
= [y∗1,t , y

′

2,t ].

4 The time invariant mean µ could also be replaced by a deterministic trend function µ .
t
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.2. Regime-dependent private-sector behavior

We will now extend the model and allow the private sector to change its behavior once the economy reaches the ELB.
e introduce the observable regime (or ELB) indicator

st = I{y1,t > −µ1} (8)

and write the private-sector equations as

y′2,t = x′tΦ·2(st )+ u′2,t (st ), (9)

where we define

u′2,t (st ) = ϵ1,tΦ
ϵ
12(st )+ ϵ

′

2,tΦ
ϵ
22(st ).

Plugging the expression for y′2,t from (9) into the monetary policy rule (7) leads to theΦ form of the interest rate equation:

y∗1,t =
1
A11

[
x′t
(
B·1 −Φ·2(st )A21

)
+ ϵ1,t

(
1−Φϵ

12(st )A21
)
− ϵ′2,tΦ

ϵ
22(st )A21

]
. (10)

Define

Φ·1(st ) =
1
A11

(
B·1 −Φ·2(st )A21

)
, (11)

u1,t (st ) =
1
A11

[
ϵ1,t
(
1−Φϵ

12(st )A21
)
− ϵ′2,tΦ

ϵ
22(st )A21

]
,

such that we can write

y∗1,t = x′tΦ·1(st )+ u1,t (st ). (12)

In view of (8), for the model specification to be internally consistent, it has to be the case that whenever the st = 1
regression functions are active then y1,t = y∗1,t and y∗1,t > −µ1 must hold. Likewise, whenever the st = 0 regression
unctions are active, it has to be the case that y1,t = −µ1 and y∗1,t ≤ −µ1. Given a set of parameters A·1, B·1, Φ·2(s), Φϵ

·2(s),
agged values xt , and a vector of structural shocks ϵt we can distinguish three cases:

Case 1 – Uniqueness: conditional on lagged values xt and the innovation ϵt , the state st , the latent variable y∗1,t , and
2,t are uniquely determined. If

x′tΦ·1(1)+ u1,t (1) > −µ1, then x′tΦ·1(0)+ u1,t (0) > −µ1 which implies st = 1.

Alternatively, if

x′tΦ·1(1)+ u1,t (1) ≤ −µ1, then x′tΦ·1(0)+ u1,t (0) ≤ −µ1 which implies st = 0.

We use EU (xt ) to denote the set of ϵt values for which st is unique.
Case 2 - Indeterminacy (Incompleteness): conditional on lagged values xt and the innovation ϵt , the model is

consistent with st = 0 and st = 1, which means that there are two possible values for y∗1,t and y2,t , respectively. Formally,

x′tΦ·1(1)+ u1,t (1) > −µ1 and x′tΦ·1(0)+ u1,t (0) ≤ −µ1 which implies st = 1 or st = 0.

We use E I (xt ) to denote the set of ϵt values for which st is not unique.
Case 3 - Non-existence (Incoherency): conditional on lagged values xt and the innovation ϵt , the model is neither

consistent with st = 0 nor st = 1 because

x′tΦ·1(1)+ u1,t (1) ≤ −µ1 and x′tΦ·1(0)+ u1,t (0) > −µ1.

We use EN (xt ) to denote the set of ϵt values for which we have non-existence.
The fact that the existence and uniqueness of yt depend on the lagged endogenous variables stacked in xt and the

structural innovations ϵt is an undesirable feature of the model. To rule out non-existence, in general one needs to restrict
the domain of the innovations ϵt ; see Ascari and Mavroeidis (2020) and Mavroeidis (2020). We will show in the following
section that a necessary condition for the uniqueness condition to hold for all (xt , ϵt ) is that the piecewise linear private
sector regression functions are continuous at the kink. Moreover, we provide a necessary and sufficient restriction on the
VAR parameter space that guarantees uniqueness for all (xt , ϵt ).

2.3. Piecewise linear and continuous regression functions

Building on ACHSV, we now impose that the private sector uses regression functions that are continuous at the kink.
We refer to these regression functions as piecewise linear and continuous (PLC). Consider the monetary policy rule in Φ
form. From (10) we deduce that the ELB starts to bind whenever

x′
(
B −Φ (1)A

)
= −µ A − ϵ

(
1−Φϵ (1)A

)
+ ϵ′ Φϵ (1)A . (13)
t ·1 ·2 21 1 11 1,t 12 21 2,t 22 21

5
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et us denote the jth element of the vector xj,t , j = 1, . . . , k, with the understanding that xkt = 1 (intercept). Likewise,
e denote the jth rows of B·1 and Φ·2 by Bj1 and Φj2, respectively. Using this notation, we solve (13) for x1,t to obtain

x1,t = −

⎛⎝ k−1∑
j=2

xj,t
Bj1 −Φj2(1)A21

B11 −Φ12(1)A21

⎞⎠−
Bk1 −Φk2(1)A21 + µ1A11

B11 −Φ12(1)A21
(14)

−ϵ1,t
1−Φϵ

12(1)A21

B11 −Φ12(1)A21
+ ϵ′2,t

Φϵ
22(1)A21

B11 −Φ12(1)A21
.

ontinuity at the kink implies that

x1,tΦ12(1)+

⎛⎝ k−1∑
j=2

xj,tΦj,2(1)

⎞⎠+Φk2(1)+ ϵ1,tΦϵ
12(1)+ ϵ

′

2,tΦ
ϵ
22(1) (15)

= x1,tΦ12(0)+

⎛⎝ k−1∑
j=2

x′j,tΦj,2(0)

⎞⎠+Φk2(0)+ ϵ1,tΦϵ
12(0)+ ϵ

′

2,tΦ
ϵ
22(0).

ow plug the expression for x1,t in (14) into Eq. (15) and use the continuity restrictions to solve for the coefficients in
the s = 0 regime:

Φj2(0) = Φj2(1)+
Bj1 −Φj2(1)A21

B11 −Φ12(1)A21
Φ∆

12, j = 2, . . . , k− 1, (16)

Φk2(0) = Φk2(1)+
Bk1 −Φk2(1)A21 + µ1A11

B11 −Φ12(1)A21
Φ∆

12,

Φϵ
12(0) = Φϵ

12(1)+
1−Φϵ

12(1)A21

B11 −Φ12(1)A21
Φ∆

12,

Φϵ
22(0) = Φϵ

22(1)−
Φϵ

22(1)A21

B11 −Φ12(1)A21
Φ∆

12,

where

Φ∆
12 = Φ12(0)−Φ12(1).

The unrestricted coefficient matrices are Φ·2(1), Φϵ
·2(1), and Φ

∆
12. The dimension of Φ∆

12 is (n − 1) × 1. Two special
ases are noteworthy. First, if Φ∆

12 = 0 then the regression functions are strictly linear and have no kink: Φ·2(0) = Φ·2(1)
nd Φϵ

·2(0) = Φϵ
·2(1). Second, if the private sector does not react to the monetary policy shock, i.e., Φϵ

12(1) = 0 and
ϵ
12(0) = 0, then Φ∆

12 = 0, which in turn implies that there is no kink in the reactions to x2,t and ϵ2,t : Φ22(0) = Φ22(1)
and Φϵ

22(0) = Φϵ
22(1).

2.4. PLC regression functions and uniqueness

The following proposition summarizes our theoretical results. First, we show that continuity of the regression functions
is a necessary condition to achieve uniqueness without having to restrict the domain of ϵt conditional on the lagged values
xt . Second, we provide necessary and sufficient restrictions for the VAR parameters that ensure uniqueness for all (xt , ϵt ).

Proposition 1.

(i) (Necessary Condition) Only if the piecewise linear private sector regression functions are continuous at the kink, then
uniqueness can be obtained for all (xt , ϵt ), i.e., Pxt {ϵt ∈ EU (xt )} = 1 for all xt .

(ii) (Necessary and Sufficient Condition) Suppose that the piecewise linear private sector regression functions are continuous
at the kink. If and only if

sign
(
B11 −Φ12(1)A21

)
= sign

(
B11 −Φ12(0)A21

)
,

then uniqueness is obtained for all (xt , ϵt ), i.e., Pxt {ϵt ∈ EU (xt )} = 1 for all xt .

