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BRIDGING AND IMPROVING THEORETICAL AND
COMPUTATIONAL ELECTRICAL IMPEDANCE TOMOGRAPHY

VIA DATA COMPLETION\ast 

TAN BUI-THANH\dagger , QIN LI\ddagger , AND LEONARDO ZEPEDA-N\'U\~NEZ\dagger 

Abstract. In computational PDE-based inverse problems, a finite amount of data is collected to
infer unknown parameters in the PDE. In order to obtain accurate inferences, the collected data must
be informative about the unknown parameters. How to decide which data is most informative and
how to efficiently sample it is the notoriously challenging task of optimal experimental design (OED).
In this context, the best, and often infeasible, scenario is when the full input-to-output (ItO) map,
i.e., an infinite amount of data, is available: This is the typical setting in many theoretical inverse
problems, which is used to guarantee the unique parameter reconstruction. These two different
settings have created a gap between computational and theoretical inverse problems, where finite
and infinite amounts of data are used, respectively. In this article we aim to bridge this gap while
circumventing the OED task. This is achieved by exploiting the structures of the ItO data from
the underlying inverse problem, using the electrical impedance tomography (EIT) problem as an
example. To accomplish our goal, we leverage the rank structure of the EIT model and formulate
the ItO matrix---the discretized ItO map---as an \scrH -matrix whose off-diagonal blocks are low rank.
This suggests that, when equipped with the matrix completion technique, one can recover the full ItO
matrix, with high probability, from a subset of its entries sampled following the rank structure: The
data in the diagonal blocks is informative and should be fully sampled, while data in the off-diagonal
blocks can be subsampled. This recovered ItO matrix is then utilized to present the full ItO map
up to a discretization error, paving the way to connect with the problem in the theoretical setting
where the unique reconstruction of parameters is guaranteed. This strategy achieves two goals: (I)
it bridges the gap between the finite- and infinite-dimensional settings for numerical and theoretical
inverse problems and (II) it improves the quality of computational inverse solutions. We detail the
theory for the EIT model and provide numerical verification to both EIT and optical tomography
problems.
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1. Introduction. Inverse problems---inferring unknown parameters in physical
systems from indirect observations---are ubiquitous in engineering and all branches of
sciences. The development of a deep theoretical understanding [50, 42, 51] coupled
with the development of highly sophisticated algorithmic pipelines [53, 41, 52] for

\ast Submitted to the journal's Computational Methods in Science and Engineering section May 3,
2021; accepted for publication (in revised form) January 20, 2022; published electronically June 1,
2022.

https://doi.org/10.1137/21M141703X
Funding: The work of the first author was partially supported by the National Science Foun-

dation through grants NSF-2108320, NSF-1808576, and NSF-CAREER-1845799; by the Defense
Thread Reduction Agency award DTRA-M1802962; by the Department of Energy award DE-
SC0018147; by a 2020 ConTex award; and by 2018 UT-Portugal CoLab award. The work of the
second author was partially supported by the UW-Madison Data Initiative, the Vilas Young Inves-
tigation Award, and the National Science Foundation under grant DMS-1750488. The work of the
third author partially supported by the National Science Foundation under grant DMS-2012292. The
work of the second and third authors was supported by NSF TRIPODS award 1740707.

\dagger Department of Aerospace Engineering and Engineering Mechanics, The Oden Institute for Com-
putational Engineering and Sciences, The University of Texas at Austin, Ausitn, TX 78712-1221
USA (tanbui@oden.utexas.edu, https://users.oden.utexas.edu/\sim tanbui/).

\ddagger Mathematics Department and Wisconsin Institute for Discovery, University of Wisconsin-
Madison, Madison, WI 53705 USA (qinli@math.wisc.edu, http://www.math.wisc.edu/\sim qinli/,
lzepeda@math.wisc.edu, https://www.math.wisc.edu/\sim lzepeda/).

B668

D
ow

nl
oa

de
d 

06
/1

4/
22

 to
 1

31
.1

11
.1

85
.9

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/21M141703X
mailto:tanbui@oden.utexas.edu
https://users.oden.utexas.edu/~tanbui/
mailto:qinli@math.wisc.edu
http://www.math.wisc.edu/~qinli/
mailto:lzepeda@math.wisc.edu
https://www.math.wisc.edu/~lzepeda/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IMPROVING INVERSE SOLUTIONS WITH DATA COMPLETION B669

solving inverse problems has fueled several breakthroughs in a myriad of different
fields such as geophysics, astronomy, biomedical imaging, radar, spectrography, signal
processing, and communications, among many others [17, 55, 9]. Several of such
advances, e.g., magnetic resonance imaging (MRI) [49], computerized tomography
[43], and synthetic aperture radar [17], permeate the modern life, thus making the
study of inverse problems a subject of paramount importance at both theoretical and
algorithmic levels.

In both theoretical and algorithmic formulations, the object that encodes the
accessible knowledge of the unknown parameter is the input-to-output (ItO) map.
Although the particular description of this map differs vastly depending on the mod-
eling of the underlying physics, the ItO map generally encodes the impulse response
(output) of the medium, or the parameters we seek to reconstruct, from a probing sig-
nal (input). At the theoretical level, one assumes that this map is an operator, which
maps a functional space of adequate probing signals to another functional space of
the corresponding responses. At the practical and numerical level, there is only a
finite number of possible probing signals that one can use, and the impulse response
can only be sampled by a limited number of receivers, resulting in a finite amount of
output data.

Although both theoretical and algorithmic studies seek to shed light on the mech-
anisms to infer unknown parameters, they are often not consistent with each other.
The theoretical study of inverse problems has mainly focused on answering questions
on the infinite-dimensional setting: supposing one knows the full ItO map, can the
underlying unknown parameter, living in an infinite-dimensional function space, be
uniquely and stably reconstructed? In a nutshell, this infinite-to-infinite approach
relies on an infinite amount of data to reconstruct the parameter function, which it-
self has an infinite number of degrees of freedom [31, 54]. This infinite-dimensional
setting is certainly computationally infeasible. Thus in algorithmic studies, one of-
ten focuses on designing algorithmic pipelines to perform the reconstruction on the
finite-dimensional setting: A finite number of ItO measurements are given, and one
is to infer the unknown parameters represented by finite-dimensional vectors through
either PDE-constrained minimization or Bayesian inference [27, 37, 38].

It is reasonable to believe that the theory should provide guidance and theoretical
guarantees for the algorithms' performance. In practice, however, due to the dras-
tically different perspectives taken, as discussed above, they have mostly advanced
in a disconnected manner. Indeed, the use of theoretical guarantees is not straight-
forward: When one translates the problem from the infinite-dimensional setting to
a finite-dimensional one, a large amount of information is often lost. For example,
from the theoretical perspective, we do not need to quantify the importance of each
data pair since they will be all used. In reality, only a finite number of data pairs are
practically available; thus we ought to select the ones that best inform the parameter
reconstruction. Which data pairs are most informative is typically unknown unless
certain optimal experimental design (OED) problems (see, e.g., [44, 19]) are solved.
OED is, however, notoriously challenging and computationally expensive.

To bridge the gap between the theoretical study on the infinite-dimensional set-
ting and the numerical study on the finite-dimensional setting and to maximally use
the knowledge from theoretical results, it is necessary to understand the structure of
the underlying problems so to identify (ideally a small number of) data pairs that are
informative about the unknown parameters and then, again by exploiting the struc-
ture, to lift the information coded in the finite data pairs to the infinite-dimensional
setting where existing theoretical results are applicable. We stress that finding a
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B670 TAN BUI-THANH, QIN LI, AND LEONARDO ZEPEDA-N\'U\~NEZ

finitely small amount of data is important for real-world applications where data is
often expensive and potentially cumbersome to obtain.

In this article we initiate a line of work to achieve the goal of bridging the gap
between theoretical and computational inverse problems.

In particular, we seek to exploit the structure of the ItO map, and hence the un-
derlying physics of the problem under consideration, to select a subset of informative
entries in the ItO matrix to complete the missing entries, thus recovering the full ItO
matrix. We then take advantage of the completed ItO matrix in two aspects:

(I) bridging the gap between the finite- and infinite-dimensional settings, and
(II) improving the quality of computational inverse solution.

