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ABSTRACT. The classical Langevin Monte Carlo method looks for samples from
a target distribution by descending the samples along the gradient of the target
distribution. The method enjoys a fast convergence rate. However, the numer-
ical cost is sometimes high because each iteration requires the computation of
a gradient. One approach to eliminate the gradient computation is to employ
the concept of “ensemble.” A large number of particles are evolved together
so the neighboring particles provide gradient information to each other. In
this article, we discuss two algorithms that integrate the ensemble feature into
LMC, and the associated properties.

In particular, we find that if one directly surrogates the gradient using
the ensemble approximation, the algorithm, termed Ensemble Langevin Monte
Carlo, is unstable due to a high variance term. If the gradients are replaced by
the ensemble approximations only in a constrained manner, to protect from the
unstable points, the algorithm, termed Constrained Ensemble Langevin Monte
Carlo, resembles the classical LMC up to an ensemble error but removes most
of the gradient computation.

1. Introduction. Bayesian sampling is one of the core problems in Bayesian in-
ference. It has a wide applications in data assimilation and inverse problems [34, 1]
that arise in remote sensing and imaging [24], atmospheric science and earth sci-
ence [17], petroleum engineering [28, 30] and epidemiology [25]. The goal is to
find i.i.d. samples or approximately i.i.d. samples from a probability distribution
that encodes the information of an unknown parameter. Throughout the paper we
denote
px) e @ g eR? (1)
the distribution function of the unknown parameter z, and we assume that V f(z) is
L-smooth, meaning V f is Lipschitz continuous with L being its Lipschitz constant:
VFy) - V@) < L]z -yl
There are many successful sampling algorithms [31, 2, 11, 32]. One class
of classical sampling approach is the celebrated Markov chain Monte Carlo
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(MCMC) [32, 35, 21, 12, 20]. This is a class of methods that sets the target distribu-
tion as the invariant measure of the Markov transition kernel, so after many rounds
of iteration, the sample can be viewed to be drawn from the invariant measure.
Since there are many ways to design the Markov chain, there are many subcate-
gories of MCMC methods. Among them, the Langevin Monte Carlo (LMC) stands
out for its simplicity, and fast convergence rate.

The key idea of LMC is to design a stochastic differential equation, whose long
time equilibrium coincides with the target distribution. The samples are then
drawn by following the trajectory of the (discretized) SDE. Typically the SDE
converges exponentially fast, and thus the probability distribution of LMC sam-
ples, viewed as the discrete version of the SDE, also converges to the target dis-
tribution exponentially fast, up to a discretization error. The non-asymptotic con-
vergence rate for these methods and their variations was recently made rigorous
in [4, 5, 14, 13, 15, 39, 9] for log-concave probability distribution functions (or
equivalently, for convex f(x)).

One key drawback of LMC is that it requires the frequent calculation of the
gradients. For each sample, at each iteration, one needs to compute at least one full
gradient. For a problem in R, this is a calculation of d partial derivatives per sample
per iteration, and in the case when d > 1, the cost is rather high. Therefore, in the
most practical setting, one looks for substitutes of LMC that achieve “gradient-free”
property so that the number of partial derivative computation is relaxed [10, 39].

Another sampling strategy that is completely parallel to the MCMC method
is the ensemble type method. Unlike MCMC, or LMC in particular, ensemble
methods evolve a large number of samples altogether, and these samples interplay
with each other. A Fokker-Planck type PDE is formulated to drive an arbitrarily
given distribution toward the target distribution, and the ensemble methods can
be viewed as the particle methods applied to numerically evolve the PDE, with the
ensemble distribution of the samples approximating the solution of the PDE. Two
famous ensemble methods are Ensemble Kalman Inversion [23, 38] and Ensemble
Kalman Sampling [18, 33, 19]. Earlier works are found in [34, 16, 29]. See also the
numerical analysis and other follow up works in [7, 8, 22, 41].

The main drawbacks of ensemble methods are also obvious: The algorithms sur-
rogate the statistical quantities with the ensemble version, introducing new compu-
tational cost and some ensemble error. Numerical analysis essentially needs to trace
the propagation of such ensemble error, and is typically very involved. There is,
however, one factor of ensemble methods that can potentially bring a great benefit:
Since a lot of samples are evolved together on R?, it is easy to imagine that close
neighbors of each sample can already approximately provide the gradient informa-
tion. This may make gradient-free computation possible. Indeed, suppose one has
a large number of particles, sampled from a certain probability distribution, in a
small neighborhood of a sample z*, then taking the average of the finite differences
between these particles can give a rather good estimate to the gradient V f(z*) to be
used in LMC. This idea was already explored in EKS, where the authors inserted
a variance term in the underlying SDE of LMC, and by combining the gradient
term with the variance term, they formed a covariance that requires no gradient
computation. However, such strategy holds true either if the forward map is linear,
or the samples are all controllably close to each other. It is hard to justify either
in real practice. Nevertheless, such exploration sets a stepping stone for designing
gradient-free methods under the ensemble framework.
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To summarize, the non-asymptotic convergence rate of LMC is thoroughly stud-
ied for a large class of nonlinear f(z), while the validity of ensemble methods are
generally lacking. On the other hand, LMC requires the computation of gradients,
but the strategy of evolving a large number of samples as is done in the ensemble
methods can potentially eliminate the gradient computation.

It is thus natural to ask if it is possible to bring together the two approaches
for a new method that may inherit the advantages of both. To be specific, we
look for an algorithm that requires as few gradient calculations as possible, while
being able to sample (almost) exponentially fast in time. One attempt of breeding
the two methods was taken in [41] where the authors added another layer of LMC
into EnKF and designed the so-called Langevined EnKF. For linear f(x) they can
show the consistency, and in the nonlinear case, gradients are nevertheless needed.
Therefore the advantage of removing the gradient computation using the concept of
ensemble is lost. We look for the possibility of replacing gradients using the neighbor
information whenever possible, and have a very different goal in this paper.

As such, we provide two sides of the answer:

o We first study the most straightforward approach. This is to sample a large
number of particles altogether and in each iteration for the updates, we replace
every gradient in LMC by the ensemble approximation. We term this method
Ensemble LMC (EnLMC). This algorithm, despite being intuitive, will be
shown to be unstable. Indeed, at the “outskirts” of p(x), the accuracy of the
updates very sensitively depend on the gradient, and the error induced by
the surrogate can be significantly enlarged. This instability suggests that the
replacement should not be enacted in these regions.

o We therefore propose an alternative, termed Constrained Ensemble LMC
(CEnLMC). The constrained version of EnLMC enacts the ensemble approx-
imation to the gradient only in the stable region, and for samples in the
unstable region, we directly compute Vf. We can show that this method
provides samples that are close to LMC samples, and thus converges to the
target distribution at the same rate (exponential, up to a controllable error
term). Furthermore, we present how the parameters in the constraints de-
termine the stability of the algorithm and the chance of enacting ensemble
approximations.

We stress that the method CEnLMC is not completely “gradient-free” since it
enacts ensemble approximation to replace the gradient computation only in the
“stable” regions. However, the study conducted here presents an understanding on
how to fuse the concepts of ensemble methods and LMC. While the new method
provides a possibility to reduce the gradient computation, it also embraces the fast
convergence that can be achieved by LMC for nonlinear f.

We also mention that there are many means for approximating the gradients.
We cannot claim the optimality of the ensemble approximation used in this article.
It is highly possible that one can replace the gradients in LMC using other methods
that explore information from neighboring ensemble samples in a more efficient
way (see Appendix B for a negative example). This line of research requires a more
detailed study on multiple choices of ensemble approximation and is beyond the
scope of the current paper. The current result is one of the pioneering attempts to
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integrate ensemble features to LMC, and shed light on inventing algorithms that
both converge fast and are gradient-free.