A proof of the proposition is provided in the Online Appendix. In our estimation, we will impose the parameter
restrictions described in Proposition 1(ii) to ensure uniqueness of (st , y∗1,t , y2,t ) conditional on all values of (xt , ϵt ).

2.5. Comparison to Mavroeidis (2020)

Our model is related to the censored VAR specification considered in Mavroeidis (2020). He writes the private-sector
equations in A form, which can be stated as

∗ ∗ ˜ ′ ′ ′ ∗
y1,tA12 + y1,tA12 + y2,tA22 = xtB·2 + ϵ2,t , y1,t = max{y1,t ,−µ1}.

6
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his specification allows agents to react to a linear combination of the shadow rate y∗1,t and the actual (constrained)
nterest rate y1,t . Using our state-dependent notation, his private sector specification can be rewritten as

y∗1,tA12(st )+ y′2,tA22 = x′tB·2(st )+ ϵ
′

2,t , (17)

where

st = I{y1,t > −µ1}, A12(s) =
{

A∗12 + Ã12 if s = 1
A∗12 if s = 0

,

B·2(s) =
[
B12|. . . |B(k−1)2|Bk2(s)

]
, Bk2(s) =

{
0 if s = 1

µ1(A12(1)− A12(0)) if s = 0 .

Here Bj2, j = 1, . . . , k, is the jth row of B·2. Note that only the last row of B·2 is regime dependent. Recall that we fixed it
to zero for s = 1. For s = 0 it captures that y1,t = −µ1 in the ELB regime.5

We will refer to our model, comprising (7) and (9), as model M(Φ·2(s),Φϵ
·2(s)), and to the (restricted) Mavroeidis

model, comprising (7) and (17) as model M(A12(s)). Moreover, we denote the M(Φ·2(s),Φϵ
·2(s)) with PLC private sector

regression functions as MPLC (Φ·2(s),Φϵ
·2(s)). The relationship between the three specifications is summarized in the

following proposition.6

Proposition 2.

(i) M(Φ·2(s),Φϵ
·2(s)) ⊃ M(A12(s)),

(ii) MPLC (Φ·2(s),Φϵ
·2(s)) = M(A12(s)).

A proof of the proposition is provided in the Online Appendix. The intuition for Part (i) is straightforward. We started
out in this paper from a very general model specification in which the private-sector equations are regime dependent.
The possibility of private-sector behavior changing when the ELB becomes binding generates an additional (n−1)×(k+n)
coefficients, compared to a constant-coefficient VAR. The M(A12(s)) model, on the other hand, only adds n−1 coefficients.

Part (ii) of the proposition combines two insights. First, imposing a PLC structure onto the private-sector equations
reduces the number of additional unrestricted parameters in the ELB regime from (n− 1)× (k+ n) to n− 1 parameters,
see (16), which is the same number of additional parameters as in the M(A12(s)) model. Second, with some algebra it can
be shown that M(A12(s)) delivers PLC regression functions for the private sector. The equality of the model sets implies
that PLC regression functions for the private sector can only be obtained if the state-dependence in the A representation
of the private sector equations is concentrated in the reaction to shadow rate movements.

We show in the Online Appendix that by solving the locus at which the ELB becomes binding, see (13), for ϵ1,t instead
of x1,t , the necessary and sufficient condition in Proposition 1(ii) can equivalently be expressed as

sign
(
1−Φϵ

12(1)A21
)
= sign

(
1−Φϵ

12(0)A21
)
.

Moreover, we show that the condition is equivalent to the condition stated in Proposition 1 of Mavroeidis (2020), which
in turn dates back to Gourieroux et al. (1980). This is unsurprising given our Proposition 2(ii).

As mentioned in the Introduction, our SVAR specification allows for heteroskedastic structural shocks, which is
important for inference on switches in the conditional mean function. Mavroeidis’ specification allows for both lags of
y1,t and the latent variable y∗1,t on the right-hand side of the VAR specification, whereas we stay close to the DSGE model
specification in ACHSV and only use the former.

2.6. Stochastic volatility

In order to make the empirical model more flexible, we allow for stochastic volatility in the structural innovations ϵt .
We replace the homoskedasticity assumption ϵt ∼ N(0,D) by

ϵt ∼ N(0,Dt ), lnDii,t = lnDii + ζi,t , ζi,t = ρζ ,iζi,t−1 + ςiηi,t , ηi,t ∼ N(0, 1). (18)

Here Dii,t , i = 1, . . . , n are the n diagonal elements of the (diagonal) matrix Dt . For each variable i we obtain two additional
parameters, (ρζ ,i, ςi) that govern the stochastic volatility process. The parameter ρζ ,i controls the persistence and ςi the
variance of the stochastic volatility process. (2) is replaced by an equation with time-dependent covariance matrices:

ut = Φϵ(st )ϵt , ut ∼ N(0,Σt (st )), where Σt (st ) = Φϵ(st )DtΦ
′

ϵ(st ). (19)

Note that none of the calculations in Section 2.3 depended on the covariance matrices D and Σ . Thus, the continuity
restrictions in (16) and the result in Proposition 1 are not affected by the presence of heteroskedasticity.

5 Mavroeidis (2020) refers to the model with A∗12 = 0 as kinked SVAR (KSVAR), to the model with Ã12 = 0 as censored SVAR (CSVAR), and the
general specification as censored and kinked SVAR (CKSVAR).
6 We are grateful to one of the referees for providing valuable conjectures that lead to Proposition 2.
7
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.7. Parameter summary

After allowing for regime-dependent private-sector regression functions and imposing continuity at the kink, the
arameters of the SVAR model with stochastic volatility are:

µ
n×1

, A·1
n×1

, B·1
k×1

, Φ·2(1)  
k×(n−1)

, Φϵ
·2(1)  

n×(n−1)

, Φ∆
12

1×(n−1)

, {Dii}
n
i=1  

n

, {ρζ ,i, ςi}
n
i=1  

2n

. (20)

he interest rate coefficient in A·1 is normalized to one. Moreover, the elements in the last rows of B·1 and Φ·2(1) are fixed
t zero because the level of the observables ỹt is captured by µ. Notationally, it is convenient to keep the intercepts in
he specification, because they are non-zero for Φ·2(0) in the ELB regime.

. Prior distribution

In our subsequent empirical application we assume that y1,t corresponds to the nominal interest rate Rt , and y′2,t =
zt , πt ], where zt is output gap and πt is inflation. We interpret the innovations ϵt = [ϵR,t , ϵD,t , ϵS,t ] as monetary
olicy, demand, and supply shocks, respectively. We use Bayesian techniques to estimate the SVAR with ELB censoring
nd piecewise-linear regression functions. This requires the specification of a prior distribution. Rather than specifying
he prior directly on the unrestricted elements of the parameters listed in (20), we consider several transformations
o facilitate the elicitation of the prior. These transformations are presented in Section 3.1. Section 3.2 summarizes
he specification of our baseline prior. Section 3.3 discusses adjustments to the baseline prior and the treatment of
yperparameters.

.1. (Re)parameterization of the SVAR

Building on Baumeister and Hamilton (2018), we specify a prior on contemporaneous interactions between interest
ates, output gap, and inflation in the regime in which the ELB is not binding. Using the notation in (4), these interactions
re summarized in the matrix A(1), which we partition into A(1) = [A·1, A·2(1)]. The first column of A(1), denoted by A·1,
s included in the parameter list (20) and does not depend on the state s. The remaining n− 1 columns, collected in the
atrix A·2(1), replace the n× (n− 1) matrix Φϵ

·2(1) in (20).
To obtain an expression for A·2(s) as a function of Φϵ

·2(s), we solve (5) for ϵ1,t and plug the expression into (9). This
ields:

y′2,t = x′tΦ·2(s)+
(
y1,tA11 + y′2,tA21 − x′tB·1

)
Φϵ

12(s)+ ϵ
′

2,tΦ
ϵ
22(s).

fter re-arranging terms we obtain

−y1,tA11Φ
ϵ
12(s)+ y′2,t

(
I − A21Φ

ϵ
12(s)

)
= x′t

(
Φ·2(s)− B·1Φϵ

12(s)
)
+ ϵ′2,tΦ

ϵ
22(s). (21)

et A·2(s) = [A12(s)|A22(s)] and deduce that

A12(s)  
1×(n−1)

= −A11Φ
ϵ
12(s)

(
Φϵ

22(s)
)−1
, A22(s)  

(n−1)×(n−1)

=
(
I − A21Φ

ϵ
12(s)

)(
Φϵ

22(s)
)−1
. (22)

We follow Baumeister and Hamilton (2018) by expressing the matrix of contemporaneous interactions, in our case for
the non-binding regime s = 1, as a function of the parameters [ψπ , ψz, αS, βD, γD]

′:

A(1) =

[ 1 −γD 0
−ψz 1 1
−ψπ −βD −αS

]
. (23)

The parameterization of the A(1) matrix is motivated by a three-equation New Keynesian DSGE model. Each column
corresponds to an equation, and each row to a variable. The ‘‘1’’ entries are normalizations. Recall that the observables
are ordered as follows: y′t = [Rt , zt , πt ]. We interpret the first column of A(1) as a Taylor rule with output and inflation
gap coefficients ψz and ψπ , respectively.

