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We explore conditions for Dicke superradiance in a cloud of atoms by examining the Taylor series
expansion of the photon emission rate at t = 0. By defining superradiance as an increasing photon
emission rate for t ∼ 0, we have calculated the conditions for superradiance for a variety of cases.
We investigate superradiance as defined for photon emission into all angles as well as directional
superradiance where the photon emission is only detected in a particular direction. Although all
of the examples are for two level atoms that are fully inverted at t = 0, we also give equations for
partially inverted two level atoms and for fully inverted multilevel atoms. We give an algorithm for
efficiently evaluating these equations for atom arrays and determine superradiance conditions for
large atom number.

I. INTRODUCTION

Superradiance[1–4] is a collective phenomenon where
multiple atoms radiate faster than that of N individual
atoms due to their interaction through the quantized elec-
tromagnetic field. For atoms within a small region, the
peak photon emission rate can scale like N2 rather than
N from uncorrelated atoms. This leads to a burst of
radiation on a time scale much smaller than the radia-
tive lifetime of a single atom. There has been an exten-
sive number of experimental studies of superradiance in
atoms[5–27], investigations of superradiance for a wide
variety of other platforms[28–35], and many theoretical
investigations of different cases. [36–65]
In this paper, we follow the philosophy of Ref. [65] to

use the early time behavior of the photon emission rate
to determine whether or not a group of N atoms are su-
perradiant. They used the statistics of the first two pho-
tons emitted to classify the system. For this they used
the g(2)(0) with the condition that superradiance occurs
when the first photon emission enhances the rate of the
second photon emission, i.e. g(2)(0) > 0. With this in-
sight, they do not need to solve for the time dependence
of the master equation to determine superradiance. They
classified whether or not a system is superradiant by us-
ing the variance of the eigenvalues of the decay matrix,
Γnm in Eq. (6) below, because the g(2)(0) can be found in
terms of these values. Also important, this formulation
allows for interpretation of results from large systems
Instead of using g(2)(0), in this report, we use the early

time behavior of the photon emission rate to determine
whether or not a system is superradiant. The idea is that
the photon emission rate, γ(t), is an increasing function
of time at t = 0 when the system is superradiant. Us-
ing the criterion γ̇(0) > 0, we obtain the superradiance
condition in terms of the trace of the square of the decay
matrix. Because the decay matrix is real and symmetric,
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this criterion is exactly that of Ref. [65]. An advantage of
the new definition is that it is computationally more ef-
ficient so that larger systems can be investigated. It also
leads to different insight into the conditions for superradi-
ance. Another advantage is that this formulation allows
for generalization to multilevel systems, systems that are
not fully inverted, directional superradiance, and efficient
evaluation for arrays.

In many of the examples below, we emphasize the dif-
ference between superradiance as defined from the total
emission rate and superradiance as defined as the emis-
sion rate into a particular direction. As an example,
Ref. [27] experimentally demonstrated cases with clear
superradiance in a particular direction (as evidenced by
increasing photon emission rate at early time) with no en-
hancement in other directions and Ref. [64] theoretically
investigated directional superradiance for weakly illumi-
nated atom arrays. While the theory can be used for
randomly placed atoms, all examples below are for atom
arrays. For two- and three-dimensional arrays, we give
examples of directional superradiance with atom sepa-
rations comparable to or larger than the wavelength of
the light for experimentally accessible atom numbers. We
also take advantage of the efficiency in evaluating γ̇(0) to
demonstrate its scaling with number of atoms and show
that superradiance occurs in two- and three-dimensional
atom arrays for sufficient atom number.

In Sec. II, we give the basic theory when the atoms are
approximated as two level systems. In Sec. III, we derive
the expressions for the early time behavior of the photon
emission rate for two level atoms which can then be used
to define superradiance while Sec. IV is the early time
behavior for a specific type of multilevel atom. In Sec. V,
we explore several examples. In Sec. VI is a summary of
these results. The App. A gives a brief derivation of the
equivalence of our superradiance condition with that in
Ref. [65].
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II. BASIC THEORY: 2 STATES

In this section, we are using an excitation scheme
where the atomic structure is approximated as a two level
system. The atoms will be considered as fixed in space
which means we are ignoring the atom recoil.