Lastly, we mention that in some communities (optimization for example), the
algorithms that avoid or use gradients are termed zero-th order and first order
methods. Similarly methods that use hessian information are of second order. The
method we propose in this article can be viewed in between zero-th and first, since
it eliminates a large portion of gradient calculations. Compared to zero-th order
method, the advantages are obvious. All zero-th order methods converge slowly.
One such example is the random walk Metropolis (RWM) that converges in O(d?)
iterations [15]. On the contrary, LMC converges in O(d) [5], or sometimes O(d'/?)
iterations when f is sufficiently smooth [26]. Our method matches the convergence
rate as the classical LMC, but eliminates gradients, meaning it achieves the first
order convergence with a zero-th order cost.

The paper is organized as follows. In Section 2, we review two main ingredients
of our methods: the classical LMC, and the ensemble gradient approximation. In
Section 3, we propose the two new methods and discuss the properties. More specif-
ically, we will show the brute-force combination of LMC and the ensemble gradient
approximation will lead to an unstable algorithm (EnLMC), but the constrained
version (CEnLMC) recovers the target distribution with a high numerical saving.
We show two numerical examples to demonstrate the saving and the accuracy in
Section 4. The proof is given in Section 5.

2. Two main ingredients. The main ingredients of our method are the classical
Langevin Monte Carlo and an ensemble approximation to the gradient. We review
them in this section.

2.1. Langevin Monte Carlo (LMC). LMC is a very popular MCMC type sam-
pling method. Under mild conditions, it provides fast convergence: after a few
rounds of iterations, samples can be viewed approximately drawn from the target
distribution.

The classical LMC starts with a sample, denoted as z°, and updates the sample
position according to:

2™ = 2™ =V f(2™)h + V2hET (2)

where h is the time stepsize, and £J* is drawn i.i.d. from N(0, ), and I; denotes
the identity matrix of size d x d. For a fixed small h, as m — oo, it is expected that
q"™, the probability distribution of ™, gets close to p, the target distribution.

To intuitively understand the convergence of this algorithm, we can view the
updating formula as the Euler-Maruyama discretization for the following SDE:

dX, = —Vf(X,)dt + V2dB;, (3)

where B, is a d-dimensional Brownian motion. The SDE characterizes the trajec-
tory of X; by the forcing term Vf(X)dt and the random walk dB;. While Vf
drives X; to the minimum of f, the Brownian motion term introduces the fluctua-
tion. Denote ¢°(x) the initial distribution from where X is drawn, and g(z,t) the
probability density function of Xy, then it is a well-known result that g(z,t) satisfies
the following Fokker-Planck equation:

dq=V-(Vfg+Vq), with q(z,0)=¢". (4)
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It was shown in [27] that g(w,t) converges to the target density function p(x) o e=f
exponentially fast in time, meaning:

Jim Xo ).

Considering that the updating formula for LMC (2) is merely a discretization
of (3), then ™ =~ X,,,, and thus for large enough m, ¢™, the distribution of
2™, should also be close to p. This is made rigorous recently in a number of pa-
pers [4, 5, 14, 13], most of which quantize the difference between ¢ and p using the
Wasserstein distance. To be more specific, it was shown in [5, 13] that for strongly-
convex, gradient-Lipschitz f, to achieve € accuracy in Wasserstein Lo distance, the
number of iteration needs to be m > O(d/e?). Here the notation O hides a log
factor.

We should note, however, that in each iteration of LMC, one local gradient
needs to be computed, and this is equivalent to a calculation of d partial derivatives
per iteration. This essentially means a cost of O(d?/e?) is needed for one good
sample. For a problem with high dimensionality d > 1, the cost is prohibitive. It
would be desirable to combine this method with strategies that eliminate gradient
computation for a gradient-free fast-converging sampling method.

2.2. Ensemble mean gradient approximation. Ensemble sampling methods
have been gaining ground in recent years. The idea is to evolve a large number of
samples altogether so that samples could provide information to each other. In par-
ticular, if two samples are close to each other, the finite difference roughly provides
approximate gradient information. There are various choices of using neighbors to
find approximated gradients. We look for a probability ensemble in this article.
Suppose we look for an approximate gradient of f at x* € R? using its neighbors
that are within 7 distance, and assume the neighbor x is drawn from an arbitrary
probability density function g(z), independent of x*, then call

7 %) = o (Vf(x*),zfxﬂ 1‘$*$*‘§77 r—x*
qu( )_ d |{,13—£L'*|2 q(m) ( )v (5)

where ay is the normalization constant:
d d2 n dS
Qi = =g, Where V:/ 1dx:/ rd1Sdr = U . (6)
V. S jo—a*|<n 0 d

with Sy being the volume of unit d-sphere, we can formulate an ensemble gradient
approximation:

V") = Ey (dygla) - (7)
The formula (7) is valid merely because:
o d (z —a")® (z —a”) "
vy =g [ B v
(= o) @ (@ - a") .
= dz -
ad/IZ*<n |(E_.T*‘2 € vf(l‘ )
v * T — *\ 1 R .
= ad/Rd < fl(;j_);Q )4 q(gg)lgn(:z:fa: Vq(z) dz

0, (<Vf(x*), T — ") La—ar|<n (@ — 95*)) .

|z —z*]? q(z)
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One key idea of the ensemble gradient approximation is to realize that the term
in d, 4 can be approximated when 7 is small, namely:

(V@) z—a") = f(z) — flz").
Replace the (Vf,z — z*) term in qu by the finite difference term, and define
fx_fm* ]-rc—x*< «
() ( ) | |_71(x_x)7 (8)

lz—2* > q(x)
then the gradient V f(2*) has a finite difference approximation, replacing (7):
f(x) = f(@") La—ari<n
Vi(*) = Eq(dyq(z*)) =E <ad —(r—a") ) . 9
( ) q( 77(1( )) q |l‘—$*|2 q(x) ( ) ( )
We can further justify the error in this approximation. Suppose V f is Lipschitz
continuous, then

[f(z) = f(a") = (Vf(@"), 2 —a")| < L|z — 2™]* < L, (10)

we have:
VF(2") = Eq(dy.q(a™))]
<E, (|dn.a(@") = dra(a")])
— e <Vf($*)7x _ Z’*> ]-Ia:—oc*\gn xr — x* — adf(x) - f(.T*) 1\w—x*|§n
=Fa ( e g &) T @)

&, (Jo L2269 - I e Do, )

|z —z*[? q(x)

(2 —a")

)

1\zfz*|<n *
<E agl———=(z —x
- q( (@) ( )

> < Lnd.

(11)
This formula suggests the approximation is first order in 7, and the smallness of n
needs to dominate the largeness in d.

Remark 1. We also stress that the derivation is valid only if the neighbors are
distributed according to ¢(z), a known distribution, and that this g(x) needs to be
independent of x*.

Suppose in reality, we have N independent particles around z*, denoted as
{z; };V:p sampled from g;(x) respectively, then the ensemble gradient approximation
formula is further reduced to:

N
1 < flz))
V") = ag— J
e =y S0

(@) Lja;—ax|<n
o2 gi(y)

(xj — 7). (12)
We note that ¢;(z) do not have to be the same.

3. Algorithms and properties. We propose our new methods in this section.
The strategy is to sample a large number of particles according to LMC (2), and
replace the gradients in LMC using the ensemble gradient approximation (12). Then
immediately the samples are no longer i.i.d. but they share the same marginal
distribution.

We discuss in Section 3.1 the straightforward combination of the two. We term
the method the Ensemble LMC (EnLMC). However, we will find the algorithm is
rather unstable due to the gradient approximation in the unstable regions. This
suggests us to enact the ensemble gradient approximation only in a constrained
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manner. The new algorithm, termed the Constrained Ensemble LMC (CEnLMC),
will be discussed in Section 3.2, in which we provide a number of constraints, and
enact the ensemble gradient approximation only when these constraints are satisfied.
The intuition of how these constraints are formulated will also be discussed. The
theoretical results will also be summarized in Section 3.3.

3.1. Ensemble LMC, a direct combination. We now study the direct combi-
nation of LMC and the ensemble gradient approximation. Denote {z™}Y | the N
samples at the m-th step iteration, then following the LMC formula, we would like
to write Ensemble LMC (EnLMC) in the form of:

2 o~ WE 4 VR (13)
with the force Fj™ = 5 > F{" approximating V f(]"). Here FJ}' stands for the
contribution of 2" towards calculating V f(z7").

