

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

RESEARCH ARTICLE

Evidence of learning walks related to scorpion home burrow navigation

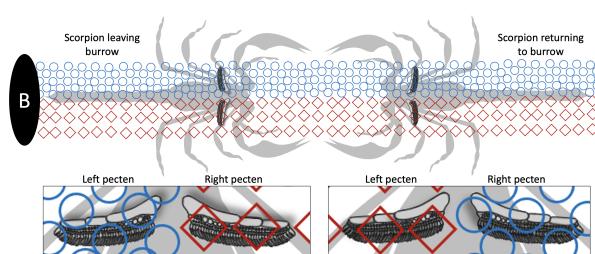
Douglas D. Gaffin¹, Maria G. Muñoz¹, and Mariëlle Hoefnagels²

ABSTRACT

The *Navigation by Chemotextural Familiarity Hypothesis* (NCFH) suggests that scorpions use their midventral pectines to gather chemical and textural information near their burrows and use this information as they subsequently return home. For NCFH to be viable, animals must somehow acquire home-directed “tastes” of the substrate, such as through path integration (PI) and/or learning walks. We conducted laboratory behavioral trials using desert grassland scorpions (*Paruroctonus utahensis*). Animals reliably formed burrows in small mounds of sand we provided in the middle of circular, sand-lined behavioral arenas. We processed overnight infrared video recordings with a MATLAB script that tracked animal movements at 1-2 s intervals. In all, we analyzed the movements of 23 animals, representing nearly 1500 hours of video recording. We found that once animals established their home burrows, they immediately made one to several short, looping excursions away from and back to their burrows before walking greater distances. We also observed similar excursions when animals made burrows in level sand in the middle of the arena (i.e., no mound provided). These putative learning walks, together with recently reported PI in scorpions, may provide the crucial home-directed information requisite for NCFH.

KEYWORDS: pectines, peg sensilla, familiarity, sensory

INTRODUCTION


Sand scorpions live in burrows that they dig, and from which they emerge at night to hunt (Polis and Farley, 1979; Polis, 1980; Polis and Farley, 1979; Polis et al., 1985). Questions exist about how they return home. We think scorpions might use a simple view-based navigational process, similar to that proposed for ants and bees, termed *Navigation by Scene Familiarity* (Baddeley et al., 2012; Philippides et al., 2011). However, instead of vision, scorpions may be guided by tastes and touches acquired via their mid-ventral pectines (Cloudsley-Thompson, 1955; Wolf, 2017). We have termed this process *Navigation by Chemo-textural Familiarity* (Gaffin and Brayfield, 2017). Put simply, to get home, the scorpion uses its pectines to detect and move toward tastes and textures it has learned during previous home-bound forays.

For this hypothesis to be viable, two crucial ingredients must be present. First, there must be adequate sensor complexity to match

the environment. Second, there must be a way to generate the initial home-bound training paths (Baddeley et al., 2012; Gaffin et al., 2015; Wehner et al., 1996).

Regarding sensor complexity, each pecten has a series of teeth that support thousands of minute peg sensilla (aka “pegs”) on their ground facing surfaces (Ivanov and Balashov, 1979; Foelix and Müller-Vorholt, 1983). Each peg contains a population of chemosensory taste cells (approx. 10) and at least one mechanosensory neuron that responds when the peg bends (Ivanov and Balashov, 1979; Foelix and Müller-Vorholt, 1983; Gaffin and Brownell, 1997b; Melville, 2000). In all, hundreds of thousands of sensory afferents project from the pectines to the scorpion’s central nervous system (Wolf, 2008; Brownell, 2001; Drozd et al., 2020). Based on this complexity, a proof-of-concept model showed that an agent using a downward facing sensor could navigate various proxies of a simulated environment (Musaelian and Gaffin, 2020).

Sensory complexity is therefore adequate; what about the generation of home-bound training paths? The glances and tastes a scorpion experiences while leaving its nest or burrow depart 180 degrees from those that lead home (Fig 1). How does the animal know its way home after venturing out for the first time? Innate behaviors such as path integration and learning walks may provide the answer. In path integration (PI), the distance and direction of each outbound leg is integrated to compute an approximate home-bound vector (Wehner, 1992; Papi, 1992). PI is well documented for many animals, but the studies of desert ants are the most extensive (Wehner, 1992; Wehner and Srinivasan, 1981; Wehner et al., 1996; 2004; 2006; Wolf, 2011; Wittlinger et al., 2006; 2007; Wittlinger and Wolf, 2013; Heinze et al., 2018; Srinivasan, 2015; Wittlinger et al., 2006; Wolf, 2011). PI has also been described for some groups of spiders (Ortega-Escobar, 2002; 2006; Ortega-Escobar and Ruiz, 2017; 2014; Görner and Claas, 1985; Moller and Görner, 1994; Seyfarth and Barth, 1972; Seyfarth et al., 1982), and a recent study showed evidence of path integration in the lesser Asian scorpion, *Mesobuthus eupeus* (Prévost and Stemme, 2020).

Fig. 1. Conflicting information between outbound vs inbound paths. The chemicals and textures the pectines experience on the journey leading away from the burrow depart 180 degrees from what they experience on the return trip to the burrow.

¹Department of Biology, University of Oklahoma, Norman, OK 73019 USA

²Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019 USA

Authors for correspondence: (ddgaffin@ou.edu)

Received 28 Dec 2021

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

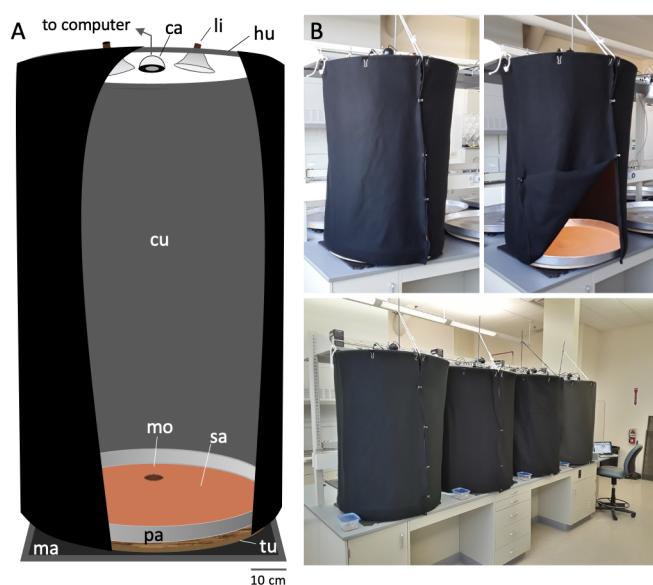
In addition, learning walks are innate behavioral patterns thought to further help the animal gain goal-directed stimuli (Wehner et al., 2004; Fleischmann et al., 2016; Zeil et al., 2014; 1996). As with PI, learning walks are well described for navigating ants (Zeil and Fleischmann, 2019) but have never been documented for scorpions or any other arachnid (although the zig-zag outbound paths of the wandering Namib spider *Leucorchestris arenicola* are strongly suggestive (Narendra et al., 2013; Nørgaard et al., 2012; Gaffin and Curry, 2020)).