A. Master equation formalism

All of the equations will use a simplified notation to
reduce their size. For the n-th atom, the ground and ex-
cited states are |gn〉 and |en〉. The operators used below
follow the definition

ên ≡ |en〉〈en| σ̂−
n ≡ |gn〉〈en| σ̂+

n ≡ |en〉〈gn| (1)

The equation for the N -atom density matrix[66] can
be written in the form

dρ̂

dt
=

∑

n



Ln(ρ̂) +
∑

m 6=n

[

1

i~
[Hnm, ρ̂] + Lnm(ρ̂)

]



 (2)

where the the one atom Hamiltonian that arises from
an external laser interacting with each atom is zero for
all of the examples below and has not been included,
Ln is from one atom decays of Lindblad type, the Hnm

is the two atom Hamiltonian from the dipole-dipole in-
teractions, and Lnm are the two atom decays from the
dipole-dipole interactions. For the two level cases con-
sidered here, these operators are

Ln(ρ̂) =
Γ

2
(2σ̂−

n ρ̂σ̂
+
n − ênρ̂− ρ̂ên) (3)

Hnm = ~Ωnmσ̂
+
n σ̂

−
m (4)

Lnm =
Γnm

2
(2σ̂−

n ρ̂σ̂
+
m − σ̂+

mσ̂
−
n ρ̂− ρ̂σ̂+

mσ̂
−
n ) (5)

where Γ is the decay rate of a single atom. The two atom
parameters are defined for m 6= n as

Γnm = g(Rnm) + g∗(Rnm) = 2ℜ[g(Rnm)] (6)

Ωnm =
g(Rnm)− g∗(Rnm)

2i
= ℑ[g(Rnm)] (7)

g(R) =
Γ

2

[

h
(1)
0 (s) +

3R̂ · d̂∗R̂ · d̂− 1

2
h
(1)
2 (s)

]

(8)

g±nm ≡ ±iΩnm +
1

2
Γnm (9)

with Rnm = Rn − Rm with Rn the position of atom

n, d̂ the dipole unit vector, s = kR, R̂ = R/R, and

the h
(1)
ℓ (s) the outgoing spherical Hankel function of an-

gular momentum ℓ: h
(1)
0 (s) = eis/[is] and h

(1)
2 (s) =

(−3i/s3 − 3/s2 + i/s)eis. The g(R) is proportional to
the propagator that gives the electric field at R given
a dipole at the origin[67]. For a ∆M = 0 transition,

d̂ = ẑ and the coefficient of the h
(1)
2 Bessel function is

P2(cos(θ)) = (3 cos2(θ) − 1)/2 where cos(θ) = Z/R. For

a ∆M = ±1 transition, the coefficient of the h
(1)
2 Bessel

function is −(1/2)P2(cos(θ)) = (1−3 cos2(θ))/4. To sim-
plify some formulas below, we will define the diagonal
component of Γmn as

Γnn = 2ℜ[g(R → 0)] = Γ. (10)

B. Photon emission rate

The rate that photons are emitted into all angles at
time t is given by

γ(t) =
∑

n



Γ〈ên〉(t) +
∑

m 6=n

Γmn〈σ̂+
mσ̂

−
n 〉(t)



 . (11)

The rate that photons are emitted into the k̂f direction
is proportional to[4]

γ(t,kf ) = Γ
∑

n



〈ên〉(t) +
∑

m 6=n

eiϕmn〈σ̂+
mσ̂

−
n 〉(t)



 (12)

where ϕmn = kf · (Rm −Rn) with kf = 2π/λ0 k̂f . The
normalization of γ(t,kf ) was chosen so that a fully in-
verted system has γ(0,k) = NΓ in analogy with γ(0).
The definition Eq. (12) only makes sense if the orienta-

tion of the dipoles are not in the k̂ direction because the
actual directional rate involves the direction of the dipole

and the k̂.

An interesting question arises from these two defini-
tions. As noted by Ref. [65], a natural definition of super-
radiance is when the emission of the first photon enhances
the rate that the second photon is emitted. This implies
the rate of photon emission, Eq. (11), is an increasing
function of time at t = 0 since an increasing γ(t) means
the many atoms radiate faster as time develops. This
can only occur when pair correlations 〈σ̂+

mσ̂
−
n 〉(t) 6= 0

develop in the gas because the
∑

n〈ên〉 is a decreasing
function of time for undriven atoms. As we will see be-
low and was experimentally observed in Ref. [27], there

are cases where γ̇(0,k) > 0 for some directions k̂ even
though γ̇(0) < 0. However, for γ̇(0,k) > 0, there must
be nonzero (and substantial) pair correlations developing
in the atom cloud even when γ̇(0) < 0. We will call this
case “directional superradiance” to distinguish it from
the case where γ̇(0) > 0.