Denote F™~ ! =¢ (x;f]\';_l) the filtration, and p}* the marginal distribution of
2" conditioned on F™~1 we can replace z* and ¢(x) by 2" and p;*(x) respectively

J
in (5) to define:

(VIar) oy — o) oy —or »
= a2 pp e

where p7* = p'(2") and aq is defined in (6). Then, we still have (7) holds true,

meaning, for all j # 4,

Vi) =Epm(G)) =E (G| F™ " al) . (15)
Recall the definition of d,, 4 in (8), we define

mo__
Gl-j—ad

FIr :ad|;5§25§§15z$|<n, with {gzz ii;xgj)x;f(x?), (16)
i J i J i
and thus, citing (11), we have
E (|G — || F™ 1 a) < Lnd. (17)
Summing up contribution from all j # i, we approximate V f(z]") by:
my  m __ 1 Y m
Vf(ﬂfi )~ F" = N_-1 por Fij . (18)

We note that according to (13), pj* = pJ*(z}"

, we need :cgn_l, ij_l and a random variable fjm_l.

) can be explicitly calculated.
m—l
J

Realizing that when conditioned on F™~!, both x;-”*l and F ;”71 are determined,

Indeed to update z7" from z

and the only randomness comes from the Gaussian variable 5;”71, meaning 7" is
merely a Gaussian variable as well when conditioned on F™~1:

e |Fh ~ N2~ = hE" 1 200)

or in other words:

m 1 m— m—
pj'(w) = Wexp (—|z — (2] - hF] Y [?/(4R)) . (19)
Plugging in the definition of 7", we can compute pj" explicitly:
1 .
pyt=———exp (—[¢"?/2) . (20)

(47h)d/2
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Remark 2. This is to resonate the discussion in Remark 1. In the derivation above
we used the conditional distribution, conditioned on F™~!. If one uses (12) in a
brute-force manner, including all randomness, then we arrive at

Sff Lisemi<n

Fij = oursai b only
e ey

where p™ is the true distribution of z7* without the conditioning. However, this
definition of F]" cannot be used in the ensemble approximation: The zi" and z7"
are not independent to each other and thus the ensemble E, (F]') may not recover
V f(2"). More importantly, p™(x) is unknown in practice, making the calculation
impossible.

We plug (20) into (18) and run (13) for the update. The method is termed
Ensemble Langevin Monte Carlo (EnLMC), as presented in Algorithm 1.

Algorithm 1 Ensemble Langevin Monte Carlo (EnLMC)

Preparation:
1. Input: h (time stepsize); N (particle number); n (parameter); d (dimension);
M (stopping index); ayq (6); f(x).
2. Initial: {x?}il i.i.d. sampled from an initial distribution induced by ¢°(x).
Run: Form=0,1,--- M

Fori=1,2,--- N

— Define
F" = N1 ZF” , with FI'=ay G dxy (21)
i & )
where ¢ /7 and dz}} are defined in (16).
— Draw &M from N (0, 1);
— Update
"t = 2™ — hE™ + V2her
1 . (22)
m+1 __ _|em|2
pi - (47Th)d/2 exp( |§L | /2)
end
end
Output: {zM}N .

The design of this algorithm follows straightforwardly from intuition: One re-
places the gradient in LMC by the ensemble approximation using the neighbors’
information. Since the difference between the true gradient and the ensemble ap-
proximation shrinks to zero as 7, the neighboring range vanishes, one may incline
to conclude that this method would converge also, as long as 7 is small enough.

However, this is not true. This ensemble surrogate of the gradient induces strong
instability to the algorithm. Indeed, {J" is a Gaussian variable, and for every fixed
€, there is non-trivial probability that makes p;”(xyl) < €, which blows up the force
term (21). We explicitly show this instability using the following example with
d=1and f(r) =x2/2:
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Theorem 3.1. Assume {IT}ZI\LI are generated from Algorithm 1, then for d = 1
and f(x) = 2%/2, we have: for anym >0, 1 <i< N
Elzl"|* = . (23)
This negative example suggests that directly replacing the gradient by the en-
semble approximation leads to an unstable method.

We leave the proof to Section 5.1, but quickly discuss the intuition of the proof
here. Indeed, to compute the variance of ™! term: I['E|asm'~'1|2 it is necessary to

compute the variance of the force term E <| | ) The trajectory of {z;}}¥ , is hard
to trace, but one can nevertheless compute the conditional variance, conditioned on
Fm—l
E(|F )| F) /|FJ| P () da da (24)
where pI* are the conditional probability distribution given F™~1.
Noting that according to the definition of Fj}* in (21), for f(x) = |z[?/2, we have:

1 (@ +a) (@] — 2f") Ljsarm i<y (@ + 27") Lsar|<n

e (2" —a") = . (25
Y 2\1‘;” —z|? p;"(x;”) J ¢ 2n p;”(x;”) (25)
At the same time, denoting w]® = 7"~ — hE™" ' the deterministic part of the

update for x7*, we know that, for all i:

m _

m|2
' —wft = V2R~ N(0.2h) = pW?“):exp(‘W)' 20

Plugging (25) and (26) into (24), we have:

E(|F )
R I o el el L (2)
:/ / J 5 exp d d da}* dz” .
R Bn(I;") 4:77 4:h/

Since the pi* term is in the denominator in (25), and when one takes the variance,
this term gets squared. In the end this exponential term from z!" appears in a
positive manner in (27). This already suggests the blowing up of this variance
term. A more careful derivation shows:

E(|F ) F)

o — |2 9pm)2  lzta]t —w 2
:/e_T/ (Z_Zifl)eTj dzdxzm
R B,7(0)2 1 , (28)
—|wi™ 124|2— w | m 2" (ztwi —wl)
:/ e :h /we +2h : dx;n dz
B, (0) R 47
=00.

In the second equality we used the change of variables z = z7* — 27". The infinity
comes from the inner integral, where we are essentially looking at the second moment
of an exponential function.

This infinite variance of F]"}, calculated in (28), suggests the variance of x;

be showed in (23), is also infinite. Proving Theorem 3.1 then amounts to carrying
m+1

m+1 tO

out the detailed derivation on how E|z[**"|? depends on E ’ ‘ and we leave this

to Section 5.1.
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3.2. Constrained Ensemble LMC, a modification. We now take a more care-
ful look at the instability in the ensemble gradient approximation to LMC. Intu-
itively there are two sources of instability:

e When 2" is at the “outskirt” of p(x), f(zI™) is high, and p(zl")
exp{—f(zI")} is extremely small. This could bring high relative error, and we
should avoid making any approximations in this region.

e In the formula (18), p*(z7") is in the denominator. Considering the way the
term is defined in (20), it takes an O(1) value with high probability when &7
is moderately small. However, there is a small chance for [{]"] to take large
values, which will make p}”(w?’) extremely small, bringing infinite variance,

as shown in (28).
To avoid these two scenarios, we essentially need to identify:
e z" who are at the “outskirt” of p;
e 2! that is within 7 distance from z}* but has large |£;-”_1\.
When these happen, the ensemble approximation is disabled and we come back to
use the true gradient V f(z7").
To identify the first scenario is relatively straightforward: We simply set a thresh-

old, call it My, and will only employ ensemble gradient approximation when f(z]*)
is smaller than M;:

f@i) < M.
To identify the second scenario is slightly more involved. We now consider
VIRIEP Y = [ — | <l — )+ = |+ —

=[6a77| + V20h[E" T + |owy
where we denote the deterministic component of the updating formula:

m _ . m—1 m—1 m __ ,.m m
wt =x"T —hET ) dw = wit —wi. (29)

A sufficient condition to have a moderate |§;”_1\ is to have all three terms on the
right hand side moderate. For a fixed z}", since we only consider z7* who are already
within 7 distance, the first term is already bounded by n and is small. We therefore
need to ensure the remaining two terms are bounded as well. To do so, we propose
to enact the ensemble gradient approximation only if \fgnfl| is at most moderately
large, and for those z7", we include the z'" contribution in the calculation of F;™
only if |5wl’;| is at most moderately large. This is to say, for a fixed preset constant
pairs (Ry, Ra):

e When V2h[¢" 1| > Ry:

F =V (), (30)
e When V2h[¢" ! < Ry:
N
1 : offf oxij
™= o ZFL’.L, with FJJ' = ad|5x’7; 5 pm] Lisom|<n,[swlt|<Ra » (31)
T EAE
where p}" is defined in (20) and
N
Nt =Y Liswp <R, » (32)

J#i
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is the number of neighbors within 7 distance whose corresponding |dw;}| is
controlled.

