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RECONSTRUCTING THE THERMAL PHONON TRANSMISSION
COEFFICIENT AT SOLID INTERFACES IN THE PHONON
TRANSPORT EQUATION*
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Abstract. The ab initio model for heat propagation is the phonon transport equation, a
Boltzmann-like kinetic equation. When two materials are put side by side, the heat that propa-
gates from one material to the other experiences thermal boundary resistance. Mathematically, it is
represented by the reflection coefficient of the phonon transport equation on the interface of the two
materials. This coefficient takes different values at different phonon frequencies, between different
materials. In experiments scientists measure the surface temperature of one material to infer the
reflection coefficient as a function of phonon frequency. In this article, we formulate this inverse
problem in an optimization framework and apply the stochastic gradient descent (SGD) method for
finding the optimal solution. We furthermore prove the maximum principle and show the Lipschitz
continuity of the Fréchet derivative. These properties allow us to justify the application of SGD in
this setup.
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1. Introduction. How heat propagates is a classical topic. Mathematically a
parabolic-type heat equation has long been regarded as the model to describe heat
conductance. It was recently discovered that the underlying ab initio model should
be the phonon transport Boltzmann equation [23]. One can formally derive that this
phonon transport equation degenerates to the heat equation in the macro-scale regime
when one assumes that the Fourier law holds true. This is to assume that the rate of
heat conductance through a material is negatively proportional to the gradient of the
temperature.

Rigorously deriving the heat equation from kinetic equations such as the linear
Boltzmann equation or the radiative transfer equation is a standard process in the
so-called parabolic regime [9]. That means for light propagation (using the radiative
transfer equation), we can link the diffusion effect with the light scattering. However,
such derivation does not exist for the phonon system. One problem we encounter
comes from the fact that phonons, unlike photons, have all frequencies w coupled up.
In particular, the collision operator for the phonon transport equation contributes an
equilibrium term that satisfies a Bose—Einstein distribution in the frequency domain:
it allows energy contained in one frequency to transfer to another. Furthermore,

*Received by the editors November 23, 2020; accepted for publication (in revised form) August

23, 2021; published electronically January 20, 2022.
https://doi.org/10.1137/20M1381666
Funding: The second author acknowledges support from Vilas Early Career award. The re-
search of the second and third authors is supported in part by NSF via grant DMS-1750488, Vilas
Early Career award and Office of the Vice Chancellor for Research and Graduate Education at the
University of Wisconsin. The research of the second and first authors is supported in part by RNMS
1107465. The research of the first author is further supported by NSF-DMS 2009736.
TDepartment of Mathematics and Oden Institute, University of Texas-Austin, Austin, TX 78712
USA (gamba@math.utexas.edu).
tDepartment of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 USA
(qinli@math.wisc.edu, nair25@Qwisc.edu).

194

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/20M1381666
mailto:gamba@math.utexas.edu
mailto:qinli@math.wisc.edu
mailto:nair25@wisc.edu

Downloaded 06/14/22 to 131.111.185.9 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TRANSMISSION COEFFICIENT RECONSTRUCTION 195

the speed in the phonon transport term involves not only the velocity p but also
the group velocity v(w) which also positively depends on the frequency w. These
differences make the derivation of the diffusion limit (or the parabolic derivation) for
the phonon transport equation not as straightforward.

On the formal level, passing from the ab initio Boltzmann model to the heat equa-
tion requires the validity of the Fourier law, an assumption that breaks down when
the kinetic phenomenon dominates. This is especially true at interfaces where differ-
ent solid materials meet. Material discontinuities lead to thermal phonon reflections.
On the macroscopic level, it is observed as thermal boundary resistance (TBR) and is
reflected by a temperature drop at the interface [13]. TBR exists at the interface be-
tween two dissimilar materials due to differences in phonon states on each side of the
interface. Defects and roughness further enhance phonon reflections and TBR effect.
Such effect can hardly be explained or measured directly on the heat equation level.

As scientists came to the realization that the underlying ab initio model is the
Boltzmann equation instead of the heat equation, more and more experimental studies
have been conducted to reveal the model parameters and properties of the Boltzmann
equation. In the recent years, a lot of experimental work has been done to understand
the heat conductance inside a material or at the interface of two solids, hoping these
collected data can help in designing materials that have better heat conductance or
certain desired heat properties [30, 32, 40].

Heating source

—> | Al|Si

Transducer Substrate

F1G. 1. Ezperiment setup: details can be found in [23]. In experiments, two solid materials are
placed side by side, and heat is injected on the surface of aluminum. Temperature is also measured
at the same location as a function of time.

This is a classical inverse problem. Measurements are taken to infer the material
properties (Figure 1). In [23] the authors essentially used techniques similar to least
square with an L, penalty term to ensure sparsity. As the first investigation into this
problem, the approach gives a rough estimate of the parameter, but mathematically
it is very difficult to evaluate the accuracy of the recovery. In this article, we study
this problem with a more rigorous mathematical view. We will also confine ourselves
in the optimization framework. Given a certain amount of data (a certain number of
experiments and a certain number of measurements in one experiment), we formulate
the problem into a least square setup to have the mismatch minimized. We will
study if this minimization problem is well-posed and how to numerically find the
solution in an efficient way. More specifically, we will first formulate the optimization
problem, apply the stochastic gradient descent (SGD) method, the state-of-the-art
optimization technique, and then derive the problem’s Fréchet derivative. This allows
us to investigate the associated convergence property. We will demonstrate that the
system has maximum principle, which allows us to justify the objective function to
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be convex in a small region around the optimal point. This further means the SGD
approach will converge. Finally we apply the method we derived in two examples in
the numerical section.

We should note that we took a practical route in this paper and focus on the
numerical property of the problem. Investigating the well-posedness of the inverse
problem, such as proving the uniqueness and the stability of the reconstruction, re-
quires much more delicate PDE analysis and is left for future investigation.

We should also note that there are quite a few results on inverse problems for
kinetic equations. The research is mostly focused on the reconstruction of optical
parameters in the radiative transfer equation. In [17], the authors pioneered the prob-
lem assuming the entire albedo operator is known. The stability was later proved in
[36, 39, 3, 26] in different scenarios. In [5, 4, 6] the authors revised the measurement-
taking mechanism and assumed only the intensity is known. They furthermore studied
the time-harmonic perturbation to stablize the inverse problem. The connection of
optical tomography and the Calderén problem was drawn in [15, 26] where the stabil-
ity and its dependence on the Knudsen number is investigated. See reviews in [33, 1].
There are many other imaging techniques that involve the coupling of the radia-
tive transfer equation with other equations, leading to bioluminescence tomography,
quantitative photoacoustic tomography, and acousto-optic imaging [19, 18, 34, 2, 7, §],
among many others. Outside the realm of the radiative transfer equation, the inverse
problem is also explored for the Vlasov—Poisson—Boltzmann system that character-
izes the dynamics of electrons in semiconductors [16]. The authors of the paper
investigated how to use Neumann data and the albedo operator at the surface of
semiconductors to infer the deterioration in the interior of the semiconductor. Re-
cently, in [25] the authors used the Carleman estimate to infer the parameters in a
general transport-type equation in the kinetic framework. We stress that these works
investigate inverse problems for the kinetic equations, and the to-be-reconstructed
parameters are usually related to the heterogeneous media. Photon frequency do-
main is typically untouched. This is different from the setup in our paper, where the
medium is homogeneous in x since the material on both sides of the interface are pure
enough in the lab experiments. However, the reflection index is a function of phonon
frequency, and this dimension of heterogeneity should not be discounted as it was
formerly in the literature for the radiative transfer equation.

