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1. INTRODUCTION

The goal of this paper is to provide a framework for performing ‘online’ estimation of Bayesian
dynamic stochastic general equilibrium (DSGE) models using sequential Monte Carlo (SMC)
techniques. We borrow the term online estimation from the statistics and machine-learning liter-
ature to describe the task of re-estimating a model frequently as new data become available. This
is standard practice in central bank settings, where models may be re-estimated every one to three
months for each policy-briefing cycle or after each data release. The conventional approach—to
run a completely new estimation to update the model with new information—is time-consuming
and can require considerable user supervision. Moreover, as macroeconomic models become
more complex, for example the current vintage of heterogeneous-agent New Keynesian models,
even seemingly generous time constraints may become binding. Online estimation is also impor-
tant for academic research, where economists often compare predictions from a variety of models
in pseudo-out-of-sample forecast exercises that require recursive estimation.

In both policy and academic settings, then, there is a need for reliable and efficient estimation
algorithms. In this paper, we propose a generic SMC algorithm for online estimation that mini-
mizes computational time but maintains the ability to handle complex, i.e., multimodal, posterior
distributions with minimal user monitoring. In an empirical section, we verify the properties of
the algorithm by estimating a suite of DSGE models. In an application prototypical for both
policy institutions and academic research, we use the algorithm to generate recursive forecasts
using these DSGE models.

In online estimation applications of SMC methods, parameter estimates based on data available
in the previous period will be adjusted to capture the additional information contained in the
observations from the current period. However, a similar technique can be used to transform
estimates of, say, a linearized DSGE model, into estimates of a version of the model that has
been solved with nonlinear techniques and that shares the same set of parameters. Thus, our
framework should be of value to anyone interested in estimating complex models in a stepwise
fashion, either by sequentially increasing the sample information or by mutating preliminary
estimates from a relatively simple model (linear dynamics, heterogeneous-agent models with a
coarse approximation), which can be computed quickly, into estimates of a more complex model
(nonlinear dynamics, heterogeneous-agent models with a finer approximation), which would take
a long time to compute from scratch.

SMC methods have traditionally been used to solve nonlinear filtering problems, an example
being the bootstrap particle filter of Gordon et al. (1993). Subsequently, Chopin (2002) showed
how to adapt particle filtering techniques to conduct posterior inference for a static parameter
vector. The first paper that applied SMC techniques to posterior inference for the parameters
of a (small-scale) DSGE model was Creal (2007). Subsequent work by Herbst and Schorfheide
(2014, 2015) fine-tuned the algorithm so that it could be used for the estimation of medium- and
large-scale models.

In order to frame the paper’s contributions, a brief summary of how SMC works is in order. SMC
algorithms approximate a target posterior distribution by creating intermediate approximations
to a sequence of bridge distributions, indexed in this paper by n. At each stage, the current bridge
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distribution is represented by a swarm of so-called particles. Each particle is composed of a
value and a weight. Weighted averages of the particle values converge to expectations under the
stage-n distribution. The transition from stage n − 1 to n involves changing the particle weights
and values so that the swarm adapts to the new distribution. Typically, these bridge distributions
are composed either by using the full-sample likelihood (likelihood tempering)—generated by
raising this likelihood function to the power of φn, where φn increases from zero to one—or
by sequentially adding observations to the likelihood function (data tempering). While the data
tempering approach seems most natural for an online estimation algorithm, previous work (Herbst
and Schorfheide, 2015) has shown that it may perform poorly relative to likelihood tempering.

This paper makes three main contributions. First, under likelihood tempering, we replace a
predetermined (or fixed) tempering schedule {φn} for the DSGE model likelihood function by a
schedule that is constructed adaptively. The adaptive tempering schedule chooses the amount of
information that is added to the likelihood function in stage n to achieve a particular variance of
the particle weights. While adaptive tempering schedules have been used in the statistics literature
before (e.g., Jasra et al. 2011), their use for the estimation of DSGE model parameters is new.
This kind of adaptation is an important prerequisite for efficient online estimation, as it avoids
unnecessary computations. Our adaptive schedules are calibrated by a single tuning parameter
that controls the desired variance of the particle weights. We assess how this tuning parameter
affects the accuracy–runtime trade-off for the algorithm.

Second, we modify the SMC algorithm so that the initial particles are drawn from a previously
computed posterior distribution instead of from the prior distribution. This initial posterior can
result from estimating the model on a shorter sample or from a simpler version of the same model
(e.g., linear versus nonlinear, as discussed above) on the full sample. In the former case, our
approach can be viewed as a form of generalized data tempering. Our approach is more general
in that it allows users to add information from fractions of observations and accommodates data
revisions, which are pervasive in macro applications. When combined with adaptive tempering,
this generalized approach avoids the pitfalls associated with standard data tempering. This is
because in the periods in which the new observation(s) are quite informative and shift the
posterior distribution substantially, the algorithm will use a larger number of intermediate stages
to reach the new posterior to maintain accuracy. In other periods, where the posterior distribution
remains essentially unchanged, however, the number of intermediate stages is kept small to reduce
runtime.

Third, we contribute to the literature that assesses the real-time pseudo-out-of-sample forecast
performance of DSGE models. Here real-time means that for a forecast using a sample ending
at time t , the data vintage used to estimate the model is one that would have been available to
the econometrician at the time. Pseudo-out-of-sample means that the forecasts were produced
ex post.1 We use the proposed SMC techniques to conduct online estimation of the Smets and
Wouters (2007) model and a version of this model with financial frictions. Our forecast evaluation
exercises extend previous results in Del Negro and Schorfheide (2013) and Cai et al. (2019), which
were conducted with parameter estimates from the widely used random walk Metropolis Hastings
(RWMH) algorithm. In particular, we study the effects of reducing the informativeness of the
prior distribution on forecasting performance. Despite the emergence of multiple modes in the
posterior distribution, our SMC-based results show that the large increase in the prior standard
deviation has surprisingly small effects on forecasting accuracy, thereby debunking the notion
that priors in DSGE models are chosen to improve the model’s predictive ability.

1 Cai et al. (2019) provide a genuine real-time forecast evaluation that uses the NY Fed DSGE model’s forecasts.
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The remainder of this paper is organized as follows. In Section 2 we outline the basic struc-
ture of an SMC algorithm designed for posterior inference on a time-invariant parameter vector
θ . We review different tempering approaches and present an algorithm for the adaptive choice
of the tempering schedule. Section 3 provides an overview of the DSGE models that are es-
timated in this paper. In Section 4 we study various dimensions of the performance of SMC
algorithms: we assess the accuracy and runtime trade-offs of adaptive tempering schedules, we
document the benefits of generalized data tempering for online estimation, and we demonstrate
the ability of SMC algorithms to accurately approximate multimodal posteriors. Section 5 con-
tains various pseudo-out-of-sample forecasting assessments for models that are estimated by
SMC. Finally, Section 6 concludes. The Online Appendix provides further details on model spec-
ifications, prior distributions, and computational aspects. It also contains additional empirical
results.

2. ADAPTIVE SMC ALGORITHMS FOR POSTERIOR INFERENCE

SMC techniques to generate draws from posterior distributions of a static parameter θ are emerg-
ing as an attractive alternative to Markov chain Monte Carlo (MCMC) methods. SMC algorithms
can be easily parallelized and, properly tuned, may produce more accurate approximations of
posterior distributions than MCMC algorithms. Chopin (2002) showed how to adapt particle
filtering techniques to conduct posterior inference for a static parameter vector. Textbook treat-
ments of SMC algorithms are provided by, for instance, Liu (2001) and Cappé et al. (2005).
This section reviews the standard SMC algorithm (Subsection 2.1), contrasts our generalized
tempering approach with existing alternatives (Subsection 2.2), and finally describes our adaptive
tempering algorithm (Subsection 2.3).