Note that compared with (16), we add another indicator function in (31) to ensure
Jwg’; is controlled by Rs. Furthermore, numerically to have statistical stability, we
also preset a value for N* and require N;® > N*. If N/* < N*, we do not enact
the ensemble approximation and use the true gradient V f(2]").

Summarizing the discussion above, we have:

Vix "L) V20| > Ry or f(z™) > Mj or N* > N
Fm™ = (33)
N Z i otherwise .
N, J#i

Replacing the gradient term in LMC using (33), we arrive at a new algorithm. We
term it Constrained Ensemble Langevin Monte Carlo (CEnLMC), as summarized
in Algorithm 2.

Algorithm 2 Constrained Ensemble Langevin Monte Carlo (CEnLMC)

Preparation:
1. Input: h (time stepsize); N (particle number); n, R1, Re, N*, M (parameters);
d (dimension); M (stopping index); aq (6); Vf(x); f(z); f* (minimal value).
2. Initial: {x?}f\il i.i.d. sampled from an initial distribution induced by ¢°(z).
Setw;lzooforlgigN.
Run: For m=0,1,--- M
For¢:=1,2,--- N

— Define
N
N =Y Liswrm <R, -
i
~ If V2h|€" Y > Ry or f(2}") > My or N* > N, define
— Vi)
else deﬁne
o Bf sap
F" = N Z i with FY =g e — - Lo <n Jwr | <Rs - (34)
N J#i | Py’
where 0 f], 6z} are defined in (16), and dw]"; is defined in (29).
end
~ Draw £ from N(0, I).
— Update
S = o~ B+ VIR
1
m+1 _ _|em |2
pi - (4’7Th)d/2 exp( |€z | /2) 9 (35)
wZ”H =z]' — hF"
end
end

Output: {zM}V,.
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3.3. Properties of CEnLMC. There are two types of properties of CEnLMC
that we would like to discuss: 1. the convergence: We would like to show that the
distribution of z}*, as m — oo converges to the target distribution; 2. the numerical
cost: We would like to show that the probability of computing the gradients is low
with a proper tuning of Ry, R and My, and thus most gradients are replaced by its
cheaper ensemble version. This makes CEnLMC cheaper than the classical LMC.
These two properties are discussed in the following subsections respectively.

3.3.1. Convergence of CEnLMC. To show the method converges is to show that the
distribution of z}*, as m — oo, converges to the target distribution p up to a small
discretization error.

Our strategy is to show that particles computed from CEnLMC are close to the
particles computed from the classical LMC if they start with the same initial data.
Since it is well-known that the distribution of LMC samples converges to the target
distribution, the samples found by CEnLMC then recover the target distribution
as m — oo as well.

We first introduce the particle system that solves the classical LMC (2). Define
29 =29 for 1 <i < N and update

2 = 2 V(2B + V2REN, (36)

7

where £ is the same as (35). This is the classical LMC algorithm, and all samples
z; are decoupled from each other. Our first goal is to show that zi* and 2]" are
approximately the same, as seen in the following theorem.

Theorem 3.2. Assume {x;”}fil are generated from Algorithm 2, and {z{”}f\;l are
generated from (36), with the parameters chosen to satisfy

1 1

h<mind -~ >

< min { T q

where f* is the optimal (minimum) of f(x). Assume f is L-smooth, then, for
m>0,1<i<N:

d R S R )
Elz}* — 2| < O | exp(Lmh) Ri(My — f*)d exp (RQ(RﬁRl))md ) .
(

},max{n,1}<R2, My > f*,

Lyt N* 2h

37)
If we further assume f is p-convex, then, denoting k = L/u, for any m > 0,
1<i<N:

d _ fx) 2
Elo — 2 < O \/Rln(Mf 1) exp(Rg(R2+R1)

AN o ) +rnd | . (38)

We leave the proof to Section 5.2.

We stress the importance of this theorem. The theorem estimates the distance
between the proposed samples and the classical LMC samples. With the properly
tuned parameters, we can make the bound in (37)-(38) small, forcing the two sets
of samples close to each other. LMC is a classical algorithm that we have rich
understanding about. In particular, we have results from [5, 6, 14] that give non-
asymptotic error estimate: The error, in Wasserstein distance, converges to zero,
exponentially fast, up to the discretization error that depends on d, the dimension
of the problem, and h, the stepsize. This means, the newly proposed algorithm
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CEnLMC also converges exponentially fast, up to the discretization error and this
newly induced approximation error.

We now take a closer look at this approximation error. Use the convex case as
an example, we examine the two terms in (38). The second bound mainly comes
from the finite difference approximation, induced in (17), and the first term traces
back to ensemble error (E|V f(27) —G|?). After adding constraints (30)-(33), this
error contributes to 1/v/N* term. This is optimal in terms of N* according to the
central limit theorem.

To make the distance small, we first need to let 7 be small so that the error from
the finite differencing is small. Upon choosing small 1, with R; » fixed, we need
to select a moderate (M; — f*)/N* to make the first term small. Since My is the
bound we set to turn on or off the ensemble gradient approximation, we expect it
to be relatively large. N* is the minimum number of neighbors needed to enact the
ensemble approximation to ensure statistical accuracy and is thus also expected to
be large. To accommodate both, we set My = (N*)? + f* with p < 1.

We summarize this choice of parameters in the following corollary:

Corollary 1. Under the same assumption as in Theorem 3.2 and let f be p-conver,
for any small number € > 0 and 0 < p < 1, by setting

My =(N*)"+f* n<

R Rfli/(l—P)Hl/(lfp)dQ/(lfp) (R2(R2 —I—R1)>

wa Y T T i P\ Taa = o
(39)
we have: for anym >0,1<i< N:
Elzi" — 2" < O(e) . (40)

This is obtained by simply setting both terms in (38) smaller than e. We omit
the proof.

Now we are ready to combine this result with the well-known convergence result
of LMC to show the convergence of CEnLMC. The convergence is discussed in both
Wasserstein distance sense, and weak sense.

Theorem 3.3. Under the same assumption as in Theorem 5.2 and let f be -
convez, we denote K = L/u the condition number, g the probability density of xI".
Assume [ |z|¢° dz < 0o, we have:

1. Wy convergence: For any m >0,1 <4 < N,

hm
Wi(g",p) <exp (—M2> Wi(q%, p)

d . ]2 _ fx*
o (st iy FEAE =) o (Rt
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2. Weak convergence: For any Lipschitz function g : R — R with E,(g%) < o
and m > 0, we have

E

% gf;g(w?) —Ey(9)
<0 (a0 (<257 wita.n)) (12)

1 Rlli/id2(Mf — f*) RQ(RQ + Rl)
+0 \/N—I—m(m—i—nd)—i-\/ TN exp( o )

We leave the proof to Section 5.2. We note that in both (41) and (42), there
is one exponentially decaying term, and the rest can be seen as the remainder
term. Therefore we can call the convergence rate exponential, up to a controllable
discretization and ensemble error. The exponentially decaying term comes from the
fact that the distribution of 2] decays to the target distribution exponentially fast,
and the remainder term mostly comes from the distance between {z}"} and {z"}
systems.