There is also abundant research in numerical inverse problems. For kinetic equa-
tions, multiple numerical strategies have been investigated, including both gradient-
based methods and Hessian-based methods [1, 38, 20]. For general PDE-based inverse
problems, SGD has been a very popular technique for finding the minimizer. This
is because most PDE-based inverse problems eventually are formulated as minimiza-
tion problems with the loss function being in the format of a summation of multiple
smaller loss functions. This is the exactly the format where SGD outperforms other
optimization methods [14].

The paper is organized as follows. In section 2, we present the model equation
and its linearization (around the room temperature). The formulation of the inverse
problem is also described in this section. Numerically to solve this optimization
problem, we choose to use the SGD method, which would require the computation
of the Fréchet derivative in each iteration. In section 3 we discuss the self-adjoint
property of the collision operator and derive the Fréchet derivative. This allows us to
summarize the application of SGD at the end of this section. We discuss properties
of the optimization formulation and the use of SGD in our setting in section 4. In
particular, we will discuss the maximum principle in section 4.1, and section 4.2 is
dedicated to the properties of SGD applied in this particular problem. In particular
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we will show the Lipschitz continuity of the Fréchet derivative. We conduct two sets of
numerical experiments: first, assuming that the reflection coefficient is parametrized
by a finite set of variables and second, assuming the reflection coefficient is a simple
smooth function without any prior parametrization. SGD gives good convergence in
both cases, and the results are shown in section 5.

2. Model and the inverse problem setup. In this section we present the
phonon transport equation and its linearization. We also set up the inverse problem
as a PDE-constrained minimization problem.

2.1. Phonon transport equation and linearization. The phonon transport
equation can be categorized as a Bhatnagar—Gross—Krook (BGK)-type kinetic equa-
tion. Denote by F(t, z, u,w) the deviational distribution function of phonons (viewed
as particles in this paper) at time ¢ € R on the phase space at location x € R", trans-
port speed 1 € S*! and frequency w € R*. Since p has a constant amplitude, we
normalize it and set it to be 1. In labs the experiments are set to be plane-symmetric,
and the problem becomes pseudo-1D, meaning n = 1, and p = cosf € [—1,1]. The
equation is then written as

F*—-F
T(w)
The two terms on the left describe the phonon transport with velocity p and group
velocity v = v(w). The term on the right is called the collision term, with 7 = 7(w)
representing the relaxation time. It can be viewed equivalently to the BGK operator

in the classical Boltzmann equation for the rarefied gas. F™ is the Bose—Einstein
distribution, also termed the Maxwellian, and is defined by

(2.1) O F + o, F =

hwD(w)

hw ‘
ekT(tz) — ]

F*(t,z,p,w) =

In the formula, k is the Boltzmann constant, 7 is the reduced Planck constant, and
D(w) is the phonon density of states. The profile is a constant in p and approximately
exponential in w (for w big enough), and the rate of the exponential decay is uniquely
determined by temperature T'(¢,x). F is related to the phonon distribution function
fas F=hwD(w)f [22].

The system preserves energy, meaning the right-hand side vanishes when the
zeroth moment is being taken. This uniquely determines the temperature of the

system, namely,
0 1 0o 1
F F*(t
/ / = dpdw :/ / wdﬂdw.
o J-1T 0o J-1 T

In experiments, the temperature is typically kept around the room temperature
and the variation is rather small [23]. This allows us to linearize the system around
the room temperature. Denote the room temperature to be Ty, and the associated
Maxwellian is denoted

R = hwD (w)

hw °
efTo —1

We linearize (2.1) by subtracting FT‘T and adding it back, and we call g = F' — Fy;

then with straightforward calculation, since Fj has no dependence on ¢ and x;

— 1
(2.2) Oeg + 1o(w)deg = —2 +

T T

[F* — F{].
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For F* and Fj evaluated at very similar 7" and Tp, we approximate
F* — F} ~ 0pF*(Ty)AT  with AT =T —Tp,
where higher orders at O(AT?) are eliminated. Noting that

(M)2D(w) ehw/kTo N
kTg (ehe/kTo — 1)2

*

g

(2.3) OrF*(Tp) =

we rewrite (2.2) to

(2.4) Org + pv(w)0yg = —?g + %AT.

Similar to the nonlinear case, conservation law requires the zeroth moment of the
right-hand side to be zero, which amounts to

{g/7)
{g*/7)"

T

/g—(w)d,udeT:/g(w)d,udw = AT =
T

where we use the bracket notation () = ful:_l o o dwdp.

For simplicity, we nondimensionalize the system, and we set i/kTy =1 and D = 1.

We also make the approximation that v(w) = w and 7 ~ 1, as suggested in [21] and

[23]. We now finally arrive at ’

(2.5) Org + pwdyg = —wg + M{wg)

with

(2.6) M = g and AT = (wg) and g¢g* = LWQ.
{wg*) (wg*) (ev = 1)

Clearly, the Maxwellian M is normalized: (M) = 1. We also call the right-hand side
the linearized BGK operator

_ =9 {g/7)
(2.7) Lo=-2+ s

We note that the Maxwellian here is not a traditional one. In Figure 2 we depict
the Maxwellian and its comparison to some other standard Maxwellian functions.

In practice, to handle the situation in Figure 1, phonon is in charge of heat transfer
and the model equation is used in both the aluminum and silicon regions, i.e., we write
g and h to be the density of phonon in the two regions, respectively. Considering the
boundary condition for the aluminum component is incoming type and the boundary
condition at the interface is reflective type, we have the following model (denote the
location of the surface of aluminum to be z = 0 and the interface to be z = 1):

9" (w) = —wg + M(wg) .

g+ (w)ozg =Ly, x€[0,1],
gla=0,p,")=¢, pn>0,

(2.8) glea=1,p,") =nw)glz=1,—p,"), <O,
Oth + pv(w)0zh = Lh,  x € [1,00),
{h(ﬂc:l’u,-)=(1—n)g(w=1,u,-), p>0.
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—M(w)

w 4

o
1/(e*1)

FiGc. 2. Plot of the Mazwellian M as a function of w (normalized). We compare it to the
typically used Bose—Finstein distribution 1/(e¥ — 1) (normalized)and its approzimation e~* (nor-
malized) for quantum systems.