Both types of superradiance are interesting because the
gas has become correlated. This can be seen from the
development of an initially fully inverted system which
has 〈σ̂±

n 〉(t) = 0. Therefore, superradiance demands
〈σ̂+

mσ̂
−
n 〉(t) − 〈σ̂+

m〉(t)〈σ̂−
n 〉(t) 6= 0 implying nonnegligible

pair correlations.
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C. Uncorrelated initial state

In the following, we will examine how correlations de-
velop when starting from a completely uncorrelated but
not necessarily fully inverted initial state

|ψi〉 = Π⊗n[cos(α/2) |gn〉+ eiki·Rn sin(α/2) |en〉] (13)

where sin2(α/2) is the probability for an atom to be ex-

cited and k̂i gives a phase change across the atom cloud.
This form for the initial state would result when a cloud
was subject to an intense but short laser pulse in the limit
that the pulse duration gets very short. We will examine

superradiance as a function of both α and k̂i. Superradi-
ance can occur when the cloud is not fully inverted. The

interplay between k̂i and the shape of the cloud can lead
to interesting effects, e.g. if the cloud is elongated in the

k̂i direction.

III. EVALUATION OF EARLY TIME PHOTON

RATES: 2 STATES

A. First derivative

We will use a somewhat different approach from
Ref. [65] to exactly evaluate the early time behavior of
the photon emission rates, γ’s. The idea is based on per-
forming a Taylor series expansion

γ(t) = γ(0) + γ̇(0)t+
1

2
γ̈(0)t2 + ... (14)

where γ̇(0) means the first derivative of γ evaluated at
t = 0, etc. Superradiance occurs when γ̇(0) > 0.
The evaluation of γ̇(0) simply requires the derivatives

of 〈ên〉 and 〈σ̂+
mσ̂

−
n 〉

d〈ên〉
dt

= −Γ〈ên〉−
∑

m 6=n

(gnm〈σ̂−
mσ̂

+
n 〉+g∗nm〈σ̂+

mσ̂
−
n 〉) (15)

and

d〈σ̂+
mσ̂

−
n 〉

dt
= −Γ〈σ̂+

mσ̂
−
n 〉+ 2Γmn〈êmên〉 − gmn〈êm〉 −

g∗mn〈ên〉+
∑

l 6=m,n

[gnl(2〈σ̂−
l σ̂

+
mên〉 − 〈σ̂−

l σ̂
+
m〉)

+g∗ml(2〈σ̂+
l êmσ̂

−
n 〉 − 〈σ̂+

l σ̂
−
n 〉)] (16)

from Ref. [68].
Using the initial wave function, Eq. (13), all of the

expectation values can be evaluated at t = 0:

〈ên〉 =
1− cosα

2
〈σ̂−

n 〉 = 〈σ̂+
n 〉∗ =

sinα

2
eiki·Rn (17)

with all of the other expectation values being products
of these, 〈ÂB̂〉 = 〈Â〉〈B̂〉, since the initial wave function
is a product state.

For clarity, we first give the result for a fully inverted
gas, α = π, for the total photon emission rate:

γ̇(0) = −NΓ2+
∑

n,m 6=n

ΓmnΓnm = −2NΓ2+Tr[Γ Γ] (18)

where Γ means the matrix of Γmn and Tr[...] means
the trace. This expression arises because 〈ên〉 = 1 and
〈σ̂±

n 〉 = 0. Because Γ is a real, symmetric matrix, our
condition γ̇(0) > 0 is identical to Eq. (3) of Ref. [65]
which gives the superradiance condition in terms of the
variance of the eigenvalues of Γ; see App. A below. While
the form Eq. (3) of Ref. [65] has advantages as discussed
there, Eq. (18) has the advantage of being computation-
ally faster (number of operations scaling like N2 instead
of N3) and providing insight into scaling with large atom
numbers (discussed below). Also, as discussed below, the
number of operations scales like N1 for arrays. The Dicke
model[1], Γmn = 1, in Eq. (18) gives γ̇(0) = N(N − 2)Γ2

which is the result from Dicke’s original derivation.
The fully inverted gas for directional emission has

γ̇(0,kf ) = −2NΓ2 + Γ
∑

mn

Γmn cosϕnm

= −2NΓ2 + ΓTr[Γ cosϕ] (19)

where ϕmn = kf · (Rm − Rn). Because this expression
only has one power of Γmn (which decreases like 1/|Rm−
Rn|), the condition γ̇(0,kf ) > 0 can be satisfied more
easily than Eq. (18) if the kf is in the correct direction.
The equations for partially inverted samples are some-

what more complicated due to the survival of terms with
raising and lowering operators. The total decay rate gives

γ̇(0) = −NΓ2 1− c

2
+
∑

n

∑

m 6=n

[
c(c− 1)

2
ΓmnΓnm − s2

2
Γmn

× {Γ cos(ηmn)− c
∑

l 6=n,m

(gnle
iηlm + g∗mle

−iηln)}] (20)

where c ≡ cosα, s ≡ sinα, and ηmn = ki · (Rm − Rn).
The directional decay rate is

γ̇(0,kf ) = −NΓ2 1− c

2
+ Γ

∑

n

∑

m 6=n

[
c(c− 1)

2
Γmn cos ηnm

−s
2

4
{Γnm cos(ηmn) + Γ cos(ϕmn − ηmn)

+ceiϕmn

∑

l 6=n,m

eiηmn(gnle
iηlm + g∗mle

−iηln)}](21)

An important point to note for the partial inversion is
that the number of operations scales like N3 so these are
more difficult calculations.