Remark 3. This theorem gives a clear guidance on the choice of some parameters.
To have fast convergence and small error term, the parameters need to be tuned
to have second term in (41) as small as possible. Assume we have enough particles
(N — 00), we set this term to be smaller than ¢, then:

€ € . 36R{kd*(M; — f*) R2(Rz2 + Ry)
< — < _— —_— .
nfo(nd)’ hi@(?}(}/ﬁd)7 N >O( punde? exp( h ))

We then set the first term to be smaller than e as well, then the lower bound for
the needed number of iteration is:

2 0
m >0 ('%Zdlog (Wl(q ,p))) ,
€ €

meaning after these many iterations, Wi (¢, p) < 2¢, where ¢ is the distribution
of ™.

Note that this gives the control of n, h and N* but still leaves the freedom to
adjust Ry, Ry and My. These parameters should be determined by the percentage
of gradient that we are willing to calculate. The discussion is found in Remark 4.

3.3.2. Numerical saving of CEnLMC. We now discuss the numerical saving of
CEnLMC compared with the classical LMC.

The main reason to utilize the ensemble gradient approximation is to avoid the
gradient computation. In the algorithm, the ensemble approximation is enacted
only if:

V2h|§:n_1|SRla f(x;n)SMf7 szZN*a
where the size of N]™ depends on the number of samples who satisfy |5w§';| < Rs.

Therefore the probability of not using the ensemble approximation (but using V f)
can be bounded by:
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PUF" =V} <P ({V2hig"| > Ri})
P — £ > (My = ) (43)
+P({N" < N*}).
One thus needs to choose the parameters wisely to make such a probability as

small as possible so that most gradients in LMC get replaced by the ensemble
approximation. More specifically, we have the following theorem:

Theorem 3.4. Under the same assumption as in Theorem 3.2 and let [ be pu-
convez. If KL(go|p) < oo, then for fived M > 0, we have:

lim lim sup P ({\/ﬂﬁm*“ > Rl}) < Cy(Ry), (44)

N—=0 N—00 0<m <M, 1<i<N

. . my o 2kd
i Jim s P < £ 04y D € Gy @)
lim lim sup PH{N™ <N*})=0. (46)

N—=0 N—00 0<m< M, 1<i<N

__Sa o aa r? d
Cy(Ry) = )72 Jrva r® " exp 5 ) dr
Vz

diminishes to 0 for large Ry and Sy is the volume of unit d-sphere.

where

We leave the proof of the theorem to Section 5.3. This theorem gives the bound
0 (43). According to the formula of (44)-(46), a direct corollary is the following:

Corollary 2. Under the same assumption as in Theorem 5.4, for any € > 0, there
ezists constants R*, F* only depend on €,d such that if

Ry > R*, M;>F*,

we have
m lm s P = Vi) <.
N—=0 N—=00 0<m< M, 1<i<N
According to the Corollary 2, when we have enough particles, we can always
tune the parameters so that most gradients in LMC get replaced by the ensemble
approximation.

Remark 4. This theorem gives the guideline for the parameter choice of Ry, Ro
and My. Suppose the percentage of the gradient we would like to compute is «,
and we equally distribute it to the three terms in (43). Then in the limit of n — 0
and N — oo, Ry should be chosen, according to (44), so that

Cuy(Ry) < %

Similarly, according to (45), My should be chosen so that

6rd
MfZT‘i‘f*-

Lastly, we need to give a bound for Ry. This can be implicitly computed from (46).
While it is true that in the N — oo limit, the probability is necessarily < g, for

every fixed N, the size of Ry will affect the probability. Such dependence is very
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delicate, and we only give a rough bound. Suppose we are in the ideal case with
h — 0 so that =" = w]", and suppose we have iterated many times and the particles
are approximately close to i.i.d. sampled from the target distribution. Then
PN < N*}) =P (# {w]'||w]® —w]*| < Ry, j=1,2,...,N} < N* + 1{w}")
~P(# {22 — 2| <Ry, j=1,2,...,N} < N* +1|z]")

N*—1
=2 (Nk‘ 1)pk(R2><1—p<R2>>N” <0(1)
k=0

where p(R2) = Py .~p(ly — 2| < R2). The first equation comes from the definition,
and the second is driven by the fact that zj® and w]" are close by. Assuming
N* < MEL p(Ry) < 1, then

N -1
P{N" <N*}) = Z <Nk_1)Pk(R2)(1—p(R2))N_1_k
k=0

< (1 - p(Ry))N ! (fvv*__ll) Nf (%)k

k=0
N =1 (1= p(Ra))Y
= (N* - 1) 1—2p(R,)

< CNY (1 - p(R))Y

where C' is a uniform constant and we use Stirling’s approximation in the last
inequality. To have this term controlled by £, we need to choose p(Rz) so that:

« 1/N 1
Y < < —
1 (chN*) <p(R2) < 7.

which permits:

N1

PUNT <N~ Y ( h )pk<R2><1—p<R2>>N1k <2

k=0 3
4. Numerical experiment. We show two numerical examples to demonstrate the
two main themes of the paper: the samples capture the target distribution, and the
number of gradient calculations is significantly reduced. In particular, for both
examples, we define the percentage of the gradient calculations:

_#F =Vf@)I<i<N1<j<m}

N mN ’

and we will show the evolution of this percentage in iterations. To demonstrate
the accuracy, we also show the samples generated from LMC [37] and MALA
(Metropolis-adjusted Langevin algorithm) [36, 39].

Rm

Example 1. In this example, we set d = 2, and the target distribution p(z) o
exp(—|r1]?/2 — |22]?/8). Suppose the initial distribution is:

¢°(x) o exp <(x1 S D (s - 1)2> e ( (21 ' )2 (x : 1)2> |

In the experiment, we choose R; = 31—?, h=mn=01, R, =15, My = 20, and

N* = 103. In Figure 1-2, we plot the samples generated by CEnLMC, LMC, and
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MALA at different iterations, using N = 10*. Since the example is logconcave in
nature, the samples converge fairly quickly. Furthermore, we plot the ratio R,
at different iteration, using N = 2 x 103,6 x 103,10%, in Figure 3. While in the
case of N = 2 x 103, most particles need to have its gradient computed in every
iteration, the ratio drops significantly for the larger IV, and as iteration m increases,
the percentage of gradient calculation continues to decrease. This saving verifies

the prediction from Section 3.3.2.
+ Target
- CEnLMC

FIGURE 1. Example 1: Evolution of samples using CEnLMC. N = 10%.

Example 2. In this example, we test the algorithms on a target distribution that
is not logconcave. Set the target to be

_42 2 42 2
p(z) o exp <_%_%) + exp <_%_%) ’

and the initial to be ¢°(z) o< exp(—|x1|?/2 — |22|?/2). In the experiment, we choose
Ry =35 h=75=01, R, = 1.5, My = 20, and N* = 10°. In Figure 4-5, we
plot the samples generated by CEnLMC, LMC, and MALA at different iterations,
using N = 10%. Since the example is not logconcave anymore, the convergence
rate of the samples is slower. We also plot the ratio R,, at different iteration,
using N = 2 x 10%,6 x 10 and 10* respectively, in Figure 6. While in the case of
N =2 x 103, most particles need to have its gradient computed in every iteration,
the ratio drops significantly for the larger N.
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- Target
- LMC
- MALA

FiGUrRE 2. Example 1: Evolution of samples using LMC and
MALA. N = 10%.

1

—N=2000
<N=6000 |
~N=10000

0.851 H

0.95

0.9+

0.7

0.65

0.6

0.55 Il Il Il Il
0 20 40 60 80 100

m

FIGURE 3. Example 1: Evolution of R,, when N = 2 x 103,6 x 103
or 10%.
5. Proof of theoretical results.