For (I), the completed ItO matrix is lifted to the ItO map in the infinite-dimensional
setting where the unique reconstruction of the unknown parameter is guaranteed,
which in turn ensures algorithmic convergence. For (II), the completed ItO data
matrix is used to reconstruct the parameter through a minimization algorithm. Since
completed data contains more information about the parameter than the originally
incomplete one, completed data reaches an empirically more accurate inverse solution
than its incomplete counterpart. Even without matrix completion, the incomplete
but informative data facilitates more accurate reconstruction compared to using the
same amount of data selected according to other sampling strategies.

Summary. As has been discussed, the pillars on top of which our research
program lies are (a) the ability to leverage the structure of the underlying problem to
sample only a fraction of data and to complete the missing data and (b) the availability
of theoretical results of infinite-dimensional inverse problems. The actual executions
are thus problem-specific. Due to its long history and the wealth of theoretical results
we choose electrical impedance tomography (EIT) for this paper. The ItO map in this
case is the Dirichlet-to-Neumann (DtN) map and its discretization, the DtN matrix,
which can be accurately approximated by an \scrH -matrix. This allows us to predict
the relative importance of entries of the DtN matrix and sample them accordingly
following the \scrH -matrix partitioning. The selected entries are then used to uncover
the missing ones through a matrix completion algorithm [46]. The accuracy of matrix
completion algorithms depends on a few assumptions. In this case, the algorithms that
we chose requires the to-be-reconstructed matrix to be of low rank,1 delocalized, and
decoherent. Upon the correct partitioning according to the guidance of the \scrH -matrix
structure, we have that these assumptions hold true for blocks of the DtN matrix,
permitting a good use of the matrix completion algorithm to complete the full DtN
matrix. Finally, the completed DtN matrix is lifted to the DtN map, allowing us to
integrate the theoretical results [2, 48] on EIT to show the convergence and uniqueness
of the reconstructed parameter with a high probability.

Outline. This paper is organized as follows: We present the whole bridging
framework including the data selection process, finite element discretization, a matrix
completion algorithm, and a generic parameter reconstruction in section 2. Rigor-
ous results justifying the framework for the EIT problem are presented in section 3.
Various numerical results, including showing improved inverse solutions using data
completion, are presented in section 4 to validate our approach for both EIT and
optical tomography problems. Section 5 concludes the paper with future works.

We point out that despite the matrix completion process being almost absent from
the inverse problem literature, it was used to solve PDEs in the forward problems [34].

1This requirement can be relaxed to approximately low rank when the singular values of the
matrix decay fast enough.
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IMPROVING INVERSE SOLUTIONS WITH DATA COMPLETION B671

Moreover, data-driven approaches have been widely used, of which the most notable
example is the application of compressed sensing to MRI [20], which already has
commercial applications [1].

2. Bridging framework driven by EIT. Throughout the paper we use the
Calder\'on problem as the motivating example. This is considered as a model problem
from EIT, in which the voltage is applied on the surface of tissues and the electric
intensity is measured on the surface. By changing voltage configurations, many sets
of voltage-to-intensity files can be obtained to infer the conductivity of the medium
in the tissue [10, 18]. Mathematically, this translates to utilizing the DtN map to
reconstruct the diffusion coefficient in the elliptic equation [32, 50],

(2.1)

\biggl\{ 
 - \nabla \cdot (a(x)\nabla u) = 0, x \in \scrD \subset Rn,

u| \partial \scrD = \phi ,

where the input \phi serves as the Dirichlet boundary condition (voltage). The output
is also taken on the boundary and is of Neumann type (electric intensity):

d = a\partial \nu u| \partial \scrD ,

where \nu stands for the unit outward normal direction on \partial \scrD . The ItO map from \phi to
d is thus termed the voltage-to-intensity map, or mathematically, the DtN map. This
map is parameterized by the medium conductivity a(x):

\Lambda a : \phi \rightarrow d ,

where the dependence on the conductivity is reflected in the subscript.
Assume \scrD is a polygonal domain and \phi \in H1/2(\partial \scrD ): the weak formulation of

(2.1) reads, Find u \in H1(\scrD ) with u| \partial \scrD = \phi such that

(2.2)

\int 
\scrD 
a\nabla u \cdot \nabla v dx = 0 \forall v \in H1

0 (\scrD ) .

The DtN map \Lambda a\phi is defined as the following bilinear form:

(2.3) \langle \Lambda a\phi , \psi \rangle :=
\int 
\partial \scrD 

a\partial \nu u\psi dx ,

where u solves (2.2). Using Green's identity and (2.2),

\langle \Lambda a\phi , \psi \rangle :=
\int 
\scrD 
a\nabla u \cdot \nabla \Psi dx .

Here \Psi \in H1 (\scrD ) can be any extension of \psi such that \Psi | \partial \scrD = \psi . For the rest of the
paper, a(x) is assumed to be piecewise constant and is represented uniquely by the
vector \sansa containing its values, and we thus use a and \sansa interchangeably.

2.1. Sketch of the DtN map discretization hierarchy. In the numerical
setup, the solution and the measurements are all discretized and represented by finite-
dimensional vectors. The discrete DtN map \Lambda h

\sansa is therefore a matrix. In this context,
the measurements can be viewed as entries in this matrix. Only a small number of
measurements are taken in experiments, meaning a small number of the entries in the
DtN matrix are available. In other words, a subset of entries \Omega of \Lambda h

\sansa is observed, and
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B672 TAN BUI-THANH, QIN LI, AND LEONARDO ZEPEDA-N\'U\~NEZ

the rest are unavailable. This is translated in the following hierarchy of increasingly
reduced objects:

(2.4) \Lambda a \rightarrow \Lambda h
\sansa \rightarrow \Lambda h

\sansa | \Omega .

Here, again, \Lambda a is the DtN map, \Lambda h
\sansa the DtN matrix (discretization of \Lambda \sansa , whose

size depends on h, the mesh size, and where \sansa is the discrete version of a in the
finite element presentation), and \Omega is a subset of matrix indices, indicating where
measurements are taken. This reduction process is described in detail in section 2.3.

2.2. Sketch of reversing the DtN map discretization hierarchy. For the
reconstruction, we aim to reverse the hierarchy in (2.4). In particular, we start from
\Lambda h
\sansa | \Omega , and by choosing proper data and proper completion algorithms we obtain the

full DtN matrix \Lambda h
\sansa . This then gets lifted up to represent the DtN map \Lambda \sansa = \Lambda a up

to a discretization error that depends on h. Due to the involvement of discretization
and reconstruction error, the exact recovery of \Lambda h

\sansa (and hence \Lambda \sansa ) is not available. We
denote \~\Lambda h

\sansa ,
\~\Lambda \sansa , and \~\sansa the reconstructed approximations to \Lambda h

\sansa , \Lambda \sansa , and \sansa , respectively.
\Omega needs to be judiciously selected such that

(2.5) \~\Lambda h
\sansa \sim \Lambda h

\sansa ,

where \sim means close in some sense (to be defined later). For small h, we lift the
matrix back to the map and need to justify

(2.6) \~\Lambda \sansa \sim \Lambda a.

Finally we seek to establish the closeness of the reconstruction of the medium:

(2.7) \~\Lambda h
\sansa \sim \Lambda h

\sansa \Rightarrow \~\Lambda \sansa \sim \Lambda a \Rightarrow \~\sansa \sim a .

In section 2.3 we lay out the numerical setup. We recover \~\Lambda h
\sansa from the subsam-

pled \Lambda h
\sansa | \Omega and provide intuition to (2.5) in section 2.4. Recall from section 1 that the

construction of \~\Lambda h
\sansa is twofold: (I) bridging the gap and (II) improving the quality of

computational inverse solution. The proofs for (2.5), (2.6), and (2.7) are given in
section 3, which accomplish task (I) of bridging the gap between theoretical and com-
putational EIT. Section 2.5 discusses a practical computational algorithm for task (II)
which aims to approximately reconstruct \sansa from the DtN matrix \~\Lambda h

\sansa . It is important
to point out that---unlike traditional algorithms for computational inverse problems
that directly use data from \Lambda h

\sansa | \Omega , the incomplete DtN matrix, to reconstruct \sansa ---we
deploy \~\Lambda h

\sansa , the completed DtN matrix, to reconstruct \sansa . As shall be shown in section
4, our approach improves the parameter reconstruction substantially. Indeed, the re-
constructions using \~\Lambda h

\sansa and the exact DtN matrix \Lambda h
a are visibly identical, while the

reconstruction directly from \Lambda h
\sansa | \Omega is completely off.