The second column represents the Euler equation after the expectations of next period’s inflation and output gap have
been replaced by AR(1) forecasts. This creates a contemporaneous relationship between the output gap (being proportional
to consumption), the nominal interest rate, and inflation. The parameter βD can be interpreted as an aggregate demand
elasticity. The third column represents the New Keynesian Phillips curve with marginal costs replaced by output gap and
expected inflation replaced by an AR(1) forecast. The coefficient αS can be interpreted as a supply elasticity.

We replace αS by α∆S = αS − βD and impose the following domain/sign restrictions on the coefficients:

ψπ ≥ 0, ψz ≥ 0, α∆S ≥ 0, βD ≥ 0, γD ≤ 0. (24)

The restriction of βD ≥ 0 may seem counterintuitive in view of the interpretation of the coefficient as a demand elasticity.
However, it is consistent with a DSGE model in which the demand equation represents a consumption Euler equation and

a rise in (expected) inflation lowers real returns which creates an incentive to increase current-period consumption.

8
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To facilitate the elicitation of a prior distribution, it is helpful to derive the inverse of A(1), which determines the
ontemporaneous impact of the three innovations:

[A(1)]−1
∝

⎡⎣ α∆S (βD + α∆S )γD γD
ψπ + (βD + α∆S )ψz (βD + α∆S ) 1
−(ψπ + βDψz) −(βD + γDψπ ) γDψz − 1

⎤⎦ . (25)

ere ∝ denotes proportionality. The first row of the matrix captures the response of interest rates, the output gap, and
nflation to a monetary policy shock ϵ1,t . In order for interest rates to rise, and output and inflation to fall in response to
contractionary monetary policy shock we need α∆S ≥ 0, (βD + α∆S ) ≥ 0, and γD ≤ 0, all of which are implied by (24).

The sum (βD +α
∆
S ) controls the relative response of output gap and inflation and the ratio γD/α∆S is the relative response

f inflation and interest rates.
The second row of [A(1)]−1 represents the contemporaneous demand shock response. Output gap and prices move in

he same direction because we imposed βD +α
∆
S ≥ 0 and the policy rule coefficients ψπ and ψz are also positive. Finally,

he third row of the matrix in (25) determines the response to a supply shock. The directions of the inflation and output
ap responses to a supply shock depend on the specific parameterization. For instance, assuming that γD < 0, inflation
s falling in response to the supply shock. The output response is given by −(βD + γDψπ ). We observe a rise in output if
γD > βD/ψπ .
Our prior distribution is specified over the set of parameters

θ =
(
µ,ψπ , ψz, α

∆
S , βD, γD, B·1, {Φ·i(1)}ni=2,Φ

∆
12, {

√
Dii}

n
i=1, {ρζ ,i, ςi}

n
i=1

)
. (26)

.2. Distributional assumptions

Define the vector of hyperparameters λ = [λI , λφ, λd, λ0, λl, λ∆]
′. We consider a baseline prior of the form

p̃(θ |λ) = p̃(µ|λI )p̃(ϑ)

(
n∏

i=1

p̃(
√
Dii|ϑ; λd)p̃(B·1|D; λφ, λ0, λl)p̃(ρζ ,i, ςi)

)
(27)

×

(
n∏

i=2

p̃
(
Φ·i(1)|ϑ,D; λφ, λ0, λl

))
p̃(Φ∆

12|λ∆), where ϑ = (ψπ , ψz, α
∆
S , βD, γD).

ecall that D is the diagonal matrix with elements Dii, i = 1, . . . , n. As previously noted in Section 2.7, the last element
f the vectors B·1 and Φ·i(1), respectively, is set equal to zero and essentially excluded from the construction of the prior
ensity.
Prior for Level Parameters p̃(µ|λI ). We use independent normal distributions of the form µi ∼ N

(
µ

i
, s2i /λI

)
, i =

1, . . . , n. In the empirical application we set µ
i
to the pre-ELB sample mean of yi,t computed over the period from 1984:Q1

o 2006:Q4, and si is its sample standard deviation. The hyperparameter λI scales the prior precision of the µis.
Prior for Contemporaneous Interactions p̃(ψπ , ψz, α

∆
S , βD, γD). We assume that the underlying parameters are

independent:

p̃(ψπ , ψz, α
∆
S , βD, γD) = p̃(ψπ )p̃(ψz)p̃(α∆S )p̃(βD)p̃(γD).

The first section of Table 1 summarizes the specification of the baseline prior for the A(1) coefficients. The distributions
re chosen so that the sign restrictions in (24) hold. The priors for (ψπ , ψz) are broadly in line with priors used in the
SGE model literature.7 The numerical values for (α∆S , βD,−γD) are more difficult to interpret. In the Online Appendix
e plot the prior distribution of impulse responses.
Prior for Innovation Variances p̃(

√
Dii|ϑ; λd). We specify a prior for

√
Dii, i = 1, . . . , n. Starting point is a prior for

he Dii elements, which takes the form of an Inverse Gamma distribution that is parameterized as scaled Inverse χ2

istribution with density

p̃(Dii|S ii, λd) =
[(λd/2)S ii]

λd/2

Γ (λd/2)
D−λd/2−1
ii exp

{
−(λd/2)S iiD

−1
ii

}
.

he density of
√
Dii is obtained by a change of variable, which adds the Jacobian term 2

√
Dii to the density. Here, λd is

a hyperparameter that controls the degrees of freedom of the scaled Inverse χ2 distribution. We use an estimate of the
ariance of y′tA(1) to choose S ii. Specifically, we fit univariate AR(p) models to the series yi,t and let s2i be the estimated
nnovation variance. We use ϑ to generate the A(1) matrix in (23) and define the matrix

S = A(1)′

⎡⎣ s21 0 0
0 s22 0
0 0 s23

⎤⎦ A(1).

The values S ii correspond to the diagonal elements of S.

7 In a DSGE model, the monetary policy rule is typically parameterized in terms of ψπ = (1 − ρ)ψ̃π and ψz = (1 − ρ)ψ̃z , where ρ ≈ 0.8 is an
nterest rate smoothing coefficient.
9
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Table 1
Baseline prior distribution for various coefficients.
Param. Distr. P(1) P(2)

ψπ Gamma 1.5 0.5
ψz Gamma 0.5 0.25
α∆S Gamma 1.0 0.7
βD Gamma 1.0 0.7
−γD Gamma 0.25 0.12

ρζ ,i Beta 0.75 0.10
ςi InvGamma 0.1 4.0

λφ Beta 0.75 0.10
λ0 Gamma 10.0 5.00
λl Gamma 2.00 1.00

Notes: The table lists marginal distributions. P(1) and P(2) are means and standard devia-
tions for Beta and Gamma distributions. The Inverse Gamma distribution is parameterized
as scaled inverse χ2 distribution with density p(ς2

|s2, ν) ∝ (σ 2)−ν/2−1 exp[−νs2/(2σ 2)],
where P(1) is

√
s2 and P(2) is ν. The density of ς is obtained by the change of variables

σ =
√
σ 2 . The following hyperparameters are fixed: λI = ∞, λd = 4, and λ∆ = 16.