B. Second derivative: fully inverted

The second derivative of the photon emission rates are
relatively straightforward to evaluate when the atoms are
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fully inverted using[68]

d2〈ên〉
dt2

(0) = Γ2 −
∑

m 6=n

ΓnmΓmn (22)

and

d2〈σ̂+
mσ̂

−
n 〉

dt2
(0) = −4ΓΓmn+

∑

l 6=m,n

(gnlΓlm+g∗mlΓln). (23)

Using these expressions gives

γ̈(0) = NΓ3 − 5Γ
∑

nm

(1− δnm)ΓnmΓmn

+
∑

nml

(1− δnl)(1− δml)(1− δnm)ΓnmΓmlΓln

= 8NΓ3 − 8ΓTr[Γ Γ] + Tr[Γ Γ Γ] (24)

for the total decay rate. The Dicke model[1], gives γ̈(0) =
N(N2−8N+8)Γ3 which is the result from Dicke’s original
derivation. For the directional decay rate,

γ̈(0,kf ) = 8NΓ3 − 2ΓTr[Γ Γ]− 6Γ2Tr[Γ cos η]

+ΓTr[Γ Γ cos η] + ΓTr[sin η [Γ,Ω] ] (25)

In principle, this logic can be continued to higher order
derivatives. With higher derivatives, it might be possible
to determine the peak fluorescence and the time at which
it occurs. The higher derivatives will require larger pow-
ers of the Γ which would be most efficiently evaluated
using the diagonalization described in Ref. [65].

IV. EVALUATION OF EARLY TIME PHOTON

RATES: MANY FINAL STATES

This section gives the γ̇(0) when the excited state can
decay to several final states. To simplify the notation and
derivation, we will do the calculation without spin-orbit
and hyperfine effects and further assume the initial state
has ℓ = 0. Extending beyond these restrictions does not
seem to be qualitatively different. We will denote the
principle quantum number of the excited state as αi and
it can decay to many final states with principle quantum
number αf with ℓf = 1. Instead of using mf , we will use
Cartesian orbitals i = x, y, z.

The operators will be extended as

σ̂
αf i−
n ≡ |(αf i)n〉〈en| σ̂

αf i+
n ≡ |en〉〈(αf i)n| (26)

with the ên operator unchanged. Note the condition

σ̂
α′

f i
′+

n σ̂
αf i−
n = ênδii′δαfα′

f
(27)

The Lindblad term, with n = m allowed, is

L(ρ̂) = 1

3

∑

nmαf ii′

Γ
αf ii

′

nm

2
(2σ̂

αf i−
n ρ̂σ̂

αf i
′+

m

−σ̂αf i
′+

m σ̂
αf i−
n ρ̂− ρ̂σ̂

αf i
′+

m σ̂
αf i−
n ) (28)

where

Γ
αf ii

′

nm = Γαf

[

j0(kαf
R) +

3R̂iR̂i′ − 1

2
j2(kαf

R)

]

(29)

with Γαf
the total decay rate into state αf , kαf

the wave
number of the photon that transitions from the initial
state to the p-state αf , jℓ(z) the usual spherical Bessel

functions, R = |Rn −Rm|, and R̂ = (Rn −Rm)/R.
Repeating the derivation of the previous section the

slope of the photon emission rate can be found. The rate
that photons of wave number magnitude kαf

are emitted
for a fully inverted system is

γαf
(0) = NΓαf

. (30)

The slope of the photon emission for a fully inverted sys-
tem is

γ̇αf
(0) = −NΓαf

Γ +
∑

n

∑

m 6=n

1

9

∑

ii′

(

Γ
αf ii

′

nm

)2

(31)

where the total decay rate Γ =
∑

αf
Γαf

. Note that the

initial slope needs more atoms to have γ̇αf
(0) > 0 be-

cause the negative term is relatively larger: the second
term is proportional to Γ2

αf
while the first term is propor-

tional to Γαf
Γ. The second term is proportional to N2

so adding more atoms in a compact region will lead to
superradiance even when Γ ≫ Γαf

, e.g. Rydberg states.

V. EXAMPLES

In this section, we discuss the results of calculations
for several examples in one-, two-, and three-dimensions.

