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Abstract: Chemotaxis describes the movement of an organism, such as single or multi-cellular
organisms and bacteria, in response to a chemical stimulus. Two widely used models to describe the
phenomenon are the celebrated Keller-Segel equation and a chemotaxis kinetic equation. These two
equations describe the organism’s movement at the macro- and mesoscopic level, respectively, and
are asymptotically equivalent in the parabolic regime. The way in which the organism responds to a
chemical stimulus is embedded in the diffusion/advection coefficients of the Keller-Segel equation
or the turning kernel of the chemotaxis kinetic equation. Experiments are conducted to measure the
time dynamics of the organisms’ population level movement when reacting to certain stimulation.
From this, one infers the chemotaxis response, which constitutes an inverse problem. In this paper,
we discuss the relation between both the macro- and mesoscopic inverse problems, each of which is
associated with two different forward models. The discussion is presented in the Bayesian framework,
where the posterior distribution of the turning kernel of the organism population is sought. We prove
the asymptotic equivalence of the two posterior distributions.

Keywords: inverse problems; Bayesian approach; kinetic chemotaxis equation; Keller-Segel model;
multiscale modeling; asymptotic analysis; velocity jump process; mathematical biology

1. Introduction

Chemotaxis is the phenomenon of organisms directing their movements upon certain
chemical stimulation. Every motile organism exhibits some type of chemotaxis. Mathemat-
ically, there are two mainstream mathematical models used to describe this phenomenon:
one at the macroscopic population level and the other at the mesoscopic level.

The most famous model in the first category is the Keller-Segel equation, introduced
in [1-3]. The equation traces the evolution of bacteria density when chemical stimulation is
introduced to the system:

d
50— V(D Vp)+ V- (pol) =0, @

where p(x, t) is the cell density at location x at time t > 0. In this equation, both the
advection term and the diffusion process integrate the external chemical density infor-
mation, meaning that both the diffusion matrix D(x,t;c) € R3%3 and the drift vector
I'(x,t;c) € R?, as functions of (x,t), are determined by the chemoattractant’s density
function ¢ : (%,F) — ¢(,f). This function ¢ serves as a meta-parameter determining the
(x,t) dependence of D, T.

However, the model is inaccurate in certain regimes. It overlooks the bacteria’s
complex reaction to the chemoattractants and is thus macroscopic in nature. This inspires
the second category of modeling, where the motion of individual bacteria is accounted for.
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The associated modeling is thus mesoscopic. When bacterial movements are composed
of two states, running in a straight line with a given velocity v and tumbling from one
velocity v to another v/, the according mathematical model is termed the run-and-tumble
model. It is described by the mesoscopic chemotaxis equation [4-6]:

% (x,t,0) + 0-Vaf(x,1,0) = K(f:0) @

::/K(x,t,v,v’;c)f(x,t,v')—K(x,t,v’,v,'c)f(x,t,v)dv’.
v

In the equation, f(x,t,v) is the population density of bacteria with velocity v in some ve-
locity space V C R? at space point x € R? at time ¢ > 0. The tumbling kernel K(x,t,v,v';c)
encodes the probability of bacteria changing from velocity v’ to v. The shape of this
probability depends on the chemoattractant’s density function c.

Abbreviating the notation and calling f' := f(x,t,v') and K’ := K(x,t,v’,v;¢) asin [5],
the tumbling term on the right-hand side of Equation (2) reads

K(f) = /VKf’ —K'fdo'

Because bacteria are usually assumed to move with constant speed, conventionally, we
have V = S"~1. Moreover, since the cell doubling time is much longer than the chemotaxis
time scale, we remove the birth-death effect from the equation.

Both models above are empirical in nature. The coefficients, such as D, I and K, which
encode the way in which bacteria respond to the environment, are typically unknown
ahead of time. Since the chemoattractant concentration ¢ depends on space and time,
sodo D, I and K. However, except for very few well-studied bacteria, these quantities
are not explicitly known and cannot be measured directly. One thus needs to design
experiments and use measurable quantities to infer the information. This constitutes the
inverse problem that we study. One such experiment was reported in [7], where the authors
studied phototaxis and used video recording of seaweed motion (p in time) to infer D and
Tin (1).

There are various ways to conduct inverse problems, and, in this paper, we take the
viewpoint of Bayesian inference. This is to assume that the coefficients are not uniquely
configured in reality but, rather, follow a certain probability distribution. The measure-
ments are taken to infer this probability. In the process of such inference, one nevertheless
needs to incorporate the forward model. The two different forward models described
above then lead to two distinctive posterior distributions as the inference.