The first paper that applied SMC techniques to posterior inference in small-scale DSGE models
was Creal (2007). Herbst and Schorfheide (2014) develop the algorithm further, provide some
convergence results for an adaptive version of the algorithm building on the theoretical analysis
of Chopin (2004), and show that a properly tailored SMC algorithm delivers more reliable
posterior inference for large-scale DSGE models with a multimodal posterior than the standard
RWMH algorithm. Creal (2012) provides a recent survey of SMC applications in econometrics.
Durham and Geweke (2014) show how to parallelize a flexible and self-tuning SMC algorithm
for the estimation of time series models on graphical processing units (GPUs). The remainder of
this section draws heavily from the more detailed exposition in Herbst and Schorfheide (2014,
2015).

2.1. SMC algorithms for posterior inference

SMC combines features of classic importance sampling and modern MCMC techniques. The
starting point is the creation of a sequence of intermediate or bridge distributions {πn(θ )}Nφ

n=0 that
converge to the target posterior distribution, i.e., πNφ

(θ ) = π (θ ). At any stage, the (intermediate)
posterior distribution πn(θ ) is represented by a swarm of particles {θ i

n,W
i
n}Ni=1 in the sense that

the Monte Carlo average

h̄n,N = 1

N

N∑
i=1

Wi
nh(θ i)

a.s.−→ Eπn
[h(θn)],
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as N −→ ∞, for each n = 0, . . . , Nφ . The bridge distributions are posterior distributions con-
structed from stage-n likelihood functions:

πn(θ ) = pn(Y |θ )p(θ )∫
pn(Y |θ )p(θ )dθ

,

with the convention that p0(Y |θ ) = 1, i.e., the intial particles are drawn from the prior, and
pNφ

(Y |θ ) = p(Y |θ ). The actual forms of the likelihood sequences depend on the tempering
approach and will be discussed in Subsection 2.2 below. We adopt the convention that the
weights Wi

n are normalized to average to one.
The SMC algorithm proceeds iteratively from n = 0 to n = Nφ . Starting from stage n − 1

particles {θ i
n−1,W

i
n−1}Ni=1, each stage n of the algorithm targets the posterior πn and consists

of three steps: correction, that is, reweighting the stage n − 1 particles to reflect the density
in iteration n; selection, that is, eliminating a highly uneven distribution of particle weights
(degeneracy) by resampling the particles; and mutation, that is, propagating the particles forward
using a Markov transition kernel to adapt the particle values to the stage n bridge density.

ALGORITHM 1 (GENERIC SMC ALGORITHM).

(1) Initialization. (n = 0 and φ0 = 0.) Draw the initial particles from the prior: θ i
1

iid∼ p(θ ) and
Wi

1 = 1, i = 1, . . . , N .
(2) Recursion. For n = 1, . . . , Nφ ,

(a) Correction. Reweight the particles from stage n − 1 by defining the incremental
weights

w̃i
n = pn(Y |θ i

n−1)

pn−1(Y |θ i
n−1)

,

and the normalized weights

W̃ i
n = w̃i

nW
i
n−1

1
N

∑N
i=1 w̃i

nW
i
n−1

, i = 1, . . . , N.

(b) Selection (Optional). Resample the swarm of particles, {θ i
n−1, W̃

i
n}Ni=1, and denote

resampled particles by {θ̂ i
n,W

i
n}Ni=1, where Wi

n = 1 for all i.
(c) Mutation. Starting from θ̂ i

n, propagate the particles {θ̂ i
n,W

i
n} via NMH steps of

a Metropolis–Hastings (MH) algorithm with transition density Kn(θ |θ̃ ; ζn)
and stationary distribution πn(θ ). Note that the weights are unchanged, and
denote the mutated particles by {θ i

n,W
i
n}Ni=1.

An approximation of Eπn
[h(θ )] is given by

h̄n,N = 1

N

N∑
i=1

h(θ i
n)Wi

n.

(3) For n = Nφ (φNφ
= 1), the final importance sampling approximation of Eπ [h(θ )] is given

by:

h̄Nφ,N =
N∑

i=1

h(θ i
Nφ

)Wi
Nφ

.

Because we are using a proper prior, we initialize the algorithm with iid draws from the prior
density p(θ ). The correction step is a classic importance sampling step, in which the particle
weights are updated to reflect the stage n distribution πn(θ ). The selection step is optional. On the
one hand, resampling adds noise to the Monte Carlo approximation, which is undesirable. On the
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other, it equalizes the particle weights, which increases the accuracy of subsequent importance
sampling approximations. The decision of whether or not to resample is typically based on a
threshold rule for the variance of the particle weights. This variance can be transformed into an
effective particle sample size:

ÊSSn = N
/(

1

N

N∑
i=1

(W̃ i
n)2

)
.

If the particles have equal weights, then ÊSSn = N . If one particle has weight N and all other
particles have weight 0, then ÊSSn = 1. These are the upper and lower bounds for the effective
sample size. To balance the trade-off between adding noise and equalizing particle weights, the
resampling step is typically executed if ÊSSn falls below a threshold N , for example N/2 or N/3.
An overview of specific resampling schemes is provided in, for instance, the books by Liu (2001)
and Cappé et al. (2005) (and references cited therein). We are using systematic resampling in the
applications below.

The mutation step changes the particle values. In the absence of the mutation step, the particle
values would be restricted to the set of values drawn in the initial stage from the prior distribution.
This would clearly be inefficient, because the prior distribution is typically a poor proposal
distribution for the posterior in an importance sampling algorithm. As the algorithm cycles through
the Nφ stages, the particle values successively adapt to the shape of the posterior distribution.
This is the key difference between SMC and classic importance sampling. The transition kernel
Kn(θ |θ̃ ; ζn) is designed to have the following invariance property:

πn(θn) =
∫

Kn(θn|θ̂n; ζn)πn(θ̂n)dθ̂n.

Thus, if θ̂ i
n is a draw from πn, then so is θ i

n. The mutation step can be implemented by using one
or more steps of a MH algorithm. The probability of mutating the particles can be increased by
blocking the elements of the parameter vector θ or by iterating the MH algorithm over multiple
steps. The vector ζn summarizes the tuning parameters of the MH algorithm.

The SMC algorithm produces as a by-product an approximation of the marginal likelihood.
Note that

1

N

N∑
i=1

w̃i
nW̃

i
n−1 ≈

∫
pn(Y |θ )

pn−1(Y |θ )

[
pn−1(Y |θ )p(θ )∫
pn−1(Y |θ )p(θ )dθ

]
dθ =

∫
pn(Y |θ )p(θ )dθ∫

pn−1(Y |θ )p(θ )dθ
.

Thus, it can be shown that the approximation

p̂(Y ) =
Nφ∏
n=1

(
1

N

N∑
i=1

w̃i
nW

i
n−1

)
, (2.1)

converges almost surely to p(Y ) as the number of particles N −→ ∞; see, for instance, Herbst
and Schorfheide (2014).