In this study, we made long-term video recordings of sand scorpions as they produced burrows in the middle of laboratory arenas. We show that the animals make consistent, repeated looping paths immediately after their first burrow digging behavior and that these paths have similar characteristics to learning walks in ants.

MATERIALS AND METHODS

Animals, collection details, and maintenance

Desert grassland scorpions (*Paruroctonus utahensis*) were collected from the Walking Sands dune area about 6 km SE of the UNM Sevilleta Field Station. We used UV lights to find animals on three nights during periods of new moon in August, September, and October 2020. Only animals judged to be adults were collected. Supplemental Fig 1 shows the collection locations and the mixture of males and females from the three collection nights. Males dominated the August and September collections, whereas females predominated in October. The animals were transported and housed individually at the Station in small rectangular food storage containers with air holes drilled in the lids and ~50 ml of sand collected from the animals' habitat as a substrate. The animals were exposed to a 14:10 h light:dark cycle (on at 06:00, off at 20:00) using indirect light from two white 60W equivalent LED bulbs housed in work lights (Bayco clamp light, 21.6 cm) placed ~50 cm from the animals and plugged into a timer switch. The room temperature was maintained at about 22°C. After 45 days, we moved all animals to a room in the laboratory building on the UNM Sevilleta campus where the animals were exposed to natural light that streamed through the large NE facing picture windows and the temperature was kept at 20–21°C and the RH between 16–20%. A voucher specimen was given to the Sam Noble Oklahoma Museum of Natural History at the University of Oklahoma in Norman, Oklahoma.


Encouraging burrow formation

We ran several pilot studies to determine which conditions were most conducive to the scorpions digging and occupying burrows. These included tests of various substrates, mound sizes and locations, sand moisture content, and the timing of burrow occupation relative to daylight. All of these tests are chronicled in the supplemental materials section (Supplemental Figs 2–7).

Behavioral apparatus and video recording

We built four identical behavioral set-ups (Fig 2) in the UNM Sevilleta field station lab building (inspired by Vinnedge and Gaffin (2015)). Each arena consisted of an aluminum water heater drain pan (Camco, product no. 20860; 76.6 cm base diam, 7.6 cm height) sitting atop a turntable (formed from a 70 cm diam x 1.9 cm thick plywood round attached to a 30.5 cm diam Richeleau swivel plate with 454 kg capacity) to allow 360° rotation. A rubber mat (Ottomanon multi-purpose 61 x 61 cm exercise tile mat) was placed beneath each arena to dampen room vibrations.

About 1250 ml of screened native sand was spread in a thin layer across the bottom of each arena. We then added ~250 ml of native sand through a small funnel to form a mound in the middle of the arena which we then misted from above with 20 squirts of water (~15 ml). Light blocking curtains were secured to hula hoops (Ice Hoop, Kess Co; 86 cm diam) with large binder clips and draped around each arena. Two work lights (Bayco clamp light, 21.6 cm) equipped with broad spectrum bulbs (Duracell Ultra 75W equivalent daylight) were positioned 110 cm above each arena. The lights were controlled by a timer set to a 14:10 h light:dark cycle (on at 0530, off at 1930). Infrared cameras (ELP 1 megapixel Day Night Vision) were mounted 110 cm above the centers of each arena and connected via USB to two laptop computers (two cameras per laptop; Apple MacBooks). A MATLAB script was written to toggle between the cameras and acquire 200x200 pixel frames at a user defined interval. The frames were stored in a MATLAB structure array for subsequent analysis.

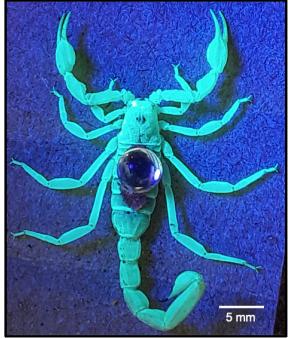


Fig. 2. Behavioral set-up for long-term recordings. (A) Each arena was composed of an aluminum heater drain pan (pa) atop a turntable (tu) and a rubber mat (ma). Sand (sa) was added to the pan and a mound (mo) was formed in a pre-defined location. A curtain (cu) was cut from black, light-blocking material and suspended from a hula hoop (hu) attached to supporting frame. Two timer-controlled lights (li) and an IR camera (ca) connected to a laptop computer were also attached to the frame. (B) Photos of an arena with curtain closed (left) and open (right) and the four arenas (below) arrayed along the lab counter with the laptop computer at the end.

To aid in video tracking, we used double-sided tape to affix a small crystal (5 mm round cab crystal; Acrylic Gems) on the dorsal mesosoma of each animal before releasing them into the behavioral arenas (Fig 3). To secure the crystal, we first placed an animal in a rectangular plastic container (30 x 17 cm). We then placed a square plastic sheet (8.5 x 8.5 cm) that had a 6 mm hole cut close to one of its corners over the animal such that the hole was over the animal's mesosoma with the remainder of the sheet covering the rest of the animal's body. This system calmed and secured the animal and allowed the crystal to be easily applied through the hole to the animal's back without the danger of being stung. The crystals reflected IR from all angles and from all animal positions within the arenas, so the plotting accuracy in MATLAB

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225 was greater than 99%. Smaller 3 mm crystals proved less effective,
226 given the camera's resolution and distance from the arena floor.
227
228

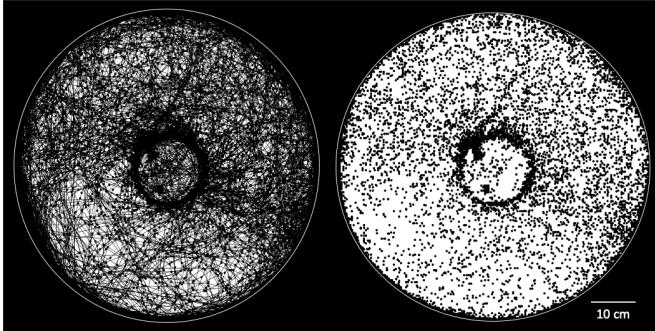
240 **Fig. 3.** Animal with attached crystal. A *P. utahensis* female is photographed
241 under UV light with a 5 mm round cab crystal affixed via double sided tape
242 to its dorsal mesosoma.

244 Before each recording, we created a mound either in the center
245 of an arena or offset from the center in various positions. The video
246 monitoring system was then set to record for a given length of time.
247 Finally, a crystal-equipped animal was introduced near the wall
248 of its designated arena and the curtains were completely closed
249 around the front of the set-ups using binder clips.