Prior for the Stochastic Volatility Processes p̃(ρζ ,i)p̃(ςi). We assume that the parameters are independently and
dentically distributed across i. We use a Beta distribution for ρζ ,i and an Inverse Gamma distribution for ςi. The
arameterizations of these distributions are listed in Table 1.
Prior for Policy Rule Coefficients p̃(B·1|D; λφ, λ0, λl). We will now specify a prior for B·1. Let

B·1|(D, λφ, λ0, λl) ∼ N
(
B
·1(λφ), P

−1
·1 (λ0, λl)

)
. (28)

e set the prior mean of B11, i.e., the coefficient on Rt−1, equal to B11 = λφ . The prior mean for the remaining coefficients
s set to zero. The k×k precision matrix P

·1(λ0, λl, λI ) is diagonal. The value associated with the coefficient of the lth lag of
ariable j is λ0lλls2j /D11, where sj was defined above and D11 is the innovation variance in the interest rate equation. Here
λ0 is a hyperparameter that scales the overall precision of the prior, and λl determines how quickly the prior variance
ecays with lag length l. The prior precision of the last element of B·1 (intercept) is infinite, because we fixed it at zero.8
Prior for Private-Sector Coefficients p̃

(
Φ·i(1)|ϑ,D; λφ, λ0, λl

)
. We will now specify a prior for the k×1 column vectors

·i(1) that stack the reduced-form coefficients for private-sector variable i, where i = 2, . . . , n. From (4) we deduce that
he reduced-form forecast errors are given by

u′t = ϵ′t [A(1)]
−1,

here the A(1) matrix is generated from ϑ . The covariance matrix of the forecast errors is

Σ(A,D) = [A(1)]−1′E[ϵtϵ′t ][A(1)]
−1

= [A(1)]−1′D[A(1)]−1.

Let

Φ·i(1)
⏐⏐ (D; λφ, λ0, λl) ∼ N

(
Φ

·i(λφ), P
−1
i (λ0, λl)

)
, i = 2, . . . , n. (29)

In order to impose the belief that the individual series are well approximated by AR(1) processes we set the prior mean
vector as follows: Φ ji(λφ) = λφ for j = i – this coefficient interacts with yi,t−1 – and Φ ji(λφ) = 0 for j ̸= i, where
= 1, . . . , k. The k × k precision matrix P i(λ0, λl, λI ) is diagonal. The value associated with the coefficient of the lth lag
f variable j is λ0lλls2j /Σii, where sj was defined above. As before, the hyperparameter λ0 scales the overall precision of
he prior, and λl determines how quickly the prior variance decays with lag length l. The last element, Φki(1), capturing
he intercept is fixed at zero.

Prior for Regression Function Differentials p(Φ∆
12). We assume that

Φ∆
12|λ∆ ∼ N

(
0,

1
λ∆

I
)
. (30)

ote that for Φ∆
12 = 0 the regression functions remain unchanged once the economy reaches the ELB.

.3. Adjustments to the baseline prior and hyperparameters

We make two adjustments to the prior p̃(θ |λ) in (27). These adjustments are implemented as follows:

p(θ |λ) ∝ p̃(θ |λ)fu(θ )fs(θ ). (31)

8 In practice, we are reducing the dimension of P (λ , λ , λ ) to (k− 1)× (k− 1).

·1 0 l I

10
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niqueness. We enforce the uniqueness restriction in Proposition 1 and define the indicator function

fu(θ ) = I
{
sign

(
B11 −Φ12(1)A21

)
= sign

(
B11 −Φ12(0)A21

)}
.

Stationarity. We impose that the reduced form representation of the SVAR is stationary conditional on st = 1 and
st = 0 for all t , respectively. To do so, we convert the AΦ representation of the SVAR into the Φ representation in (1) and
check that all roots of the characteristic polynomial I −

∑p
l=1Φl(s)z l are outside of the unit circle for s = 1 and s = 0. Let

fs(θ ) be the indicator function that is equal to one if the stationarity condition is satisfied and equal to zero otherwise.
Hyperparameters. We adopt a hierarchical modeling approach and specify a prior for the hyperparameters as

well. Giannone et al. (2015) showed that this approach leads to a good empirical fit and forecasting performance for
Bayesian VARs. Let p̃(λ) be a properly normalized density. Then we define

p(θ, λ) ∝ p̃(θ |λ)fu(θ )fs(θ )p̃(λ). (32)

Under this construction, the conditional prior distribution remains equal to p(θ |λ), as specified in (31). The marginal prior
of λ is then given by

p(λ) ∝ p̃(λ)
∫

p̃(θ |λ)fu(θ )fs(θ )dθ. (33)

The integral on the right-hand side re-weights the density p̃(λ). This prior specification avoids having to evaluate the
integral as part of the posterior sampling and has the advantage that it down-weighs values of λ under which the
uniqueness and stationarity conditions are violated with very high probability. Prior distributions for λφ , λ0, and λl are
reported in Table 1. The remaining hyperparameters are fixed at λI = ∞ (we are fixing the level parameters µ), λd = 4,
and λ∆ = 16.

4. Likelihood function

We now derive the likelihood associated with the SVAR model discussed in Section 2 under the assumption that the
uniqueness condition in Proposition 1 is satisfied. In Section 4.1 we first discuss how to evaluate the exact likelihood
function if the innovations are homoskedastic. In Section 4.2 we show how a particle filter approximation of the likelihood
function can be obtained for the model with heteroskedasticity.

4.1. Homoskedasticity

We factorize the likelihood function as follows

p(Y1:T |θ ) =
T∏

t=1

p(y1,t |Y1:t−1, θ )p(y2,t |y1,t , Y1:t−1, θ ), (34)

where Yt1:t2 denotes the sequence yt1 , . . . , yt2 .
Parameter Transformations. We begin with several parameter transformations to obtain the Φ representation of the

SVAR. Based on θ we can compute

A·1, A·2(1), B·1, Φ·2(1), Φ∆
12, D.

From A(1) we obtain Φϵ(1) = [A(1)]−1. This leads to the Φ form for y2,t when st = 1:

y′2,t = x′tΦ·2(1)+ ϵ1,tΦϵ
12(1)+ ϵ

′

2,tΦ
ϵ
22(1). (35)

We proceed by transforming the monetary policy rule so that we obtain the Φ form for y1,t . Plugging the expression for
y2,t in (35) into the monetary policy rule (5) we obtain:

y1,t =
1
A11

[
x′t
(
B·1 −Φ·2(1)A21

)
+ ϵ1,t

(
1−Φϵ

12(1)A21
)
− ϵ′2,tΦ

ϵ
22(1)A21

]
. (36)

e deduce that

Φ·1(1) =
1
A11

(
B·1 −Φ·2(1)A21

)
, Σ(1) = Φϵ(1)DΦϵ ′(1). (37)

o obtain the Φ form for st = 0, let Φ12(0) = Φ12(1) + Φ∆
12 and use (16) to compute Φ·2(0) and Φϵ

·2(0). Then follow the
teps in (35) to (37) to obtain Φ(0) and Σ(0).
Period-t Densities. We partition the covariance matrix Σ(s) into [Σij(s)] such that the partitions conform with

yt = [y1,t , y′2,t ]
′ and define

Σ (s) = Σ (s)−Σ (s)Σ−1(s)Σ (s), M (s) = Σ−1(s)Σ (s), M (s) = M ′ (s).
2|1 22 21 11 12 12 11 12 21 12

11
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oreover, let

u1,t (st ) = y1,t − x′tΦ·1(st ), u′2,t (st ) = y′2,t − x′tΦ·2(st ).