2.2. Likelihood, data, and generalized tempering

The stage n likelihood functions are generated in different ways. Under likelihood tempering,
one takes power transformations of the entire likelihood function:

pn(Y |θ ) = [p(Y |θ )]φn, φn ↑ 1. (2.2)
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The advantage of likelihood tempering is that one can make, through the choice of φn, consecutive
posteriors arbitrarily ‘close’ to one another. Under data tempering, sets of observations are
gradually added to the likelihood function, that is,

pn(Y |θ ) = p(y1:	φnT 
|θ ), φn ↑ 1,

where 	x
 is the largest integer that is less than or equal to x. Data tempering is particularly
attractive in time series applications. But because individual observations are not divisible, the
data tempering approach is less flexible. Though the data tempering approach might seem well
suited for online estimation, in practice it performs poorly because adding an observation can
change the posterior substantially. Moreover, conventional data tempering is not easily adapted
to revised data.

Our approach generalizes both likelihood and data tempering as follows. Imagine that one has
draws from the posterior

π̃ (θ ) ∝ p̃(Ỹ |θ )p(θ ),

where the posterior π̃ (θ ) differs from the posterior π (θ ) because either the sample (Y versus Ỹ ),
or the model (p(Y |θ ) versus p̃(Ỹ |θ )), or both are different.2 We define the stage n likelihood
function as

pn(Y |θ ) = [p(Y |θ )]φn[p̃(Ỹ |θ )]1−φn, φn ↑ 1. (2.3)

First, if one sets p̃(·) = 1, then (2) is identical to likelihood tempering. Second, suppose one
sets p̃(·) = p(·), Y = y1:T , and Ỹ = y1:T1 , where T > T1. Then, tempering this likelihood allows
for a gradual transition from p(y1:T1 |θ ) to p(y1:T |θ ) as φn increases from 0 to 1. This leads to a
generalized version of data tempering in which we can add informational content to the likelihood
that corresponds to a fraction of an observation yt . This may be important if the additional sample
yT1+1:T substantially affects the likelihood (e.g., yT1+1:T includes the Great Recession).

Third, by allowing Y to differ from Ỹ , we can accommodate data revisions between time T1 and
T . For online estimation, one can use the most recent estimation to jump-start a new estimation
on revised data, without starting from scratch. Finally, by allowing p(·) and p̃(·) to differ, one
can transition between the posterior distributions of two models that share the same parameters,
e.g., DSGE models solved by a first- and second-order perturbation method. We will evaluate the
accuracy of the generalized tempering approach in Section 4 and use it in the real-time forecast
evaluation of Section 5.

2.3. Adaptive algorithms

The implementation of the SMC algorithm requires the choice of several tuning constants. First,
the user has to choose the number of particles N . As shown in Chopin (2004), Monte Carlo
averages computed from the output of the SMC algorithm satisfy a central limit theoremas
the number of particles increases to infinity. This means that the variance of the Monte Carlo
approximation decreases at the rate 1/N . Second, the user has to determine the tempering schedule
φn and the number of bridge distributions Nφ . Third, the threshold level N for ÊSSn needs to
be set to determine whether the resampling step should be executed in iteration n. Finally, the
implementation of the mutation step requires the choice of the number of MH steps (NMH), the

2 It is straightforward to generalize our approach to encompass differences in the prior.
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number of blocks into which the parameter vector θ is partitioned (Nblocks), and the parameters
ζn that control the Markov transition kernel Kn(θn|θ̂ i

n; ζn).
Our implementation of the algorithm starts from a choice of N , N , NMH, and Nblocks . The

remaining features of the algorithm are determined adaptively. As in Herbst and Schorfheide
(2015), we use a RWMH algorithm to implement the mutation step. The proposal density takes
the form N (θ̂ i , c2

n, �̃n). The scaling constant c and the covariance matrix �̃n can be easily
chosen adaptively; see Herbst and Schorfheide (2015, Algorithm 10). Based on the MH rejection
frequency, c can be adjusted to achieve a target rejection rate of approximately 25–40%. For �̃n

one can use an approximation of the posterior covariance matrix computed at the end of the stage
n correction step.

In the current paper, we will focus on the adaptive choice of the tempering schedule, building
on work by Jasra et al. (2011), Del Moral et al. (2012), Schäfer and Chopin (2013), Geweke and
Frischknecht (2014), and Zhou et al. (2016). The key idea is to choose φn to target a desired level
ÊSS

∗
n. Roughly, the closer the desired ÊSS

∗
n is to the previous ÊSSn−1, the smaller the increment

φn − φn−1 and therefore the smaller the information increase in the likelihood function. In order
to formally describe the choice of φn, we define the functions

wi(φ) = [p(Y |θ i
n−1)]φ−φn−1 , W̃ i

n(φ) = wi(φ)Wi
n−1

1
N

N∑
i=1

wi(φ)Wi
n−1

, ÊSS(φ) = N
/(

1

N

N∑
i=1

(W̃ i
n(φ))2

)
.

We will choose φ to target a desired level of ESS: (3)

f (φ) = ÊSS(φ) − αÊSSn−1 = 0, (2.4)

where α is a tuning constant that captures the targeted reduction in ESS. For instance, if α = 0.95,
then the algorithm allows for a 5% reduction in the effective sample size at each stage. The
algorithm can be summarized as follows.

ALGORITHM 2 (ADAPTIVE TEMPERING SCHEDULE).

(1) If f (1) ≥ 0, then set φn = 1.
(2) If f (1) < 0, let φn ∈ (φn−1, 1) be the smallest value of φn such that f (φn) = 0.

It is important to note that Algorithm 2 is guaranteed to generate a ‘well-formed’—
monotonically increasing—tempering schedule. To see this, suppose that φn−1 < 1. First, note
that f (φn−1) = (1 − α)ÊSSn−1 > 0. Second, if f (1) ≥ 0, we set φn = 1 > φn−1 and the algo-
rithm terminates. Alternatively, if f (1) < 0, then by continuity of f (φ) and the compactness of
the interval [φn−1, 1], there exists at least one root of f (φ) = 0. We define φn to be the smallest
one. The formulation in Algorithm 2 is also attractive because the values of the likelihood function
used in (3) have already been stored in memory. This means that even exhaustive root-finding
methods will typically find φn quickly.3

3 A refined version of Algorithm 2 that addresses potential numerical challenges in finding the root of f (φ) is provided
in Subsection A.2 of the Online Appendix.
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3. DSGE MODELS

In the subsequent applications we consider three DSGE models. The precise specifications of
these models, including their linearized equilibrium conditions, measurement equations, and prior
distributions, are provided in Section B of the Online Appendix.

The first model is a small-scale New Keynesian DSGE model that has been widely studied
in the literature (see Woodford, 2003, or Galı́, 2008, for textbook treatments). The particular
specification used in this paper is based on the one in An and Schorfheide (2007), henceforth
AS. The model economy consists of final goods producing firms, intermediate goods producing
firms, households, a central bank, and a fiscal authority. Labour is the only factor of produc-
tion. Intermediate goods producers act as monopolistic competitors and face downward-sloping
demand curves for their products. They face quadratic costs for adjusting their nominal prices,
which generates price rigidity and real effects of changes in monetary policy. The model so-
lution can be reduced to three key equations: a consumption Euler equation, a New Keyne-
sian Phillips curve, and a monetary policy rule. Fluctuations are driven by three exogenous
shocks, and the model is estimated based on output growth, inflation, and federal funds rate
data.