A. One-dimensional array

In this section, we describe results for examples where
the atoms are in one or two lines with equal spacing be-
tween the atoms. Our results for the total decay rate in a
one-dimensional atom array match those of Ref. [65] and
will not be discussed in detail here. We will mainly focus
on the directional photon emission. We will restrict the
dipole moment to be in the z-direction and the atoms to
be on one or two lines parallel to the y-axis.
As with Ref. [65], there are regions where the slope

of the photon emission rate is larger than 0, indicating
superradiance in different directions. After fixing the po-
larization direction and the line of atoms, there are three
parameters of interest: the number of atoms N , the sep-
aration of atoms d, and the angle of photon emission. In
Fig. 1, we show the region of superradiance as defined by
γ̇(0,kf ) > 0 for kf = k(x̂ cosφ + ŷ sinφ). The superra-
diant region is white. In this case, there is a single line
of atoms. One plot shows the superradiant region as a
function of N, d for φ = 0.4π and the other shows this



5

 50  100  150  200
0.0

0.2

0.4

0.6

0.8

1.0

N

d
/λ

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

φ/π
d

/λ

Figure 1. Both plots are for an atom array in a line on the
y-axis with the atoms separated by d. The polarization is in
the z-direction. White shows the region where γ̇(0,kf ) > 0
and gray is where < 0 with kf = k(x̂ cosφ+ ŷ sinφ). The left
plot has φ = 0.4π. The right plot is for 100 atoms. For the
directional decay, there is more than 1 region of superradiance
unlike the case for γ̇(0). For the left plot, the upper region
only exists for N ≥ 9.

region versus φ, d for N = 100. The plot versus φ, d re-
peats for φ→ φ+π and is symmetric about φ = π/2 due
to the symmetry for a line of atoms in the y-direction.

As with the results for the total emission rate in
Ref. [65], there is a region of relatively rapid change with
N for N less than about 20 followed by slower change
with N which apparently converges to particular values
for large N . The region of slow increase is discussed in
Sec. VD. Unlike the total emission rate, the directional
emission has two regions of superradiance for largerN de-
pending on the angle of emission. For φ between ∼ π/4
and ∼ 3π/4, there is a region of larger separation, d/λ
roughly between 0.5 and 0.6, where the photoemission
rate increases with time at early times. This is due to
constructive interference in these directions and is not
present for the total emission rate which is only super-
radiant for d less than ≃ λ/4 for N = 100. This region
of directional superradiance for d ∼ λ/2 is only present
for N ≥ 9 which is not a large number of atoms. It
seems possible to experimentally observe this directional
superradiance at larger d.

A more complex situation occurs if there are two, par-
allel lines of atoms. Figure 2 shows results when the
second line of atoms is displaced in the x-direction by d.
Each line contains N/2 atoms. For this case, one plot
shows the superradiant region as a function of N, d for
φ = π/2 and the other shows this region versus φ, d for
N = 100. There are two interesting differences from the
example with one line of atoms. The first is that there are
more regions of directional superradiance. For φ = π/2,
there are three regions with the middle region starting
at N = 9 and the upper region starting at N = 30. For
larger N , there is a rich structure of superradiance on the
φ, d plane due to the intereference between the different
lines of atoms. The second is that there is directional
superradiance for d > λ for φ ≃ 0, π/2, π. This region
of superradiance for d > λ requires more atoms, but N
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Figure 2. Same situation as Fig. 1, except there are two lines
of atoms, each with N/2 atoms. The lines of atoms are dis-
placed from each other by d in the x-direction. For the left
plot, φ = 0.5π. The middle region of superradiance only ex-
ists for N ≥ 9 and the upper region only exists for N ≥ 30.
Note the upper region is superradiant for d larger than λ.

is not so large that it is out of reach for experimental
investigation.

1. Non-ideal cases

For the cases in Figs. 1 and 2, we calculated the effect of
not fully inverting the atoms for N = 100 for d < 1.1λ.
For this case, we assumed the laser propagation is in
the z-direction giving ηmn = 0. As α decreases from
π, the region of superradiance shrinks. When the excited
population decreases too much, the superradiance regions
for larger d, i.e. d ∼ λ/2 for Fig. 1 and d ∼ λ/2 and ∼ λ
for Fig. 2, disappear. For the single line case, the upper
region disappears when the initial excitation population
decreases below 75%. For the double line case, the region
near d ∼ λ disappears for less than approximately 80%
excited while the region near d ∼ λ/2 survives down to
approximately 55% excited.