5.1. Proof of Theorem 3.1. In this section, we prove Theorem 3.1. According
to algorithm 1, we have

]t = xzn_l — hFim_1 +V2h ;”_1
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« Target

m=10 m=20 CEnLMC

-5 o] 5 -5 0o 5

FIGURE 4. Example 2: Evolution of samples using CEnLMC when
N =10*

-5 [0} 5 -5 (o] 5

FicUrRE 5. Example 2: Evolution of samples using LMC and
MALA when N = 10*

and {¢""*}, are i.i.d. independent. Under filtration ™!, then the conditional

distribution of {mzn}fil is independent.
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| —N=2000
0951 ~N=6000
09+ N=10000

0.851 ] = e

0.751 ]
0.7r ]

0.65 ]

0 20 40 60 80 100
m

FIGURE 6. Example 2: Evolution of R,, with m when N = 2 x
10%,6 x 103, 10*

To prove the theorem, we need the following proposition:

Proposition 1. Assume {xzn}zjil are generated from Algorithm 1 with F™ defined
s (21), then for f(x) = 22/2, we have: for anym >0,1<i < N

E(|E"?) =EIF" - Y/ = oo (47)

Proof of Proposition 1. Since f(x) = |z|?/2, we can obtain, according to (25):
m L (@ +aP) (@] — a) Lisapm|<n (@™ — 2
i 2l — 2|2 mgmy i T
N J i Py T;
o —ai" Loapi<n | @ Loayy<n
2n pit(ey)  n PPl

The two terms carry different information:

e The conditional expectation of first term equals zero:

E <x§” -z 1|5z;*;\<n ]__m1>
2n  p(al)

1 M s s 1 1 m
:277//&5"12"<?7(xj = @")pi" (@7") daj" dai” = 0.

o The second term is consistent with V f(z]*) = z}", meaning:
o] Lissgl<n Fmol gm | a;m/ L —
n pi(i) ’ " Jap sy ’

where we use z7" and 27" is conditional independent in the first equality.

These imply, for all j # i:
E(F" — | F™ 1) =0. (48)
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Furthermore, since the conditional distribution of z7}, 27}, 2" are independent, for
J1# J2, i #31, and i # jo:
(( j1 )(an}g :n)“]:m_l)
]E (E (( i,j1 )(FZW;Q m |fm71’x;n)|fm71) (49)
=E (B (F7], - m\f’" )]E(FZ’;Z [P ) [F
=0
Plug (48) and (49) into E(Em| ‘fm 1) - E(|Fm V()] ‘fm 1) we
have
E (1B P|Fmt) =E (|Flm VP En 1)
J#i
m— 1 S p—
22% BEF) g ().
Ve
(50)

where we use (49) in the second equality. Noting that in (28) we already showed:
E (|77 1) = oo,
and that the second term in (50) is finite:
E (jo7 P|F) = a7t = hE 420 < o0,
we obtain:
E(|F" = V)P |Fm) = oo,
which proves (47), concluding this proposition. O
Now, we are ready to prove Theorem 3.1.
Proof of Theorem 3.1. For each m > 0 and 1 <7 < N, we consider
ot =2 — WV f(a]") + V2hE" + hE]",

7

where E" = V f(z™) — F/™ denote the differentiation from the classical LMC for-
mula. Using 27" and z7" are conditional independent for i # j, we obtain
E (B (e =V f(2}") + V2he)| 7Y
=E (B («]" — hV f(z]"))|F™ 1)
:E(E( (o] thf( T; )){fm lax?)|}—m71)

N
1 m m m—1 ,.m m m m—1
“E | | 75 DB G FlF e | @ - hvs@r)|F
J7#i
=E (0 (" — hVf(a")|F"71) =0,
where we use E (¢|F™~1) =E (") = 0 in the first equality and (48) in the second
last equality.
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Therefore, we have
E (‘x;nJrl'Q’]:m—l)

:E(

>E (1B |71

™ — WV f(27) + V2her

2

where we use (51) in the first equality. Finally, using the previous proposition, we
have

E(E (Jo" " P[F™7Y) 2 E(E (B |F 7)) = oo,
which proves (23). O

5.2. Analysis of CEnLMC. We now analyze Algorithm 2, the Constraint En-
semble LMC. The strategy is to compare the evolution of ]* with 2], the solution
to the classical LMC (36), before utilizing the convergence of 2" to find the con-
vergence of z}".

Theorem 3.2 discusses the closeness of z]" and 2], while Theorem 3.3 discusses
the convergence of x;*. The following two subsections are dedicated to these two

theorems respectively.
5.2.1. Proof of Theorem 3.2. To show the smallness of x]* — 2", we first rewrite
the updating formula for =7, (35), into
et =2 — V(@ )h+ Eh + V2hE" (52)
where
E" =V (") - F". (53)

Comparing the updating formula of 2" in equation (36), it is easy to see that
the key lies in bounding the term E". This is shown in the following lemma.

Lemma 5.1. Under the same conditions of Theorem 3.2, we have: for any m > 0,
1<i<N

dLM _ £x) 2
E|E:”|s\/R1 A I8 o (R g o

Theorem 3.2 is a direct consequence from this lemma.

Proof of Theorem 3.2. For each m > 0, 1 < i < N, we subtract (52) and (36) to
obtain

E |zt — 2" = E | — 2") — M(Vf(2]") = V(") + hE[E"|. (55)
Noting that V f is L-Lipschitz continuous,
IVf(@") = V(")) < Lhlai — 27|,
then
(@i = 2") = M(Vf(@]") = V(")) < (L+ Lh) | = 2"
We take the expectation, and utilize Lemma 5.1:

E |o:;n+1 - zlm"'l’ <(1+ LA)E |«]* — 2|

R{L(Mj — f*)d? Ry(R2 + Ry)
+h \/ N exp | —————

>—|—Lnd
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Use this formula iteratively, we have:
E|zi" — 2"| <(14 Lh)™E |zg" — 25|

R (My — f*)d? ox (32(32+Rl))+nd

+ (14 Lh)™ T -

Noting z3* = 2§, the first term is eliminated, and we conclude (37). When f is
[-convex,

V@) = V(") = pla = 2"),
then for & small enough:
(@i = 2") = h(Vf(@]") = Vf(")| < (1 = ph) |2 = 27| .

Running the same argument as above, and relaxing (1—ph)™ < 1, we conclude (38).

O
We now prove Lemma 5.1
Proof of Lemma 5.1. We first define:
Vf(zm), V2h|E™ Y > Ry or f(x7") > My or N* > N"
Grn=< 1 X 56
N Z G . otherwise . (56)
v
where

(Vf(@), 0272) Liser|<n 5w |<R»
|67 |2 Dy’
is the counterpart of F}' that eliminates the discretization error. Then
B = (V@) = B < [Vf(@)") = G|+ G = F|.

Clearly the term |V f(z") — G| is the ensemble error and the term |G7* — F"|
takes care of the discretization error.
To control |GI" — F/™|, we define

m o m

Lo, = Linm >Ny <mp yagiem=1 <R, »

then
E (o7 - FPI|F) =B (1o, G2 - 7

1 &
R S|

% i
| X J (57)
- WZE(lQi Gy — F5|[Fm )
e
< ma (% - 17

Plugging (17) into (57), we obtain
E(IGP - F7)) = E (E (G — FP| 7)) < Lud. (58)
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To control |G — V f(z")|. We note

£ (jor — ViER) = E (B (1o, 167 — Vi F)
Define
&N = G = V(@) L swm <, »

then

E (|G - Vi@m)P)

2
1 _
=E | E | 1q, NmZ[ — Vf(z; )1\6w"’\<R2} Frmt
tog#
2
1Qi m—1
<E| E (NZm)Q ;G 1|6w’"|<R2 F

2

J—_-m—l

1o, m
—E |E e ;5i’j

g;*E {maXE(lg e | Fmr) + f} E (1o, (€7, 6,”32>|fm1)})

J1#752
———1 E ( maxE (1 Emﬂfm_l)
N* j @i |%i ’

where we use N/ = Z;\;Z 1‘5w$|< R, in the first equality.
In the last equation, we note that

E (10,7 | F™ al") = 1o,E (7| F™ 1, a*) =0,
with the conditional independence, and thus

E (Lo, (€75, E5)1F™ )

1]17 2,72
:E( ( <gln31’gln}2>|‘/—-’m_l m)|]:m_1)
=E ((E (10,75, |77, 27") . E (10,675, |77, 27"))[F )