One natural question is to understand the relation between the two resulting posterior
distributions. In this article, we answer this question by asymptotic analysis. To be specific,
we will show that the two models are asymptotically equivalent in the long-time and
large-space regime, and (D, T’) can be uniquely determined by a given K. As such, the
associated two inverse problems are asymptotically equivalent too. The equivalence is
characterized by the distance (we use both the Kullback—Leibler divergence and the
Hellinger distance) between the two corresponding posterior distributions. We show that
this distance vanishes asymptotically as the Knudsen number, a quantity that measures the
mean free path between two subsequent tumbles, becomes arbitrarily small.

One goal of this paper is to provide a theoretical foundation for developing an efficient
kinetic inverse solver. All inverse solvers involve iterative forward solvers, and thus the
computational complexity can be reduced significantly if the forward solver is cheap. While
it is costly to compute kinetic equations on the phase space, the Keller-Segel diffusion
limit is a good surrogate. Our result suggests that the solution to the Keller-Segel inverse
problem is close to the kinetic result and thus qualifies as a ‘good’ initial guess, for the full
reconstruction on the kinetic level.

The rest of the paper is organized as follows: in Section 2, we present the asymptotic
relation between the two forward models. This can be seen as an adaption of the results
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in [5] to our setting. The analysis serves as the foundation to link the two inverse problems.
In Section 3, we formulate the Bayesian inverse problems corresponding to the scaled
chemotaxis equation and the Keller-Segel model as underlying models. The well-posedness
and convergence of the two corresponding posterior distributions are shown in Section 4.
The results are summarized and discussed in Section 5.

We should stress that both the mathematical modeling of chemotaxis and Bayesian
inference are active research areas. In formulating our problems, we select the most widely
accepted models and methods.

For modeling chemotaxis, the two models (1)—(2) are the classical ones, and were
derived from the study of a biased random walk [1,6]. They assume that the organisms
passively depend on the environment. When bacteria actively respond to and change the
environment, a parabolic or elliptic equation for ¢ can be added to describe such feedback
to the environment [2,3,8]. The coupled system consisting of Equation (1) and a parabolic
equation for ¢, where the chemoattractant is assumed to be produced by the bacteria
population, can exhibit blow-up solutions. Therefore, some particular forms of D(, -; ¢),
I'(-,-;c) are proposed in order to eliminate the unwanted behavior. These models include
volume filling [9], quorum sensing models [10] or the flux-limited Keller-Segel system [11].
On the kinetic level, additional variables were introduced to describe the intracellular
responses of the bacteria to the chemoattractant in the signaling pathway [12-15]. The
asymptotic limit of the newer models sometimes reveals interesting phenomena, such as
fractional diffusion [16]. The asymptotic equivalence of the classical model to the Keller—
Segel model was extensively studied, e.g., in [5,6,17,18]. In particular, the current paper
heavily depends on the techniques shown in [5].

There is also vast literature on inverse problems. For the Bayesian inference perspec-
tive in scientific computing, interested readers are referred to monographs [19,20] and the
references therein. In comparison, linking two or multiple inverse problems in different
regimes is relatively rare. In [21], the authors studied the asymptotic equivalence between
the inverse kinetic radiative transport equations and its macroscopic counterpart, the diffu-
sion equation. In [22], the convergence of Bayesian posterior measures for a parametrized
elliptic PDE forward model was shown in a similar fashion.

2. Asymptotic Analysis for Kinetic Chemotaxis Equations and the Keller-Segel Model

The two problems we will be using are chemotaxis kinetic equation and the Keller—
Segel equation. We review these two models in this section and study their relation. This
serves as a cornerstone for building the connection of the two associated inverse problems.

Throughout the paper, we assume that the chemoattractant density c is one given and
fixed function of (x, t) and is not produced or consumed by the bacteria. While this is an
approximation, it is valid in many experiments where one has tight control over the matrix
environment. Because c is fixed, we drop the dependence of K, D, I on c in the notation.

We claim, and will show below, that the two Equations (1) and (2) are asymptotically
equivalent in the long-time large-space regime. We denote by ¢ the scaling parameter; then,
in a parabolic scaling, the chemotaxis equation to be considered has the following form:

& fu0,1,0) + 0 Vafe(x,1,0) = Kelf)
= /VKg(x, t,v, U,)fs(x, t, U’) — Ke(x,t, v’,v)fg(x, t,v)dv’ 3)
fe(x,0,0) = fo(x,0).