In the model g and & are phonon density distribution within aluminum and silicon,
respectively. At x = 0, laser beam injects heat into aluminum, and that serves as
incoming boundary condition at g(t,z = 0,u > 0,w), which we name by ¢. Due
to the large size of silicon, it can be viewed that the equation for h is supported
on the half domain. At z = 1, the interface, we model the reflection coefficient to
be 1, meaning n portion of the phonon density is reflected back with the flipped
sign u — —p. According to [23], this reflection coefficient only depends on w, the
frequency. It is the coefficient that determines how much heat gets propagated into
silicon, and is the coefficient we need to reconstruct in the lab using measurements.
In lab experiments, the materials are large enough for the pseudo-1D assumption to
hold true. This is seen in discussion in [23]. In reality, two kinds of materials can
certainly touch each other through a curved interface, and the above-mentioned model
no longer holds. However, the reflection index is only a function of frequency w, and
thus the reconstructed n(w) using this model is still valid.

2.2. Formulating the inverse problem. The experiments are nonintrusive in
the sense that the materials are untouched, and the data is collected only on the
surface z = 0. The data we can tune is the incoming boundary condition ¢ in (2.8),
and the data we can collect is the temperature at the surface, namely, AT = &’g"ﬂ% as
a function of ¢ and z = 0. In labs we can send many different profiles of ¢ into the
system, and measure AT for the different ¢.

Accordingly, the forward map is

(2.9) M, ¢ — AT(z=0,t).

It maps the incoming data configuration ¢ to the temperature at the surface as a
function of time. The subscript n represents the dependence of the map. In the
forward setting, n is assumed to be known; then (2.8) can be solved for any given ¢
for the outcome AT'. In reality, n is unknown, and we test the system with a number
of different configurations of ¢ and measure the corresponding AT to infer 7. We
stress that the inverse problem is conducted on the linearized equation (2.8). The
laser that sends energy into the solid materials is typically not powerful enough to
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increase the temperature of the solid drastically away from the room temperature,
and linearizing the system around the room temperature is a valid assumption [23].

While the to-be-reconstructed 7 is a function of w, chosen in L., an infinite
dimensional function space, there are infinitely many configurations of ¢ too. At
this moment whether tuning ¢ gives a unique reconstruction of 7 is an unknown well-
posedness problem that we plan to investigate in the near future. In the current paper
we mainly focus on the numerical and practical setting, namely, supposing a finite
number of experiments are conducted with finitely many configurations of ¢ imposed,
and in each experiment, the measurement AT is taken on discrete time, how do we
reconstruct n?

We denote by I the number of configurations of the boundary condition in different
experiments, namely,

{¢ia Z:]-,a‘[}

is injected into (2.8) at different rounds of experiments. We also take measurements

on the surface = 0 through test functions. Denote {t;(t)} the test function; the
data points are then

/AT(t,x — 0y (B)dt with j—=1,...,J.

When we choose ¢; = J;; the temperature is simply taken at discrete time {¢;}.
We denote the data d;; to be AT, collected at the ith experiment, measured with
test function ¢; with additive noise; then, for indices (4, 5) € [0, I] x [0, J]

dij = My;(n) +moise with My (n) = / AT (z = 0, 1) (£)dt

where AT; is the solution to (2.8) equipped with boundary condition ¢;, assuming
the reflection coefficient is 7. The noise term is inevitable in experiments.

A standard approach to reconstruct n(w) is to formulate a PDE-constrained min-
imization problem. We look for a function n that minimizes the mismatch between
the produced AT and the measured data:

n

.t
min - Z | /ATZ(x = 0,t);dt — di;|?
ij

(2.10) 0rgi + pwdypg; = wgf AT; —wg; with AT, (z,t) = é:’gié
s.t. gi(x =0,u, ) = ¢, p>0,
gilx =1,p,) =ngi(x =1,-p,-), p<O0.

(l‘vt%

Here %] is merely a constant and does not affect the minimum configuration, but
adding it puts the formulation in the framework that SGD deals with.
In a concise form, define the loss function

1
(2.11) L=22) L and Lij = Mi;(n) — dij;
ij
then the PDE-constrained minimization problem can also be written as
1 2 1 2 .
(2.12) min %: |Mij(n) — dij|* = min %: Li; = %};L :

We denote the minimizer to be 7.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/22 to 131.111.185.9 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TRANSMISSION COEFFICIENT RECONSTRUCTION 201

Remark 2.1. We have a few comments:

e If some prior information is known about 7, this information could be built
into the minimization formulation as a relaxation term. For example, if it
is known ahead of time that 1 should be close to 7y in some sense, then the
minimization is modified to

o1
ij

where L, norm is chosen according to properties from physics and A is the
relaxation coefficient. We assume in this paper that we do not have such
prior information.

e In [23], the experimentalists chose to model the system as a pseudo-1D sys-
tem with plane geometry. The system would be modified if the geometry
is changed to accommodate nontrivial curvature in high dimensions. This
not only brings mathematical difficulty but also makes the lab experiments
much harder. One needs to deal with the artificial difficulties induced by the
inhomogeneous spatial dependence.

e We study the inverse problem where the forward model is linearized around
the room temperature. This is a valid assumption since the energy injected
into the system is typically not strong enough to trigger high temperature
fluctuation. The inverse problem, however, evaluates M’s dependence on 7
and nevertheless is still nonlinear.

3. SGD. There are many approaches for solving PDE-constrained minimization
problems, such as (2.10) or equivalently (2.12). Most of the approaches are either
gradient-based or Hessian-based. While usually gradient-based methods converge at
a slower rate than methods that incorporate Hessians, the cost of evaluating Hessians
is very high. For PDE-constrained minimization problems, every data point provides
a different Hessian term, and there are many data points. Furthermore, if the to-
be-reconstructed parameter is a function, the Hessian is infinite dimensional, which
makes a very large sized matrix upon discretization. This cost is beyond what a
typical computer can afford. Thus, we choose gradient-based methods.

Among all gradient-based optimization methods, SGD started gaining ground
in the past decade. It is a method that originated in the 90s [11] (which also sees
its history back in [35]) and gradually became popular in the new data science era.
As a typical example of probabilistic-type algorithms, it sacrifices a certain level of
accuracy in trade for efficiency. Unlike the standard gradient descent method, SGD
does require a certain form of the objective function. L(n) is an average of many
smaller objective functions, meaning L = 4 Zi\il L;(n) with a fairly large N.

If a classical gradient descent method is used, then per iteration, to update 7,41
from 7,, one needs to compute the gradient of L at this specific 7, , and that amounts
to computing N gradients: VL;,...VLy. For a large N, the cost is very high. For
PDE-constrained minimization in particular, this VL; is a Fréchet derivative and
is usually obtained through two PDE solves: one for the forward problem and one
for the adjoint. N gradients means 2N PDE-solves at each iteration. This cost is
prohibitively high.