250 **Inducing learning walks without mounds**

252 We also induced scorpions to occupy burrows in the center of the
253 arenas without pre-made mounds. To do this, we added a thicker
254 layer of sand (3000 ml) to the arena and placed a plastic ring (30
255 cm diam x 12.5 cm tall) in the middle. In the center of the plastic
256 ring we partially buried a small paper slip (formed by removing the
257 base of a Dixie 3 ounce bath cup). We misted over the top of the
258 slip with 5 squirts (~4 ml) of water to provide additional structural
259 support to induce the scorpion to dig within this smaller arena. We
260 then placed a scorpion in the center ring in the late afternoon and
261 used video recording and MATLAB to track the animal's movements
262 for 18-22 hours. The plastic ring was removed the following
263 afternoon if the scorpion was found inside or near the burrow. If
264 the scorpion failed to accept the burrow, the smaller ring was left in
265 place, the burrow region was misted with three additional squirts
266 of water, and the animal was given an additional night to burrow.
267 After the plastic ring was removed, we continued recordings to
268 track the animal's movements throughout the large arena for an
269 another night.

270 **Analysis**

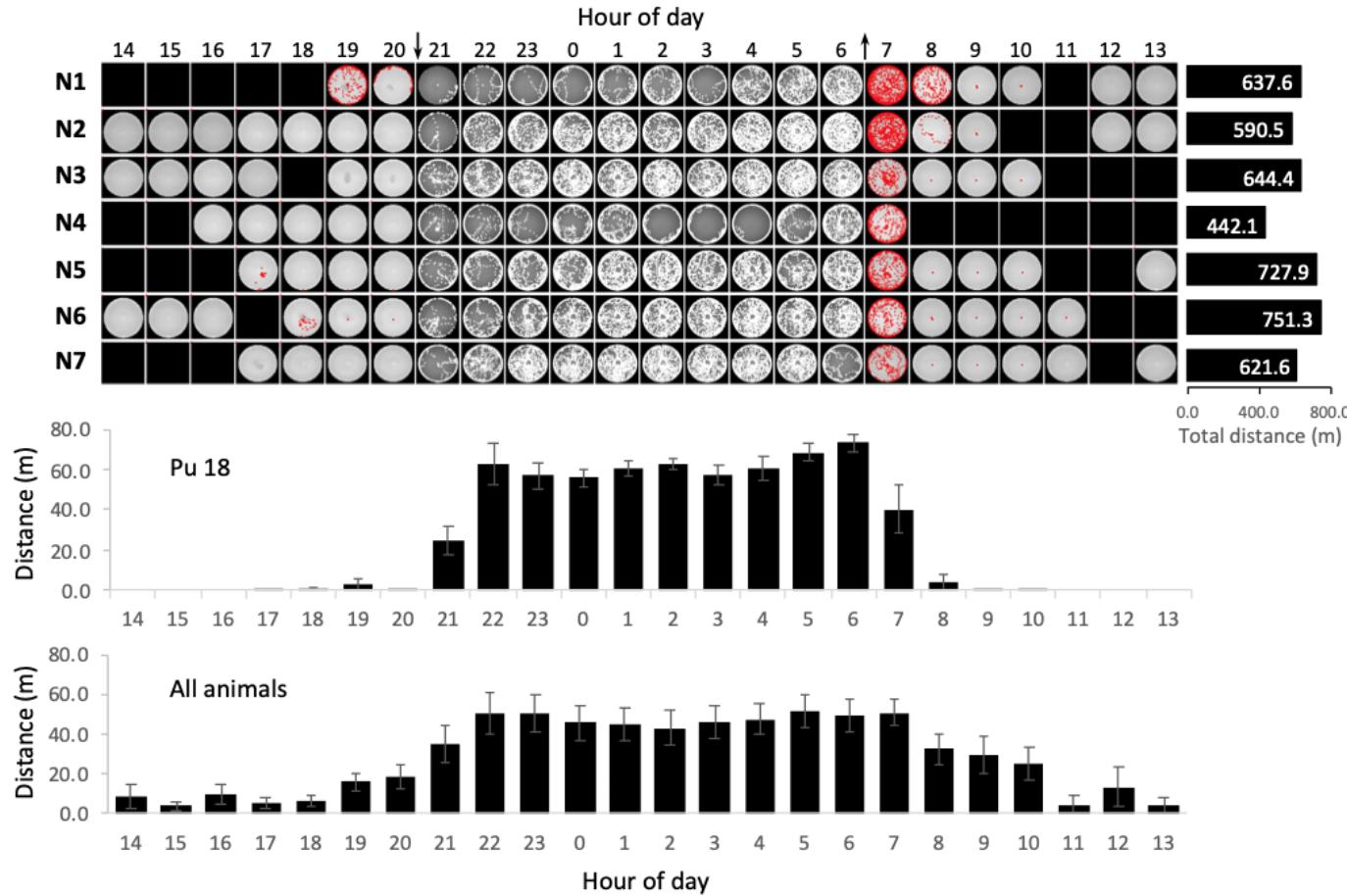

271 We wrote various MATLAB scripts to analyze our behavioral
272 data. We used a frame-by-frame subtraction method coupled
273 with centroid plotting to automatically track the X-Y coordinates
274 of the scorpion locations during our videos. We then used the
275 Pythagorean theorem to calculate the distance walked and used
276 the video frame capture rate to determine velocity. We also made
277 time-lapsed videos that plotted the current animal position along
278 with the three previous positions to create a stardust effect, which
279 efficiently revealed instances of the animal's initial burrowing.
280 Once the initial digging was identified, we then hand plotted
(for increased accuracy) the animal's subsequent movements until

281 we were confident that the animal had resumed its exploratory
282 behavior or remained in the burrow for a prolonged period.
283

284 **RESULTS**

285 **Activity plots**

286 In all, we tracked 23 different animals, some for multiple evenings,
287 for a total of nearly 1500 hours of video. During our trials, the
288 animals spent most of their time walking along the walls of the
289 arena but also made many forays across the arena's interior. All
290 night plots of animal movements (Fig 4) show a lot of activity,
291 including concentrated movements around the central mound.


294 **Fig. 4.** Long term activity plot. Shown is an example of an all-night video
295 with the animal's position plotted every second via a MATLAB script. The
296 animal's paths are shown by connecting the points with line segments in the
297 left plot; the segments are excluded in the right plot.

311 **Burrow formation**

312 As in our pilot studies (see supplemental materials), the animals in
313 these trials readily dug burrows in the central mounds. Most of the
314 initial digging occurred toward the end of the dark period or soon
315 after the lights turned on. A sampling of some of the burrows we
316 observed are shown in Fig 5, along with an example of a natural
317 scorpion burrow filmed on the wildlife refuge. A short video clip
318 of a scorpion digging its burrow is provided in the supplemental
319 material (video S1).