Another possible non-ideal case has the atoms fully
inverted but some of the atoms are randomly removed
which was treated in Ref. [65]. We simulated this by
randomly removing each atom with a probability, P .
For each P , we repeated the simulations 100 times and
checked the superradiance condition. As with the non-
fully inverted case, the region of superradiance shrinks
with increasing probability for atom removal and at some
point the superradiance regions for larger d disappear.
For the single line case, the upper region disappears on
average when the number of atoms is less than 80% while
for the double line case the region near d ∼ λ disappears
for less than 70% atoms while the region near d ∼ λ/2
survives down to approximately 40% atoms.

Similar behavior is seen for higher dimensional arrays.
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Figure 3. Same situation as Fig. 1, except there is a square
array of atoms in the xy-plane of size N1 × N1. The dipole
moment is perpendicular to the plane and kf = k(x̂ cosφ +
ŷ sinφ). For the left plot, φ = 0 and the right plot has N1 =
40.

B. Two-dimensional array

In this section, we describe results for an example
where the atoms are in a two-dimensional array with
equal spacing between the atoms. Our results for the
total decay rate in a two-dimensional atom array match
those of Ref. [65]; we discuss these results below with
those from a cubic array. We restrict the dipole moment
to be in the z-direction and the atoms to be on a square
array in the xy-plane of size N1 ×N1.
In Fig. 3, we show the superradiant region versus N1, d

for φ = 0 and versus φ, d for N1 = 40 corresponding to
N = 1600 atoms. As with the results for the total emis-
sion rate in Ref. [65], there is a region of relatively rapid
change with N1 for N1 less than about 20 followed by
slower change with N1. The change was even slower in
the plots of Ref. [65] because the plots were versus the
total number of atoms N = N2

1 which greatly stretches
the abscissa. Unlike the one-dimensional case, it is not
clear whether the superradiant regions converge with in-
creasing N1. It appears that the separation of atoms
leading to superradiance increases as the number atoms
increases. This is discussed in Sec. VD where it is shown
the results do not converge with increasing N .

The directional superradiance for a plane is much
richer than that for one or two lines of atoms. In the plot
versus φ, d at N1 = 40, the results repeat for φ→ φ+π/2
and are symmetric about φ = π/4 and 3π/4 because of
the symmetry for a square array. In addition, there are
many more regions of superradiance due to the different
possible directions for constructive interference. Some of
these regions start at relatively small N1. For example,
the superradiant region for d ∼ λ for φ = 0 starts at
N1 = 6 corresponding to 36 atoms. The superradiant
region for d ∼ 5λ/4 starts for N1 = 11 corresponding to
121 atoms. Both of these cases are within current exper-
imental capabilities.[69] Perhaps even more interesting
are the regions where different constructive interference
conditions overlap, for example, the regions for d ∼ 1.6λ
for φ ∼ π/8, 3π/8, 5π/8, 7π/8. Also of interest are the su-

 10  20  30  40  50
0.0
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1.0

1.5

2.0

N1

d
/λ
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φ/π

d
/λ

Figure 4. Same situation as Fig. 1, except there is a cubic
array of atoms of size N1 × N1 × N1. The dipole moment is
in the z-direction and kf = k(x̂ cosφ + ŷ sinφ). For the left
plot, φ = 0 and the right plot has N1 = 10.

perradiant regions where d ∼ 2λ; however, these regions
are small and may not be robust to lattice imperfections.

C. Three-dimensional array

In this section, we describe results for an example
where the atoms are in a three-dimensional array with
equal spacing between the atoms. We restrict the dipole
moment to be in the z-direction and the atoms to be on
a cubic array of size N1 ×N1 ×N1.
We will first examine the case for directional superra-

diance. In Fig. 4, we show the superradiant region versus
N1, d for φ = 0 and versus φ, d for N1 = 10 corresponding
to N = 1000 atoms. As with the planar array, there is a
richness to the regions that arise due to directions giving
constructive interference. As with the planar array, in
the plot versus φ, d at N1 = 10, the results repeat for
φ→ φ+π/2 and are symmetric about φ = π/4 and 3π/4
because of the symmetry for a cubic array. There are also
several regions that are superradiant for d greater than
∼ λ for relatively small number of atoms. Another in-
teresting similarity to the two-dimensional case is the in-
creasing separation of atoms leading to superradiance as
the number atoms increases. This is discussed in Sec. VD
where it is shown the results do not converge with N .
We also show the superradiant region for total pho-

ton emission, γ̇(0), versus N1, d for the square and cubic
arrays in Fig. 5. For the square array, the region for
N1 ≤ 40 matches that shown in Ref. [65] Fig. 4 for the
polarization perpendicular to the plane. Interestingly,
the maximum d for superradiance appears to be an in-
creasing function of N1 up to the largest values shown
in Fig. 5. From Eq. (37), the maximum d/λ for super-
radiance is proportional to

√
lnN1 which does continue

to increase with N1, albeit slowly. For the cubic array,
there are more regions of large separation superradiance
and they appear at smaller N1. This is not surprising
because there are many more atoms close to each other
which leads to faster radiation. More interesting, from
Eq. (38), the maximum d/λ for superradiance is propor-
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Figure 5. For the same case as Figs. 3 (for 2D) and 4 (for
3D), plots of the superradiant region defined by γ̇(0) > 0.

tional to
√
N1. Unlike the one-dimensional case, the two-

and three-dimensional arrays do not converge to super-
radiance properties as N1 increases.