The idea of SGD is that in each iteration, only one L; is randomly chosen as a
fair representative of L and the single gradient VL; is viewed as a surrogate of the
entire VL. So per iteration instead of computing N gradients, one only computes
1. This significantly reduces the cost for each iteration. However, replacing VL by a
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random representative VL; brings extra error, and as a consequence, a larger number
of iterations is required. This leads to a delicate error analysis. In the past few years,
in what scenario SGD wins over the traditional gradient descent has been a popular
topic, and many variations and extensions of SGD have also been proposed [31, 27,
41]. Despite the rich literature for SGD as a stand-alone algorithm, work on its
performance in the PDE-constrained minimization setting is mostly lacking. We only
refer the readers to the review papers in general settings [10, 12].

We apply the SGD method to our problem. That is to say, per each time step, we
randomly choose one set of data pair and use it to adjust the evaluation of 7. More
specifically, at time step n, instead of using all loss functions, one selects a multi-index
Yn = (n , jn) at random and performs gradient descent determined by this particular
data pair:

(3.1) M1 = T — 205 Ly, (10) Vi Ly, (170) -

Here «, is the time step to be adjusted according to the user’s preference.

In the formula of (3.1), the evaluation of L., (1,) is straightforward. According
to (2.11), it amounts to setting n in (2.8) as 7, and computing it with incoming data
¢4, as the boundary condition, then testing the solution at x = 0 with ;. How to
compute V, L, , however, is less clear. Considering d., is a given data point and has
no dependence on 7, it is the Fréchet derivative of the map M on 7 at this particular

Int

M., (n+dn) = M, (1)
|61]—0 on

VL, = VM., (n) =
(3.2) s
-5 / AT, (x = 0, 60y, (£)dt

The computation of this derivative requires the computation of the adjoint equa-
tion. Before stating the result, we first notice the collision operator is self-adjoint with
respect to the weight 1/g*.

LEMMA 3.1. The collision operator L, defined in (2.7), is self-adjoint with weight
1/g*. In particular

(Lg,h/g")=(Lh,g/g").

Proof. The proof amounts to direct calculation. Expanding the left-hand side we
have

(g ha") = ((~wo-+ 0™ 0 nfg ) = {oanfa) + 0
= < <—wh +wg" g;é) g/g*> = (Lh,g/g")
which concludes the lemma. ]

Now we make the Fréchet derivative explicit in the following theorem.

THEOREM 3.2. For a fized v = (i,), the Fréchet derivative V, M. at n can be
computed as

1
(3.3) VoM, = 7*/ pwh(z =1, p,w, t)go(z =1, —p,w, t)/g*dudt,
<w9 > pn<0,t
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where go is the solution to (2.8) with refection coefficient n and boundary condition
@i, and h is the solution to the adjoint equation with ; as the boundary condition:

O¢h + pwdzh = —Lh,
h(.]?, Mvwat = tmax) - 07
(3.4) o (0"
h(.’L’—O,,Lh) _T7M<O’
h(z=1,u,") =nh(x=1,—p,;),u>0.

Proof. This is a standard calculus of variation argument. Let 1 be perturbed by
on. Denote the corresponding solution to (2.8) with incoming data ¢; by g, and let
g = g — go; then since g and gg solve (2.8) with the same incoming data but different
reflection coefficients, one derives the equation for g:

0tg + pwdyg = Ly,

gz, pw,t=0) =0,

gx=0,p,-)=0, p>0,

gz =1,p,") =ng(z =1,—p,") +ongo(z =1, —p,-), p<0,

where we ignored the higher order term dndg. In this equation, gy serves as the source
term at the boundary.

Now we multiply the g equation (3.5) with A/¢g* and multiply the h equation (3.4)
with g/g*, integrate with respect to p and w, and add them up. Realizing the £
operator is self adjoint with respect to 1/¢*, the right-hand side cancels out, and we
obtain

(3.5)

9(gh/g") + 0z (uwgh/g*) =
Integrate further in time and space of this equation. Noticing that g has trivial initial
data and h has trivial final state data, the d; term drops out, and we have

/t (uoih/g)dt(z = 0) = / (wgh /")t (= 1).

At 2 = 0 plugging in h(t,z,p < 0,w) = wj—g we have

[yt = / /. / po = ] -
=1

- / " (0 wd)dl—o

=0

txnax trnax
/ 5 (6) (wg) dtlamo — / 05 (8) (wgo)dto—o
t

-0 t=0
= (Mj(n+0m) — Mi;(n)) (wg™),
where we used the definition of AT.

At z = 1 we note that the terms with 7 are all canceled out using the reflection
condition and the integral reduces to

0
/(uwéh/g*>dt\z:1 =/5n// piwhgo(—p)/g* dpdtdw| ;=1 .
t w tJpu

=—1

Let n — 0; the two formulas lead to

1
vnMij = 7*/ MWh(t7 x =1, M,W)go(t, x=1—p, w)/g* (w)dﬂdt .
(wg*) t,u<0
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Remark 3.3. We note that the derivation is completely formal. Indeed the regu-
larity of the solution is not yet known when the incoming data for h has a singularity
at 4 = 0, making it not even L;. Numerically one can smooth out the boundary
condition by adding a mollifier. That is to convolve the boundary condition with a
narrow Gaussian term. Numerically, this direct delta will be replaced by a Kronecker
delta.

We now summarize the SGD algorithm in Algorithm 3.1.

Algorithm 3.1 SGD applied on the minimization problem (2.12).

Data:1J experiments with
1. incoming data ¢; for {i =1,...,1};
2. outgoing measurements ¢, for {j =1,...,J};
3. error tolerance ¢;
4. initial guess 7g.
Outcome:The minimizer 7, to the optimization problem (2.12) that is within &
accuracy.
while |9,+1 —n,| > € do
n=n-+1
Step I: randomly uniformly pick v, = (in,jn) € [1: 1] x [1: J];
Step II: compute the solution to the forward problem (2.8) using ¢;, and 7,;
Step III: compute the solution to the adjoint problem (3.4) using ¢;, and 7,;
Step IV: compute V, L, using (3.3);
Step V: compute L., according to its definition (2.11);
Step VI: update 7 using (3.1) with a stepsize ay,;
end while
return 7,41

4. Properties of the equation and the minimization process. In this
section we study some properties of the equation and the convergence result of the
associated optimization problem using SGD. In particular, since the equation is a
typical kinetic model with a slightly modified transport term and a linear BGK-type
collision operator, one would expect some good properties that hold true for general
kinetic equations are still valid in this specific situation. Below we study the maximum
principle first, and this gives us a natural L., bound of the solution. The result will
be constantly used in showing SGD convergence.