322 **Fig. 5.** Scorpion burrows in nature and lab. The photo at left is an example
323 of a scorpion burrow next to one of the field station's trails. The four photos
324 at right are examples of burrows we saw in our trials.

Fig. 6. Animal activity patterns. At top are plots for a single animal over seven consecutive days. The arrows at top indicate when the lights turned off (down arrow) and on (up arrow). The blank squares reflect periods when the video recording was paused. The distance walked each night (in meters) is shown in bars at right. The middle histogram (Pu 18) shows the mean distance walked by hour (\pm SD) for the animal depicted in the top plots. The bottom histogram is a summary of all the animals we tested (23 animals, \sim 1500 hours of video sampled every 2 s).

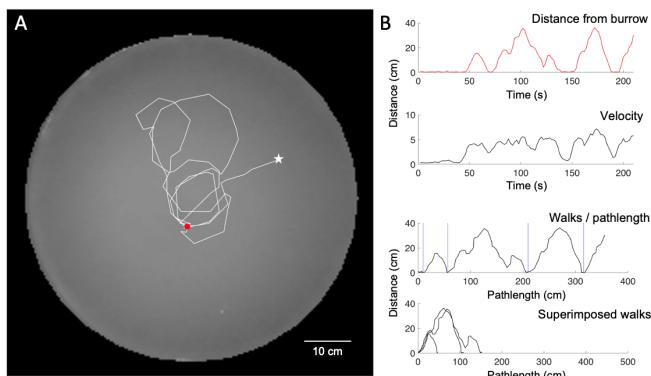

Activity patterns

Figure 6 shows activity plots by hour for an animal we monitored for seven consecutive days. Over the seven days the animal walked 4,415 m for an average of 631 m per night. Tracking this animal's average distance walked by hour of the day showed a consistent pattern of behavior (Fig 6, top histogram) with the highest activity soon after the arena lights turned off in the evening and soon before or just after the lights turned on in the morning. This pattern was also evident when the activities of all animals were pooled (Fig 6, bottom histogram).

Signs of learning walks

An example of a typical learning walk following initial burrowing is shown in Fig 7; a video of this walk is provided in the supplemental materials (video S2). Figure 7 also shows how we processed video showing the looping excursions. We hand-marked the position of the burrow and used the Pythagorean theorem to plot the distance of the animal from the burrow over time (top graph). We also plotted the animal's instantaneous velocity by time during the walk (second graph). Next we plotted the distance from the burrow against the cumulative path length (third graph) and marked each return to the burrow. Finally we superimposed each

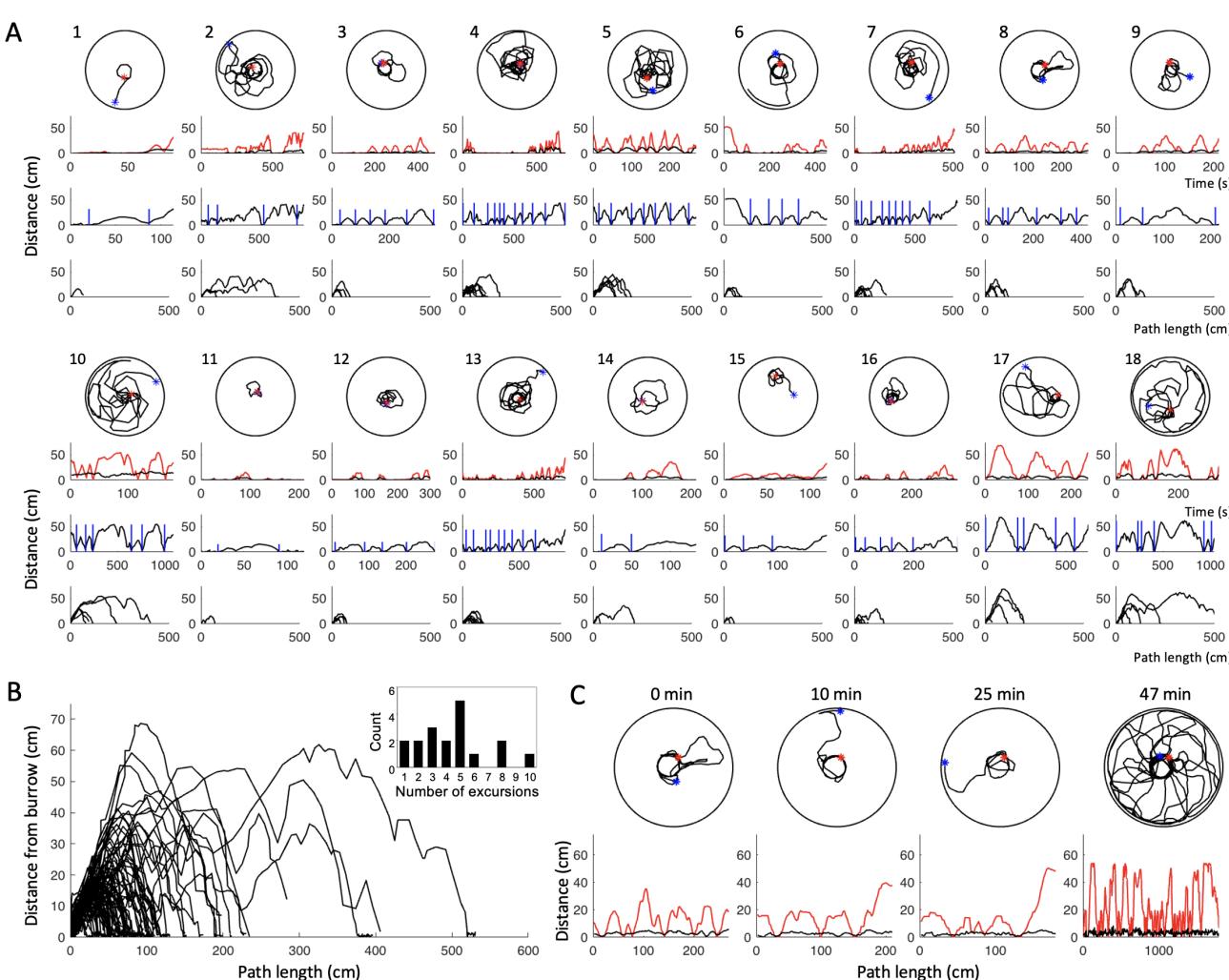
of these individual loops by plotting the start of each at the origin (bottom graph).

Fig. 7. Sample learning walks and processing. (A) Approximately 200 s of an animal's initial learning walk is plotted (red dot = burrow; white star = end of walk). (B) We processed the walks by first plotting distance from the burrow by time (upper graph) and the velocity of the animal by time (second graph). We then transformed the data to distance from the burrow over path length (third graph) and sliced out the walks based on each return to the burrow (vertical blue lines) and superimposed the walks in the bottom graph.