D. Efficient summation and asymptotic trends

The summation in Eqs. (18) and (19) require O(N2)
operations for a general positioning of atoms. While this
is more efficient than O(N3) operations, there are more
efficient algorithms in some cases. For example, for an
array, most of the terms are repeated. This fact can be
used to reduce the number of operations to O(N).

For a single line, there are N terms where n−m = 0;
there are N−1 terms where n−m = 1 or n−m = −1 etc.
This allows the calculation in terms of the difference in
positions and a weight for a given difference. As another
example, for a three-dimensional array with N1 points
in each direction with lattice vectors a1,a2,a3 the atom
positions can be written as Rn = ν1,na1+ν2,na2+ν3,na3
where the 1 ≤ ν1, ν2, ν3 ≤ N1 are integers. There are
∏

i(N1 − |νi|) terms that have ν1,n − ν1,m = ν1, ν2,n −
ν2,m = ν2, and ν3,n − ν3,m = ν3. Defining the scaled
initial slope of the photoemission rate as γ̇(0)/(NΓ2),
this allows the reduction to

γ̇(0)

NΓ2
= −2 +

∑

ν1ν2ν3

Wν1ν2ν3

Γ2
ν1ν2ν3

Γ2
(32)

γ̇(0,kf )

NΓ2
= −2 +

∑

ν1ν2ν3

Wν1ν2ν3

Γν1ν2ν3

Γ
cos(φν1ν2ν3

)(33)

Wν1ν2ν3
=

(

1− |ν1|
N1

)(

1− |ν2|
N1

)(

1− |ν3|
N1

)

(34)

where both summations are for −N1 < ν1, ν2, ν3 < N1,
the number of atoms N = N3

1 , φν1ν2ν3
= kf · (ν1a1 +

ν2a2 + ν3a3) and Γν1ν2ν3
= 2Re[g(ν1a1 + ν2a2 + ν3a3)].

The functionWν1ν2ν3
is the weighting from the number of

terms with differences ν1, ν2, ν3. The extension to one-
and two-dimensional arrays is straightforward: restrict
ν2 = ν3 = 0 in one-dimension and restrict ν3 = 0 in
two-dimensions.

This formulation, Eqs. (32) and (33), shows why the
one-dimensional case converges to a finite value in the
limit N → ∞. The scaled initial slope of the photoemis-
sion rate goes to an asymptotic limit as N → ∞:

lim
N→∞

γ̇(0)

NΓ2
= −2 +

∞
∑

ν=−∞

Γ2
ν

Γ2
(35)

lim
N→∞

γ̇(0,kf )

NΓ2
= −2 +

∞
∑

ν=−∞

Γν

Γ
cos(φν) (36)

The first summation is absolutely convergent because Γ2
ν

is proportional to 1/ν2 for large |ν|. The second sum-
mation is conditionally convergent because Γν cos(φν) is
proportional to 1/|ν| times an oscillating function of ν
for large |ν|.
From the formulation, Eqs. (32) and (33), we can show

the two-dimensional case always leads to superradiance
in the limit N → ∞. For example, in Eq. (32), the
sum diverges proportional to lnN1 because the Γν1ν2

∝
1/|a1ν1 + a2ν2|. As a specific example, a square array
with separation d and polarization out of the plane gives

γ̇(0)

NΓ2
∼ C +

9λ2

32π2d2

∑ Wν1ν2

ν21 + ν22
∼ C +D

λ2

d2
lnN1 (37)

in the limit of large N1 with C and D constants. The
asymptotic form was found by converting the sum to an
integral using ν2 = ν21 +ν

2
2 with

∑ →
∫

2πνdν. This can
be seen in Fig. 6 where we plot the scaled photon emission
slope versus N1. There is a fit function which agrees
well with the calculation with the fit being −1.2762 +
0.1740 lnN1 for d = λ and −1.0608 + 0.0429 lnN1 for
d = 2λ. This agrees better with Eq. (37) than might be
expected given the contribution from the weight function,
9/(16π) = 0.1790.
Unlike the one-dimensional case where the scaled

slope converges to a finite value as N → ∞, the two-
dimensional scaled slope diverges for both Eqs. (32) and
(33) implying there is always a minimum number of
atoms which will give superradiance. For Fig. 6, superra-
diance occurs for N1 ≃ 1530 corresponding to 2.3 million
atoms for d = λ and N1 ∼ 5.5 × 1010 corresponding to
N ∼ 3 × 1021 atoms for d = 2λ. These are very large
numbers, not likely to be accessible experimentally in
the near future. The smallest N1 for superradiance is a
rapidly increasing function of d: roughly N1 is squared
for every increase of d by a factor of ∼