2.3. DtN map discretization hierarchy. In what follows we provide details
of the DtN map discretization hierarchy (2.4).

From \Lambda a to \Lambda h
\sansa . Numerically, we first partition the domain \scrD into Nel non-

overlapping shape-regular affine elements Kj , j = 1, . . . , Nel, with Lipschitz bound-

aries. Denote \scrD h := \cup Nel
j=1Kj , \scrD = \scrD h

the discrete space and h = maxj diam (Kj) the
mesh size. We construct the standard linear Lagrange finite element (FE) space

V h :=
\Bigl\{ 
v \in C0(\scrD ) : v| Kj

\in \scrP 1(Kj) \forall j
\Bigr\} 
\subset C0 (\scrD ) \subset H1 (\scrD )
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IMPROVING INVERSE SOLUTIONS WITH DATA COMPLETION B673

as the discrete solution space and

V h (\partial \scrD ) :=
\bigl\{ 
v \in C0 (\partial \scrD ) : v| \partial K\cap \partial \scrD \in \scrP 1 (\partial K \cap \partial \scrD )

\bigr\} 
= span\{ \phi i\} 

as the discrete boundary condition space, where \phi i are the linear nodal (Lagrange)
basis functions on \partial \scrD . Here \scrP 1 (K) is the space of polynomials of degree at most 1
on K. To project the boundary condition from the continuous level to the discrete
one, we define the projection operator

(2.8) \Pi h : H1/2 (\partial \scrD ) \ni \phi \mapsto \rightarrow \phi h := \Pi h\phi \in V h (\partial \scrD )

such that\bigm\| \bigm\| \phi  - \phi h
\bigm\| \bigm\| 
H1/2(\partial \scrD )

=
\bigm\| \bigm\| \phi  - \Pi h\phi 

\bigm\| \bigm\| 
H1/2(\partial \scrD )

= inf
wh\in V h(\partial \scrD )

\bigm\| \bigm\| \phi  - wh
\bigm\| \bigm\| 
H1/2(\partial \scrD )

.

The discretization of the weak formulation (2.2) reads, Find uh \in V h such that
uh
\bigm| \bigm| 
\partial \scrD = \phi h = \Pi h\phi and

(2.9)

\int 
\scrD 
\sansa \nabla uh \cdot \nabla vh dx = 0 \forall vh \in V h

0 ,

where V h
0 :=

\bigl\{ 
v \in V h (\scrD ) : v| \partial \scrD = 0

\bigr\} 
.

Following the standard FE dicretization, we define the stiffness matrix \sansS . Denot-
ing lk(x) the hat functions supported in the domain \scrD that peaks at the kth nodal
point, the stiffness matrix has the form of

(2.10) \sansS =

\biggl[ 
\sansS ii \sansS ib

\sansS bi \sansS bb

\biggr] 
,

where i stands for the collection of the indices of the interior degrees of freedom and b
is for the degrees of freedom at the boundary. For example, \sansS ib =

\int 
\scrD \sansa \nabla lk1 \cdot \nabla lk2 dx

for k1 and k2 being interior and boundary indices, respectively. As a result, the
numerical solution is uh =

\sum 
k \sansu 

h
k lk(x) with

\sansu h =

\biggl[ 
 - 
\bigl( 
\sansS ii
\bigr)  - 1 \cdot \sansS ib \cdot \phi h
\phi h

\biggr] 
.

The discretized DtN map \Lambda h
a is bilinear on V h (\partial \Omega ): for \phi h \in V h (\partial \Omega ) and

wh \in V h (\partial \Omega ),

(2.11)
\bigl\langle 
\Lambda h
a\phi 

h, wh
\bigr\rangle 
:=

\int 
\Omega 

a\nabla \Phi h \cdot \nabla W h d\Omega ,

where Wh is any extension of wh from V h (\partial \Omega ) to V h (\Omega ) such that Wh
\bigm| \bigm| 
\partial \Omega 

= wh

and \Phi h is the FE solution obtained from (2.9). The DtN matrix is the matrix repre-
sentation of \Lambda h

a , and we abuse the notation and still call it \Lambda h
a .

Using the FE notation as above, denote \sansM the map from the discrete solution
\sansu h to the discrete Neumann data on the boundary \partial \scrD h. The DtN matrix \Lambda h

\sansa can be
formed as

(2.12) \sansd = \Lambda h
\sansa \cdot \phi = \sansM \cdot 

\biggl[ 
 - 
\bigl( 
\sansS ii
\bigr)  - 1

\sansS ib

I

\biggr] 
\cdot \phi with \Lambda h

\sansa = \sansM \cdot 
\biggl[ 

 - 
\bigl( 
\sansS ii
\bigr)  - 1

\sansS ib

I

\biggr] 
.
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Note that \Lambda h
\sansa is a square matrix of size | \partial \scrD h| \times | \partial \scrD h| , where

\bigm| \bigm| \partial \scrD h
\bigm| \bigm| denotes the number

of grid points on \partial \scrD h and I is the identity associated to the degrees of freedom at the
boundary.

From \Lambda h
\sansa to \Lambda h

\sansa | \Omega . In practice, only a small number of experiments can be
conducted, and in each experiment, only a small number of measurements can be
taken. For notational convenience, we assume the input \phi is chosen from the set of
basis functions \phi i. In this case the ijth component of the data matrix \sansd is exactly
the ijth entry of the DtN matrix, i.e.,

dij \sim \Lambda h
\sansa ,ij , (i, j) \in \Omega \subset [1 : | \partial \scrD h| ]2 .

Here we use \sim instead of = to account for potential measuring errors, and \Omega , referred
to as a mask, is a subset of all indices of \Lambda h

\sansa .

2.4. Reverse DtN map discretization hierarchy. As it was argued in sec-
tion 1, some data pairs are more informative than the others. Choosing the most
informative data, or equivalently, selecting the right mask \Omega , is of paramount impor-
tance in recovering the missing entries in the DtN matrix \Lambda h

a . Recall from section
2.2 that, due to errors in the discretization and reconstruction process, we can only
obtain an approximation \~\Lambda h

\sansa of \Lambda h
a . In the following we exploit the structure of the

DtN matrix \Lambda h
a to determine \Omega and employ a matrix completion technique such that

\~\Lambda h
\sansa is close to \Lambda h

\sansa .
To describe the structure of the DtN matrix, we exploit the concept of \scrH -matrices.

With a proper decomposition, the DtN matrix can be partitioned into several blocks
that are approximately low rank (ALR). This means many blocks from the big DtN
matrix have their singular values decay fast regardless of the resolution and thus
can be approximated by a low-rank block. This partitioning allows us to utilize the
matrix completion--type methods for the ALR blocks that are not applicable to the
full DtN matrix, as it is often of full rank. In the following we briefly review the
matrix completion method in section 2.4.1 and evaluate the matrix structure of \Lambda h

\sansa in
section 2.4.2. The full completion algorithm is presented in Algorithm 2.1.

We stress that in the process of reconstructing the full map, we assume the given
data \Lambda h

a | \Omega is noiseless, so the error purely comes from the reconstruction process
itself. If the collected data in \Lambda h

a | \Omega already presents measuring error, stability in the
reconstruction process should also be discussed. We leave that to future work.

2.4.1. Matrix completion. Matrix completion has been a popular topic for
a decade due to its applications in recommendation systems, including the famous
Netflix problem [8]. The goal is to complete the entries in a matrix from a partial
knowledge of its entries. To be more specific, let a generic \sansA \in Rn\times n be the to-be-
completed matrix, of which only some of its entries are known. In this setting \Omega , with
| \Omega | = m, is the index set where the entries are known, and aij the given values with
(i, j) \in \Omega .

There exists a number of algorithms that aim to reconstruct the entries [45, 28,
22, 11]. We adopt the approach proposed in [14]. Under the assumption that the
matrix \sansA is of low rank (r \ll n), we seek to minimize the nuclear norm \| \sansA \| \ast such
that the matrix's evaluations at certain locations are fixed by the given data, namely,
\sansA ij = aij for (i, j) \in \Omega . The minimization problem now becomes

(2.13) min
\sansA 

\| \sansA \| \ast s.t. \sansA ij = aij , (i, j) \in \Omega , | \Omega | = m.

The objective function \| \sansA \| \ast is the sum of all singular values of \sansA . It can be viewed
as the relaxation from the \ell 0-norm of singular values (rank\{ \sansA \} ) to its \ell 1-norm [47].
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One important advantage of working with (2.13) is that it is a convex optimization
problem that can be solved efficiently with interior point methods. It is important to
point out that this convex relaxation does not come with an accuracy sacrifice: It is
found that under very mild conditions---decoherent and delocalization conditions---the
solution of minimizing \| \sansA \| \ast coincides with the solution of minimizing rank\{ \sansA \} .