The second model is the Smets and Wouters (2007) model, henceforth SW, which is
based on earlier work by Christiano et al. (2005) and Smets and Wouters (2003), and is
the prototypical medium-scale New Keynesian model. In the SW model, capital is a fac-
tor of intermediate goods production, and, in addition to price stickiness, the model also
features nominal wage stickiness. In order to generate a richer autocorrelation structure,
the model includes investment adjustment costs, habit formation in consumption, and par-
tial dynamic indexation of prices and wages to lagged values. The SW model is esti-
mated using the following seven macroeconomic time series: output growth, consumption
growth, investment growth, real wage growth, hours worked, inflation, and the federal funds
rate.4

The third DSGE model, SWFF, is obtained by extending the SW model in two dimensions.
First, building on work by Bernanke et al. (1999), Christiano et al. (2003), De Graeve (2008),
and Christiano et al. (2014), we add financial frictions to the SW model. Banks collect deposits
from households and lend to entrepreneurs who use these funds as well as their own wealth
to acquire physical capital, which is rented to intermediate goods producers. Entrepreneurs are
subject to idiosyncratic disturbances that affect their ability to manage capital. Their revenue
may thus be too low to pay back the bank loans. Banks protect themselves against default
risk by pooling all loans and charging a spread over the deposit rate. This spread varies ex-
ogenously, owing to changes in the riskiness of entrepreneurs’ projects, and endogenously as
a function of the entrepreneurs’ leverage. In estimating the model, we use the Baa-10-year
Treasury spread as the observable corresponding to this spread. Second, we include a time-
varying target inflation rate to capture low-frequency movements of inflation. To anchor the
estimates of the target inflation rate, we include long-run inflation expectations into the set of
observables.5

4 To generate forecasts between 2009 and 2015 that do not violate the zero-lower-bound constraint on nominal interest
rates, we add anticipated monetary policy shocks to the interest rate feedback rules and include (survey) expectations of
future interest rates at the forecast origin as observables.

5 Del Negro and Schorfheide (2013) showed that introducing a time-varying inflation target into the SW model
improves inflation forecasts.
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Table 1. Configuration of the SMC algorithm for the two models.

AS SW

Number of particles N = 3, 000 N = 12, 000
Fixed tempering schedule Nφ = 200, λ = 2 Nφ = 500, λ = 2.1
Mutation Nblocks = 3 Nblocks = 3
Selection/Resampling N = N/2 N = N/2

4. SMC ESTIMATION AT WORK

We now illustrate various dimensions of the performance of the SMC algorithm. Subsection 4.1
documents the shape of the adaptive tempering schedule as well as speed-versus-accuracy trade-
offs when tuning the adaptive tempering. Subsection 4.2 uses generalized tempering for the online
estimation of DSGE models and document its runtime advantages. Finally, in Subsection 4.3 we
show that the SMC algorithm is able to reveal multimodal features of DSGE model posteriors.

4.1. Adaptive likelihood tempering

We described in Subsection 2.3 how the tempering schedule for the SMC algorithm can be
generated adaptively. The tuning parameter α controls the desired level of reduction in ESS in
(2.15). The closer α is to one, the smaller the desired ESS reduction, and therefore the smaller
the change in the tempering parameter and the larger the number of tempering steps. We will
explore the shape of the adaptive tempering schedule generated by Algorithm 2, the runtime of
SMC Algorithm 1, and the accuracy of the resulting Monte Carlo approximation as a function of
α. Rather than reporting results for individual DSGE model parameters, we consider the standard
deviation of the log marginal data density (MDD) defined in (1), computed across multiple runs
of the SMC algorithm, as a measure of accuracy of the Monte Carlo approximation.

We consider the AS and SW models, estimated based on data from 1966:Q4 to 2016:Q3.6 In
addition to the adaptive tempering schedule, we also consider a fixed tempering schedule of the
form

φn =
(

n

Nφ

)λ

. (4.1)

This schedule is used in the SMC applications in Herbst and Schorfheide (2014) and Herbst and
Schorfheide (2015). The user-specified tuning parameters for the SMC algorithm are summarized
in Table 1.

Results for the AS model based on adaptive likelihood tempering, see (2.2), are summarized in
Table 2. We also report results for the fixed tempering schedule (4) in the second column of the
table. For now we set NMH = 1. The remaining columns show results for the adaptive schedule
with different choices of the tolerated ESS reduction α. The adaptive schedule length is increasing
from approximately 112 stages for α = 0.90 to 506 stages for α = 0.98. As mentioned above,
the closer α is to one, the smaller the increase in φn. This leads to a large number of stages,
which, in turn, increases the precision of the Monte Carlo approximation. The standard deviation
of log p̂(Y ) is 1.54 for α = 0.9 and 0.21 for α = 0.98 The mean of the log MDD is increasing as

6 For the estimation of both models, we use a pre-sample from 1965:Q4 to 1966:Q3.
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Table 2. AS model: fixed and adaptive tempering schedules, NMH = 1.

Fixed α = 0.90 α = 0.95 α = 0.97 α = 0.98

Mean log (MDD) − 1032.60 − 1034.21 − 1032.48 − 1032.07 − 1031.92
Std dev log (MDD) 0.76 1.48 0.61 0.32 0.22
Schedule length 200.00 112.17 218.80 350.06 505.46
Resamples 14.63 15.37 15.03 14.99 14.00
Runtime [min] 1.29 0.88 1.53 2.21 3.13

Notes: Results are based on Nrun = 400 runs of the SMC algorithm. We report averages across runs for the runtime,
schedule length, and number of resampling steps.

Table 3. SW model: fixed and adaptive tempering schedules, NMH = 1.

Fixed α = 0.90 α = 0.95 α = 0.97 α = 0.98

Mean log (MDD) − 1178.43 − 1186.23 − 1180.04 − 1178.31 − 1177.72
Std dev log (MDD) 1.34 3.07 1.53 1.03 1.01
Schedule length 500.00 200.53 389.75 618.53 887.42
Resamples 26.75 28.09 27.25 26.33 25.09
Runtime [min] 80.23 31.36 61.29 97.79 139.99

Notes: Results are based on Nrun = 200 runs of the SMC algorithm. We report averages across runs for the runtime,
schedule length, and number of resampling steps.

the precision increases. This is the result of Jensen’s inequality. MDD approximations obtained
from SMC algorithms tend to be unbiased, which means that log MDD approximations exhibit a
downward bias.

The runtime of the algorithm increases approximately linearly in the number of stages, since
each stage takes approximately the same amount of time. The number of times that the selection
step is executed (‘resamples’ in the table) is approximately constant as a function of α. However,
because Nφ is increasing, the fraction of stages at which the particles are resampled decreases
from 14% to 3%.7

In addition to the AS model, we also evaluate the posterior of the SW model using the SMC
algorithm with adaptive likelihood tempering. Results are provided in Table 3. Because the
dimension of the parameter space of the SW model is much larger than that of the AS model,
we are using more particles and multiple blocks in the mutation step when approximating the
posterior (see Table 1). For a given α, the log MDD approximation for SW is less accurate than
that for AS, which is consistent with the SW model having more parameters that need to be
integrated out and a less regular likelihood surface. In general, the results for the SW model are
qualitatively similar to those reported for the AS model in Table 2.

In Figure 1, we plot the fixed and adaptive tempering schedules for both models. All of the
adaptive schedules are convex. Very little information, less than under the fixed schedule, is added
to the likelihood function in the early stages, whereas a large amount of information is added
during the later stages. This is consistent with the findings of Herbst and Schorfheide (2014,
2015), who examined the performance of the SMC approximations under the fixed schedule (4.1)
for various values of λ. A primary advantage of using an adaptive tempering schedule rather
than a fixed one is the savings in ‘human-time’, corresponding to fewer tuning parameters. While

7 Dividing the number of resamples by schedule length.
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Figure 1. Tempering schedules, NMH = 1.
Notes: The figure depicts (pointwise) median φn values across Nrun = 400 for AS and Nrun = 200 for SW.