4.1. Maximum principle. The maximum principle is the property that states
the solution in the interior is pointwise controlled by the size of boundary and initial
data. It is a classical result for diffusion-type equations. In the kinetic framework,
it holds true for the radiative transfer equation that has a linear BGK collision op-
erator. But it is not true for the general BGK-type Boltzmann equation. If the
initial/boundary data is specifically chosen, the Maxwellian term can drag the solu-
tion to peak with a value beyond L, norm of the given data. In these cases, an extra
constant is expected.

We assume the initial condition to be zero and rewrite the equation as

5

Ohg + pwdag = —wg + 55 (wg),
(4.1) g(xz =0, p,w,t) = dp(p,w,t), p>0,
g(szp,o.),t)zn(w)g(x=1,—,u,w), M<07
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where n(w) is a function bounded between 0 and 1. We arrive at the following theorem.

THEOREM 4.1. The equation (4.1) satisfies the mazimum principle, namely, there
exists a constant C' independent of ¢ so that

9llee < Clidlloo -

Proof. The proof of the theorem comes from direct calculation. We first decom-
pose (4.1). Let g = g1+ g2 with g1 being the ballistic part with the boundary condition
and go being the remainder; one can then write

Og1 + pwdzgr = —wyr,
(4.2) gi(x=0,p>0,w,t) = ¢(p,w,t),

and
Org2 + pwds g = —wgs + M(wg),
(4.3) g2(x =0, > 0,w,t) =0,
g2z =1,pu<0,w,t) =nw)ge(z =1, —p,w,t).
Note that in this decomposition, g; and g- satisfy the same reflective boundary con-

dition at x = 1, but g; serves as a source term in the collision term of gs. Both
equations can be explicitly calculated. Define the characteristics

dX

s~ Hw andlet gi(t) = it X(1)),  ga(t) = g2(t, X(1));

then for every fixed p and w, along the trajectory we have

dgl dgg wyg

4.4 - _ _ R et

(4.4) o7 woL, wga + <wg*)<w9>’

which further gives

(4.5) g1 = g1(to, X (to))e = (=10)

and
t

(46) g2 = ga(to, X(to))e """ + M / (w)(s, X (s))e™!"""Vds.
s=to

For p > 0 the characteristic propagates to the right. Depending on the value
for ¢t and x, the trajectory, when traced back, could hit either the initial data or the
boundary data. Let X (t) = «, and consider g = g1 + go2; we have the following:

1. If the trajectory hits the boundary data, for to =t — = > 0 we have X(to) =
0, and

(4.7) g(t,x) = ¢(to)e ") + M / i (wg) (s, X (s))e™ " *)ds.
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2. If the trajectory hits the initial data, then to = 0 and X (0) > 0, with the
solution being

18) olta) = M [ (g5, X ()0,

Similarly, for p < 0, if the trajectory hits the boundary data, meaning for t; =
(tl) = 1. Define tQ =1t—

,uw

t t
(4.9) g =n(w) |B(ta)e ) 4 Me_wt/ <o.}g>e“’sds} + Me_“’t/ (wg)e¥?ds.
s=to s=t1

We multiply (4.7) with w and use n < 1 to have
(4.10) jwgl < wlglloce ™) + Ml|{wg)l|oo[L — 1]

A similar inequality can be derived for (4.8) as well. Since the bound of (4.8) has
zero dependence on ¢, we ignore its contribution. Taking the moments on both sides
of (4.10), we have

(411)  (wghpes < [Blloofwe ) s + @nwnww* 1= ety

where we used the notation ()pos = [ -, f#>0 dpdw. Similarly, multiplying (4.9) with
w and taking moments gives

(4.12) <W9>neg < ||¢||oc<we_w(t_t2)>neg + @ll(wmnm@)g*[l — e—w(t—t2)]>neg

Here (Jneg = [ o dpduw.
Summing up (4.11) and (4.12) we have

C 0
(4.13) (wg) < ALl

with
C, = <w67“’(t7t°)>pos + <wef“’(t7t2)>neg,

1

2= (wg

*>[<w9*€_“(t_t°)> s (wge 1) gy,

Plug this back into (4.7) or (4.9) we finally have
9= (1+ 29l = Clllo

which concludes the proof. 0
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4.2. Convergence for noisy data. The study of convergence of SGD is a
fairly popular topic in recent years, especially in the machine learning community [12,
29, 37]. It has been proved that with properly chosen time stepsizes, convergence is
guaranteed for convex problems. For nonconvex problems, the situation is significantly
harder, and one only seeks for the points where Vf = 0, where f = %El fi is the
objective function. However, it is hard to distinguish local and global minimizers, and
the point that makes Vf = 0 could also be a saddle point or even a maximizer. See
recent reviews in [12].

The situation is slightly different in the PDE-constrained minimization problems.
In this setup, the objective function enjoys a special structure: every f; is the square
of the mismatch between one forward map and the corresponding data point, namely,
fi = [M;—d;|?. Tt is typically unlikely for the forward map M; to be convex directly,
but the outer-layer function is quadratic and helps in shaping the Hessian structure.
In particular, since

ani =2 (Mz — dz) Van and Hn(fz) = QVWMZ ®V77Mz + 2 (Mz — dz) Hn(Ml) 5

where H,, stands for the Hessian term, due to the V,M; ® V, M, term, the H,(f;)
would have a better hope of being positive definite, as compared to H,(M;) especially
when the data is almost clean.

Such structure changes the convergence result. Indeed, in [24] the authors inves-
tigated the performance of SGD applied on problems with PDE constraints. We cite
the theorem below (with notation adjusted to fit our setting).

THEOREM 4.2. Let M = [My,... , M,] with M., be a forward map that maps
DM,) C X toY with X and Y being two Hilbert spaces with norm denoted by || - ||.
Suppose D = N,D(M,) is nonempty. Denote d° to be the real data perturbed by a
notse that is controlled by €. The loss function is defined as

(414) Fln) = 37 My ) — d 2

Suppose, for every fized v,
1. the operator M, : X — Y is continuous with a continuous and uniformly
bounded Fréchet derivative on D;
2. there exists an o € (0, %) such that for any 1,7 € X,

(415)  [My(n) = My () — (0 = 7) "V My ()] < al My (1) = M, ()]

If the Fréchet derivative is uniformly bounded in D and the existence of a holds
uniformly true for all v, then with properly chosen stepsize, SGD converges.

We note that in the original theorem, the assumptions are made on M = [M; ...
M.,,] viewed as a vector. We state the assumptions componentwise, but we do require
the boundedness and the existence of « to hold true uniformly in v. Note also the
theorem views 7 as a vector and hence the notation n'" and VM. When viewed as a
function of w, the term reads [(n — 7)9, M, (7)dw.