We next recall the decoherent and delocalization conditions [14]. Let

\sansA = \sansU \Sigma \sansV \top 

be the singular value decomposition of \sansA .

Definition 2.1. Let \sansW be a subspace of Rn of dimension r and \scrP \sansW be the or-
thogonal projection onto \sansW . Then the coherence index of \sansW is defined as

(2.14) \mu (\sansW ) = n max
1\leq i\leq n

\| \scrP \sansW ei\| 2 ,

where ei is the ith unit vector of Rn.

A1 Decoherent condition: max(\mu (U), \mu (V )) \leq \mu 0 for some positive \mu 0.
A2 Delocalization condition : The maximum entry of

\sum 
1\leq k\leq r ukv

\top 
k is bounded

from above by \mu 1

\sqrt{} 
r
n2 for some positive \mu 1.

Let us now state a probabilistic result on the success of (2.13).

Theorem 2.2 ([14, 46]). Let \sansA be an n \times n matrix of rank r obeying the
decoherent and delocalization conditions A1 and A2. Suppose we observe m entries
of \sansA with locations sampled uniformly at random. Then there exist constants C, c
such that if

m \geq Cmax
\Bigl\{ 
\mu 2
1, \mu 

1/2
0 \mu 1, \mu 0n

1/4
\Bigr\} 
\beta r (n log n)

for some \beta > 2, then the minimizer to the problem (2.13) is unique and equal to \sansA 
with probability at least 1 - cn - \beta . For r \leq \mu  - 1

0 n1/5 this estimate can be improved to

m \geq C\mu 0\beta r
\Bigl( 
n6/5 log n

\Bigr) 
with the same probability of success.

This theorem suggests that if the to-be-completed matrix \sansA is of low rank satisfy-
ing the decoherent and delocalization conditions, then when the number of provided
entries m linearly depend on r, the rank, and the entries are sampled uniformly ran-
domly, the matrix can be precisely reconstructed with a high probability.

2.4.2. Structure of \Lambda \bfith 
\bfsansa and \bfscrH -matrix. We now discuss how we use the matrix

completion method discussed in subsection 2.4.1 to recover the DtN matrix \Lambda h
\sansa from

its data \Lambda h
\sansa | \Omega . Theorem 2.2, despite providing a general recipe for reconstructing a

matrix from its incomplete data, requires the rank r to be significantly smaller than n,
the size of the matrix, for the algorithm to be meaningful. However, \Lambda h

\sansa is a full-rank
matrix, preventing the direct application of the matrix completion algorithm.

It turns out that we can still take advantage of the matrix completion algorithm
by exploiting the \scrH -matrix structure embedded in \Lambda h

\sansa . This allows us, through the
``peeling"" process [35], to divide the matrix into sub-blocks, most of which are ALR.
The application of the matrix completion algorithm to these ALR blocks is then
expected to be efficient.

A hierarchical matrix, commonly referred as an \scrH -matrix, is a class of matrices
that, upon proper partitioning, have fast decays in singular values in the smaller
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blocks, leading to the ALR property within these blocks. The concept [24, 25]
was invented initially to divide a given \scrH -matrix into smaller blocks so that some
matrix operations, including matrix-vector multiplication, addition, inverse, Schur
complement, and many others, could be significantly sped up (see, e.g., [6, 40, 56, 21]
and references therein). In its original form, one also requires linear computational
complexity in finding the partitioning. In our setting, such complexity is irrelevant.

Remark 2.3. We point out that there are multiple ways to reconstruct low-rank
matrices/blocks of matrices besides the matrix completion algorithm that was de-
scribed above. Other possible choices are randomized SVD [26], CUR factorizations
[39, 23], adaptive cross approximation [5], and some other algorithms that are adaptive
in nature [57, 7]. Even though most of these algorithms would be able to reconstruct
the DtN map with a lower sample complexity of \scrO (n log n) they present two main
drawbacks for the applications to EIT: (i) they require the full knowledge of full rows
or columns, or matrix-vector multiplication, and (ii) they require an sequential and
online sampling for the reconstruction, i.e., the reconstruction algorithm will sequen-
tially sample the columns and rows of the block. Sampling a full row or column is
usually infeasible in practice. Indeed, considering the EIT problem where the matrix
presents the map from Dirichlet (potential) data to Neumann (flux) data, access-
ing the full row/columns amounts to taking measurements continuously along the
boundary. This is usually considered too expensive and unnecessary in experiments.
Experimentally, a much more feasible approach is to take measurement discretely,
which amounts to accessing a subset of entries in the matrix. Sampling adaptively,
though a useful sampling process, also poses some experimental hassle. In our con-
text, this amounts to running the experiment several times, each time with a slightly
different sensor configuration. It is very costly and labor intensive, especially consid-
ering that the procedure is applied to a large number of blocks for the DtN matrix. In
this case, there is a practical gain of acquiring the data first and then postprocessing
it in an offline fashion, which can be greatly parallelized.

We also stress that under the framework of \scrH matrix, the reconstruction using
entries is not completely new. In [36, 16, 33] various ways of data completion strategies
have been adopted. The context is different, while the concepts are rather similar.

It was shown in [6] that the collection of Green's functions for elliptic equations
produces an \scrH -matrix. Recall from the expression for \Lambda h

\sansa in (2.12) that both \sansM and
\sansS ib are sparse matrices. Thus if (\sansS ii) - 1 is an \scrH -matrix, so is \Lambda h

\sansa .

Theorem 2.4 (Theorem 4.28 of [6]). Let \epsilon > 0 small; then there is an \scrH -matrix

\sansC with local block rank being k \lesssim (log n)2| log \epsilon | d+1 such that \| 
\bigl( 
\sansS ii
\bigr)  - 1  - \sansC \| 2 \leq \epsilon . For

the accuracy compatible with the FE method, we take \epsilon = h\beta and k \lesssim logd+3 n. Here
n is the size of the matrix, d is the dimension of the problem, h is the mesh size, and
\beta is the accuracy order of the FE method.

The author of [6] furthermore suggests a way to choose the partition. Indeed
(\sansS ii) - 1 is essentially the discrete version of the Green's function G(x, y), and as a
function of x parameterized by y it can be approximately written as a summation
of separable functions in x and y if the two coordinates are well separated. This
reveals that the rank of the approximation only logarithmically depends on the size
of the matrix, and since the Green's function can be approximated by a few separable
functions only if x and y are well separated, only the blocks of (\sansS ii) - 1 that are not
along the diagonal are ALR. The same observation was made in [35] which shows that
the off-diagonal blocks are ALR.
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Built upon these observations, noting that \Lambda h
\sansa is an\scrH -matrix with diagonal blocks,

\Lambda h
\sansa ,D, having full rank and the off-diagonal blocks, \Lambda h

\sansa ,O, being ALR, we propose to

obtain the full data in \Lambda h
\sansa ,D but a small portion of entries in \Lambda h

\sansa ,O and then recover the
missing entries with the matrix completion method in section 2.4.1. Experimentally,
this means for every injected voltage concentrated on one nodal point on \partial \scrD , one
measures the intensity on that particular location so to fill the diagonal blocks \Lambda h

\sansa ,D.
One then decreases the density of the detectors as one moves further away along \partial \scrD 
and employs the matrix completion algorithm to recover \Lambda h

\sansa ,O. In Algorithm 2.1, we

summarize the whole process of completing \Lambda h
\sansa .

Algorithm 2.1 Completing \Lambda h
\sansa .

Preparation:
0. Determine the partition, and identify \Lambda h

\sansa ,D and \Lambda h
\sansa ,O.

1. Sample each entry in \Lambda h
\sansa ,D.

2. For each \Lambda h
\sansa ,O, do the following:

2.1: Randomly collect rn6/5 log n data points in the block (n: the size of the block).
2.2: Solve the matrix completion problem (2.13) to reconstruct \Lambda h

\sansa ,O.
end
Output: Assemble the recovered submatrices, denoted by \~\Lambda h

\sansa .

Once \~\Lambda h
\sansa is formed, it can be lifted to a corresponding DtN map \~\Lambda \sansa which in turn

corresponds to a unique conductivity \~\sansa . The analysis on the difference between \Lambda a

and \~\Lambda \sansa (and between \sansa and \~\sansa ) is presented in section 3.