The solid lines represent the fixed schedule, parameterized according to Table 1. The dashed lines
represent a range of adaptive schedules: α = 0.9, 0.95, 0.97, 0.98 (the order of the lines from left to right

corresponds to increasing values of α).

Figure 2. Trade-off between runtime and accuracy, for multiple Metropolis–Hastings steps.
Notes: AS results are based on Nrun = 400, and SW results are based on Nrun = 200 runs of the SMC
algorithm. The blue, black, and green lines correspond to NMH values equal to 1, 3, and 5, respectively.

there may be an ‘optimal’ fixed schedule for any given model and data, finding the best choice
of the number of stages Nφ and the tempering schedule shape λ would require a great deal of
experimentation.

Figure 2 graphically depicts time-accuracy curves for the two models. The curves for NMH = 1
are constructed from the standard deviation and runtime numbers reported in Tables 2 and 3.
The curves are convex for both models. For NMH = 1, reducing α from 0.95 to 0.9 leads to a
drastic reduction in the accuracy of the MDD approximation, while the time savings are only
modest. The accuracy–runtime pairs for the fixed tempering schedules (not shown in the figure)
essentially lie on the curves. For the AS model the accuracy–runtime pair for the fixed tempering
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schedules is on the segment between α = 0.9 and α = 0.95, whereas for the SW model it is on
the segement between α = 0.95 and α = 0.97.

In addition to results for NMH = 1, Figure 2 also shows accuracy–runtime curves for NMH = 3
and NMH = 5. Recall that the mutation step in the SMC algorithm is necessary for particle values
to adapt to each intermediate bridge distribution. In principle, one step of a Metropolis–Hastings
algorithm is sufficient, because prior to the mutation, the particle swarm already represents the
stage n distribution. Nonetheless, there is a potential benefit to raising the number of MH steps:
it increases the probability that the particle values do change during the mutation. Unfortunately,
it also increases the runtime.

According to Figure 2, the gain from increasing NMH is limited. While the trade-off curves
for the two models do shift, for every desirable point on the NMH = 3 and NMH = 5 curves
(runtimes between 1 and 3 minutes), there is a point on the NMH = 1 curve that delivers a
similar performance in terms of speed and accuracy. Consider the AS model. The combination
of NMH = 1 and α = 0.98 delivers roughly the same performance as NMH = 3 and α = 0.97.
For the former setting we have on average 505 bridge distributions, whereas for the latter setting
we have only 301 bridge distributions. Because the mutation step is executed for each bridge
distribution, adding bridge distributions facilitates the change in particle values and therefore is
to some extent a substitute for increasing the number of MH steps. For both models, increasing
NMH from 3 to 5 leads in fact to a (slight) deterioration of performance.8 In the remainder of the
paper, we set NMH = 1 and α = 0.98 unless otherwise noted.

4.2. Generalized tempering for online estimation

To provide a timely assessment of economic conditions and to produce accurate forecasts and
policy projections, econometric modellers at central banks re-estimate their DSGE models regu-
larly. A key impediment to online estimation of DSGE models with the RWMH algorithm is that
any amendment to the previously used dataset requires a full re-estimation of the DSGE model,
which can be quite time-consuming and often requires supervision.9 SMC algorithms that are
based on data tempering, on the other hand, allow for efficient online estimation of DSGE models.
This online estimation entails combining the adaptive tempering schedule in Algorithm 2 with
the generalized tempering in (2.14). As mentioned above, our algorithm is also amenable to data
revisions.
Scenario 1. In the following illustration, we partition the sample into two subsamples: t =

1, . . . , T1 and t = T1 + 1, . . . , T , and allow for data revisions by the statistical agencies between
periods T1 + 1 and T . We assume that the second part of the sample becomes available after the
model has been estimated on the first part of the sample using the data vintage available at the
time, ỹ1:T1 . Thus, in period T we already have a swarm of particles {θ i

T1
,W i

T1
}Ni=1 that approximates

the posterior

p(θ |ỹ1:T1 ) ∝ p(ỹ1:T1 |θ )p(θ ).

8 Holding α fixed, one would expected that raising NMH from 1 to 3, say, would approximately triple the runtime
because the number of likelihood evaluations increases by a factor of three. Based on Figure 2, that is not the case. Owing
to the specifics of the parallelization of the algorithm, each NMH = 3 stage takes only 1.8 times as long as each NMH = 1
stage.

9 This is particularly true when the proposal covariance matrix is constructed from the Hessian of the log likelihood
function evaluated at the global mode, which can be very difficult to find.
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Following (2.14) with Y = y1:T and Ỹ = ỹ1:T1 , we define the stage (n) posterior as

πn(θ ) = p(y1:T |θ )φnp(ỹ1:T1 |θ )1−φnp(θ )∫
p(y1:T |θ )φnp(ỹ1:T1 |θ )1−φnp(θ )dθ

.

We distinguish notationally between y and ỹ because some observations in the t = 1, . . . , T1

sample may have been revised. The incremental weights are given by

w̃i
n(θ ) = p(y1:T |θ )φn−φn−1p(ỹ1:T1 |θ )φn−1−φn ,

and it can be verified that

1

N

N∑
i=1

w̃i
nW

i
n−1 ≈

∫
p(y1:T |θ )φnp(ỹ1:T1 |θ )1−φnp(θ )dθ∫

p(y1:T |θ )φn−1p(ỹ1:T1 |θ )1−φn−1p(θ )dθ
. (4.2)

Now define the conditional marginal data density (CMDD) as

CMDD2|1 =
Nφ∏
n=1

(
1

N

N∑
i=1

w̃i
nW

i
n−1

)
, (4.3)

with the understanding that Wi
(0) = WT1 . Because the product of the terms in (5) simplifies, and

because φNφ
= 1 and φ1 = 0, we obtain

CMDD2|1 ≈
∫

p(y1:T |θ )p(θ )dθ∫
p(ỹ1:T1 |θ )p(θ )dθ

= p(y1:T )

p(ỹ1:T1 )
.

Note that in the special case of no data revisions (ỹ1:T1 = y1:T1 ), the expression simplifies to
CMDD2|1 ≈ p(yT1+1:T |y1:T1 ). We consider this case in our simulations below.

We assume that the DSGE model has been estimated using likelihood tempering based on the
sample y1:T1 , where t = 1 corresponds to 1966:Q4 and t = T1 corresponds to 2007:Q1. The second
sample, yT1+1:T , starts in 2007:Q2 and ends in 2016:Q3.10 We now consider two ways of estimating
the log MDD, log p(y1:T ). Under full-sample estimation, we ignore the existing estimate based
on y1:T1 and use likelihood tempering based on the full-sample likelihood p(y1:T |θ ). Under
generalized tempering, we start from the existing posterior based on y1:T1 and use generalized
data tempering to compute CMDD2|1 in (6). We then calculate log p(y1:T1 ) + log CMDD2|1.

Note that our choice of the sample split arguably stacks the cards against the generalized
tempering approach relative to starting from scratch. This is because the second period is
quite different from the first (and therefore the posterior changes quite a bit), as it includes
the Great Recession, the effective lower-bound constraint on the nominal interest rate, and un-
conventional monetary policy interventions such as large-scale asset purchases and forward
guidance.