To show that the method works in our setting, we essentially need to justify
the two assumptions for a properly chosen domain. This is exactly what we will
show in Proposition 4.3 and Proposition 4.4. In particular, we will show, for each
~v = (i,4), the Fréchet derivative is Lipschitz continuous with the Lipschitz constant
depending on ||¢; || and ||¢;]|s. By choosing properly bounded {||¢;|oo s [|%; 0o }4j
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the Lipschitz constants are bounded. We thus have the uniform in v uniform in D
boundedness of 9, M.,. The second assumption is much more delicate: it essentially
requests the gradient to represent a good approximation to the local change and that
the second derivative to be relatively weak, at least in a small region. This is shown
in Proposition 4.4 where we specify the region of such control.

Now we prove the two propositions.

PROPOSITION 4.3. For a fized v = (i,7), 0,M, is Lipschitz continuous, meaning
there is an L., that depends on ||¢il|s and |||l so that

0p My (1) — O My (m2)[l2 < L[l — 2|2 -

Proof. We omit v = (i, j) in the subscript of M throughout the proof. Recall the
definition of 9, M.,; we have
(4.16)
Oy M(n1) — Dy M(n2)

1 w
= (wg*> / ‘L';* [hl(l‘ =1, p, )gl(gj =1,—pu, ')7 hQ(z =1pu, )92(1' =1,—pu, )] d.u“dta
t,;u<0

where hy and hsy solve (3.4), the adjoint equation equipped with the same bound-
ary and initial data (¢;). The reflection coefficients are n; and 72, respectively.
g1,2 solve (2.8), the forward problem, with 77 2 being the reflective coefficient (also
equipped with the same boundary and initial data ¢;).

Calling the differences g = g1 — g2 and h = hy — hs, we rewrite the formula into
(4.17)

W2
J0,M(m) ~ 0, M)} = [

— plhi(z=1,p,-)g(x =1, —p,-
e L e = s = 1.

Hoale =1, e = 1]

2,,2
SCH// w*@ h (@ =1,p-)g"(x=1,-p,)
wdp

<0t 9

+q//
w J <0,

Here C4 = (2;;‘;*;‘2. Since the two terms are similar, we only treat the first one as an
example below. The same derivation can be done for the second term.

According to the definition of g, it follows the forward phonon transport equa-
tion (2.5) with trivial boundary and initial data but with extra source terms. In
particular,

w2
e gi(x =1, )% (x =1,—p,).

09 + pw0zg = —wg + M(wg)
with trivial boundary condition at x = 0, trivial initial condition, and
gtz =1pw)=matz=1—pw)—ngtc=1—pw)
= nlg(ta T = 17 _Maw) + (771 - 772) 92(75’33 = 17 _M,UJ)
=myg(t,z=1,—p,w)+S.

Here we denote S = (1 —n2) g2(t, 2 = 1,—p,w), and it can be easily seen that
[ISll2 < Clin — n2|l2- This C depends on ||g||oc which then relies on ||¢;]/co. To
bound (4.17) amounts to controlling the two terms using S.
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We can solve the equation explicitly. In particular, for fixed p,w, we use the
method of characteristics by defining

adx
= = X(t) =
o = (t) =y,

and the solution for g can be written down as
t
ot 9,-) = glto, X (o), )e“E10) 4 Mot / (wg) (s, X (s))e“*ds.
to

This formula allows us to trace g back to either the initial or the boundary data.
In the case of p > 0, the trajectory is rightgoing, and since initial condition and
the boundary at x = 0 are zero, the solution becomes

(118)  gltp) = Me [ fog)(s,a(s)e s < T {wg)llclt - )

t3

where we have t3 =t — u% This leads to

(4.19) <w9>pos < (M[1- e_w(t_t3)]>p05||<w9>”oo .

Here we used the notation ()pos = [, - dpdw.

In the case of < 0, the trajectory is left-propagating. Tracing it backwards the
trajectory hits x = 1. Let to =t — (iﬁ and t; =ty — ﬁ; we have X (t2) =1 and
X (t1) = 0; Suppose t; > 0; the solution reads
(4.20)

t
9t g 1y w) = glta, 1, pyw)e=C12) 4 Moot / (wg) (s, X (s))e“ds

t2

t
= [mg(ta, 1, —p,w) + S(—mw)]e“"(t_tz) + Me_“’t/ (wg) (s, X (s))e*ds

tao

to
= o) Sy w) + oy Mo / (wg) (s, 2(s))e*ds
ty

+M67Wt/ (wg)(s, X (s))e”ds.

to

Noting 71 < 1, we pull out ||[{wg)||e and have

t

ta
gt y, p,w) < e_“’(t_tz)S(—,u,w) + M|[(wg)|soe™" [/ e“*ds —|—/ e“’sds]
t1 to

M
= e TS (pw) + g oot — e

Note that if ¢; < 0, the lower bound of the integral is replaced by 0 and the
inequalities still hold true:

(4.21) <W9>neg < <Weiw(t7t2)5(_,“aw)>neg + (M1 - eiw(titl)]>neg||<Wg>H<>o .

Here we used the notation (-)neg = [ <o dpdw.
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Summing up (4.19) and (4.21), using Cauchy-Schwarz and (M),<o.., =
we have

(4.22)
(wg) < IS lallwe™ 2y + wg) oo (1 = (M=) — (Memo(tt)

(M),

According to the definition of t3, t — t3 = u%’ and by setting t3 > 0, we have, for
= <pu<l,

oo

o) 1
y 1
(4.23) (Me w(tta)y  — / / Me™ wdudw < 7/ (e7V —e " Mdw.
w=y/t Jwt Y Jy/t

Similarly, we have t—t; = 2=% and by setting t; > 0, we have, for 2=% < |u| < 1,

;Lw ’

[e’e) 1 .
(4.24) (Me(t=t) 0 = / / Me
w=(2-y)/t Jp=(2—y)/wt

Denote by «/2 the minimum of the two equations. It is less than 1 and strictly
positive for y € [0, 1]. Plugging it back in (4.22), we have

allwgdlloo < [ISl2llwe™ =]

This estimate, when plugged back in (4.18) and inserted into the first term in (4.17),
we have, for y =1,

w22 ) ,
/ 0. (g* th(taya,ufvw)g (t,y, —p, w)dwdpudt
w,p<0,t

)

2 1\ 2 9

</ Wty ) (1= 1) dodpdt]|{og) |2
w7u<0t )

w? 1\ 2
S— h? (1 —efW) dwdpdt||S 2| we—w(t=t2)) 2
3l IsI3I I3
<CIISIB < Cll —

where C depends on ||(wh1)||e which relies on ||%;|loo, according to Theorem 4.1.
This concludes the proof by setting L% = 2C'C1. It depends on v but is independent
of the particular choice of 7; 2. 0

It is then easy to conclude that by setting ||¢il|c and [|9j]lo to be upper and
lower bounded, we have the Lipschitz constant uniformly upper bounded.