2.5. Improving inverse solution with matrix completion. With the full
map \~\Lambda h

\sansa in hand, the reconstruction of the medium \sansa is now straightforward using
classical optimization-based methods. Since this component of the algorithm is rather
classical, we briefly review it here.

We consider the reconstructed \~\Lambda h
\sansa as the groundtruth data, and we search for the

medium impedance \sansa such that the misfit---with Frobenius norm---between the DtN
matrix generated by that \sansa and the groundtruth data is minimized, i.e.,

(2.15) min
\sansa 

\| \Lambda h
\sansa  - \~\Lambda h

\sansa \| 2F + \alpha \| \sansa  - \sansa 0\| qq + \beta R(\sansa ) ,

where the second term is a regularization term taking into account some prior knowl-
edge and the third term is an additional regularization term to enforce desirable
properties in the reconstruction. A typical example is a total-variation norm of \sansa 
to eliminates its oscillations [15]. Note that even though the first term may seem
benign at first glance, the DtN map, \Lambda h

\sansa , is highly nonlinear in \sansa . This may imply
the existence of many local minima in the objective function landscape, which can
greatly tax the capability of standard gradient-based optimization techniques. In this
context, both regularization terms can be tuned to attenuate this issue; however, how
to tune these methods is outside the scope of this paper. For our numerical results
in section 4, we set both regularization parameters \alpha , \beta to zero, and we will use an
off-the-shelf optimization quasi-Newton method [12], with a simple box constraint, to
reconstruct the impedance \sansa .

3. Bridging the gap with matrix completion. To show (2.5) amounts to
showing the reconstructed DtN matrix \~\Lambda h

\sansa is close to the true DtN matrix \Lambda h
\sansa . For

that we combine the \scrH -matrix argument and the matrix completion result.
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Theorem 3.1. Divide the n\times n matrix \Lambda h
\sansa into N blocks with each of size ni\times ni

according to the \scrH -matrix decomposition with ni denoting the size of the ith block.
Suppose the ith block has rank ri and obeys the decoherent and delocalization conditions
with constants \mu i

0 and \mu i
1. Denote mi the number of observed entries in the ith block

with samples chosen uniformly at random. Then to reconstruct \Lambda h
\sansa using (2.13), there

exist constants C, c such that if

mi \geq Cmax

\biggl\{ \bigl( 
\mu i
1

\bigr) 2
,
\sqrt{} 
\mu i
0\mu 

i
1, \mu 

i
0(n

i)1/4
\biggr\} 
\beta iri

\sum 
i

\bigl( 
ni log ni

\bigr) 
, i = 1, . . . , N,

for some \beta i > 2, and hence the total sampling number is m =
\sum 
mi \sim n5/4N3/8,

then

P(\Lambda h
\sansa = \~\Lambda h

\sansa ) \geq 1 - c
N\sum 
i=1

n - \beta i

i .

The sampling sizes can be improved to mi \geq C\mu i
0\beta r

i((ni)6/5 log ni) if ri \leq (ni)1/5/\mu i
0.

Proof. The proof is a straightforward application of Theorem 2.2. To show that
the total sampling m \sim n5/4N3/8, we note that

\sum 
n2i = n2, so the lower bound of

m =
\sum 
mi \geq C(ni)1/4

\sum 
i n

i log ni becomes, according to H\"older's:

C
\sum 
i

(ni)5/4 log ni \leq CN3/8

\Biggl( \sum 
i

\Bigl( 
(ni)5/4

\Bigr) 8/5\Biggr) 5/8

\sim n5/4N3/8 .

Remark 3.2. Note that the size of N is typically log n, so N3/8 barely contributes
anything to the sampling complexity.

Remark 3.3. We assume that the rank of the ith block is ri. One should note
that this is only an approximate rank. According to [4], elliptic boundary-to-boundary
operators have exponentially decaying singular values, and thus ri depend on the error
tolerance. For a more precise reconstruction, larger ri may be needed, and it amounts
to a higher value of mi, meaning more data points are needed.

Remark 3.4. The theorem states that the two matrices, the reconstructed and
the groundtruth, are exactly the same with high probability. In practice, the data
obtained in \Lambda h

\sansa | \Omega is often polluted with measurement errors. In [13] the authors discuss
the effect of such pollution in the reconstruction.

To quantify (2.6) and (2.7), we will rely on some delicate FE analysis and The-
orem 3.1. To begin, we lift both \Lambda h

\sansa and \~\Lambda h
\sansa matrices to their ``corresponding"" (or

reconstructed) DtN maps \^\Lambda \sansa and \~\Lambda \sansa as follows:

(3.1) \~\Lambda \sansa :=
\bigl( 
\Pi h
\bigr) \ast \circ \~\Lambda h

\sansa \circ \Pi h, \^\Lambda \sansa :=
\bigl( 
\Pi h
\bigr) \ast \circ \Lambda h

\sansa \circ \Pi h,

where
\bigl( 
\Pi h
\bigr) \ast 

is the adjoint of \Pi h. It is easy to see that both \~\Lambda \sansa and \^\Lambda \sansa are well-defined

linear continuous operators from H1/2 (\partial \Omega ) to H - 1/2 (\partial \Omega ). Theorem 3.1 implies that
\~\Lambda \sansa = \^\Lambda \sansa with high probability, i.e.,

P
\Bigl( 
\~\Lambda \sansa = \^\Lambda \sansa 

\Bigr) 
\geq 1 - c

N\sum 
i=1

n - \beta i

.

We now recall the following well-known result.
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Theorem 3.5 ([2, 48]). Let a1 and a2 be two piecewise constant functions on
\scrD , and let \sansa i be their representation vectors. Denote \Lambda \sansa i the corresponding DtN map
defined in (2.3). Then \sansa as a function of \Lambda \sansa is Lipschitz:

(3.2) \| \sansa 1  - \sansa 2\| \infty \leq C\| \Lambda \sansa 1  - \Lambda \sansa 2\| H1/2(\partial \Omega )\rightarrow H - 1/2(\partial \Omega ) ;

that is, there is a unique conductivity \sansa for every DtN map \Lambda \sansa .

Since we assume that \sansa is piecewise constant, Theorem 3.5 implies that there
exists a unique conductivity \~\sansa corresponding to \^\Lambda \sansa such that

\| \sansa  - \~\sansa \| \infty \leq C
\bigm\| \bigm\| \bigm\| \Lambda \sansa  - \^\Lambda \sansa 

\bigm\| \bigm\| \bigm\| 
H1/2(\partial \Omega )\rightarrow H - 1/2(\partial \Omega )

.

Remark 3.6. It is worth noting that the result hides the dependence on the degrees
of freedom in \sansa . In particular, in [48], the author showed that the Lipschitz constant
C can grow exponentially fast with respect to n, the number of ``pieces"" used in \sansa , if
the medium is accordingly designed. Such study is out of scope of this paper; thus
we omit the discussion.

The following (whose technical proof is given in the Appendix A) is the justifica-
tion for (2.6) and (2.7), which, similar to Theorem 3.5, shows the uniqueness of the
reverse DtN hierarchy in section 2.4.

Theorem 3.7 (asymptotic uniqueness). There holds

lim
h\rightarrow 0

\bigm\| \bigm\| \bigm\| \Lambda \sansa  - \^\Lambda \sansa 

\bigm\| \bigm\| \bigm\| 
H1/2(\partial \Omega )\rightarrow H - 1/2(\partial \Omega )

= 0,

and thus
lim
h\rightarrow 0

\| \sansa  - \~\sansa \| \infty = 0.

Let \~\sansa 1 and \~\sansa 2 be the conductivities associated with two reconstructed DtN maps \^\Lambda \sansa 1

and \^\Lambda \sansa 2 corresponding to \sansa 1 and \sansa 2, respectively. Then

\| \~\sansa 1  - \~\sansa 2\| \infty \leq C

\biggl( \bigm\| \bigm\| \bigm\| \Lambda \sansa 1  - \^\Lambda \sansa 1

\bigm\| \bigm\| \bigm\| 
H1/2(\partial \Omega )\rightarrow H - 1/2(\partial \Omega )

+ \| \Lambda \sansa 1  - \Lambda \sansa 2\| H1/2(\partial \Omega )\rightarrow H - 1/2(\partial \Omega ) +
\bigm\| \bigm\| \bigm\| \Lambda \sansa 2  - \^\Lambda \sansa 2

\bigm\| \bigm\| \bigm\| 
H1/2(\partial \Omega )\rightarrow H - 1/2(\partial \Omega )

\biggr) 
.