Formally, when ¢ — 0, the tumbling term dominates the equation and we expect, in the
leading order:

foo fo, with K(f) =0,

where K, can be viewed as the limiting operator as K¢. This means that the limiting
solution is almost in the null space of the limiting tumbling operator. Furthermore, due to
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the specific form of the tumbling operator, one can show that, under certain conditions, such
null space is one-dimensional; compare, e.g., [5] Lemma 2 and the following derivations.
We thus formally write

N(Ky) ={aF : « € R,with /Vde =1},

and denote f. = pF. Conventionally, we call F the local equilibrium. Due to the form
of K, this is a function only of v. Inserting this formula back into (3) and performing
asymptotic expansion up to the second order, and following [5], we find that p satisfies the
Keller—Segel equation:

0
gp_v.(D.Vp)‘f'V-(pl"):0, 4)

p(x,0) = po(x) = /Vfo(x,v)dv.

A rigorous proof of the convergence of a subsequence of f; can be found in [5], Theorem 3,
where the authors discussed a nonlinear extension of the present model.
From now on, we confine ourselves to kernels having the form of

K. = Ko + €Kj . )

Remark 1. Because our aim is to compare the posterior distributions of Ke for the kinetic model (3)
and the macroscopic model (4), this choice is reasonable. As shown in [5], higher-order terms in
€ would not affect the macroscopic equation. Therefore, they would not be reconstructable by the
macroscopic inverse problem.

In order to rigorously justify the above intuition on the convergence f. — pF and
ensure the existence of solutions to Equations (3) and (4), we suppose (Ko, K1) to be an
element of the admissible set

2
A= {(Ko, Ky) € (cl(R3 x [0,00) x V x V)) | |IKollct, [[Ki]|cr < Cand  (6)

0 < a < Ko symmetric and Kj antisymmetric in (v,7")}

for some preset constants C,a > 0. Defining |V| = [,,1dv as the volume of V, it is
straightforward to show that for any (Ko, K1) € A,

F=1/|V] is the local equilibrium. (7)

Remark 2. With (Ko, K1) assumed to be symmetric and antisymmetric, the local equilibrium F
in (7) is explicit and simple. This is, e.g., the case for one typical choice of the tumbling kernel:
K[c, Vc] = a[c] + eb[c]¢p(v - Ve — v’ - V) with antisymmetric ¢, which represents a special case
of the models extensively studied in [5].

For better readability, we assume the symmetry properties of the tumbling kernel stated in (6)
throughout the paper. We should mention, however, that it is possible to relax this assumption on
the tumbling kernel while maintaining the same macroscopic limit. In particular, if there exists one
uniform velocity distribution F(v) > 0 that is positive, bounded and satisfies

/ Fdv =1, / oF(v)dv=0 and Ko(x,t,v,0)F(v) = Ko(x,t,0,0)F(0)
1% v

for all considered Ky in the admissible set, then all statements and arguments provided in this paper
still hold true. Note that, by these requirements, assumption (A0) in Chalub et al. [5] is satisfied.
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Suppose that the initial data are smooth in the sense that fy € CY(R3 x V). Then we
have the following theorem on convergence which can be viewed as an adaption of the
results in [5].

Theorem 1. Suppose that K¢ has the form of (5) with (Ko, K1) € A and suppose the initial

condition fy € CYT(R3® x V); then, the solution f. to the chemotaxis Equation (3) satisfies

the following:

(a)  For sufficiently small e, the solution f, of Equation (3) exists and is bounded in L ([0, T], L} N
L®(R3 x V)) for T < co.

(b)  The solution f converges to pF in L ([0, T]; LY N L*(R3 x V)), with p satisfying the
Keller—Segel Equation (4) with coefficients

D = AU@K(X, t,0)do, (8)
r = - /VvG(x, t,v)dv. ©)
Here, 0 and « solve the cell problems:
Ko(k) =oF and Ky(0) = K1(F),

where Ki(g) := [, Kig' — Kjgdv' fori =0,1.
(¢)  The boundedness and the convergence is uniform in A.

Sketch of proof.
(a)  First of all, we have the maximum principle so that
[ fe(-/t, ) ||L1(R3><V) = ||f0||L1(]R<3xV) < X, (10)

and, following the same arguments as in [5], we integrate in time for

filnto) = folxo)+ [ Klh) (x— 2ot -s0) ds )
Sfo(x,v)—i—/ot/vKg(x—%,t—s,v,v’)fg(x—%,t—s,v') do' ds
Sfo(x,v)—i—ZC/ot/‘/fg(x—%,t—s,v’) dv' ds.