PROPOSITION 4.4. For a fivred v = (4,j), denote L. the Lipschitz constant of
OpM.,. Suppose there is a constant M., such that | M (m)—M(n2)| > My ||ni—n2l|2;
then it holds in a small neighborhood of 1., the optimal solution to (2.12), with radius
M
—L that
ir,

(4.25) Moy (1) = My (112) = Oy Mo (m2) T (1 — m2)| < @] Moy (1) — Mo (m2)]

Proof. We omit the subscript v in the proof. Without loss of generality, let
M(m1) > M(n2) > 0. To show the proposition amounts to finding an a € (0, §) such
that

—a[M(n1) = M(n2)] < M) = M(112) = 9y M(n2) " (m = m2) < a[M (1) — M(n2)].
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The two sides are symmetric, and we only prove the second inequality. Noting
that from the mean value theorem, there is p € (0,1) such that

M(m1) — M(n2) = M (2 + p(m —12)) T (1 —12) >0,

then the inequality translates to

(4.26) [Op M(112 + p(m1 = 02)) = g M(n2)] " (m1 = m2) < aM|[my — 2|

Due to the Lipschitz condition on the Fréchet derivaitve,

[0pM(n2 + plm — n2)) — Oy M(m2)] " (m1 = 112) < Lilm — n2ll3 -

Since 7; are chosen from the neighborhood B(7., %), [l — mellz < %, and the

inequality holds true with ov = 1/2. |

Remark 4.5. We do comment that the assumption [M (1) =M (n2)| > M, ||n—
M2]|2 is strong. It essentially implies that the Lipschitz constant has a lower bound.
If not, then there is a possibility to find 7y # 9o with M., (1) = M., (n2). This leads
to the unique reconstruction impossible theoretically. As what we emphasized above,
theoretically proving the unique reconstruction is beyond the scope of the current
paper, and we merely state it as an assumption here.

5. Numerical results. We present our numerical results in this section. As a
numerical setup, we choose z € [0,0.5], t € [0,5], u € [-1,1], and w € [Wmin, Wmax]-
Meanwhile, we set the discretization to be uniform with Az = 0.02, At = 0.01,
Ap = 0.01, and Aw = 0.05. In space we use the upwind method, and in w and pu
direction we use the discrete ordinate method.

5.1. Examples of the forward equation. We show an example of the forward
solution in Figure 3 and Figure 4. The forward solver is an extended version of
an asymptotic preserving algorithm developed in [28]. In the example, the initial
condition is set to be zero, and the boundary condition is set to be

(5.1) gz =0,u0>0,w,t) =6(w—1.5).

Here we implement § function as the Kronecker delta function concentrated at the
grid point w = 1.5 where it takes the value 1. As is visualized in Figure 3, the wave
gradually propagates inside the domain, with the larger x4 moving with a faster speed.
At around ¢t = 0.5, the wave is reflected back and starts propagating backwards to
2 = 0. Besides the transport term puwd,, the BGK collision term “smooths” out the
solution. This explains the nontrivial value to negative u even before the reflection
taking place. In Figure 4 we integrate the solution in g and present it as a function
on (z,w). The solution still preserves the peak at w = 1.5 as imposed in the boundary
condition, but some mass is transported to the smaller w values due to the BGK term.

Similarly for a demonstration, we also plot an example of solution to the adjoint
equation in Figure 5. The final and boundary conditions are set to be
0(t — tmax)

5.2 h y Wyt > tmax) =0, h(z=1,u<0,w,t)=M
652 At 2 ) =0, ble =1 < 0.0, = () 1t

3 10w
with M(w) = ((201‘527761)2. We note that the plot needs to be viewed backwards in
time. The final time data is specified, meaning we need to make sure the solution at
t = tmax = D 18 trivial.
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0.05

-0

0.1
0.05

0.05

-0
-0

Fic. 3. Solution to the forward PDE ([ gdw as a function of (z,p) at different time frames)
with input (5.1). The four plots from top left to bottom right are the solutions at times 0.01, 0.5, 1,
and 3, respectively.

5.2. Inverse example I. We now show our solution for the inverse problem. In
the first example, we parametrize the reflection coefficient, namely, we assume 7 has
the form of

(5.3) n = (tanh(10(w — a)) — tanh(2(w — b)))/4 + 1/2,

where a and b are two parameters to be found. We set the ground-truth configuration
to be (a*,b*) = (1.5,1), and we plot the reference reflection coefficient 7,.¢ in Figure 6.
This reference solution is chosen to reflect the investigation in [23].

For testing, we set / =40 and J = 1 and use the following ¢; and 1);:

(54> ¢i(M7W7t):5(W—%):¢i(W>a i:17~--a40;
(55) wj (u,w, t) = 5(t - tmax)a J = Ja
where w; = wmin + 1Aw is the discrete point. We set [wmin, Wmax] = [0.05, 2].

In Figure 7 we plot the cost function L in the neighborhood of (a*,b*). It can
be seen that the cost function is convex in both parameters (see Appendix A for the
proof). We note that this is the case for this special example where 7 is parametrized.
In reality, however, one typically does not have the profile of the ground-truth in hand
to make an accurate prediction of the parametrization form.

In this parametrized setting, the SGD algorithm is translated to

(5.6) ant1 = an = 20L;, 5, Gijoas st =bn — 2L, 5, Gi b
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Fic. 4. Solution to the forward PDE ([ gdu as a function of (z,w) at t = 0.01,0.5,1.5,3,
respectively). The boundary input is centered at w = 1.5.

where (i, j,) are randomly drawn from [1 : I] x [1, J]. Here the Fréchet derivative
can be explicitly computed:

_OLon B 2 _ iy

_0LoOn B 2 B -
Gusn = 5 = /w 2(1 — tanh(2(w — by))) Gy () /Ade

Gija
(5.7)

with G,;(w) = 0,L;; standing for the Fréchet derivative of L;; with respect to n and
computed according to Theorem 3.2.

We run the SGD algorithm with three different initial guesses with (ag,bp) being
(1,1.5), (2,0.4), and (2,1.5). The decay of the error in the reflection coefficient is
plotted in Figure 8. Here error is defined to be

1/2
€Tror = <Z[n(an,bn)(wi) - nref(wi)]2> ;

?

where 74, 5,) denotes the reflection coefficient for parameters (a, by, ).

5.3. Inverse example II. In this example, we use exactly the same configura-
tion as in the previous example with the same reference solution (5.3) with (a*,b*) =
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FiG. 5. Evolution of the solution to the adjoint PDE. We plot [ hdw as a function of p and
backwards in time. The time frames for the four plots are t =5, 4, 2, and 0.01, respectively.

(1.5,1). ¢; and v, are also defined in the same way as in (5.4). The main difference
here is that we do not parametrize n: It is viewed as a completely unknown vector of
40 dimensions (with wmax = 2 and wpyi, = 0.05 and Aw = 0.05).