That is, if \sansa 1 \rightarrow \sansa 2, then \~\sansa 1 \rightarrow \~\sansa 2 as h\rightarrow 0.

We also briefly discuss the complexity of the matrix completion.

Theorem 3.8. Denote \Lambda \sansa a matrix of size n\times n with n \sim 1/hd, and suppose that
the matrix can be decomposed in an \scrH -matrix with the weak admissibility condition
(see Figure 1). Suppose that the decomposition has L \sim log n levels and that each
block has a bounded rank r and satisfies the conditions of Theorem 2.2. Then with
| \Omega | = \scrO 

\bigl( 
rn6/5 log n

\bigr) 
known entries sampled properly, we can reconstruct \Lambda \sansa with high

probability.

Proof. We consider diagonal and off-diagonal blocks separately. For the partition
considered in this theorem, there are n/r diagonal blocks. They are full rank, which
requires them to be fully sampled, and thus \scrO (rn) entries are needed.

For the off-diagonal blocks we need to use randomized sampling. Given that the
matrix is partitioned in L levels, we have that at the \ell th level in the decomposition,
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Fig. 1. Sketch of a partition of an \scrH -matrix in four levels. Blocks in light blue are randomly
sampled, and those in orange are fully samples. We show the blocks considered at each level of the
partition. As can be seen, we have 2\ell number of blocks of size n\ell = n/2\ell .

each block will have size n\ell = n/2\ell , and we will have n/n\ell = 2\ell of them. Thus follow-
ing Theorem 2.2, we require \scrO 

\bigl( 
r(n\ell )6/5 log

\bigl( 
(n\ell )6/5

\bigr) \bigr) 
, or \scrO (r(n/2\ell )6/5 log(n\ell )6/5))

samples to reconstruct each of the blocks at the \ell th level in the partition. In sum-
mary, we would require \scrO 

\bigl( 
2\ell r(n/2\ell )6/5 log

\bigl( 
(n/2\ell )6/5

\bigr) \bigr) 
to reconstruct, with high-

probability, all the blocks at the \ell th level of the partition.
After adding the number of samples at each level we have that the total number

of samples required scales as

\scrO 

\Biggl( 
nlevels\sum 
\ell =1

2\ell r(n/2\ell )6/5 log (n/2\ell )6/5

\Biggr) 
= \scrO 

\Biggl( 
rn6/5 log n

nlevels\sum 
\ell =1

2 - \ell /6

\Biggr) 
(3.3)

= \scrO 
\Bigl( 
rn6/5 log n

\Bigr) 
,(3.4)

where we used the fact that
\sum nlevels

\ell =1 2 - \ell /6 = \scrO (1).

Remark 3.9. We have chosen the weak admissibility condition for the sake of
simplicity: the theorem follows for other types of partitioning. In particular, as will
be shown in section 4.1, using a strong admissibility condition with periodic boundary
conditions yields similar results.

4. Numerical experiments. We finally present several numerical experiments
showcasing the framework introduced above. All the experiments were coded in MAT-
LAB 2019b using CVX to solve the optimization problems with MOSEK [3] as the
back-end. The experiments were run on a single-socket workstation running an AMD
2950X processor with 128 GB of RAM.

As the method suggests, we should first run the hierarchical matrix completion
algorithm in Algorithm 2.1 to reconstruct the full DtN matrix and then use the
completed DtN matrix to reconstruct the media. For an accurate DtN matrix recon-
struction, we need to ensure the matrix gets decomposed according to the \scrH -matrix
admission condition, and the matrix completion algorithm is implemented within
each off-diagonal block that is ALR. The matrix completion algorithm requires two
conditions to be held: the decoherent and delocalization conditions.

Even though these properties may be already familiar for the reader with a back-
ground in compressed linear algebra for elliptic operators, we will, for the sake of
completeness, demonstrate that the off-diagonal blocks indeed satisfy the decoherent
and delocalization conditions. These conditions will be shown to be satisfied indepen-
dent of the level of numerical refinement. This ensures that the matrix completion
algorithm indeed reconstructs the DtN matrix accurately with limited data. With the
demonstration of the accurate reconstruction of the DtN matrix, we will further show-
case the reconstruction of the medium/conductivity. To show the outperformance of
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the proposed method, we also implement and demonstrate the reconstruction using
a few other sampling techniques. This includes sampling entries of the DtN matrix
using an uniform distribution, sampling columns or rows of the DtN uniformly, and
finally, sampling the rows and columns together uniformly. The comparison suggests
that the subsampling performs the best when it honors the \scrH -matrix format and the
off-diagonally low-rank structure of the DtN matrix.

In subsection 4.1, we verify the decoherent and the delocalization conditions and
present reconstruction of the DtN matrix. In subsection 4.2 we showcase the re-
construction of the conductivity (medium). In subsection 4.3 we demonstrate an
extension of the presented method on optical tomography. In optical tomography, the
albedo operator maps the incoming light to the outgoing light intensity and is used
to reconstruct the scattering coefficient, an optical property of the material.

4.1. Reconstructing the DtN map. As presented in section 2.4 the recon-
struction of DtN matrix relies on two key factors: a proper \scrH -matrix decomposition
and the proper use of the matrix completion algorithm in the ALR submatrices that
satisfy both decoherent and delocalization conditions. We demonstrate both the \scrH -
matrix decomposition and the final matrix completion results.

We now detail the numerical setup. In \scrD = [0, 1]2 domain, we choose the Shepp--
Logan phantom as the ground truth medium, as plotted in Figure 2(a). On the
domain we use the nested grids, with nh = 2\ell +1 discrete points per dimension where
\ell is the refinement level. This leads to n = 2\ell +2 grid points along the boundary,
making a DtN matrix of size n \times n. In this DtN matrix, we separate the diagonal
and off-diagonal blocks following the strong admissibility condition. It was shown in
section 2.4.2 that these off-diagonal blocks are of ALR, and the matrix completion
algorithm could potentially bring benefit if the decoherent and the delocalization
conditions are satisfied. We choose two representative square blocks to verify these
conditions. They are the blocks a and b demonstrated in Figure 2(b). As \ell increases,
these blocks have larger sizes accordingly: na = nh  - 1, and nb = (nh  - 1)/2.

(a) Shepp--Logan phantom (b) matrix partition

Fig. 2. Figure 2(a) shows the impedance used for the experiments corresponding to the well-
known Shepp--Logan phantom, where the color encodes the value of the impedance at each point.
Figure 2(b) presents a partition of the matrix together with two blocks used for the numerical ex-
periments.
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To show the low-rank structure of the DtN matrix, we plot in Figure 3 differ-
ent levels of \scrH -matrix partitioning. At each level of partitioning, we also plot the
approximate rank of each block. The rank is evaluated as the number of singular
values above \epsilon = 10 - 6. As can be seen uniformly across all refinement levels, the
approximate rank of all off-diagonal blocks is smaller than 5. We also plot a typical
off-diagonal DtN matrix block and its rank structure, shown in Figure 4. It is clear
that these blocks are ALR.

To verify the conditions, including the decoherent and delocalization conditions,
we plot the coherence indices and the maximum absolute values defined in (2.14)
for blocks a and b. These are shown in Figure 5(a). It is clear that as \ell increases,
the coherence index stays stable for block a and only increases slightly for block b,
saturating at a relatively small number quickly. The maximum value in the matrix
entry evaluation decreases quickly for both matrix blocks, shown in Figure 5(b). This
evidence suggests that employing the matrix completion algorithm on off-diagonal
blocks will provide satisfying results.

(a) nh = 64 (b) nh = 128

(c) nh = 256 (d) nh = 512

Fig. 3. Partition of the DtN map using different levels of refinements: the blocks are colored
with their \epsilon -ranks (for \epsilon = 10 - 6).
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(a) block of DtN map (b) eigenvalues

Fig. 4. Plot of a typical off-diagonal block of the DtN map, where the colors correspond to the
value of each entry. The singular value of the block decays extremely fast.

(a) coherence (b) max val \sansU \cdot \sansV \ast 

Fig. 5. Coherence index and maximum absolute value of \sansU \cdot \sansV \ast for blocks a and b at different
levels of refinement in the discretization.

Finally we reconstruct the DtN matrix according to Algorithm 2.1. Since the
reconstruction is performed for each block separately, we take the reconstruction of
block a as an example. At each level of the refinement, we select entries from block a
according to the Bernoulli distribution with parameter p. We then take the values of
these entries as the given data to solve the matrix completion optimization problem
(2.13). In Figure 6 we plot the original block, the location of the selected entries,
and the reconstruction. Clearly, with p = 0.1, only ten percent of the data given, we
already construct this block with high accuracy.