=0
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To further control (60) we simply use the direct calculation: for any j # 4
E (10, [ |7 1) < E (10, o7 *|F7m )
IVf §
§a31|5w;;\<1{2/ / Vi) )‘ pi"(xf") da’ d”
By R JB@p ) P (@)

) " — wi|? mo_ g ym|2
SC// / 1|5wm\<R2 exp I - |x1 4th | d‘r;n dw;m
B(wi™,R1) J B(z}™,n)

@ |y+z—wm|2 RS
By B 4h 4h

(111) 2+ 2(nR R RoR R2
SC'exp(n +2(nRy + 1Ry + RaRy) + 2)/ / dz dy
4h B(wp,Ry) JB0m)

:C’R‘fdQ exp n* +2(nRy +nR2 + RaRy) + R3
nta? 4h ’

(62)
where C’ = L(My — f*)aZ. Here in (I) we used 57|V f(z!)[> < f(a*) — f* <
(My — f*), in (II) we used change of variables y = z", 2 = 2" — z{*. In (III), we
used:

|z + wi* —wm|2 <y—w1’-”72+w;” _wm>
4h + 2h

4h 4h 2h 2h

B O s e W e
= &P 4h Ah

2 \wz"—w;”\2+ Jellwf — Wil | |y—w;”|(|z+|wr—w7|)>

Plug (62) into (60), we have
R{PL(M; — f*) exp (n +2(nRy +nR2 + RaRy) + R?

B (167 - VIEDP)

N*nd 4h
(63)
Using n < Ry and Holder inequality we have
1/2
E(Gr = Vi) = (B (167 - Vi)

< R‘ljdzL(Mf — f*) exp RQ(RQ + Rl) .

~ N*pd 2h
Combine it with (58) we prove (54). O

5.2.2. Proof of Theorem 3.3. The validity of Theorem 3.3 is built upon the fact that
27" system and z;" system are close, shown above, and that the z]" system follows
LMC, which converges to the target distribution.

It is a classical result to show that the LMC solution converges. To do so, one
constructs another particle system that is drawn from the target distribution. Let
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Yo be a random vector drawn from target distribution induced by p, and set

t t
w) =1 = [ Vi) ds+vE [ aBi(s), (64)
0 0
where we construct Brownian motion that satisfies:
By(h(m +1)) — Bi(hm) = Vhe}™ . (65)

Then y;(t) is drawn from the distribution induced by p as well. On the discrete
level, let y™ = y;(hm), then:

(m+1)h
pr =y = [ VA s) ds VIR (66)

mh

Since y™ ~ p(zx), then we have
Wi(q",p) < Elzi" —y"|,

where [E takes all randomness into account. Choose the initial data yg so that
Wi(¢",p) = E|z? — y?|. Then the problem boils down to showing that z" is close
to y;". Since we already know that z}* and z]* are close, we now need to show the
closeness between z and y. This classical result regarding the convergence of LMC
was shown in [3, 5], and we cite it here for the completeness of the paper (with
notations adjusted to our setting).

Proposition 2 (Closeness of z and y). Assume conditions of Theorem 3.2, and let
f be L-smooth and pu convex with k = L/u, we have: for anym >0, 1 <i< N

h
Bl = o < exp (257 ) WilePp) + O (V) )

We leave the proof to Appendix A. We should emphasize that this result is
essentially the same as the one in [5, 14, 6]. The only difference is that we use L;
norm for bounding z* — y/"* for the consistency with the result in Theorem 3.2.

Now, we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. Combining Theorem 3.2 and Proposition 2 by adding (38)
and (67) through the triangle inequality, we obtain

Elz" —yi"| <Elei" — 2| + E|2]" — y;"|

eXp( M; )Wl( ,D)
o K(\/}Td+nd)+\/R’fI€d2(Mff*)exp(Rg(RngRl))

untN* 2h
Since W1 (¢, p) < Elx* — yI™|, we prove (41). To prove (42), we use
| X
E N;g(wm)— Nzg yi") — Eu(9)] -

i=1
Using the Lipschitz continuity, the first term is easily controlled.

NZEm 9(y; )|<0<N2Ex |>- (70)

=1

Z]E\g 9" +E
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Here the O notation includes the Lipschitz constant of g. The second term of (69)
is a standard central limit theorem:

1/2

E 9(4:") — Ep(9)

N

1 Y ’
< 1E<N;g(y7”)—ﬂ*3p(y)>

1/2 .
<< _ E@@ﬂ—&@ﬁ) <o(e)-

Combining (68), (70) and (71) into (69), we prove the weak convergence (42). O

=z~
1=

1

(71)

2|~
] =

1

5.3. Proof of Theorem 3.4. We prove Theorem 3.4 in this section. First, we give
another iteration lemmas:

Lemma 5.2. Under conditions of Theorem 5.2, let m > 0, and €,, > 0. Then,
there exists a constant N' that is independent of 1, € such that if

N>N'| Elz]'—=z2"<é€n, VI<i<N

we have
m—+1 m—+1 B(Em) m * .
Elzl"™ — 2" < g + 73 +Cn, P(N*<N*)<1-B(em), V1I<i<N.
Ui
(72)
where C is a constant and B : R — R is a continuous function that satisfies
671711303(6,,1) =0.

Remark 5. We note that in Lemma 5.2, the constants N’, C' and function B
depend on other parameters such as h,d, Ra, R1, My, N*, i, L.

Proof of Lemma 5.2. Without loss of generality, we only consider |z7* — 27*| and
N{*. Similar to the argument in Lemma 5.1,

d _ fx\J2
Mmﬂ§¢wa@ fﬂem<&ﬁb+&)

1
E + Lyd.
ne 2h ) (WW”) !

According to the proof of Theorem 3.2, we obtain

E |:U71n+1 — z{n+l| <(1 = ph)E |zT" — 27"

RIL(My — f*)d? Ra(R2 + R1) 1
+h< #exp o E Ny + Lnd

C 1
<ém + WE < N1m> +Cn,
(73)
where C' is a constant that is independent of n and €,,. Thus, it suffices to bound

E (\/]1\]7) Define

N,
B =" = AV, N = Lisapi<ra/as

J>i
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where N, < N is a positive integer. According to [40], the KL divergence between
the distribution of 2" and target distribution is finite for all m. This implies the
distribution of 2" has a density. Thus, for any M > 0, we have

lim P (Ng" > M) =1. (74)

N,—o0

Now, we start bounding E ( L ) Since Elz]* — 27| < €,

Word

R2 4€m .
Pllz"—2">—=) <", VI<i<N.
(|9Uz Zz|>4>—R27 <i<
which implies
R e, N,
N, m m 2
P(ﬂi—1{|$i -z |§4} >1- gzz. (75)
According to the definition of N;™ (32), using (75), we obtain that for any M < N,
~ 4e, N,
PN > M) =P (N > M) — = (76)
2
From this,
1 1 4e, N
E( Nm> SM(ﬂ”(Nf’”‘>M)— = )
: i (77)

1 ~ 4e, N.
b 11— ]P’(N{”>M>f m )]
VN* [ < Ry
Define the right-side of (77) as F/(M, N, €,,). Since M, N, can be arbitrarily chosen,

we have
1
E|—— | < inf F(M,N.,ep)
\/W M,N
Plugging this into (73),
C
m+1 m+1 i
Bl = S em b oo inf POV N n) + o

Noticing that
lim lim lim F(M,N,,e,) =0, (78)

M—00 N,—00 €3, —0

we obtain the first inequality of (72). Next, for any M > N*, because
4e,, N,
R

2

P(N™ > N*)>P(N™ > M) >P (Nim > M) - >1—VN*F(M,N,,en),

(78) also implies the second inequality of (72). O

Now, we are ready to prove the theorem:

Proof of Theorem 3.J. Noticing that when m = 0,
E|z? — 20| =0.
Using Lemma 5.2 (72), for any € > 0, we have

lim lim Elz} —z/| <e, lim lim P({N] < N*}) >1—e.
n—0 N—oo n—0 N—oo

Repeating this process with Lemma 5.2, we obtain

lim lim sup Elzi* — 2" =0. (79)
N—=0 N—00 g<m< M, 1<i<N
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Next, to prove (44), we notice that for m >0 and 1 <i < N

x?ﬁbiwzm:\/ﬁfgn_l7
which implies

_ R
P({|x¢—w§"|>R1}>=P( > )
2h
2

_ 1 || S RS r2
‘/|r o (5 ) = o /r "z

Sd > d—1 T2
SW/:‘T/ET exp | — o dr,

where the last inequality comes from h < é.
Then, to prove (45), we first use f(a*) — f* < ﬁ|Vf(xZ”)|2 to obtain
P{f(@") = "> My —f7)})
=P({f(7") = f* > (My = f)}) < P({IVf@) > 2u(M; — £7)})
<P ({IVS")° + |V f() = V@) > n(My — f)})

m m My — f~ m My — f~
p({ivsar - vrwmp > MM wp ({iwpmp > MM
(80)
where y!™ is defined in (64)-(66) and we use 2|a — b|? + 2[b|? > |a|? in the second
inequality.
The second term of (80) is easy to bound:
2
P )P N*/2¢) < ——————F ™) <
({19568 > wVNer2}) < =SB (9 FP) <
where we use E,|V f(y)|? < Ld according to Lemma 3 in [5].
The first term can be bounded by

P ({ivsam - vimp > B =I) cp (flor - e > 202N

<p ({ler -1 > %#}) <\ s o)

2kd

o= ™

(82)
where we use |V f(z") — Vf(y™)| < Lz — y™| in the first inequality. Plugging
(81) and (82) into right-side of (80), we prove (45) by (79).

Finally, (46) is a direct result of (79) and the second inequality in Lemma 5.2
(72). O

6. Conclusion. In this article, we look for the ensemble modification to the clas-
sical Langevin Monte Carlo method. This is to look for an ensemble of samples
who can be viewed as i.i.d. samples drawn from a target distribution. As a modi-
fication to LMC, the gradient information is obtained by taking the average of the
neighboring function evaluations, as a mean to achieve the gradient-free property.
In this process of surrogation, we found two sides of the theory:

e By directly surrogating the gradient using the ensemble approximation, we

develop Ensemble Langevin Monte Carlo, see Algorithm 1. We show that this
method is unstable due to a potentially small denominator that induces high
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variances. We provide a counterexample to explicitly show this instability in
Theorem 3.1. The discovery is discussed in Section 3.1.

e We then change the strategy and enact the ensemble approximation to the
gradient only in a constrained manner, to eliminate the unstable points. The
algorithm is termed Constrained Ensemble Langevin Monte Carlo, see Algo-
rithm 2. We show that, with a proper tuning, the surrogation takes place often
enough to bring the reasonable numerical saving, while the induced error is
still low enough for us to maintain the fast convergence rate, up to a control-
lable discretization and ensemble error. These properties are summarized in
Section 3.3.

Such combination of ensemble method and LMC shed light on inventing gradient-
free algorithms that produce i.i.d. samples almost exponentially fast. Numerical
experiments are collected to demonstrate such accuracy and numerical savings.

We should note, however, the ensemble approximation to the gradient used in this
article may not be the optimal one. There are potentially other means to extract
properties from ensembles that permit accurate and efficient gradient evaluations.
What are the optimal way to achieve gradient-free property is an ultimate task that
we hope to resolve in the future.

Appendix A. Proof of Proposition 2. In this section, we prove Proposition 2.
For convenience, we ignore ¢ and define

AT =" —y™.
Then it suffices to prove the smallness of E|A™].
Proof of Proposition 2. We first divide A™*! into several parts:
Am+1 =A™ ¢ (merl _ ym) o (Zerl o Zm)

(m+1)
—A™ (/ " th(y(s))ds + \/ﬁgm>

mh

(m+1)h
- (— / VI(z™)ds + \/2715)

mh

mh

(m+1)h
=A™ — ( / (Vf(y(s)) — V(™)) ds> (83)

nh

(m+1)h
=A" - (/ (Vf(y(s)) =VIy™) +VIy™) = V™) dS)
(m+1)h
=A™ — h(Vfy™) = Vf(z™)) — / . (Vf(y(s) =V f(y™)) ds
=A" - U™ -V™
where

U™ =vify™") -vFE"),

(m+1)h
ym = / (VF(y(s) — V™) ds.

mh

Now the first two terms of (83) can be bounded by
[A™ = hU™| < (1 — ph) |A™], (84)
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where we use f is p-convex.
Next, for the second term on the right-hand side of (83), we first bound L?-norm:

EUVMQ)QfKL:H”hEQVf@@»-—Vfwmnﬁ<u
o [k (o) -y
:hLQ/mH)h (’/ —mhV f(y(t))dt + V2(B(s) — B(nh))
D onzp /mmh/ mhIE |Vf( ())\2) dt ds

(m+1)h
+4h2L2/ E|¢™|? ds

mh

2
)ds

WL (|9 ()P ) + 4612
(V1
W) piL2E (V2 + 4R L2 2 RALRd 4 4RP L2, (85)
where (II) comes from L-Lipschitz condition, (I) and (III) come from the use of
Young’s inequality and Jensen’s inequality when we move the |- |? from outside to
inside of the integral, and (IV) and (V) hold true because y(t) ~ p for all t. In (VI)
we use E,|V f|? < Ld using [5, Lemma 3].
Using Hélder’s inequality and h < %, (85) implies

E(V™) < (B (V)" < 5h¥/2La V2.
Plugging this and (84) into (83), we obtain
E(|A™]) <E(JA™ = hU™) +E (V™) < (1 — ph)E (|A™]) + 5h*/2Ld"/? .
Using this iteratively and E|AY| = E|2° — 4°| = W1(¢", p), we prove (67). O

Appendix B. Other choices of ensemble gradient approximation. The en-
semble gradient approximation we present in Section 2.2 is of probability type,
namely, we take the ensemble average of finite difference around z*. There are
other ways to find gradient approximations as well, and probably the most straight-
forward method is to solve a linear algebra problem formulated by the closest d
neighbors.

More specifically, let 7 > 0 and * € R%. Assume that there are d points {z;}&,
in the ball B, (z*), then we have

Ap V(@) =Ag+o(n),

where
(x1 —2*)" flz1) = f(@")
*\ T o) — ¥
N el N R ] )
(g —a)" f(za) = f(z¥)

If A, is full rank, then by solving the equation A, -z = Ay, we obtain an approxi-
mation of the gradient

2 V(7).
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A natural question to ask is, how likely is it to find d neighbors in a small
neighborhood of a given sample? To quantify such probability, we use the following
lemma:

Lemma B.1. Suppose |p(z)| < M < oo and {z;}¥, are i.i.d. drawn from p with
N > 0. Let N = ¢/n?, where c is a positive constant. Then we have

limsup P (# {zi||x; — 1] <m, i=1,2,...,N} >d+1) <1—exp(—cM) .
n—0

This lemma can be viewed as a negative result: even with N exponentially big
on d, there is still a nontrivial chance for a sample to not have enough neighbors
around for the gradient computation.

Proof of Lemma B.1. Fixed x; € R?,
Poz —ai| <nler) = [ plar+2)dz < ')
[z1<n
Denote p = P (|z2 — x1| < n|x1). Because {z;}¥, are independent, we have
]P’(#{,TZHLUZ —3?1‘ <n, 1= 1,2,...7N} <d+ 1|$1)

M-

P(#{xlﬂxz—xﬂ <n, i:1,2,...,N}:]€|1‘1)

~
Il

U
=

P LR A Y (R A

=

=0
Since ¢ = Nn¢,
limsup P (# {zi||x; — 1] <m, i=1,2,...,N} <d+ 1|z1)
n—0

>limsup(1 — p)V = > limsup (1 — ndM)"Ldil
n—0 n—0
>exp (—cM) .

This implies
limsup P (# {zi||x; — 1] <m, i=1,2,...,N} <d+1) > exp(—cM) .
0

n—

which concludes the proof. O
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