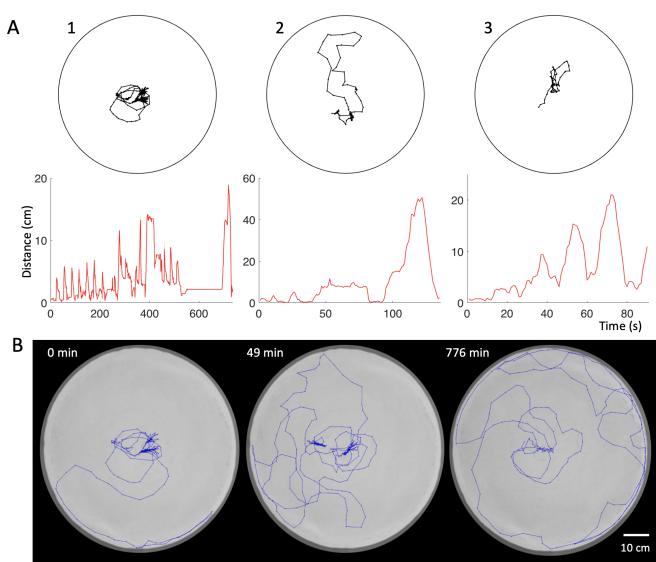
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

Of the 23 animals we monitored, 18 showed looping walking behavior immediately after the first signs of burrow digging. For the other 5 animals, the video resolution either did not allow accurate detection of digging behavior, or burrow formation happened outside the period of video monitoring. Fig 8A shows all of the initial learning walks that we encountered for these 18 animals along with the processing described in Fig 7. In all, 80 looping excursions away and back to the burrow were identified for all of the animals and these are superimposed in the graph of Fig 8B. The number of loops observed per animal varied from 1 to 10 and averaged 4.4 ± 2.5 (SE). The average duration of the initial learning walks was $348.9 \text{ s} \pm 47.9$ (SE) and the average distance covered was $505.6 \text{ cm} \pm 74.6$ (SE). We determined the average velocity of each animal's initial learning walk by dividing the distance covered by the duration of the walk. The average velocity of these walks was $1.7 \text{ cm/s} \pm 1.4$ (SE).

The focus of this study was on capturing the first occurrence of putative learning walk behavior immediately after the initial signs of burrow digging. However, the animals displayed many subsequent looping routes later in the videos. Some of these became


elaborate and encompassed all parts of the arena. One such example is shown in Fig 8C where bouts of looping excursions occurred 10, 25, and 47 minutes after the initial set.

Learning walks without a mound

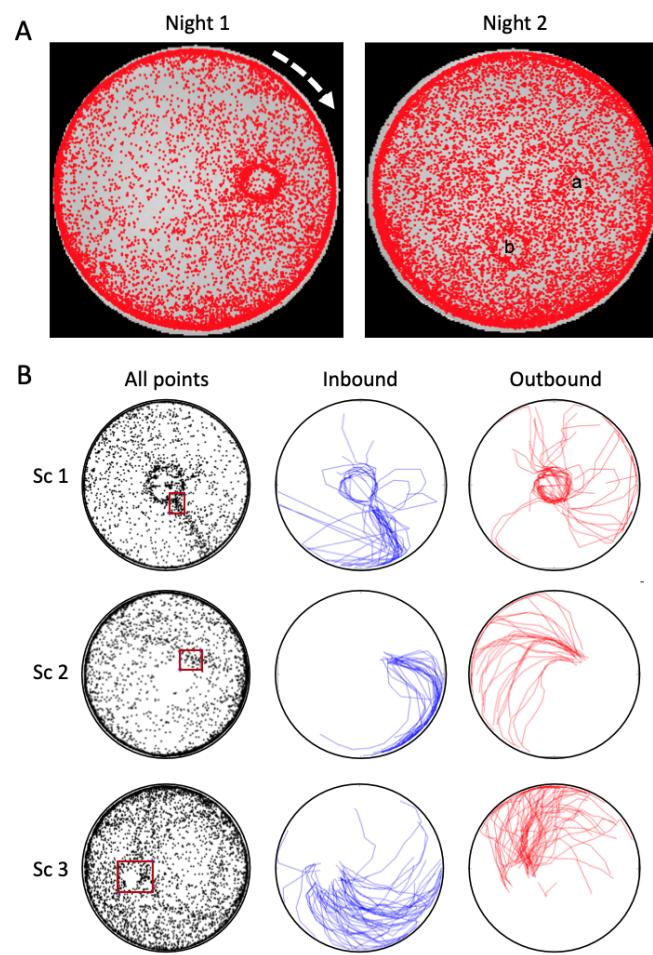

We tried to reduce the possible visual or tactile influence of the sand mound by inducing several animals ($n=9$) to adopt burrows in level sand in the middle of the arena. Figure 9A shows three examples the first set of looping excursions that animals made after their first return to the burrow in the middle of the arena. Figure 9B shows an example of subsequent bouts that occurred later in the recording.

DISCUSSION

Our findings are clear. Essentially all animals that made their own burrows in the middle of our laboratory arenas executed looping walks immediately after their first signs of digging. We found similar looping excursions whether we induced the animals to burrow in a small sand mound or in level sand in the middle of the arenas. This is the first report of learning walks in scorpions.

Fig. 8. Learning walks. (A) All initial learning walks observed in the study (18) are plotted and processed as described in Fig 7. (B) All walks identified in the trials (total = 80) are superimposed. The inset shows the number of looping excursions observed during the initial walks. The number of loops ranged from one to ten and averaged 4.4 per animal. (C) The animals often made subsequent looping excursions later in the recordings. This example shows additional walks 10, 25, and 47 minutes after the first set of walks.

Fig. 9. Learning walks without a mound. (A) Examples of the initial set of looping excursions for three animals that were induced to burrow in level sand in the middle of the arena. (B) Example of multiple bouts of looping excursions for animal 1 in A. At left is the initial set (time 0); the other two sets were detected at 49 and 776 min after the initial bout. The bouts were 21, 19, and 11 min long, respectively.


Learning walks are consistent with the navigation by chemo-textural familiarity hypothesis. In this view, the putative learning walks could be an innate behavior that allows scorpions to acquire home-directed tastes and touches of the substrate near their burrow for subsequent retracing (Gaffin and Brayfield, 2017; Musaelian and Gaffin, 2020). This idea is similar to that proposed for familiarity navigation in desert ants (Baddeley et al., 2011; 2012; Gaffin and Brayfield, 2016), but instead of acquiring panoramic visual glimpses via compound eyes, the scorpion pectines act as a local sensor that acquires matrices of chemo-textural information from the substrate beneath the animal. This local sensor approach was used in a computer simulation that used straight down views of Earth satellite images to navigate (Gaffin et al., 2015) and has been applied to simulations of scorpion navigation (Gaffin and Brayfield, 2017; Musaelian and Gaffin, 2020).