To quantitatively evaluate the performance of the algorithm, for each predeter-
mined p and refinement level \ell , we perform the selection and reconstruction process
50 times and document the success ratio as a function of p and \ell . A successful run
is defined as a run where the reconstructed block is within 10 - 4 relative error of the
groundtruth in Frobenius norm. In Figure 7 we plot the success ratio of reconstructing
block a. For low refinement level with coarse discretization, the DtN blocks have small
sizes, and the matrix completion algorithm requires a higher percentage of known data
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(a) original block (b) mask (c) reconstruction

Fig. 6. Reconstruction of block a in the DtN map with p = 0.1, meaning the down-sampling
rate is 10\%.

Fig. 7. Success ratio for the reconstruction of block a at different refinements and different
density of the sampling mask where p \sim m/n2

a and m is the number of sampling points. In the plot
the color encodes the success ratio, with a lighter color indicating a higher success ratio.

for a high success probability of the reconstruction. On refined meshes with bigger \ell ,
small p is sufficient for an accurate reconstruction with high probability. For example,
for a matrix of size 512, only up to 5\% of the entries are needed to reconstruct the
block with a high probability.

4.2. Reconstruction of the media. To solve the minimization problem (2.15),
we use the L-BFGS-B method [12] with a constant initial guess.2 In order to avoid
the inverse crime, we use a different mesh for the forward and adjoint problem in
the optimization loop, but we keep that same elements touching the boundary.3 We
terminate the optimization process once the gradient norm is less than 10 - 9 or the
number of iterations exceeds 10, 000. In Figure 8 we plot the groundtruth impedance
\sansa , and in Figure 9(a) we plot the reconstructed medium with the exact DtN matrix
\Lambda h
\sansa . This will be regarded as our reference solution. We note that there is still some

error between the reference solution and the exact medium. This is not surprising
as the unique reconstruction of the medium is guaranteed only in the noiseless case
in the infinite data limit. While we cannot remove the discretization error and only

2In order to regularize the problem, we have a lower bound in the reconstruction to help smooth
the oscillations. This seemed to provide better results than using vanilla quasi-Newton methods.

3This simplification allows us to avoid interpolating the data at the boundary.
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Fig. 8. Exact impedance to be reconstructed.

have the full DtN matrix instead of the DtN map, the reconstruction is bound to
show some difference from the groundtruth. Such error can be gradually removed as
one refines the mesh to remove the error. Nevertheless, this reconstruction with the
exact DtN matrix provides a benchmark, as it is the best possible reconstruction in
the current computational framework.

To demonstrate the better performance of the proposed subsampling strategy, we
implemented different subsampling strategies and run the same optimization process
for reconstructing the medium. In Figure 10 we plot the masks used to subsample the
full DtN matrix \Lambda h

\sansa with four different strategies, and in Figure 9 we compare their
reconstructions of the medium. It is obvious that the reconstructed medium using the
completed \~\Lambda h

\sansa agrees well with the reference solution, while all other reconstructions
fail to capture the medium.

4.3. Optical tomography. We have used the EIT problem to show that data
completion can not only bridge the gap between theoretical and computational inverse
problems but also help improve computational inverse solutions. While the former
depends on the available theories of the inverse problem under consideration, the
latter is expected to be valid for all problems. To demonstrate that data completion is
also possible for other problems with \scrH -matrix structure, we now consider an optical
tomography problem, where the radiative transfer equation serves as the forward
model and its scattering coefficient---the unknown parameter---reflects the optical
property of the media. More specifically, let f(x, v) present the density of photon
particles at location x moving in direction v; then the radiative transfer equation
characterizes the dynamics of this distribution function, and in steady state it reads

v\nabla f =
1

\sansK \sansn 
\sigma s(x)

\biggl[ \int 
v\prime 
fdv\prime  - f

\biggr] 
.

Here the left-hand side describes the particles moving in direction x with velocity v,
and the term on the right suggests the scattering with the intensity characterized by
\sigma s. \sansK \sansn is called the Knudsen number. The ``inflow"" part of the boundary

\Gamma  - = \{ (x, v) : x \in \partial \scrD , v \cdot nx < 0\} 
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(a) Reconstruction with \Lambda h
\sansa (b) Reconstruction with \~\Lambda h

\sansa 

(c) Reconstruction with \Lambda h
\sansa 

\bigm| \bigm| 
\Omega 

(d) Reconstruction with \Lambda h
\sansa 

\bigm| \bigm| 
\Omega 

(e) Reconstruction with \Lambda h
\sansa 

\bigm| \bigm| 
\Omega 

(f) Reconstruction with \Lambda h
\sansa 

\bigm| \bigm| 
\Omega 

Fig. 9. Reconstructed impedance. In (a) and (b) we show the reference reconstruction and
the reconstruction using the DtN matrix \~\Lambda h

\sansa completed from a subsampled DtN matrix \Lambda h
\sansa 

\bigm| \bigm| 
\Omega 
, where

entries are drawn according to the mask from Figure 10(a). Subplots (a)--(b), respectively, show
the reconstruction from the direct optimization using the subsampled DtN matrix whose entries are
drawn according to the four masks shown in Figure 10.
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(a) Rank sampling (b) Uniform sampling

(c) Uniform sampling of columns (d) Uniform sampling of rows and columns

Fig. 10. Masks used to subsample the full (exact) DtN matrix \Lambda h
\sansa . Each blue dot corresponds

to a sampled entry, whereas the white color corresponds to locations of the entries not being selected.
In all the sampling configurations we extract 20\% of the total data in the matrix.

is where lights are shined into the media, and one takes measurement on the ``outflow""
part of the boundary

\Gamma + = \{ (x, v) : x \in \partial \scrD , v \cdot nx > 0\} .

The map that directs incoming data to the outgoing data is known as the albedo
operator and is used to reconstruct \sigma s.

Figure 11(a) plots the albedo matrix (discretized albedo operator), along with
its eigenvalues in Figure 11(b) in the diffusion regime \sansK \sansn \ll 1. It is clear that the
operator is ALR. In this case, one would be able to approximate the full operator by
solving the optimization problem in (2.13).

In the ballistic regime, \sansK \sansn \sim 1, then the albedo matrix, plotted in Figure 12(a),
is no longer of low rank. However, it is approximately an \scrH -matrix. A partition of
the albedo matrix is shown in Figure 12(b), and we plot the \epsilon -rank (with \epsilon = 10 - 6)
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(a) Albedo matrix (b) Eigenvalues of the albedo matrix

Fig. 11. Panel (a) colors the albedo matrix in the diffusive regime when \sansK \sansn = 2 - 5 with the
values of its entries. Panel (b) plots eigenvalues of the albedo matrix.

(a) Albedo operator (b) Partitioning (c) Ranks

Fig. 12. From left to right, plot of the albedo matrix for \sansK \sansn = 1, partitioning of the albedo
matrix, and the \epsilon -rank of each block in the partition. Here each block is colored with its \epsilon -rank.

for all the blocks in Figure 12(c). As can be seen, the \epsilon -rank is uniformly bounded by
5 in each block. Analogous to the DtN matrix, we present the reconstruction of one
typical off-diagonal block in this albedo matrix. For the block shown in Figure 12(b),
we select data according to the Bernoulli distribution with parameter p, and the
selected entries serve as given data in the matrix completion algorithm. Figure 13
plots the success ratio, computed with 20 experiments for each p and refinement level.
Here success means the reconstructed matrix is within 10 - 4 error in Frobenius norm
of the groundtruth. It is clear that the chance of successful reconstruction increases
as the dimension of the matrix increases, as predicted by the theory. We leave the
detailed bridging-the-gap analysis and parameter reconstructions for future work.

5. Conclusions. There is a gap between theoretical and numerical approaches
for inverse problems. While in theory, infinite-dimensional datasets, encoded in the
ItO map, are available to infer a function living in infinite-dimensional space, in the
numerical and experimental settings, both the available data and the reconstructed
parameter are finite-dimensional. This mismatch prevents the application of the the-
ory in guiding and improving practical computational inverse solutions: In very rare
cases can one assert the unique and stable reconstruction of discretized parameters.