The density p(y1,t |·) is obtained as follows. If the conditions in Proposition 1 are satisfied, then y1,t = −µ1 whenever
1,t (1) ≤ −x′tΦ·1(1)− µ1. Thus, the distribution of y1,t is a mixture of a pointmass at −µ1 and a continuous distribution
ith support on (−µ1,∞). We write its density as

p(y1,t |·) = I{y1,t = −µ1}FN

(
−

x′tΦ·1(1)+ µ1
√
Σ11(1)

)
+ I{y1,t > −µ1}pN

(
u1,t (1); 0,Σ11(1)

)
, (38)

here FN (·) is the cumulative distribution function of a N(0, 1) and pN (x;µ,Σ) is the probability density function of a
(µ,Σ). The derivation of p(y2,t |y1,t , ·) is more tedious and relegated to the Online Appendix. We have to distinguish
etween y1,t = −µ1 and y1,t > −µ1. The densities are given by

p(y2,t |y1,t > −µ1, ·) = pN
(
u2,t (1); u1,tM12(1), Σ2|1(1)

)
. (39)

nd

p(y2,t |y1,t = −µ1, ·) (40)

= (2π )−(n−1)/2
|Σ2|1(0)|−1/2

|Σ11(0)|−1/2
|V̄u(0)|

1/2
[
FN

(
−

x′tΦ·1(1)+ µ1
√
Σ11(1)

)]−1

× FN

(
−

x′tΦ·1(0)+ µ1 + M̄u(0)u2,t (0)√
V̄u(0)

)

× exp
{
−

1
2
u′2,t (0)Σ

−1
2|1 (0)u2,t (0)+

1
2
V̄−1
u (0)[M̄u(0)u2,t (0)]2

}
,

here, suppressing the regime dependence,

M̄u =
M12Σ

−1
2|1

M12Σ
−1
2|1M21 +Σ−1

11

, V̄u =
(
M12Σ

−1
2|1M21 +Σ−1

11

)−1
.

Expressions (38), (40), and (39) can be plugged into (34) to evaluate the likelihood function.

4.2. Stochastic volatility

To incorporate stochastic volatility into the analysis we interpret the VAR as a state–space model with latent volatility
states ζt = [ζ1, . . . , ζn]

′. Let Yt1:t2 and ζt1:t2 denote the sequences yt1 , . . . , yt2 and ζt1 , . . . , ζt2 and θ be the vector of model
arameters. The joint density of observations and states is given by

p(Y1:T , ζ1:T |θ ) =
T∏

t=1

p(yt |ζt , Y1:t−1θ )p(ζt |ζt−1, θ ). (41)

he density p(ζt |ζt−1) is obtained from the laws of motion of the exogenously evolving volatilities in (18). The measure-
ent equation, which depends on the current volatility state ζt and lags of the observables yt is obtained from the vector
utoregressive law of motion of yt .
The likelihood function is obtained by integrating out the sequence ζ1:T from the joint density of observables and states.
e do so sequentially, using a particle filter that approximates:

p(Y1:T |θ ) =
T∏

t=1

∫∫
p(yt |ζt , Y1:t−1, θ )p(ζt |ζt−1, θ )p(ζt−1|Y1:t−1, θ )dζtdζt−1. (42)

particle filter represents the density p(ζt |Y1:t , θ ) through a swarm of particles {ζ jt ,W
j
t }

M
j=1 with the property that posterior

xpectations E[h(ζt )|Y1:t , θ] can be approximated by Monte Carlo averages of the form 1
M

∑M
j=1 h(ζ

j
t )W

j
t .

We use a simple bootstrap particle filter (BSPF) which was originally proposed by Gordon and Salmond (1993). In
order to convert the time t−1 particle swarm {ζ

j
t−1,W

j
t−1}

M
j=1 into a time t particle swarm {ζ

j
t ,W

j
t }

M
j=1 the BSPF simulates

the law-of-motion of the states in (18) forward by one period for each ζ jt−1 to obtain a ζ̃ jt . The time t− 1 particle weights
are updated based on p(yt |ζ̃

j
t , Y1:t−1, θ ), which is identical to the likelihood increment in the homoskedastic version of the

model, except that D needs to be replaced by Dt (ζ̃
j
t ). To avoid a degeneracy of the particle weights, the particles can be

resampled. As a by-product, the BSPF generates a stochastic approximation of the likelihood function that we denote by

p̂(Y1:T |θ ).

A detailed description of the algorithm based on the exposition in Herbst and Schorfheide (2015) is provided in the Online

Appendix.

12
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.3. Identification

Based on data exclusively from regime s = 1 our SVAR is only partially identified. First, the s = 1 regime provides
o information about Φ∆

12. Second, the number of free parameters in the matrices A(1) and D exceed the number of
stimable non-redundant reduced-form covariance parameters in Σ(1). Bayesian inference remains valid, but there exist
unctions of model parameters for which the prior distribution is not updated; see, for instance, Poirier (1998) and Moon
and Schorfheide (2012). In turn, a thoughtful specification of the prior distribution becomes important. The Baumeister
and Hamilton (2018)-style prior is formulated based on a parameterization that facilitates prior elicitation and imposes
sign restrictions on some of the entries in the A(1) matrix which reduces the size of the identified set.

Mavroeidis (2020) formally shows that the transition of the economy into the s = 0 regime generates additional
identifying restrictions, which are akin to identification via heteroskedasticity and provides an identification analysis for
his model specifications. It is fairly straightforward to demonstrate that our model satisfies a necessary condition for
identification. Consider the following static example: y′tA(s) = ϵt , where ϵt ∼ N(0, I) and our D matrix is absorbed into
the definition of A(s). From the s = 1 regime we can estimate V[y1,t |y1,t > 0], E[y2,t |y1,t ], and V[y2,t |y1,t ], which in a
Gaussian framework with mean-zero shocks generates the usual (n+ 1)/2 restrictions. From the s = 0 we can estimate
E[y2,t |y1,t = 0] and V[y2,t |y1,t = 0], leading to an additional (n − 1) + (n − 1)n/2 restrictions. Whether or not these
restrictions are sufficient for identification depend on the number of additional parameters that characterize the s = 0
distribution. In our model it is n− 1. In our application n = 3 and one element of A(1) is set to zero. Thus, translated into
the static framework, we have (9− 1)+ 2 = 10 unknowns and 6+ 5 = 11 restrictions for identification, which implies
that the necessary condition is satisfied.

5. Posterior computations via SMC

Because of fairly complicated nonlinear parameter restrictions generated by the piecewise-linear structure of our SVAR,
the posterior distribution of the parameters is non-standard. We use a sequential Monte Carlo (SMC) sampler to generate
draws from the posterior of θ . SMC techniques have emerged as an attractive alternative to MCMC methods because they
can be easily parallelized and, properly tuned, may produce more accurate approximations of posterior distributions than
MCMC algorithms.9

SMC combines features of classic importance sampling and modern MCMC techniques. The starting point is the
creation of a sequence of intermediate or bridge distributions {πn(θ )}

Nφ
n=0 that converge to the target posterior distribution,

i.e., πNφ (θ ) = π (θ ). At any stage the (intermediate) posterior distribution πn(θ ) is represented by a swarm of particles
{θ in,W

i
n}

N
i=1 in the sense that the Monte Carlo average

h̄n,N =
1
N

N∑
i=1

W i
nh(θ

i
n)

a.s.
−→ Eπn [h(θn)] (43)

s N −→ ∞, for each n = 0, . . . ,Nφ . We adopt the convention that the weights W i
n are normalized to average to one.

he bridge distributions are posterior distributions constructed from stage-n likelihood functions:

πn(θ ) =
pn(Y |θ )p(θ )∫
pn(Y |θ )p(θ )dθ

, (44)

ith the convention that p0(Y |θ ) = 1, i.e., the initial particles are drawn from the prior, and pNφ (Y |θ ) = p(Y |θ ). We use
ikelihood tempering of the form

pn(Y |θ ) =
[
p(Y |θ )

]φn
, φn =

(
n
Nφ

)ℓ
. (45)

he tuning parameter ℓ controls the shape of the tempering schedule.
The SMC algorithm proceeds iteratively from n = 0 to n = Nφ . Starting from stage n − 1 particles {θ in−1,W

i
n−1}

N
i=1,

ach stage n of the algorithm targets the posterior πn and consists of three steps: correction, that is, reweighting the
stage n − 1 particles to reflect the density in iteration n; selection, that is, eliminating a highly uneven distribution of
particle weights (degeneracy) by resampling the particles; and mutation, that is, propagating the particles forward using
a Markov transition kernel to adapt the particle values to the stage n bridge density. Our implementation of the SMC
algorithm follows Herbst and Schorfheide (2015) and is described in detail in the Online Appendix.