We begin with the following numerical illustration for the AS model. For each of the Nrun = 400
runs of SMC, we first generate the estimate of log p(y1:T1 |θ ) by likelihood tempering and then
continue with generalized tempering to obtain log CMDD2|1. The two numbers are added to
obtain an approximation of log p(y1:T ) that can be compared with the results from the full-sample
estimation reported in Table 2. The results from the generalized tempering approach are reported
in Table 4. Comparing the entries in the two tables, note that the mean and standard deviations
(across runs) of the log MDDs are essentially the same. The main difference is that generalized

10 We use a recent data vintage and abstract from data revisions in this exercise.
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Table 4. AS model: generalized tempering, NMH = 1.

α = 0.90 α = 0.95 α = 0.97 α = 0.98

Mean log (MDD) − 1033.95 − 1032.54 − 1032.06 − 1031.93
Std dev log (MDD) 1.37 0.61 0.32 0.24
Schedule length 24.33 47.12 75.74 106.50
Runtime [min] 0.25 0.48 0.69 0.98

Notes: Results are based on Nrun = 400 runs of the SMC algorithm, starting from particles that represent p(θ |Y1:T1 ). We
report averages across runs for the runtime, schedule length, and number of resampling steps.

Table 5. SW model: generalized tempering, NMH = 1.

α = 0.90 α = 0.95 α = 0.97 α = 0.98

Mean log (MDD) − 1188.93 − 1182.08 − 1180.05 − 1178.90
Std dev log (MDD) 3.10 1.83 1.11 1.06
Schedule length 56.60 115.73 194.01 290.74
Runtime [min] 16.32 33.64 56.79 85.01

Notes: Results are based on Nrun = 200 runs of the SMC algorithm, starting from particles that represent p(θ |Y1:T1 ). We
report averages across runs for the runtime, schedule length, and number of resampling steps.

Figure 3. Trade-off between runtime and accuracy, NMH = 1.
Notes: AS results are based on Nrun = 400, and SW results are based on Nrun = 200 runs of the SMC

algorithm. Yellow squares correspond to generalized tempering, and blue circles correspond to full sample
estimation.

tempering reduces the schedule length and the runtime by a factor of roughly 2/3 because it starts
from the posterior distribution p(θ |y1:T1 ). A comparison of the entries in Tables 3 and 5 shows
that the same conclusions hold for the SW model.

In Figure 3, we provide scatter plots of average runtime versus the standard deviation of the log
MDD for the AS model and the SW model. The blue circles correspond to full sample estimation
and are identical to the blue circles in Figure 2. The yellow squares correspond to generalized
tempering. As in Table 4, the runtime does not reflect the time it took to compute p(θ |y1:T1 )
because the premise of the analysis is that this posterior has been computed in the past and is
available to the user at the time when the estimation sample is extended by the observations
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Figure 4. AS model: log MDD increments log(p(yTs−1+1:Ts
|y1:Ts−1 )).

Notes: Results are based on Nrun = 200 runs of the SMC algorithm with NMH = 1 and α = 0.98.

yT1+1:T . For both models, the accuracy of the log MDD approximation remains roughly the same
for a given α when using generalized tempering, but the reduction in runtime is substantial. To
put it differently, generalized tempering shifts the SMC time–accuracy curve to the left, which of
course is the desired outcome.
Scenario 2. Rather than adding observations in a single block, we now add four observations at

a time. This corresponds to a setting in which the DSGE model is re-estimated once a year, which
is a reasonable frequency in central bank environments. More formally, we partition the sample
into the subsamples y1:T1 , yT1+1:T2 , yT2+1:T3 , . . ., where Ts − Ts−1 = 4. After having approximated
the posterior based on observations y1:T1 , we use generalized tempering to compute the sequence
of densities p(y1:Ts

) for s = 2, . . . , S. At each step s we initialize the SMC algorithm with the
particles that represent the posterior p(θ |y1:Ts−1 ). To assess the accuracy of this computation,
we repeat it Nrun = 200 times. We fix the tuning parameter for the adaptive construction of the
tempering schedule at α = 0.98. The first sample, y1:T1 , ranges from 1966:Q4 to 1991:Q3, and
the last sample ends in 2016:Q3.

Figure 4 depicts the time series of the mean and the standard deviation of the log MDD
increments

log p̂(yTs−1+1:Ts
|y1:Ts−1 ) = log p̂(y1:Ts

) − log p̂(y1:Ts−1 ),

across the 200 SMC runs. The median (across time) of the average (across repetitions) log MDD
increment is −17.6. The median standard deviation of the log MDD increments is 0.02, and the
median of the average runtime is 0.11 minutes or 7 seconds. The largest deviation from these
median values occurred during the Great Recession, when we added the 2009:Q4 to 2010:Q3
observations to the sample. During this period, the log MDD increment was only –40.5 and the
standard deviation jumped up to 0.14 because these four observations lead to a substantial shift
in the posterior distribution. In this period, the runtime of the SMC algorithm increased to 0.58
minutes, or 35 seconds.

Figure 5 depicts the evolution of posterior means and coverage intervals for two parameters, τ

and σR (the inverse intertemporal elasticity of substitution and the standard deviation of shocks
to the interest rate, respectively.) The τ sequence exhibits a clear blip in 2009, which coincides
with the increased runtime of the algorithm. Most of the posteriors exhibit drifts rather than
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Figure 5. AS model: evolution of posterior means and coverage bands.
Notes: Sequence of posterior means (red line) and 90% coverage bands (black lines). The dashed line

indicates the temporal average of the posterior means. We use NMH = 1 and α = 0.98 for the SMC
algorithm.

sharp jumps, and the time-variation in the posterior mean is generally small compared with the
overall uncertainty captured by the coverage bands. Overall, generalized tempering provides a
framework for online estimation of DSGE models that is substantially more accurate than simple
data tempering, at little additional computational cost, even when the additional data substantially
change the posterior. Importantly, generalized tempering can also seamlessly handle the data
revisions inherent in macroeconomic time series.

4.3. Exploring multimodal posteriors

An important advantage of SMC samplers over standard RWMH samplers is their ability to
characterize multimodal posterior distributions. Multimodality may arise because the data are not
informative enough to be able to disentangle internal versus external propagation mechanisms,
e.g., Calvo price (wage) indexation and persistence of exogenous price (wage) markup shocks.
Herbst and Schorfheide (2014) provided an example of a multimodal posterior distribution
obtained in a SW model that is estimated under a diffuse prior distribution. Below, we document
that a multimodal posterior may also arise if the SW model is estimated on a shorter sample with
the informative prior originally used by Smets and Wouters (2007). Capturing this bimodality
correctly will be important for the accurate computation of predictive densities that are generated
as part of the real-time forecast applications in Section 5.

Figure 6 depicts various marginal bivariate posterior densities for parameters of the SW model
estimated based on a sample from 1960:Q1 to 1991:Q3.11 The plots in the left column of the figure
correspond to the ‘standard’ prior for the SW model. The joint posteriors for the parameters ιp
and ρλf

(weight on the backward-looking component in the New Keynesian price Phillips curve,
and persistence of price markup shock), on the one hand, and h and ρλf

(the former determines
the degree of habit formation in consumption), on the other hand, exhibit clear bimodal features,

11 For these results we match the sample used in Section 5, where we discuss the predictive ability of the various
DSGE models. See footnote 14 for a description of why the samples used in Subsections 4.1 and 4.2 differ slightly from
the sample in Section 5.
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Figure 6. SW model: posterior contours for selected parameter pairs.
Notes: Estimation sample is 1960:Q1 to 1991:Q3. We use NMH = 1 and α = 0.98 for the SMC algorithm.