Noting that fy € L1 N L® and 0 < K, = K¢ +¢K; < (1+¢)C < 2C for sufficiently
small ¢, we have:

[feCrts Mo@exyy < [ follpe(mexrvy +2C|V] Jo [ feCr8 ) o maxvy ds. (12)

Calling the Gronwall lemma, one obtains a bound on || fe(+, £, *) || (g3 x 1) Since the
only role that K; plays is its boundedness by C, as in (11), the estimate that we obtain
is uniform in 4 and is independent of ¢ for a sufficiently small «.

(b)  We show that f; is a Cauchy sequence in ¢. For this purpose, we call f; and f; the
solutions of the chemotaxis Equation (3) with the scaling being ¢ and & We also
denote the difference fg,g := fe — fe. Subtracting the two equations, we have:

01fez + €0+ Vifee=Ko(fee) + K1 (fer)
— (2 —8)0ifr — (e —&)v-Vaife + (e — K1 (f (13)

=Ke(fer) — (€2 — 8)arfe — (e —E)v- Vafe + (e — ©)K1(fe)
=:5
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with trivial initial data f.z(x,0,0) = 0. This is an equation with a source term S.
Using the argument as in (a), the L*° boundedness of the time and spatial derivative
dtfe, Vife in S can be shown, meaning that S is of order £ — & Running (11) again
with this extra source term, we have

[ fe _fé||L°°([0,T};L10L°°(R3xv)) =0(e—¥).

Hence, {f;} is a Cauchy sequence, and thus converges to some f € L*([0,T], L} N
L®(R3 x V)).

It remains to prove f = pF almost everywhere in [0, T] x R3 x V with p satisfying the
Keller-Segel Equation (4) with D, I', as given in Equations (8) and (9). This follows
by arguments rather similar to those in [5], and is therefore omitted from here. Since
only the boundedness of (K, K1) is seen in the proof, the convergence is uniform
in A.

O

3. Bayesian Inverse Problem Setup

Associated with the two forward models, there are two inverse problems. We describe
the inverse problem setup and present them with the Bayesian inference formulation.

In the lab setup, it is assumed that the bacteria plate is large enough so that the
boundary plays a negligible role. At the initial time, the bacteria cells are distributed on the
plate. One then injects chemoattractants onto the plate through a controlled manner, so to
have c(t, x) explicitly given, forcing K;, and (D, T') to be functions of (¢, x,v) or (¢, x) only.
The bacteria density at location x at time ¢ is then measured.

Measuring is usually done by taking high-resolution photos of the plate at time t and
counting the bacteria in a small neighborhood of location x. Another possibility is taking
a sample of the bacteria at location x and measuring the bacteria density of the sample
by classical techniques such as optical density OD 600 or flow cytometry, see, e.g., [23,24].
This, however, describes an invasive technique and thus allows measurements at only one
time £.

The whole experiment is to take data of the following operator:

A x i fo— / Fult, x, 0)do

if the dynamics of the bacteria are modeled by (3), and

A?(O/Kl = -AD,T D po = /V fodv — p(t, x)

if the dynamics of the bacteria are modeled by (4). Noting that (D, T") are uniquely deter-
mined by (Ko, K1) by Equations (8) and (9), we can equate Ap r with .AK ;- Although
the more natural macroscopic inverse problem would be to recover the diffusion and drift
coefficients D, I' in (4), we choose to formulate the inverse problem for the tumbling kernel
(Ko, K1). This allows us to compare the solution for both the kinetic and the macroscopic
inverse problem.

Remark 3. In order to reasonably compare the solutions to the inverse problems, the solutions
have to be of the same kind. We choose to reconstruct (Ko, Ky ) in both the kinetic and macroscopic
inverse problem; see Figure 1 (left). The macroscopic inverse problem is thus also formulated for
(Ko, K1), which (D, T) is a function of. Alternatively, one could also reconstruct (D, T’) from both
models. In the kinetic setting, this would mean to reconstruct (K™, KShe™) and then transform
to values of (Dhe™, T<he™) by Equations (8) and (9); see Figure 1 (right).