In hymenopterans, learning walks and learning flights appear to help the animals learn home-related features of the landscape (Degen et al., 2016; Collett and Zeil, 2018). These walks or flights, if directed in various directions from the hive or nest, also keep an animal from overshooting its home when following a longer home-bound vector (such as generated through path integration). This is because the scenes, tastes, and touches beyond the nest are unfamiliar unless there was a way to acquire a repertoire of home-directed scenes which bend back to the starting point. Indeed, the addition of artificial learning walks to a computer simulation improved the homing accuracy of artificial agents navigating by scene familiarity (Baddeley et al., 2012).

Other observations from this experiment also appear in line with the chemo-textural familiarity idea. First, we tried rotating a few of the arenas midway through a second evening, when the animal was away from its burrow (the curtain and other visual features of the setup remained in place). An example is shown in Fig 10A. The animal repeatedly returned to the rotated burrow (instead of the position prior to rotation). This is not surprising

since the burrow position did not change relative to the animal's position. Future experiments should try lifting the animal before rotating the arena, replacing the animal in a new position relative to the burrow. We would expect the animal would still use learned substrate information to return to the position of the rotated burrow.

We also saw some interesting patterns when we analyzed inbound and outbound paths relative to burrow location (Fig 10B). We digitally placed a rectangle around the position of the animal's burrow after movement coordinates had been gathered for an entire evening. We then used MATLAB to plot the twenty seconds of movement prior to the animal entering the rectangle ("Inbound" paths) and the twenty seconds of movement after the animal exited the rectangle ("Outbound" paths). Interestingly, the animals tended to follow consistent and concentrated inbound paths that were strikingly different from their more dispersed outbound paths. These movement patterns suggest that previously learned features may guide animals along consistent home-directed routes.

Fig. 10. Additional behavioral observations. (A) Animal behavior after arena rotation. Two nights of activity are shown. In night 1, the arena was maintained in its original orientation. Midway through night 2, the arena was rotated clockwise 90°. The position of the burrow can be detected in the night 2 plot both before (position "a") and after (position "b") the rotation. (B) Shown are some all-night plots where we drew a small rectangle around the burrow region and used MATLAB to plot the previous 20 seconds and subsequent 20 seconds of movement to that area. The animals used consistent inbound paths, which were different from the outbound paths.

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

In the Introduction, we noted that adequate sensor and environmental complexity is necessary for animals or agents navigating via familiarity to avoid being confused by similar scenes, tastes, or textures in multiple locations. This trade-off has been examined in various vision-based simulations (Gaffin et al., 2015; Gaffin and Brayfield, 2016) and in a navigation simulation modeled on scorpion pectines (Musaelian and Gaffin, 2020).

Our estimates of the pattern detection capacity of scorpion pectines are informed by electrophysiological studies showing that peg sensilla responded similarly to a variety of chemicals presented to the pore at the peg tip (Knowlton and Gaffin, 2009; 2010; 2011a;b; Gaffin and Walvoord, 2004). Based on these data it has been estimated that the pectines can conservatively detect from 10^{12} to 10^{40} different patterns (Gaffin and Brayfield, 2017). Further, neurons in peg sensilla interact synaptically (Gaffin and Brownell, 1997a; Foelix and Müller-Vorholt, 1983; Melville, 2000; Gaffin, 2002) which appears to reduce sensory adaptation through a local feedback loop and may improve information fidelity for navigation (Gaffin and Shakir, 2021).

Quantifying the chemo-textural complexity of the scorpion's sand substrate however, is difficult. Proxies of the textural information available on the surface of a fine sand substrate (and at dimensions germane to the packing densities of the peg sensilla matrices) have been generated by photographing multiple images of sand through a dissecting microscope while projecting light from the side to produce pronounced shadows (Gaffin and Brayfield, 2017; Musaelian and Gaffin, 2020). Knowing the nature of the chemical milieu that occurs naturally on sand grains is still more challenging. Studies of scorpion responses to pheromone deposits suggest the chemicals may stably adhere to the sand grains and remain viable for scorpion sensory detection for days to weeks (Gaffin and Brownell, 1992; Taylor et al., 2012). It seems safe to suggest that decaying organic matter, animal deposits, and numerous other processes leave hundreds of residual chemicals on the sand in varying concentrations, creating enormous chemical complexity. Simply put, the peg matrices and substrate appear suitably matched in complexity.

Many additional studies are needed to build on the results presented in this study. For example, while we ran our experiments under IR cameras and attempted to exclude as much extraneous light as possible, scorpion eyes are sensitive to starlight levels of light (Fleissner and Fleissner, 2001). As such, it is crucial to repeat these tests using animals whose eyes have been thoroughly blocked with blindfolds. The arena lights should also be smoothly dimmed and brightened to simulate natural sunset and sunrise conditions. Other experiments should consider disrupting the sand around the burrow after bouts of walks have occurred to see if looping behavior intensifies relative to baseline levels without disruption. In addition, disruption of the sand while the animal is away from its burrow would be useful for assessing the use of home-directed substrate information. Tests also need to systematically alter the rotation of the arena relative to the curtain and the laboratory to control for visual and geocentric cues. Finally, we think it would be interesting to look for signs of learning walks in other long range navigating arachnids, such as amblypygids, that have substantial chemo- and mechanosensory attributes (Hebets, 2002; Hebets et al., 2014).

Acknowledgements

We thank George Martin for assistance with our behavioral set-up, Jacob Sims and Joe Bradley for help collecting animals, the UNM Sevilleta Field Station and personnel for lodging and research support and the Sevilleta LTER, especially Kathy Granillo (refuge manager), for access to field sites. We also thank Alexis Merchant and Hannah Peebles for reviewing the manuscript. Finally, we thank Sandra Doan and Gail Goodson of the Laboratory Animal Resources facility for help establishing our animals and behavioral assays at the University of Oklahoma.

Competing interests

The authors declare no competing or financial interests.

Contribution

Conceptualization: D.G.; Methodology: D.G., M.H., M.M.; Validation: D.G.; Formal analysis: D.G., M.M.; Investigation: D.G., M.H., M.M.; Resources: D.G.; Data curation: D.G.; Writing - original draft: D.G.; Writing - review & editing: M.H., D.G., M.M.; Visualization: D.G.; Supervision: D.G.; Project administration: D.G.; Funding acquisition: D.G..

Funding

Funding was provided by University of Oklahoma Foundation and the OU Presidential Teaching Fellows in Honors Program.

Supplementary

Supplementary figures and videos can be found here.

REFERENCES

Baddeley, B., Graham, P., Husbands, P. and Philippides, A. (2012). A model of ant route navigation driven by scene familiarity. *PLoS Computational Biology* **8**, e1002336.

Baddeley, B., Graham, P., Philippides, A. and Husbands, P. (2011). Holistic visual encoding of ant-like routes: navigation without waypoints. *Adaptive Behavior* **19**, 3–15.