Plots show a two-dimensional visualization of the full-dimension joint posterior.
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albeit one mode dominates the other. For the parameter pair ιp and ηgz (the loading of government
spending on technology shock innovations), the bimodality is less pronounced.

The right column of Figure 6 shows posteriors for the same estimation sample but the ‘dif-
fuse’ prior of Herbst and Schorfheide (2014). This prior is obtained by increasing the standard
deviations for parameters with marginal Normal and Gamma distributions by a factor of three
and using uniform priors for parameters defined on the unit interval.12 Under the diffuse prior,
the multimodal shapes of the bivariate posteriors are more pronounced, and for the first two
parameter pairs both modes are associated with approximately the same probability mass. Thus,
using a sampler that correctly captures the non-elliptical features of the posterior is essential for
valid Bayesian inference and allows researchers to estimate DSGE models under less informative
priors than have traditionally been used in the literature. In Subsection 5.3 we will examine the
forecasting performance of the SW model under the diffuse prior.

5. PREDICTIVE DENSITY EVALUATIONS

In this section we compare the forecast performance of two DSGE models, one without (SW)
and one with (SWFF) financial frictions. We focus on log predictive density scores, a widely
used criterion to compare density forecasts across models (see Del Negro et al., 2016, and Warne
et al., 2017, in the context of DSGE model forecasting), rather than root-mean-squared errors,
the standard metric for point forecast evaluation used in the literature. We add to the existing
literature by studying the predictive ability of these models under a prior that is much more
diffuse than the one typically used. For density forecast evaluation, an accurate characterization
of the posterior distribution is even more important than for point forecasts. It is clear from
the results in Subsection 4.3 that SMC techniques are necessary for this task, given the severe
multimodalities present in the posterior, especially under the diffuse prior. We therefore apply
the generalized tempering approach to SMC described in Subsection 4.2 when estimating these
models recursively using real-time data.

5.1. Real-time dataset and DSGE forecasting setup

This section provides a quick overview of the data series used for the DSGE model estimation, the
process of constructing a real-time dataset, which follows the approach of Edge and Gürkaynak
(2010) and Del Negro and Schorfheide (2013, subsection 4.1), as well as the forecast setup.
Since much of this information is also provided in Cai et al. (2019), we refer to that paper and
to Subsection B.4 of the Online Appendix for a more detailed discussion. As mentioned before,
the SW model is estimated using data on the growth rate of aggregate output, consumption,
investment, the real wage, hours worked, GDP deflator inflation, and the Federal funds rate. The
SWFF model is estimated on these same observables plus long-run inflation expectations and the
Baa-10-year Treasury spread. All data series start in 1960:Q1 or the first quarter in which the
series becomes available.13

12 The prior on the shock standard deviations is the same for the diffuse and standard prior, as this prior is already very
loose under the standard specification (an inverse Gamma with only two degrees of freedom). Table B2 of the Online
Appendix describes in detail both the standard and the diffuse prior.

13 A careful reader will notice that this sample start-date is different from the one used in Subsections 4.1 and 4.2
(1964:Q1). In Subsections 4.1 and 4.2, we matched the sample used in Herbst and Schorfheide (2014) so that all series
are non-missing. This is required to optimize the Kalman filter algorithm so that it is feasible to run a large number of
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The forecast evaluation is based on forecast origins that range from January 1992 (this is the
beginning of the sample used in Edge and Gürkaynak, 2010, and Del Negro and Schorfheide,
2013) to January 2017, the last quarter for which eight period-ahead forecasts could be evaluated
against realized data. For each forecast origin, we construct a real-time dataset that starts in
1960:Q1, using data vintages available on the 10th of January, April, July, and October of each
year, which we obtained from the St. Louis Fed’s ALFRED database. Our convention, which
follows Del Negro and Schorfheide (2013), is to call the end of the estimation sample T . This is
the last quarter for which we have NIPA data, that is, GDP, the GDP deflator, etc. For instance,
we use T = 2010:Q4 for forecasts generated using data available on April 10, 2011. Even though
2011:Q1 has passed, the Q1 NIPA data are not yet available. We re-estimate the DSGE model
parameters once a year with observations ranging from 1960:Q1 to T , using the January vintages.
Because financial data are published in real time, we use T + 1 financial information to sharpen
our inference on the T + 1 state of the economy when generating the forecasts. However, the
T + 1 financial information is excluded from the parameter estimation.

We focus on projections that are conditional on external interest rate forecasts, following Del
Negro and Schorfheide (2013, Subsection 5.4). In order to construct the conditional projections,
we augment the measurement equations by

Re
T +k|T = R∗ + ET [RT +k], k = 1, . . . , K

where Re
T +k|T is the observed k-period-ahead interest rate forecast, ET [RT +k] is the model-implied

interest rate expectation, and R∗ is the steady-state interest rate. The interest rate expectations
observables Re

T +1|T , . . . , Re
T +K|T come from the Blue Chip Financial Forecasts (BCFF) forecast

released in the first month of quarter T + 1. In order to provide the model with the ability to
accommodate federal funds rate expectations, the policy rule in the model is augmented with
anticipated policy shocks; see Section B in the Online Appendix for additional details.14

The projections discussed below are also conditional on nowcasts—that is, forecasts of the
current quarter, which we obtain from the Blue Chip Economic Indicators (BCEI) consensus
forecasts—of GDP growth and the GDP deflator inflation. We treat the nowcast for T + 1 as a
perfect signal of yT +1. Finally, the forecasts are evaluated using the latest data vintage, following
much of the existing literature on DSGE forecast evaluation. Specifically, for the results shown
below we use the vintage downloaded on April 18, 2019. The predictive densities for real GDP
growth are computed on per capita data.

5.2. Log predictive density scores with standard prior

Figure 7 shows the logarithm of the predictive densities for real GDP growth, GDP deflator
inflation, and both variables jointly (left, middle, and right column, respectively) computed over
the full and the post-recession samples for the two DSGE models we are considering: SW (blue
solid lines) and SWFF (red solid lines). Both models are estimated using what we have referred to
as the ‘standard’ prior, that is, the prior used in previous work, which for most parameters amounts
to the prior used in Smets and Wouters (2007). For each forecast origin T , the predictive densities
for model m are computed for h = 2, 4, 6, and 8 quarters ahead, using the aforementioned

estimations; see Herbst (2015). However, in Subsections 4.3 and 5 we match the sample used in Cai et al. (2019), which
starts in 1960:Q1.

14 As in Del Negro and Schorfheide (2013), but differently from in Cai et al. (2019), we do not use the expanded
dataset containing interest rate forecasts in the estimation of the model’s parameters beginning in 2008:Q4—the start of
the zero-lower-bound period.
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Figure 7. Average log predictive scores for SW versus SWFF.
Notes: These panels compare the log predictive densities from the SW DSGE model (blue diamonds) with
those from the SWFF DSGE model (red diamonds) averaged over two, four, six, and eight quarter horizons

for output growth and inflation individually, and for both together. The forecasts associated with these
predictive densities are generated conditioning on nowcasts and federal funds rate expectations. In the top

row, forecast origins from January 1992 to January 2017 only are included in these calculations. In the
bottom row, forecast origins from April 2011 to April 2016 only are included in these calculations.

information set Im
t that includes interest rate projections, T + 1 nowcasts, and T + 1 financial

variables.
Before commenting on the results, a few details on the computation of the predictive densities

are in order. The objects being forecasted are the h-period averages of the variables of interest j ,

ȳj ;T +h,h = 1

h

h∑
s=1

yj ;T +s .