We do not choose this alternative, because the information on the tumbling kernel (Ko, K7) is
microscopic and thus more detailed. Furthermore, with a fixed (Ko, K1), (D, T) can be uniquely
determined, and thus the convergence can be viewed as a mere consequence; see also Remark 5.
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Keller Segel Keller Segel

(K(c)heml Kihem) compare (Ké(S’ K11<S) (K[c)hem, Kihem)

(Dcheml rchem) compare (DKS, rKS)

Figure 1. Two ways to compare the inverse problems: determining and comparing the tumbling
kernels for both underlying chemotaxis and Keller-Segel models (left) or determining the drift or
diffusion coefficient for the Keller-Segel model and the tumbling kernel for the chemotaxis model
and calculating the corresponding drift and diffusion coefficients.

Multiple experiments can be conducted using different initial profiles, but the same
controlled ¢(t, x) is used to ensure that the to-be-reconstructed K; is unchanged from
experiment to experiment. Denoting by k € [1,- - -, K] the indices of the different initial
data setups, and denoting by j = (j1,j2) € [1,---, 1] ®[1,---, 2] the indices of the
measuring time and location, with t; = t; being the measuring time, and x; = x;, € Cc (R3)
being the spatial test function, then, with (3) and (4) being the forward models, we take the
measurements, respectively:

ggchem(KO,Kl) =M; ( K0K1(f0 /RB/fe (x,tj,v)do x;(x)dx, (14)
G (Ko K1) = My(Ay i, (00)) = [0 t) 1y, (15)

where M are the measuring operators with corresponding test functions (J;, x;). One
can consider x; a compactly supported blob function concentrated at a certain location,
meaning that all the bacterial cells in a small neighborhood are counted towards this
particular measurement; see Figure 2. This is a reasonable model when counting bacteria
in a small neighborhood or taking samples with a pipette.

t; t

®© 0

Figure 2. Measurement of the bacteria density (blue) at two different measuring times ¢, tr. The

location of the test functions is indicated by the support in space of the test functions y;, Xj

Throughout the paper, we assume that the initial data and the measuring operators
are controlled:

k k
LEO ) 19 o < vk
. (16)
max{||xillL, , 111 Ls 16 | Leor [5UPP Xjlax} < Cev V.

Remark 4. The measurements g]?,fhem(Ko, Ky), Q].KkS(KQ, Ky) are formulated in a rather general
form in Equations (14) and (15) due to the freedom in the choice of the test function x; € C.(R3).

However, all subsequent derivations also hold true for the specific case of pointwise mea-
surements with t; = t; and x; := x;,. The measurements would then be Q]‘?,;Chem(KO,Kl) =

Iy fs(k) (xj,tj,v) dv and Q].Ifcs(Ko, Ky) = p® (xj,t;), which would correspond to measuring opera-
tors M with test functions ((Sth ,5ij ).
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Since measuring error is not avoidable in the measuring process, we assume that it
introduces an additive error and collect the data of the form

yjs-;’fhem = gjgjfhem (Ko, K1) + jk,
Ve = Gio(Ko, Ky) + 1k,

where the noise 7j; is assumed to be a random variable independently drawn from a
Gaussian distribution N(0, y?) of known variance 2 > 0.

In the Bayesian form, the to-be-reconstructed parameter (Ky, K1) is assumed to be a
random variable, and the goal is to reconstruct its distribution. Suppose a priori that we
know that the parameter is drawn from the distribution yg; then, the Bayesian posterior
distributions for (K, K1) should be

1 Ko, K
Y e (Ko, K1) = el itt) (v) mo(Ko, K) .
_ 1 gs/chem Ko, Kq)— 2
- Z¢&chem 272” Kokl VO(KO/ Kl)'
using (3) as the forward model, and
1 (KoK
Fis (Ko Ki) = ﬁlh((so () pwo(Ko, Ky) s

1 5 11G%5 (Ko Ke) —ylI?
= 7Ks® 2 o #o(Ko, K1),

using (4) as the forward model. In the formula, Z° is the normalization constant to ensure
[1du(Ko, K1) = 1 and
ngO’Kl)(y) _ e—ﬁHgO(KorKl)—ﬂV
is the likelihood of observing the data y from a model with a tumbling kernel or diffusion
and drift term derived by (Ko, K7).
In Section 4, we specify the conditions on y to ensure the well-definedness of yz.