We run SGD algorithm with three sets of initial guesses given by 7y = 0.5,
no = 0.4750 — 0.05(w — 0.05)2, and 79 = 0.4891 — 0.1(w — 0.05)%. The optimiza-
tion results at different time slices are plotted in Figure 9, and the decay of L, norm
of error is also plotted in Figure 10. As can be seen in these plots, the numerical
solution to the optimization problem reconstructs the ground-truth reflection coeffi-
cients. We note that the error in Figure 10 exponentially decays at the beginning and
eventually saturates. This comes from the numerical error from discretization. In the
computation of the Fréchet derivation, we unavoidably introduce discretization error.
This error cannot be overcome with fixed stepsize in optimization; see Theorems 4.6
and 4.8 with nonzero M in [12].

5.4. Inverse examples III. In the last example, we repeat the numerical ex-
periment for the previous examples with added noise. The noise is chosen as a random
variable uniformly sampled with noise level 2.5%. As in Example I, we run the SGD
algorithm with three different initial guesses with (ag, bg) given by (1,1.5), (2,0.5),
and (2,1.5). The decay of the error in the reflection coefficient is plotted in Figure 11.
In all the three cases, the error saturates after about 1500 iterations.
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FIG. 6. Profile of reference reflection coefficient nyef(w).
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Fic. 7. Cost function computed in the neighborhood of (a*,b*). We choose (a,b) € [1,2] X
[0.5,1.5] with uniform mesh 0.1. It is clear the cost function is convez in (a,b).

Finally we repeat the numerical experiments with added noise to Example II. In
this case we set J = 50, with measuring operators set as delta functions centered
at t; that are randomly selected in the time interval [4.5,5]. We choose 1y = 0.5 as
the initial guess and plot the reconstruction at different optimization iteration steps
in Figure 12. The reconstruction recovers the ground-truth reflection coefficient at
iteration 3000.

Appendix A. Convexity of the map M(n). Although we cannot demon-
strate that M, is a convex map in the entire  function space, we can show that
pointwise for every discrete w point, the map is convex. In particular, we have the
following theorem.
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Fia. 8. The decay of Lo norm of the error in the reconstruction process with three different
initial configurations.
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Fic. 9. Profile of reflection coefficient at different iteration steps. The initial guesses for the
three plots are no = 0.5, no = 0.4750 — 0.05(w —0.05)2, and no = 0.4891—0.1(w—0.05)?, respectively.
The solutions at different iterations are plotted with different colors (nn(w) with n = 100, 200, 500,
and 3000 are presented by blue, green, yellow, and red lines). The reference solution is shown as
the pink line. In all three plots, the solution at n = 3000 almost recovers the reference solution.

THEOREM A.l. Recall the forward map to be
(A1) M, o — AT(2)

as defined in (2.9), with AT defined in (2.6) where g solves (2.5) with incoming
boundary condition being ¢. Suppose n1 > ng pointwise in w; then for any o, B € [0, 1]
with o+ f =1, one has

[aMy, + BMy,1(9) > Moy, +pn, () -

This suggests that if we view M as a function of n as a vector and suppose it
is second-order differentiable, then pointwise for w, it is convex, meaning 9;;,M > 0;
thus the Hessian is positive along its diagonal.

Proof. Let g1, g2, and g solve (2.5) with reflection coefficients 7y, 12, and any +
Bn2, respectively. We essentially need to check the validity of

ATy(t,z =0) < aAT,, (t,z =0) + BAT,,(t,z = 0)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/22 to 131.111.185.9 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TRANSMISSION COEFFICIENT RECONSTRUCTION 217

—7]0=0.5
——1,=0.4750-0.05(«-0.05)° |

08 ——1,=0.4891-0.1(-0.05)*

0 500 1000 1500
Iteration number

Fi1G. 10. The decay of error in terms of the number of iteration for three different initial guesses.
The error saturates after about 1500 iterations.

ao=1 ,b0=1.5
a0=2, b0=0.5 |
a0:2, b0=1 .5

0.5

0 500 1000 1500 2000 2500 3000

F1a. 11. The decay of L2 norm of the error in the reconstruction process with three different
initial configurations in the presence of noisy data.

or equivalently

(wg(z = 0,-)) < afwgi(z = 0,-)) + Blwgz(x = 0,-)) .

In fact we will prove a stronger result that states

agr + Bg2 > g

for all z,¢, u,w. To do so, we notice that with the same incoming boundary condition
¢, g; satisfies

Ocg1 + pwdzg1 = Ly,

91(17207# > Oa) :d)v

gl(x =1,u <0, ) = ﬁl(w)gl(f =1,-pu, ')7
0tgo + pw0yg2 = Lgo,

92(17:07.114 > Ov) = 9,

g2(z =1, 0 <0,-) = p(w)g2(z = 1, —p, ).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/22 to 131.111.185.9 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

218 IRENE M. GAMBA, QIN LI, AND ANJALI NAIR

=0.5

7y

08

0.6

04

0.2

05 1 15 2 o
w

0 500 1000 1500 2000 2500 3000

Fi1a. 12. Reconstruction of the reflection coefficient at different iterations when J = 50. We
show the profile of the reconstructed reflection coefficient at different stages of the iteration and the
decay of the error.

We simply multiply the two PDEs with a and 3, respectively, and add them up. This
gives
Oh + pwdzh = Lh,
hz =0,u0>0,) = ¢,
h(z =1,p<0,:) = (am + ) (w)h(z =1, —p,")
+aB(m —n2)(g1 — g2)(@ =1, —p, ),

(A.3)

where h = ag; + g2, and we used the fact that a + § = 1. On the other hand,

Og + pwdzg = Ly,
(A4) g(:r:O,u> Oa) :¢7

9(x =1, <0,:) = (am + Bn2)(w)g(x =1, —p, ).
Subtracting the PDE for h and g, and calling H = h — g, we have

O H + pwo, H = LH,

H(z=0,u>0,-)=0,

H(x=1,1p<0,) = (am + Bn)(w)H(zx =1, —p,")
+aB(m —n2)(g1 — g2)(x =1, —p, ).

(A.5)

This is a phonon transport equation with zero incoming data and a source at x = 1.
So the positivity is determined by the positivity of the source term. Since 77 > 72
pointwise in w, we need to show g1 — go > 0.

To show that, let G = g1 — g». Subtracting the PDEs for g; and g, gives

0,G + jwdyG = LG,
(A6) {Gz=0,u>0,-)=0,
G(l‘ = 17# < 07 ) = TIQ(W)G('I = 17 —H, ) =+ (Th - 772)((‘0).91(:6 = 17 iz )

Since both 171 — 72 > 0 and g1 > 0, we have G > 0 over the entire domain, which
when plugged back in (A.5) indicates H > 0, meaning

agr + Bg2 > g,

concluding the theorem. 0
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