Likelihood values p(Y |θ ) are required in the correction and mutation steps. For the model specification with stochastic
volatility the exact likelihood function p(Y |θ ) is replaced by the BSPF approximation p̂(Y |θ ) discussed in Section 4.2. In
this case, the SMC algorithm turns into an SMC2 algorithm, which has been studied in Chopin et al. (2013). Just like

9 See Liu (2001), Cappé et al. (2005), and Herbst and Schorfheide (2015) for textbook treatments.
13
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Fig. 1. Data. Notes: Gray bands indicate the ELB period from 2009:Q1 to 2015:Q4, during which the federal funds rate is below 25bp. Vertical lines
denote dates for which we compute IRFs, which are 1999:Q1 and 2009:Q1.

particle MCMC algorithms, the SMC2 algorithm generates an approximation of the exact posterior p(θ |Y ) ∝ p(Y |θ )p(θ )
rovided the stochastic likelihood approximation p̂(Y |θ ) is unbiased, which it is for the BSPF.

. Empirical analysis

We now estimate a three-variable SVAR on U.S. quarterly data. y1,t is defined as the federal funds rate and y2,t
omprises measures of output gap and inflation. The output gap is defined as log real GDP minus the log potential output
eries published by the Congressional Budget Office. We take inflation to be the year-over-year changes (ln Pt − ln Pt−4)
n the personal consumption expenditure deflator. The three series are plotted in Fig. 1. Because, unlike in our model,
he effective federal funds rate was never exactly equal to zero when the economy reached the ELB, we set interest rates
elow 25 basis points (bp) equal to zero. The ELB episode is indicated by the gray band in the data plot.
The subsequent empirical analysis is based on observations from 1984:Q1 to 2018:Q4. We use p = 4 lags for the SVAR.

he SMC2 algorithm described in Section 5 is used to generate draws θ i, i = 1, . . . ,N from the posterior distribution.10 All

10 We use N = 10,000 particles for Algorithm 2 and M = 100 particles for the BSPF Algorithm 1. The SMC algorithm uses Nφ = 200 stages with
hape parameter ℓ = 2. For the mutation we are using N = 3 steps of a single-block MH algorithm.
MH

14
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Fig. 2. Kinks in the regression functions. Notes: Marginal prior p(·) (dotted, red) and posterior p(·|Y ) (solid, blue) densities. Panels depict kernel
density estimates constructed from the output of the SMC algorithm.

Table 2
Marginal data densities.
Specification MDD

VAR(4), stochastic volatility (benchmark) −303.34
VAR(4), stochastic volatility, Φ∆

12 = 0 −311.34
VAR(4), homoskedastic −322.92
VAR(1), stochastic volatility −310.14
VAR(1), homoskedastic −346.43

the results presented subsequently are based on transformations of these draws. The parameter estimates are discussed
in Section 6.1, the estimated IRFs are presented in Section 6.2, and the implied shadow rate is discussed in Section 6.3.
All credible intervals reported in this section are 90% equal-tail-probability credible intervals.

6.1. Parameter and volatility estimates

Setting aside stochastic volatility in the structural innovations, there are two sources of nonlinearity in our SVAR. First,
the interest rate is censored. This means, even if other variables depend on the interest rate linearly, their dynamics will
change nonlinearly as the interest rate reaches the ELB. Second, we allow for the laws of motion of the private-sector
variables to depend on whether or not the interest rate is at or away from the ELB. This feature of our SVAR specification
captures the potential nonlinearity of agents’ decision rules in DSGE models with occasionally-binding constraints; see,
for instance, ACHSV. The second nonlinearity is captured by a non-zero Φ∆

12.
Fig. 2 shows prior and posterior densities for the two elements of Φ∆

12. The prior densities are almost symmetric around
zero.11 The posterior densities are clearly more concentrated than the prior densities. While the posterior for the output
gap kink Φ∆

12,1 is centered around zero (the 90% credible interval ranges from −0.16 to 0.12), the posterior estimate of
the inflation kink Φ∆

12,2 is clearly negative. The 90% credible interval ranges from −0.52 to −0.21. These results suggest
that inflation may respond to shocks differently at and away from the ELB, while output gap responses may be similar.

The third source of nonlinearity in our model comes from the stochastic volatility in the structural innovations. Fig. 3
depicts the filtered volatilities for the three structural shocks, E[

√
Dii,t |Y1:t , θ

i
], computed using 10,000 draws θ i from the

osterior distribution, with M = 1, 000 particles for each draw. In general, the stochastic volatility is more pronounced
or the monetary policy shock and the supply shock than for the demand shock. During the Great Recession, volatility
ncreases for all three shocks. The timing, however, differs. The demand shock volatility increases by more than 50%
etween 2007:Q3 to 2008:Q2 during the initial phase of the Great Recession and then peaks in 2008:Q4. The monetary
olicy shock volatility doubles in 2008:Q1 and then increases by another 40% in 2008:Q4. The volatility of the supply
hock rises more gradually with a 56% jump in 2008:Q4 and peaks in 2009:Q4.
Finally, in Table 2 we compare the log marginal data densities (MDD) of various model specifications. Our preferred

pecification is the VAR(4) with stochastic volatility and non-zero Φ∆
12. Setting Φ

∆
12 = 0 reduces the log MDD by 8. The

VAR(4) clearly dominates the VAR(1) specifications. For both the VAR(1) and the VAR(4) the heteroskedastic version of
the model is preferred to the homoskedastic specification.

11 The adjustments described in Section 3.3 create a slight asymmetry.
15
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Fig. 3. Stochastic volatility. Notes: Posterior distribution of filtered volatilities E[
√
Dii,t |Y1:t , θ

i
]: mean (solid, blue) and 90% equal-tail-probability

redible intervals (blue shades).

.2. Responses to shocks

To study the effects of interest-rate censoring and regime-specific coefficients and to document the parameter
ncertainty, we consider three types of impulse responses. First, we fix the SVAR parameters at their posterior mean
alues and assume that the regime s persists forever. Second, we keep the parameters fixed at the posterior mean, but
e allow the st regime and hence the coefficients of the AΦ representation to switch endogenously. Third, we generate
ands that reflect parameter uncertainty.
In a nonlinear model like ours, IRFs depend on lagged endogenous variables (and thus the date the shock hits), the

ize of the shock and, related, the level of volatility of the shocks for the duration of the impulse response. For all IRFs,
e condition on two specific dates: 1999:Q1 and 2009:Q1. These dates are indicated by the vertical lines in Fig. 1. In
999:Q1 output gap is positive, inflation is low, and the economy is far away from the ELB. In 2009:Q1 the economy is

n the midst of the Great Recession with a large negative output gap, below-mean inflation, and interest rates at the ELB.

16



S.B. Aruoba, M. Mlikota, F. Schorfheide, S. Villalvazo Journal of Econometrics xxx (xxxx) xxx

o
r
I
y
a

F
s
s
t
p

r
l
r
w
g

Φ
i
t
r
s
t

c
i
o

a
P
w
s
c
w
w

I
w
r
i
s
v
d
y
e
r

d

w

o

For all IRFs we hold the level of volatility of the structural shocks constant throughout at the filtered value as measured
n the date the initial shock hits the economy. Finally, we calibrate the size of the shocks as follows. First, we compute
esponses to minus-two-standard-deviation shocks for 1999:Q1. Second, we scale the shocks for 2009:Q1 to make the
RFs comparable across the two dates. The monetary policy shock is scaled so that the initial response of the shadow rate
∗

1,t in 2009:Q1 is the same as the one for 1999:Q1. Demand and supply shocks are normalized such that the maximum
bsolute output responses are identical in 1999:Q1 and 2009:Q1.12

ixed-Regime Impulse Responses. In Fig. 4 we examine IRFs that are computed under the assumption that the regime
t ∈ {0, 1} is fixed, where as we explained above we use 1999:Q1 and 2009:Q1 as representative dates for s = 1 and
= 0, respectively. This experiment can be interpreted as follows: the initial level y∗1,t is either so far above or below
he censoring point −µ1, that the regime does not change for the next h periods in a forward simulation. We also fix the
arameter vector θ at its posterior mean θ̄ .
For the s = 0 regime, we generate impulse responses under two sets of regression functions: (i) the estimated

egression functions and (ii) the s = 1 regression functions obtained by setting Φ∆
12 = 0. In the graph, the former are

abeled ‘‘s = 0’’ whereas the latter are labeled ‘‘s = 0 (linear)’’. We use the same scaling of shocks for these two sets of
esponses. A comparison between s = 1 and s = 0 (linear) highlights the effect of the interest-rate censoring at the ELB,
hereas a comparison between s = 0 (linear) and s = 0 sheds light on the effect of the kink in the regression functions
enerated by the estimated Φ∆

12.
The blue lines in Fig. 4 correspond to the s = 1 responses, and are computed from the implied estimates of Φ(1) and
ϵ(1). In response to a 36 basis point (bp) expansionary monetary policy shock the output gap rises by 29 bp and y-o-y

nflation increases by 9 bp. The negative demand shock lowers the output gap by 51 bp and inflation by 24 bp at its
rough. In response to the fall in output and inflation, the central bank lowers nominal interest rates. The interest rate
esponse is hump shaped and bottoms out at roughly −140 bp. The negative supply shock triggers a negative hump-
haped output-gap response with a trough at −18 bp and a 94 bp rise in inflation. The large increase in inflation leads
he central bank to raise the nominal interest rate.