Remark 5. Since the macroscopic model does not explicitly depend on (Ko, Ky), the distribution
of V%S(D,F) is of interest in the macroscopic description (4). There are two ways to derive it
starting with a prior distribution on (Ko, Ky ): The natural way would be to transform the prior
distribution to a prior on (D, T') by Equations (8) and (9) and then consider the inverse problem
of reconstructing (D, T). This approach is displayed by the lower path in Figure 3. If, however,
the posterior distribution nyS(KO, Ky) is calculated ahead of the transformation (as in our case),
one could instead transform this posterior distribution directly to a distribution in the (D, T) space
following the upper path in Figure 3. Naturally, the question arises of whether the two ways lead to
the same posterior distribution. It turns out that they do. Considering the second possibility, we
see that the likelihood and thus the normalization constant only depend on (D, T'), because we are
in the macroscopic model. Hence, only the prior distribution is transformed, as is the case for the
first possibility.

inverse problem

#o(Ko, K1) mys (Ko, K1)
transform transform
inverse problem
VO(D/F) p H%S(D/r)

Figure 3. Two ways to determine the posterior distribution yiS(D, I') from a prior yip(Ko, K1) on the
tumbling kernels.
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4. Convergence of Posterior Distributions

One natural question arises. The two different forward models provide two different
posterior distribution functions of (Ko, K7 ). Which distribution is the correct one, or, rather,
what is the relation between the two posterior distributions?

As discussed in Section 2, the two forward models are asymptotically equivalent in
the long-time large-space regime, so it is expected that the two posterior distributions
converge as well. This suggests that the amount of information given by the measurements
is equally presented by the two forward models. However, this convergence result is not
as straightforward as it may seem. One issue comes from the control of initial data and the
measurement operator. For each initial datum, the solution converges in L* ([O, T]; L}F N
L""(]R3 X V)) ; we now have a list of initial data, and the solutions are tested on a set of
measuring operators, so we need a uniform convergence when tested on the dual space.
Furthermore, to show the convergence of two distribution functions, a certain metric needs
to be given on the probability function space. The issue of how the convergence for one set
of fixed (Kp, K1) translates to the convergence on the entire admissible set also needs to
be addressed.

By choosing the admissible set (6), we formulated an assumption on the tumbling
kernels (Kp, K1) ahead of time. With this a priori knowledge, we showed the uniform
boundedness and convergence of the solutions f; to the chemotaxis Equation (3) over the
function set 4 in Theorem 1. This will play a crucial role in the convergence proof for the
inverse problem. From here on, we assume that the prior distribution y is supported
on A.

Before we show the convergence, as an a priori estimate, we first show the well-
posedness of the Bayesian posterior distributions in Lemma 1, following [19,20].

Lemma 1. If the initial conditions fék) € CYT(R3 x V) and the test functions Xj € C:(R3)
satisfy (16), then the following properties of the posterior distributions hold true:
(a)  The measurements G&"™ and GXS are uniformly bounded on A (and uniformly in e).

(b)  For small enough e, the measurements gechem 59 GKS gre Lipschitz continuous with respect
to the tumbling kernels (Ko, K1) under the norm ||(Ko, K1) ||« := max(||Ko||eo, [|K1]|c0)
on A.

(c)  The posterior distributions are well-posed and absolutely continuous with regard to each other.

Proof.

(a) Forevery (j, k), we have:

G0 Kl = | [ o) (0
k
< @) oo llo® o) sy = 1 G ool g1 )
< GG
where we use the density conservation: ||o(-,t)|[11(r3) = [|ol|11(r3) for all £. Anal-
ogously, we have |g€ chem (g, Kq)| < CxCp. Note that this bound is independent

of e.
(b)  For the chemotaxis model, we have for (Ko, K1), (Ko, K1) € A

|gschem(K0’K1) gechem<KO,Kl | _ ‘/ / k))(x,t],v) dvx]-(x) dx
(k #(k
<l [, 1 Gty 00 dod < ColV llsup lan oty e

< CUVIIFD oty Mooy, (19)
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where fe(k) and fg(k) are solutions to the initial value problem (3) with initial condition
fék) and tumbling kernels K, = Ky + €K; and Ke = Ko+ €Ky, respectively. Their

difference fg(k) = fg(k) - ~s<k) satisfies the scaled difference equation:
J - - - _
szgfs(k)(x, t,v)+ sv-fos(k)(x, tv) = ng(fg(k)) + Ko(F9)
fs(k>(x, 0,v) = 0.