While the previous literature on forecasting with DSGE models generally focused on h-period-
ahead forecasts of yj ;T +h, we choose to focus on averages as they arguably better capture the
relevant object for policy-makers: accurately forecasting inflation behaviour over the next two
years is arguably more important than predicting inflation eight quarters ahead. The time t h-
period-ahead posterior predictive density for model m is approximated by

p(ȳj ;T +h,h|Im
T ,Mm) = 1

N

N∑
i=1

p(ȳj ;T +h,h|θ i, Im
T ,Mm),

where N is the number of SMC particles and p(ȳj ;T +h,h|θ i, Im
T ,Mm) is the predictive den-

sity conditional on the particle θ i (Subsection A.1 in the Online Appendix provides the
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computational details). The values plotted in Figure 7 are the average of the time T log pre-
dictive densities across the sample [T0, T1], namely

1

T1 − T0

T1∑
T =T0

log p(ȳj ;T +h,h|Im
T ,Mm).

The top row of Figure 7 shows that over the full sample the SWFF model performs better than
the SW model, regardless of the variable being forecasted, and for any forecast horizon higher
than two quarters (since we are conditioning on nowcasts, the predictive densities for two quarters
ahead are virtually indistinguishable). Quantitatively, the gaps between the two models shown in
the first row are nonnegligible for GDP growth at longer horizons, but very small for inflation and
for inflation and GDP growth jointly. If we convert the difference in log predictive densities as
posterior odds ratios for the two models, a gap of 2 implies that model SWFF is about seven times
more likely than model SW. If we focus on the post-recession sample—the sample studied in Cai
et al. (2019), which starts in April 2011 and ends in April 2016—we see that the gap between
the two models in terms of output growth forecasts becomes larger than 4 for any horizon greater
than two (see bottom row), implying posterior odds ratios above 50 to 1. In fact, the time series
of the log predictive scores (see Subsection C.2 of the Online Appendix) shows that the superior
forecasting performance of SWFF is due to better forecasting accuracy from the Great Recession
onward.

In Cai et al. (2019), we explain these results in terms of (i) the failure of the SW model to
explain the Great Recession, which affects its forecasting performance thereafter, and (ii) the
so-called ‘forward guidance puzzle’ (Del Negro et al., 2012; Carlstrom et al., 2015). The latter
refers to the fact that rational expectations representative agent models tend to overestimate the
impact of forward guidance policies, an issue particularly severe for the SW model, leading to
projections that were overoptimistic when forward guidance was in place.

5.3. Log predictive density scores with diffuse priors

As illustrated in Subsection 4.3, the prior used in the estimation of DSGE models is often quite
informative, in the sense that it affects the posterior distribution. From an econometric point of
view, informative priors are not necessarily problematic. They may incorporate a priori informa-
tion gleaned from other studies; see for instance the discussion in Del Negro and Schorfheide
(2008). However, in cases in which the information embedded in the priors is controversial, the
use of informative priors has been criticized; see, for instance, the critique in Romer (2016) of
the priors used in Smets and Wouters (2007).

In view of this criticism, it is interesting to examine the effect of relaxing a relatively tight prior
on the forecasting performance of the model. We therefore compute the log predictive scores also
under the diffuse prior described in Subsection 4.3. We previously only considered a diffuse prior
for the SW model. For parameters that are common to the SW and the SWFF model, we adopt
the same diffuse prior as previously used for the SW model. For parameters that are unique to
the SWFF model, we leave the priors unchanged, with the exception that we replace the prior for
the autocorrelation of the financial shock by a uniform distribution; see Table B2 in the Online
Appendix for details.

From a frequentist perspective, increasing the prior variance reduces the bias of the Bayes
estimator while increasing its variability. The net effect on the mean-squared estimation (and
hence forecast) error is therefore ambiguous. In models for which not all parameters are identified,
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Figure 8. Comparison of predictive densities under standard and diffuse priors.
Notes: These panels compare the predictive densities estimated with the standard (solid line) and the

diffuse (dashed line) prior for the SW (blue, top row) and SWFF (red, bottom row) DSGE models. The
predictive densities are averaged over two, four, six, and eight quarter horizons for output growth and

inflation individually, and for both together. Forecast origins from January 1992 to January 2017 only are
included in these calculations. The forecasts associated with these predictive densities are generated

conditioning on nowcasts and federal funds rate expectations.

the prior serves as a ‘tie-breaker’, and introduces curvature into the posterior in directions in
which the likelihood function is flat. If a prior mainly adds information where the likelihood is
uninformative, and parameters are not identified based on the sample information, then making
the prior more diffuse will not have a noticeable effect on the forecasting performance of DSGE
models because it mainly selects among parametrizations that track the data equally well.

Figure 8 compares the average log predictive scores obtained with the standard (solid line) and
the diffuse (dashed line) prior for the SW (blue, top row) and SWFF (red, bottom row) DSGE
models. The panels in Figure 8 show that the differences in average log predictive scores between
the standard and the diffuse prior are generally small, with the largest differences arising in the
SW model. For this model, the inflation forecast deteriorates as the prior becomes more diffuse,
while the GDP forecast improves. This result is consistent with previous findings in the literature.
A tight prior on the constant inflation target around 2% in the SW model is key for estimating a
target that is consistent with the low inflation in the latter part of the sample. If the prior variance is
increased, then the posterior mean shifts closer to the average inflation rate during the estimation
period, which is substantially higher than inflation during and after the mid-1990s.

For the SWFF model, replacing the standard prior by the diffuse prior does not lead to a
deterioration of inflation forecasts. The reason for this result is unrelated to the financial frictions.
It is due to the introduction of the time-varying inflation target, which adapts to the drop in
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inflation in the 1980s and therefore generates inflation forecasts in the 1990s and 2000s that are
not contaminated by the high inflation rates in the 1960s and 1970s. Overall, the density forecast
accuracy of the SWFF is essentially the same under the two prior distributions.

We conclude this section with a word of caution. The result that the prior specification has
no influence on the forecasting performance does not imply that the two versions of the model
deliver the same policy predictions and historical shock decompositions. To the extent that a
tighter prior amplifies and downweights competing modes in the likelihood function—which
is apparent from the multimodal posterior densities plotted in Figure 6—posterior inference on
the relative importance of the endogenous and exogenous propagation mechanism can be very
different. In turn, this can lead to different impulse response functions for structural shocks, and
the predicted effect of policy interventions may vary across estimations.

6. CONCLUSION

As the DSGE models used by central banks and researchers become more complex, improved
algorithms for Bayesian computations are necessary. This paper provides a framework for per-
forming online estimation of DSGE models using SMC techniques. Rather than starting from
scratch each time a DSGE model must be re-estimated, the SMC algorithm makes it possible
to mutate and re-weight posterior draws from an earlier estimation so that they approximate a
new posterior based on additional observations that have become available since the previous
estimation. The algorithm minimizes computational time, requires little user supervision, and can
handle the irregular distributions common in the posteriors of DSGE model parameters. The same
approach could also be used to transform posterior draws for one model into posterior draws for
another model that shares the same parameter space, for example a linear and a nonlinear version
of a DSGE model.
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