We now turn to the s = 0 (linear) responses (green) that solely capture the effect of censoring at the ELB. By
onstruction, the interest rate does not react to the shocks. Nonetheless, our model generates movements in output and
nflation to the monetary policy shock, which can be interpreted as responses to changes in the shadow rate or the effects
f unconventional monetary policy. Mechanically, these responses are generated by the vector Φϵ

12(st ) in (9). This vector is
obtained for s = 0 from the system of equations that link the s = 0 regression functions to the s = 1 regression functions;
see (16).13

The s = 0 (linear) responses of the output gap and inflation to a monetary policy shock are somewhat larger than
s = 1 responses, but very similar in shape to the non-ELB responses. Allowing for an estimated Φ∆

12 = 0 essentially does
not change the responses to a monetary policy shock. The responses to a supply shock are also very similar under the
three scenarios. Only the inflation response to a demand shock exhibits substantial differences across regimes. Under the
s = 1 regime inflation falls drastically, reaching a trough of −24 bp, whereas under the s = 0 regime inflation rises by
7 bp and continues to increase to 13 bp before it converges back to zero. s = 0 (linear) is an intermediate case in which
inflation initially drops by 18 bp but then jumps to 5 bp before converging to zero in the long-run.14

Ball and Mazumder (2011) and Hall (2011) pointed out that during the Great Recession inflation did not fall despite
large drop in output (gap), indicating a change in the positive relationship between the two variables implied by the
hillips curve. This observation was dubbed the missing deflation puzzle. Conditional on the posterior mean estimate θ̄
e computed estimates of the structural shocks (plotted in the Online Appendix). From 2008:Q4 to 2009:Q3 the demand
hocks are estimated to be negative, depressing output. If the ELB regime parameters equaled their non-ELB regime
ounterparts, these shocks would have implied a substantial drop in inflation, just like a conventional Phillips curve,
hich did not happen. The model reconciles the empirical observation with a negative estimate of Φ∆

12,2 for inflation,
hich in turn delivers a rise in inflation in response to the demand shock in the ELB regime.

mpulse Responses With Regime Shifts. We continue to keep the parameter vector θ fixed at its posterior mean θ̄ , but
e now allow for the regime st to evolve over the impulse response as the economy goes in and out of the ELB. Doing so
equires simulations because different realizations of the structural shocks may lead to different paths for the economy,
ncluding differences in when it is at or away from the ELB. Using t + 1 to denote the date the shock hits the economy,
tarting from the initial condition xt+1, we iterate the SVAR forward to obtain two different paths for the endogenous
ariables. Along the baseline trajectory, in simulation j, we draw all innovations ϵ j,0i,t+h from their respective N(0,Dii,t+1)
istributions, not varying volatility with horizon h. We denote the resulting series yj,0t+1:t+H . To generate the shocked path
j,1
t+1:t+H , we set ϵ j,11,t+1 = ϵ

j,0
1,t+1 + δ and let ϵ j,1i,t+h = ϵ

j,0
i,t+1 for all other (i, h). Here δ is the size of the shock as calibrated

arlier. The impulse response is defined as the difference between the shocked and the baseline path. The simulation is
epeated for j = 1, . . . ,M where we use M = 10,000.

12 This leads to the following scaling: all shocks are −2 standard deviations in s = 1 (1999:Q1) while in s = 0 (2009:Q1) we have −1.17 standard
eviations for the monetary policy shock, −1.94 standard deviations for the demand shock and −0.99 standard deviations for the supply shock.
13 DSGE model solutions have the same feature: the monetary policy shock is a state variable and has an influence on decisions, regardless of
hether or not the interest rate moves.
14 The sign reversal of the inflation response relative to the s = 1 regime is also visible in the DSGE model based IRFs reported in Figure 5
f Aruoba et al. (2018).
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Fig. 4. Responses to negative scaled shocks with fixed regimes. Notes: The IRFs are computed by holding the regime st fixed. The blue lines represent
he IRFs under the s = 1 regime (no censoring); the red lines are IRFs for the s = 0 regime (censoring and estimated value of Φ∆

12); the green lines
re IRFs for the s = 0 regime with Φ∆

12 = 0. The shocks are −2 standard deviation for the s = 1 regime and they are scaled for the s = 0 regime
see Footnote 12). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In the top three rows of Fig. 5 we plot the distribution of yj,1t+1:t+H − yj,0t+1:t+H across j. The bands depict 90% credible
ntervals and the solid lines are means. In the absence of the nonlinearities triggered by the interest rate reaching the ELB,
he bands collapse to a single line. The bottom panel of Fig. 5 shows bands for the interest rate path along the ‘‘shocked’’
rajectories. Each time a trajectory j hits the ELB for the first time, the difference between the shocked path and the
aseline path will start to deviate from the fixed-regime s = 1 IRF. Once a sufficiently large number of trajectories have
it the ELB, the response bands will start to fan out. Because of this cumulative effect, it is not necessary that the fanning
ut of the response bands coincides with the 5% quantiles of the interest rate distributions (represented by the lower
ounds of the shaded bands in the last row of Fig. 5) reaching zero.
Qualitatively and quantitatively, the 1999:Q1 and 2009:Q1 responses look very similar to the s = 1 and s = 0 responses

n Fig. 4, respectively. All of the 1999:Q1 responses start out as single lines because initially the ELB is irrelevant. Some of
he responses, in particular those to a demand shock, fan out after 25 to 50 periods. This means that there are a substantial
umber of trajectories along which interest rates are strictly positive (s = 1) under the baseline scenario, but hit the ELB
s = 0) at least once under the shocked scenario. Along these trajectories, the interest rate response reverts more quickly

ack to zero (because the interest rate drop is constrained by the ELB), and so do the output gap and inflation responses.

18
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Fig. 5. Responses in 1999:Q1 and 2009:Q1: Flexible regimes and shock uncertainty. Notes: The top three panels show the distribution of the difference
between a simulated baseline trajectory and a trajectory in which a scaled shock is subtracted from the simulated monetary policy/demand/supply
shock in the initial period. See Footnote 12 for the scaling of the IRFs. The bottom panels show the level of the interest rate under the ‘‘shocked’’
trajectory. Bands represent 90% credible intervals and solid lines are means across M = 10,000 simulated paths. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Visually, in Fig. 5 the response along the far end (away from the average response) of the blue bands starts to look more
similar to the mean response under the 2009:Q1 initial conditions.

The bands associated with the 2009:Q1 IRFs fan out earlier and are typically wider than the ones for the 1999:Q1
responses because near the ELB the probability that the regimes along the shocked and unshocked trajectories differ is
larger. Compared to the s = 0 responses in Fig. 4 the 2009:Q1 IRFs are slightly tilted toward the s = 1 responses because
under some of the simulated trajectories, the economy quickly moves away from the ELB. More generally, IRFs for other
dates will be somewhere in between the 1999:Q1 and 2009:Q1 responses, depending on how close the shadow rate is to
the ELB.