Brownell, P. (2001). Sensory ecology and orientational behaviors. In *Scorpion Biology and Research*, pp. 159–183. Oxford University Press.

Cloudsley-Thompson, J. (1955). LXVII.—On the function of the pectines of scorpions. *Annals and Magazine of Natural History* **8**, 556–560.

Collett, T. S. and Zeil, J. (2018). Insect learning flights and walks. *Current Biology* **28**, R984–R988.

Degen, J., Kirbach, A., Reiter, L., Lehmann, K., Norton, P., Storms, M., Koblofsky, M., Winter, S., Georgieva, P. B., Nguyen, H. et al. (2016). Honeybees learn landscape features during exploratory orientation flights. *Current Biology* **26**, 2800–2804.

Drozd, D., Wolf, H. and Stemme, T. (2020). Structure of the pecten neuropil pathway and its innervation by bimodal peg afferents in two scorpion species. *PLOS ONE* **15**, e0243753. Publisher: Public Library of Science.

Fleischmann, P. N., Christian, M., Müller, V. L., Rössler, W. and Wehner, R. (2016). Ontogeny of learning walks and the acquisition of landmark information in desert ants, *Cataglyphis fortis*. *Journal of Experimental Biology* **219**, 3137–3145.

Fleissner, G. and Fleissner, G. (2001). Night vision in desert scorpions. In *Scorpions 2001. In Memoriam Gary A. Polis.*, pp. 317–324. British Arachnological Society.

Foelix, R. F. and Müller-Vorholt, G. (1983). The fine structure of scorpion sensory organs. II. Pecten sensilla. *Bulletin of the British Arachnological Society* **6**, 68–74.

Gaffin, D. D. (2002). Electrophysiological analysis of synaptic interactions within peg sensilla of scorpion pectines. *Microscopy Research and Technique* **58**, 325–334.

Gaffin, D. D. and Brayfield, B. P. (2016). Autonomous visual navigation of an indoor environment using a parsimonious, insect inspired familiarity algorithm. *PLOS ONE* **11**, e0153706.

Gaffin, D. D. and Brayfield, B. P. (2017). Exploring the chemo-textural familiarity hypothesis for scorpion navigation. *Journal of Arachnology* **45**, 265–270.

785 **Gaffin, D. D. and Brownell, P. H.** (1992). Evidence of chemical signaling
786 in the sand scorpion, *Paruroctonus mesaensis* (Scorpiones: Vaejovidae).
787 *Ethology* **91**, 59–69.

788 **Gaffin, D. D. and Brownell, P. H.** (1997a). Electrophysiological evidence
789 of synaptic interactions within chemosensory sensilla of scorpion pectines.
790 *Journal of Comparative Physiology A* **181**, 301–307.

791 **Gaffin, D. D. and Brownell, P. H.** (1997b). Response properties of chemosensory
792 peg sensilla on the pectines of scorpions. *Journal of Comparative Physiology A* **181**, 291–300.

793 **Gaffin, D. D. and Curry, C. M.** (2020). Arachnid navigation – a review
794 of classic and emerging models. *The Journal of Arachnology* **48**, 1–25.
795 Publisher: American Arachnological Society.

796 **Gaffin, D. D., Dewar, A., Graham, P. and Philippides, A.** (2015). Insect-
797 inspired navigation algorithm for an aerial agent using satellite imagery.
798 *PLOS ONE* **10**, e0122077.

799 **Gaffin, D. D. and Shakir, S. F.** (2021). Synaptic interactions in scorpion peg
800 sensilla appear to maintain chemosensory neurons within dynamic firing
801 range. *Insects* **12**, 904. Number: 10 Publisher: Multidisciplinary Digital
802 Publishing Institute.

803 **Gaffin, D. D. and Walvoord, M. E.** (2004). Scorpion peg sensilla: are they
804 the same or are they different? *Euscorpius* **17**, 7–15.

805 **Görner, P. and Claas, B.** (1985). Homing behavior and orientation in the
806 funnel-web spider, *Agelena labyrinthica* Clerck. In *Neurobiology of Arachnids* (ed. F. G. Barth), pp. 275–297. Berlin, Heidelberg: Springer Berlin
807 Heidelberg.

808 **Hebets, E. A.** (2002). Relating the unique sensory system of amblypygids to
809 the ecology and behavior of *Phrynxus parvulus* from Costa Rica (Arachnida,
810 Amblypygi). *Canadian Journal of Zoology; Ottawa* **80**, 286–295.

811 **Hebets, E. A., Gering, E. J., Bingman, V. P. and Wiegmann, D. D.** (2014).
812 Nocturnal homing in the tropical amblypygid *Phrynxus pseudoparvulus*
813 (Class Arachnida, Order Amblypygi). *Animal Cognition* **17**, 1013–1018.

814 **Heinze, S., Narendra, A. and Cheung, A.** (2018). Principles of insect path
815 integration. *Current Biology* **28**, R1043–R1058.

816 **Ivanov, V. and Balashov, Y.** (1979). The structural and functional organization
817 of the pectine in a scorpion *Buthus eupeus* Koch (Scorpiones, Buthidae)
818 studied by electron microscopy. In *The fauna and ecology of Arachnida*,
819 volume 85, pp. 73–87. Leningrad: Trudy Zoological Institute.

820 **Knowlton, E. D. and Gaffin, D. D.** (2009). A new approach to examining
821 scorpion peg sensilla: the mineral oil flood technique. *The Journal of
822 Arachnology* **37**, 379–382. Publisher: American Arachnological Society.

823 **Knowlton, E. D. and Gaffin, D. D.** (2010). A new tip-recording method to
824 test scorpion pecten chemoresponses to water-soluble stimulants. *Journal
825 of Neuroscience Methods* **193**, 264–270.

826 **Knowlton, E. D. and Gaffin, D. D.** (2011a). Electrophysiology of scorpion
827 peg sensilla. *JoVE (Journal of Visualized Experiments)* **50**, e2642.

828 **Knowlton, E. D. and Gaffin, D. D.** (2011b). Functionally redundant peg sensilla
829 on the scorpion pecten. *Journal of Comparative Physiology A* **197**,
830 895.

831 **Melville, J.** (2000). The pectines of scorpions: analysis of structure and
832 function. Ph.D. Thesis, Oregon State University, Corvallis, OR.

833 **Moller, P. and Görner, P.** (1994). Homing by path integration in the spider
834 *Agelena labyrinthica* Clerck. *Journal of Comparative Physiology A* **174**,
835 221–229.

836 **Musaelian, A. and Gaffin, D. D.** (2020). High-throughput simulations indicate
837 feasibility of navigation by familiarity with a local sensor such as
838 scorpion pectines. *bioRxiv* p. 2020.06.17.156612. Publisher: Cold Spring
839 Harbor Laboratory Section: New Results.