Here, K denotes the tumbling operator with kernel K, := K — K. Integration in s at

(x — %,t —s,v) shows

t v 5

7(k) _ [ 70 _ s _ e ( £k _us _

fe ' (x,t,0)= OICS(f8 )(x s,v,if s)—HCE(ﬁg )(x S,v,t s)ds
t

= /‘/Kgﬂ(k)(x—%,v,v/,t—s

+/‘/st£(@ (xf %,v,v’,tfs

—K! _g(k) (x - %,v,v’,t - s) do’
- Kéfg(k) (x — %,v, vt — s) do’ ds.
This yields
#(k . bk
16t e vy <2Rello V] [IAD Gt =5, )l aoser, ds
> k
+2[|Ke — Relloo V[ £ [ oot

t
7k
<aClV] [ (s sy s
+4|[(Ko — Ko, K1 = Ky) ||+ V]efT

bounded in L* uniformly on A by Theorem 1 (a). Additionally, c; can be chosen to

since one has ||Ke||o < 2|(Ko, K7)||« < 2C for small enough ¢ < 1 and < cyis

be independent of k by inserting the uniform boundedness of || fék) || in (16) into
Equation (12). The Gronwall lemma thus gives

_k ~ ~
17 (ot ) ms vy < LT, C,Co) | (Ko — Ko, Ky — Ky)|

with some coefficient L depending on T, C and C,. Inserting this into Equation (19)
results in the desired Lipschitz continuity.

We similarly study the Lipschitz continuity of the Keller-Segel measurements
Q].KkS(KO, K1). The proof strategy is almost the same. With some computational
effort, one can see:

G5 (Ko, K1) — G (Ko, Ka)| < [Ixjll2 | (0 = p) (-, 1) 2
Cxc(|ID = Dl oo 10,7 xr3,83+3) + IT = Tll o (0,71 xR3;m53) )

IN

where (T, D), (T, D) are the drift and diffusion terms derived by the collision oper-
ators defined by (Ko, K1) and (Ko, K1), respectively, by Equations (8) and (9). The
constant ¢ monotonously depends on the L2 norms of p*) and V,p*), which are
bounded uniformly on A. By the linear relation between D and x and I" and 0, this
directly translates to

|g}l<<S(K0/ Kl) - g]I'I<<S(IZ0r K1)| < 5CCx( HK - kHL‘”([O,T]><]R3;L2(V;%;R3))

116 = Ol 0,7y s12(v0)))
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with constant ¢ depending only on V. Finally, the Lax-Milgram theorem shows the
continuous dependence of

16— Bll 2y + 11K — 7l 2y, < €ll (Ko, Ko) = (Ko, K)o

where ¢ only depends on V, «, C.

_1 e —y|2
(¢) By (a), the likelihoods e 27 19K K041 e bounded away from zero and bounded

uniformly on A (and in €). Thus, the normalization constants Z are too. Part (b)
guarantees the measurability of the likelihoods. In total, this shows that the posterior
distributions are well-defined and continuous with respect to each other. Since the
likelihoods are continuous in y, the well-posedness of the posterior distributions is
given.

O

We are now ready to show the convergence of the two posterior measures. There are
two quantities that we use to measure the difference between two distributions:

e  Kullback-Leibler divergence

s, 1= [ (1og 558 () )t

. Hellinger metric

2
drgen (1, p2)? = %/A (\/ZZ;(M) — \/ZZi(W) dpo(u).

The two metrics both evaluate the distance between the two probability measures 1
and yp, which are either absolutely continuous with respect to each other or with respect
to a third probability measure . Both are frequently used for comparing two distribution
functions, e.g., in machine learning [25-30] or inverse problem settings [21,22]. Even though
the Kullback-Leibler divergence lacks the symmetry and triangle-inequality properties
of a metric, it has gained popularity due to its close connection to several information
concepts, such as the Shannon entropy or the Fisher information metric [31]. Conversely, the
Hellinger metric is a true metric. Although it does not have a demonstrative interpretation
as does the Kullback-Leibler divergence, its strength lies in the fact that convergence in
the Hellinger metric implies convergence of the expectation of any polynomially bounded
function with respect to either of the posterior distributions, as explained in [19]. In
particular, the mean, covariance and further moments of the distributions converge.

Before comparing the posterior measures, we need to have a look at the convergence
of the measurements G° (K, K7).

Lemma 2. Assuming that the initial and testing functions satisfy (16), the chemotaxis measure-
ments G&Ne™ converge to the Keller—Segel measurements G¥S uniformly on A as e — 0.
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Proof. Theorem 1 shows the convergence of f; to pF in L®([0, T], L1 N L*(R3 x V)) uni-
formly on A. As a consequence, we have the convergence of the measurements:

Gee™ (Ko, K1) — gﬁs(KO,Kl)’
Lo | A9 Gty 0 dog ) = [ 0%k (x)ax
< /RS/ 9 (x, 5, 0) — p®) (x, ;) F(0) | do | (x) |dx

< N9 o) = 0" (1) Fll oo sy [V 1 1261 2 oy
- 0

where we use the form F = % By the uniform convergence of f; to pF, this holds uniformly
on A. Since the initial data and measuring test functions satisfy (16), we have the uniform
convergence over (j, k) aswell. O

We can now prove the following theorem on the asymptotic equivalence of the two
posterior measures describing the distribution of the tumbling kernels (Ko, K1) € A if the
dynamics of the bacteria are modeled by the kinetic (3) or macroscopic Equation (4).