Parameter Uncertainty. We will now explore the posterior uncertainty associated with the IRFs. The bands reported in
Fig. 6 represent 90% credible intervals that reflect posterior parameter uncertainty, in addition to the regime uncertainty
we explored in Fig. 5. The solid lines are pointwise medians of the impulse response posteriors. As in the previous figure,
we compare responses based on the 1999:Q1 (blue) and 2009:Q1 (red) initial conditions. Fig. 6 is generated by converting
19
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Fig. 6. Responses in 1999:Q1 and 2009:Q1: Flexible regimes and parameter uncertainty. Notes: See Footnote 12 for the scaling of the IRFs. Bands
represent 90% credible intervals and solid lines are pointwise posterior medians. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

10,000 draws θ i from the posterior distribution into mean responses (each computed over 1000 simulations) to the three
structural shocks depicted as solid lines in Fig. 5.15

A comparison of the 1999:Q1 and 2009:Q1 bands sheds more light on the question whether the propagation of shocks
s different at the ELB. In regard to interest rate responses, the answer is a trivial yes, because it is directly constrained
y the ELB. More interesting is the comparison for output gap and inflation. Consistent with the insignificant estimate of
∆
12,1 for the output gap equation reported in Fig. 2, we see that the output gap impulse response bands overlap for the
wo sets of initial conditions. Despite the overlap, the output gap response to the monetary policy shock appears to be
lightly stronger when the economy is at the ELB. Fig. 6 also reveals that there is a lot of parameter uncertainty regarding
he output gap responses to a supply shock.

The inflation responses to a demand shock and a monetary policy shock, on the other hand, show some differences. This
ifference is most pronounced for the demand shock where the bands do not overlap for the first three years following
he shock. While for 1999:Q1 the credible band for the inflation response is located below zero, for 2009:Q1 the inflation

15 A comparison of prior and posterior impulse response bands is provided in the Online Appendix. The prior bands are substantially wider than
the posterior bands indicating that the sample is informative about the propagation of shocks. Compared to the set-identified setting in BH, the ELB
regime provides additional identifying information in our analysis.
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esponse is positive with high probability. As for the monetary policy shock, the unconventional expansionary monetary
olicy intervention at the ELB in 2009:Q1 is more inflationary on impact than away from the ELB in 1999:Q1, but the
ands start to overlap in the subsequent periods.

omparison to the Literature. To sum up our headline results, we find that (i) a negative monetary policy shock that
reates the same size response in the shadow rate, is more inflationary at the ELB on impact and also generates a slightly
arger response of the output gap. (ii) Negative demand shocks cause inflation to fall when the ELB is non-binding. At the
LB, on the other hand, the inflation response to a negative demand shock is positive. This difference persists for about
hree years. (iii) The output gap responses for demand and supply shocks do not significantly differ at and away from the
LB.
The papers by Ikeda et al. (2020) and Johannsen and Mertens (2021) focus on differences in the effectiveness of

onetary policy at and away from the ELB. Johannsen and Mertens (2021) find that monetary accommodation during
he Great Recession would have provided more stimulus than at other times. Our results are qualitatively consistent with
his finding: the output gap response is larger at the ELB relative to the response away from the ELB, though the credible
ets overlap. Ikeda et al. (2020) use a censored SVAR similar to the one in Mavroeidis (2020) and study the hypothesis
of empirical irrelevance of the ELB using data from the U.S. and Japan. Their results show a similar inflation response to
monetary policy on impact but a larger response at the ELB after two quarters and beyond, which is qualitatively similar
to our results. Unlike us, they find a slight dampening instead of amplification of the output gap response. At the end,
just as we do, they reject the irrelevance hypothesis.

Our results (i) and (ii) are in contrast to the results from time-varying coefficient VARs presented in Debortoli et al.
(2019). They do not find discernible differences between responses to a variety of shocks at and away from the ELB, which
leads them to conclude that the ELB is empirically irrelevant. The densely parameterized and set-identified TVC-SVAR
of Debortoli et al. (2019) makes it difficult to detect changes in the propagation of shocks based on a relatively short
sample of ELB observations. We use more identifying information and only a small number of additional parameters to
characterize the dynamics in the ELB regime. Thus, our approach is better equipped to detect differences in IRFs. All in
all, we conclude that, as predicted by DSGE models with an ELB constraint, the ELB is not irrelevant for the propagation
of shocks and this effect is measurable in a parsimonious SVAR framework that allows for changes in the private-sector
behavior at the ELB.

6.3. Shadow rate

Our model allows us to generate a shadow rate. It is given by an estimate of the latent variable y∗1,t , which can then
be adjusted to undo the effect of our re-centering: ỹ∗1,t = y∗1,t + µ1. In the Online Appendix we provide a formula for
p(y∗1,t |y1,t = −µ1, y2,t , xt , θ ). Because in our SVAR xt depends on y1,t−1:t−p instead of y∗1,t−1:t−p inference on the shadow
rate is static and does not require dynamic filtering and smoothing. The posterior median estimate, 60% and 90% bands of
the model-implied distribution of the shadow rate are plotted in Fig. 7. The bands reflect uncertainty about the parameters
θ and the shocks conditional on (y1,t = −µ1, y2,t , xt , θ ). For each parameter draw θ we condition on the mean (filtered)
volatility estimate, which is allowed to vary over time. The inference exploits the correlation structure implied by Φ(0)
and Σ(0) between interest rates, on the one hand, and output gap and inflation on the other hand.

The estimated shadow rate drops to −2% in 2009 during the first large scale asset purchase intervention (QE1) of
the Federal Reserve. From 2010 to 2015, during QE2, Operation Twist, and QE3 it hovered around −0.5%. This shows
that the Federal Reserve was particularly aggressive in providing monetary stimulus in 2009 and reverted to a lesser but
consistent stimulus for the rest of the ELB episode. It is also noteworthy that the slope of the shadow rate in early 2009
closely matches the slope in the federal funds rate just prior to the start of the ELB episode.

Qualitatively, the time path of the shadow rate is consistent with the time path of the desired interest rate (red solid
line) estimated with a small-scale New Keynesian DSGE in Aruoba et al. (2018). Quantitatively, the trough in the DSGE
model implied shadow rate occurred about six months after the trough in the SVAR based shadow rate. Johannsen and
Mertens (2021) produced a shadow rate based on their censored unobserved component model. Their shadow rate (not
shown in the figure) is relatively flat at about −1% throughout the ELB episode and quite similar to our rate from 2010
onwards.

Finally, we provide a comparison with the yield-curve based shadow rate of Wu and Xia (2016). The Wu-Xia rate,
rather than being based on a censored interest-rate feedback rule, is based on a censored affine term structure model and
extracts information from yields on medium- and long-term bonds. Their shadow rate troughs in 2014, about five years
after the end of the Great Recession, about a year prior to the lift-off from the ELB. We find this somewhat implausible in
view of the narrative evidence that the most significant interventions happened during and right after the Great Recession
— which is consistent with our SVAR based estimates.16

16 The shadow rate produced by Krippner (2015) looks even more extreme than the Wu-Xia rate, going down to about −6% in 2013.
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Fig. 7. Shadow Rate. Notes: Blue line outside of the ELB episode: federal funds rate. During the ELB episode: 60% (green shade) and 90% (blue shade)
redible intervals. Black line is Wu-Xia shadow rate and red line is the desired interest rate from the DSGE model of Aruoba et al. (2018). The solid
ertical line denotes September 2008. The yellow shading indicates the quarters when the particular Fed program was active. During the green
haded area, both Operation Twist and QE3 were active. The dashed–dotted vertical line shows January 2012, when the formal inflation target was
nnounced. The dashed vertical line shows the ‘‘taper tantrum’’ episode in June 2013. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

. Conclusion

We developed a structural VAR in which an occasionally-binding constraint generates censoring of one of the
ependent variables. Once the censoring mechanism is triggered, we allow some of the coefficients for the remaining
ariables to change. By imposing that the regression functions are continuous at the censoring point, we can show that
ome mild parameter restrictions deliver a unique reduced form. The resulting model is more parsimonious than a time-
arying-coefficient VAR and the switch in parameter values is tied to the censoring mechanism, which in our application
s the ELB on nominal interest rates. An application to U.S. data provided evidence of a shift of parameters in the inflation
quation which creates a more inflationary response to an expansionary monetary policy shock and a positive inflation
esponse to a contractionary demand shock at the ELB.

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.07.013.
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