We have presented a framework to bridge this gap using data completion with the
EIT problem as the testbed. In particular, we view finitely experimental data points
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Fig. 13. Success ratio for the reconstruction of block a in Figure 12(b) of the albedo matrix
with \sansK \sansn = 1 at different refinement level and different value of p. In the plot the color encodes the
success ratio.

as entries in the ItO (DtN) matrix. Since the DtN matrix has the \scrH -matrix structure,
we exploit the off-diagonally approximately low-rank property and the matrix com-
pletion technique to informatively collect mostly random data points in the matrix,
and we fill in the unknown entries with a matrix completion method. The goal of
matrix completion is twofold: (I) bridging the gap and (II) improving the quality of
computational inverse solutions. For (I), the DtN map is rigorously recovered by lift-
ing the completed DtN matrix, up to discretization error with high probability. This
allows us to apply the inverse theory to asymptotically show the unique and stable re-
construction of parameters. For (II) we have numerically demonstrated that---unlike
traditional computational inverse problems that use the incomplete DtN matrix---we
deploy the completed DtN matrix to reconstruct the unknown parameters. The nu-
merical results have shown that the reconstructions using the completed DtN matrix
and the exact DtN matrix are visibly identical, while the reconstruction directly from
incomplete DtN matrix is completely off.

We emphasize that the goal of the current paper is to propose a general framework
to bridge and improve theoretical and computational inverse problems. For a thorough
error analysis, we need a more precise estimate of the decay of the singular values in
each block of the ItO matrix. This highly depends on the specific equation encoded
in the forward map. This part of error analysis is not yet available in its most precise
form in the literature and thus is left for future work.

Appendix A. Proof of Theorem 3.7. Let us define \~\Phi as the unique solution
of the following problem:

(A.1)

\int 
\Omega 

\sansa \nabla \~\Phi \cdot \nabla v d\Omega = 0 \~\Phi 
\bigm| \bigm| \bigm| 
\partial \Omega 

= \phi h \forall v \in H1
0 (\Omega )

where again \phi h = \Pi h\phi . Let us denote \Lambda \dagger 
\sansa via

(A.2)
\bigl\langle 
\Lambda \dagger 
\sansa \phi , \psi 

\bigr\rangle 
:=

\int 
\Omega 

\sansa \nabla \~\Phi \cdot \nabla \Psi d\Omega ,

where \Psi \in H1 (\Omega ) can be any extension of \psi such that \Psi | \partial \Omega = \psi .
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Lemma A.1. There holds

(A.3)
\bigm\| \bigm\| \Lambda a  - \Lambda \dagger 

\sansa 

\bigm\| \bigm\| 
H1/2(\partial \Omega )\rightarrow H - 1/2(\partial \Omega )

\leq c
\bigm\| \bigm\| I - \Pi h

\bigm\| \bigm\| 
H1/2(\partial \Omega )\rightarrow H1/2(\partial \Omega )

,

where I is the identity map and c is a constant independent of the mesh size h.

Proof. By definition we have\bigm| \bigm| \langle \Lambda a\phi , \psi \rangle  - 
\bigl\langle 
\Lambda \dagger 
\sansa \phi , \psi 

\bigr\rangle \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\sansa \nabla 
\Bigl( 
\Phi  - \~\Phi 

\Bigr) 
\cdot \nabla \Psi d\Omega 

\bigm| \bigm| \bigm| \bigm| 
\leq c \| \psi \| H1/2(\partial \Omega )

\bigm\| \bigm\| \bigm\| \nabla \Bigl( \Phi  - \~\Phi 
\Bigr) \bigm\| \bigm\| \bigm\| 

L2(\Omega )

\leq c \| \psi \| H1/2(\partial \Omega ) \| \phi \| H1/2(\partial \Omega )

\bigm\| \bigm\| I - \Pi h
\bigm\| \bigm\| 
H1/2(\partial \Omega )\rightarrow H1/2(\partial \Omega )

,

where we have used the uniform boundedness of \sansa and definition (A.1). The estimate
(A.3) thus follows.

Let Ph : H1 (\Omega ) \ni \~\Phi \mapsto \rightarrow Ph \~\Phi \in V h
\phi h (\Omega ), where V

h
\phi h := \{ v \in V h (\Omega ) : v| \partial \Omega = \phi h\} ,

be defined as \int 
\Omega 

a\nabla Ph \~\Phi \cdot \nabla vh d\Omega =

\int 
\Omega 

a\nabla \~\Phi \cdot \nabla vh d\Omega \forall vh \in V h
0 .

Note that Ph is a well-defined linear bounded map and \Phi h = Ph \~\Phi , where \Phi h is the
FE solution.

Lemma A.2. There holds\bigm\| \bigm\| \bigm\| \Lambda \dagger 
\sansa  - \^\Lambda \sansa 

\bigm\| \bigm\| \bigm\| 
H1/2(\partial \Omega )\rightarrow H - 1/2(\partial \Omega )

\leq c
\bigm\| \bigm\| I - Ph

\bigm\| \bigm\| 
H1(\Omega )\rightarrow H1(\Omega )

+ c
\bigm\| \bigm\| I - \Pi h

\bigm\| \bigm\| 
H1/2(\partial \Omega )\rightarrow H1/2(\partial \Omega )

,

where I is the identity map and c is a constant independent of the mesh size h.

Proof. We have\bigm| \bigm| \bigm| \Bigl\langle \Lambda \dagger 
\sansa  - \^\Lambda \sansa \phi , \psi 

\Bigr\rangle \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \bigm| \int 

\Omega 

\sansa \nabla 
\Bigl( 
\~\Phi  - Ph \~\Phi 

\Bigr) 
\cdot \nabla \Psi d\Omega 

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\sansa \nabla Ph \~\Phi \cdot \nabla 
\bigl( 
\Psi  - \Psi h

\bigr) 
d\Omega 

\bigm| \bigm| \bigm| \bigm| 
\leq c \| \psi \| H1/2(\partial \Omega ) \| \phi \| H1/2(\partial \Omega )

\bigm\| \bigm\| I - Ph
\bigm\| \bigm\| 
H1(\Omega )\rightarrow H1(\Omega )

+ c \| \phi \| H1/2(\partial \Omega )

\biggl( \bigm\| \bigm\| \bigm\| \Psi  - \~\Psi 
\bigm\| \bigm\| \bigm\| 
H1(\Omega )

+
\bigm\| \bigm\| \bigm\| \~\Psi  - Ph \~\Psi 

\bigm\| \bigm\| \bigm\| 
H1(\Omega )

\biggr) 
\leq c \| \psi \| H1/2(\partial \Omega ) \| \phi \| H1/2(\partial \Omega )

\Bigl( \bigm\| \bigm\| I - Ph
\bigm\| \bigm\| 
H1(\Omega )\rightarrow H1(\Omega )

+
\bigm\| \bigm\| I - \Pi h

\bigm\| \bigm\| 
H1/2(\partial \Omega )\rightarrow H1/2(\partial \Omega )

\Bigr) 
,

where we have defined \~\Psi as the solution (A.1) with boundary data \Pi h\psi and taken
\Psi h = Ph \~\Psi .

Proof of Theorem 3.7. We provide the proof of the first assertion, as the others
are obvious owing to (3.2) and the triangle inequality. From Lemmas A.1--A.2 and
the triangle inequality we need to show that

lim
h\rightarrow 0

\bigm\| \bigm\| I - Ph
\bigm\| \bigm\| 
H1(\Omega )\rightarrow H1(\Omega )

= 0 and lim
h\rightarrow 0

\bigm\| \bigm\| I - \Pi h
\bigm\| \bigm\| 
H1/2(\partial \Omega )\rightarrow H1/2(\partial \Omega )

= 0.
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It is sufficient to prove the former, as the proof for the latter is similar. By definition
we have\bigm\| \bigm\| I - Ph

\bigm\| \bigm\| 
H1(\Omega )\rightarrow H1(\Omega )

= sup
\| \Psi \| H1(\Omega )\leq 1

sup
\| \Phi \| H1(\Omega )\leq 1

\bigl\langle \bigl( 
I - Ph

\bigr) 
\Psi ,\Phi 

\bigr\rangle 
H1(\Omega )

=
\bigl\langle \bigl( 
I - Ph

\bigr) 
\Psi \ast ,\Phi \ast \bigr\rangle 

H1(\Omega )
,

where \langle \cdot , \cdot \rangle H1(\Omega ) denotes the inner product in H1 (\Omega ) and we have used the fact that

the suprema are attainable [29, 30] at some \Psi \ast and \Phi \ast . The density of the FE space
V h (\Omega ) in H1 (\Omega ) as h\rightarrow 0 concludes the proof of the first assertion.
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