Theorem 2. Let the measurement of the macroscopic bacteria density be of the form (14) and (15)
for an underlying kinetic chemotaxis model or a Keller-Segel model, respectively. The measuring
test functions x; € Cc(R3) and initial data fék) € CC1’+(]R3 x V) are assumed to satisfy (16).
Given a prior distribution pg on A and an additive centered Gaussian noise in the data, the
posterior distributions for the tumbling kernel derived from the kinetic chemotaxis equation and
the macroscopic Keller—Segel equation as underlying models are asymptotically equivalent in the
Kullback-Leibler divergence

e—0
dKL(‘u]S/,Chem’ V%s) — 0.

Proof of Theorem 2. With the above lemmas, one can proceed as in the proof in [21]. The
integrand of the Kullback-Leibler divergence is by the definition of the normalization
constants of order

K K
d‘us chem o VO(KOI Kl)]"g C(})lenlq (y) ZKS
log du (KO’ Kl) = log 7€,chem (Ko,K1)
KS to(Ko, K1)pgg (v)
e 2 i) (y)
= 108 7¢,chem 08 VI((IEO,Kl)(y)
Ky, K Ky, K
= O(|zsehem — ZK)) 4 o1k () — ul@ ) ()

= O(uS2) () — @ ).

Thus, we estimate
Ko,Kq) Ko, K
et () = g™ ()|

e o, kIR (- G (K K
eXp( 2,)/2 exp 2’)/2

e|lly = gt (Ko, Ka) 2 = ly — G5 (Ko, K) |
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for the Lipschitz constant ¢ < co of exp(— %) and

[y = G (Ko, K) I = [ly — G*S(Ko, K)|?

T
tr [(Zy o gs,chem(KO’ Kl) o gKS (K0/ K1)> (ga,chem (KOI Kl) o gKS (KOI Kl))] ‘
< |2y — Goe™ (Ko, Ky) — GF5(Ko, Ky) || - |G9™ (Ko, Ky) — G*5 (Ko, K1) |-

The first factor is bounded uniformly on A and in € by Lemma 1 (a) and Lemma 2 shows
that the second factor converges to 0 uniformly on .A. It follows that

dKL(I’{z,chem’ V%S) — 0.
O

The boundedness of the the Hellinger metric by the Kullback-Leibler divergence

Afren (11, 12) < dicr (1, p2)

as shown in Lemma 2.4 in [32] together with Theorem 2 yields the asymptotic equivalence
of the posterior distributions also in the Hellinger metric.

Corollary 1. In the framework of Theorem 2, one has

v y e—0
dHell <‘u£,chem’ VKS) 0

5. Summary and Discussion

In this article, we considered bacterial movement in an environment with an attracting
chemical substance that was not produced or consumed by the bacteria. The bacteria
density was modeled to follow a chemotaxis Equation (3) on the kinetic level and a Keller—
Segel Equation (4) on the macroscopic level. We studied the reconstruction of the tumbling
coefficient using the measurement of the bacterial density at different times and locations
using different initial data. After adapting the results from [5] in the parabolic scaling, we
studied the equivalence between the reconstructions using the two different underlying
models in the Bayesian framework. Assumptions on the prior information were made
to guarantee the uniform convergence of the two forward models. This enabled us to
show that the posterior distributions are properly defined and that convergence of the two
posterior distributions holds true. The distance between two posterior distributions was
measured in both the Kullback-Leibler divergence and the Hellinger metric.

The work presented here serves as a cornerstone of future research. On one hand, the
study here can help in the design of an efficient inversion solver. Most inversion solvers
are composed of many iterations of forward solvers. Since the kinetic chemotaxis equation
lies on the phase space and is numerically much more expensive, the limiting Keller-Segel
equation can serve as a good substitute for generating a good initial guess and speeding
up the computation by reducing the number of iterations. On the other hand, the approach
performed in this study is rather general, and with minor modification, it also provides the
foundation for explaining experiments, such as [7].
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