840 **Narendra, A., Raderschall, C. A. and Robson, S. K. A.** (2013). Homing
841 abilities of the Australian intertidal ant *Polyrhachis sokolova*. *Journal of
842 Experimental Biology* **216**, 3674–3681.

843 **Nørgaard, T., Gagnon, Y. L. and Warrant, E. J.** (2012). Nocturnal homing:
844 learning walks in a wandering spider? *PLoS ONE* **7**, e49263.

845 **Ortega-Escobar, J.** (2002). Evidence that the wolf-spider *Lycosa tarantula*
846 (Araneae, Lycosidae) needs visual input for path integration. *The Journal of
847 Arachnology* **30**, 481–486.

848 **Ortega-Escobar, J.** (2006). Role of the anterior lateral eyes of the wolf spider
849 *Lycosa tarantula* (Araneae, Lycosidae) during path integration. *The Journal
850 of Arachnology* **34**, 51–61.

851 **Ortega-Escobar, J. and Ruiz, M. A.** (2014). Visual odometry in the wolf
852 spider *Lycosa tarantula* (Araneae: Lycosidae). *Journal of Experimental
853 Biology* **217**, 395–401.

854 **Ortega-Escobar, J. and Ruiz, M. A.** (2017). Role of the different eyes in the
855 visual odometry in the wolf spider *Lycosa tarantula* (Araneae, Lycosidae).
856 *Journal of Experimental Biology* **220**, 259–265.

857 **Papi, F.** (1992). *Animal homing*. Animal Behaviour. London: Chapman &
858 Hall.

859 **Philippides, A., Baddeley, B., Cheng, K. and Graham, P.** (2011). How might
860 ants use panoramic views for route navigation? *Journal of Experimental
861 Biology* **214**, 445–451.

862 **Polis, G. A.** (1980). Seasonal patterns and age-specific variation in the
863 surface activity of a population of desert scorpions in relation to environmental
864 factors. *Journal of Animal Ecology* **49**, 1–18.

865 **Polis, G. A. and Farley, R. D.** (1979). Behavior and ecology of mating in
866 the cannibalistic scorpion, *Paruroctonus mesaensis* Stahnke (Scorpiones:
867 Vaejovidae). *The Journal of Arachnology* **7**, 33–46.

868 **Polis, G. A., McReynolds, C. N. and Ford, R. G.** (1985). Home range
869 geometry of the desert scorpion *Paruroctonus mesaensis*. *Oecologia* **67**,
870 273–277.

871 **Prévost, E. D. and Stemme, T.** (2020). Non-visual homing and the current
872 status of navigation in scorpions. *Animal Cognition* **23**, 1215–1234.

873 **Seyfarth, E. A. and Barth, F. G.** (1972). Compound slit sense organs on the
874 spider leg: mechanoreceptors involved in kinesthetic orientation. *Journal of
875 comparative physiology* **78**, 176–191.

876 **Seyfarth, E.-A., Hergenröder, R., Ebbes, H. and Barth, F. G.** (1982).
877 Idiopathic orientation of a wandering spider: compensation of detours and
878 estimates of goal distance. *Behavioral Ecology and Sociobiology* **11**,
879 139–148.

880 **Srinivasan, M. V.** (2015). Where paths meet and cross: navigation by path
881 integration in the desert ant and the honeybee. *Journal of Comparative
882 Physiology A* **201**, 533–546.

883 **Taylor, M. S., Cosper, C. R. and Gaffin, D. D.** (2012). Behavioral evidence of
884 pheromonal signaling in desert grassland scorpions *Paruroctonus utahensis*.
885 *The Journal of Arachnology* **40**, 240–244.

886 **Vinnedge, J. E. and Gaffin, D. D.** (2015). Determination of in-lab site fidelity
887 and movement patterns of *Paruroctonus utahensis* (Scorpiones: Vaejovidae).
888 *The Journal of Arachnology* **43**, 54–58.

889 **Wehner, R.** (1992). Arthropods. In *Animal Homing* (ed. F. Papi), pp. 45–144.
890 Chapman & Hall, London.

891 **Wehner, R., Boyer, M., Loertscher, F., Sommer, S. and Menzi, U.** (2006).
892 Ant navigation: one-way routes rather than maps. *Current Biology* **16**, 75–
893 79.

894 **Wehner, R., Meier, C. and Zollikofer, C.** (2004). The ontogeny of foraging
895 behaviour in desert ants, *Cataglyphis bicolor*. *Ecological Entomology* **29**,
896 240–250.

897 **Wehner, R., Michel, B. and Antonsen, P.** (1996). Visual navigation in insects:
898 coupling of egocentric and geocentric information. *Journal of Experimental
899 Biology* **199**, 129–140. Publisher: The Company of Biologists Ltd.

900 **Wehner, R. and Srinivasan, M. V.** (1981). Searching behaviour of desert ants,
901 genus *Cataglyphis* (Formicidae, Hymenoptera). *Journal of comparative
902 physiology* **142**, 315–338.

903 **Wittlinger, M., Wehner, R. and Wolf, H.** (2006). The ant odometer: stepping
904 on stilts and stumps. *Science* **312**, 1965–1967.

905 **Wittlinger, M., Wehner, R. and Wolf, H.** (2007). The desert ant odometer: a
906 stride integrator that accounts for stride length and walking speed. *Journal
907 of Experimental Biology* **210**, 198–207.

908 **Wittlinger, M. and Wolf, H.** (2013). Homing distance in desert ants,
909 *Cataglyphis fortis*, remains unaffected by disturbance of walking behaviour
910 and visual input. *Journal of Physiology-Paris* **107**, 130–136.

911 **Wolf, H.** (2008). The pectine organs of the scorpion, *Vaejovis spinigerus*:
912 Structure and (glomerular) central projections. *Arthropod Structure &
913 Development* **37**, 67–80.

897	Wolf, H. (2011). Odometry and insect navigation. <i>Journal of Experimental Biology</i> 214 , 1629–1641.	953
898		954
899	Wolf, H. (2017). Scorpions pectines – idiosyncratic chemo- and mechanosensory organs. <i>Arthropod Structure & Development</i> 46 , 753–764.	955
900		956
901	Zeil, J. and Fleischmann, P. N. (2019). The learning walks of ants (Hymenoptera: Formicidae) Publisher: The Austrian Society of Entomofaunistics.	957
902		958
903		959
904		960
905		961
906		962
907		963
908		964
909		965
910		966
911		967
912		968
913		969
914		970
915		971
916		972
917		973
918		974
919		975
920		976
921		977
922		978
923		979
924		980
925		981
926		982
927		983
928		984
929		985
930		986
931		987
932		988
933		989
934		990
935		991
936		992
937		993
938		994
939		995
940		996
941		997
942		998
943		999
944		1000
945		1001
946		1002
947		1003
948		1004
949		1005
950		1006
951		1007
952		1008