√
2. Also, the

approximations in the basic equations, Eq. (2), no longer
hold when the array size is too large so this asymptotic
behavior only represents reality for a finite range of N1.
From the formulation, Eqs. (32) and (33), we can show

that the three-dimensional case always leads to superra-
diance in the limit N → ∞. Following the logic of the
two-dimensional case, the cubic array in x, y, z with sep-
aration d and polarization in the z-direction gives

γ̇(0)

NΓ2
∼ C +D

λ2

d2
N1 (38)
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Figure 6. For the same case as Figs. 3 and 4, a plot of the
scaled initial slope of total radiation at a separation d = λ
and 2λ versus the number of atoms in each direction. The
red solid line is the calculation using Eq. (32) and the blue
dashed line is a plot of −1.2762+0.1740 lnN1 and −1.0608+
0.0429 lnN1 for two-dimensional and −1.1913+0.0856N1 and
−1.0608+0.0213N1 for three-dimensional. The plane of atoms
with polarization perpendicular to the plane is superradiant
for N1 > 1530 for d = λ while the cubic array is superradiant
for N1 ≥ 14.

in the limit of large N1 with C and D constants. The
asymptotic form was found by converting the sum to an
integral using ν2 = ν21 + ν22 + ν23 with

∑ →
∫

4πν2dν.
This form can be seen in Fig. 6 where we plot the scaled
photon emission slope versus N1. For N1 greater than
about 4, the scaled photoemission slope is proportional
to N1. There is a fit function which agrees well with
the scaling with the fit being −1.1913 + 0.0856N1 for
d = λ and −1.0608+0.0213N1 for d = 2λ. Note that the
coefficient multiplying the N1 decreases by a factor of 4
in going from d = λ to 2λ as expected from Eq. (38).

Because the γ̇(0)/N increases more quickly with N1

than the two-dimensional case, the region of superradi-
ance is reached more quickly. For d = λ, there is superra-
diance for N1 ≥ 14 (corresponding to N = 2744) and, for
d = 2λ, it is N1 ≥ 51 (corresponding to N = 130, 000).
Compared to the two-dimensional case, these are much
smaller cutoff numbers although they are probably still
experimentally challenging in the near future. The form
of Eq. (38) suggests that the cutoff for superradiance is
N1 = N1/3 ∝ (d/λ)2.

VI. SUMMARY

We have presented an alternative method to Ref. [65]
for determining whether a collection of atoms will exhibit
superradiance in the total emission rate. Our condition
is equivalent to that in Ref. [65] but uses the trace of the
square of a matrix instead of the variance of the eigenval-
ues. We also presented a method for determining whether
the collection of atoms will exhibit superradiance only in
particular directions. In addition to expressions for fully
inverted systems, we also found expressions for when the
gas is partially inverted in a product state. For the case
of fully inverted atoms, we determined the condition for
superradiance for photoemission into more than one fi-
nal state. Finally, we showed how to efficiently evaluate

these expressions for arrays of atoms and determined the
superradiance condition for very large atom number.
For two level atoms, we performed calculations for

directional superradiance for one-, two-, and three-
dimensional arrays and found conditions of superradiance
where the atom separation was comparable to or larger
than λ for not very large numbers of atoms. We showed
that one-dimensional arrays have radiant properties that
converge to finite values as the number of atoms increase,
but two- and three-dimensional arrays have scaled radi-
ant properties that increase with increasing number of
atoms. For fully inverted atoms, we showed how the de-
cay into many final states affects the superradiance con-
dition for the total emission rate.
While it will be difficult experimentally to have

large, perfect arrays, experiments with randomly situ-
ated atoms can be done. Effects that result from the
interference due to the perfect array will not be repro-
duced in a random gas. However, the dependence of the
total photon emission rate with d/λ, d the average sep-
aration, and atom number, N , should be similar to that
for a perfect array when N is large. For example, an
effectively two-dimensional cloud should have the scaled
initial slope, γ̇(0)/(NΓ2), scale like Eq. (37) and a three-
dimensional cloud should scale like Eq. (38). They should
scale like the perfect arrays because the main contribu-
tion comes from atoms with separations d ≫ λ where
Γ2
nm does not vary strongly when averaged over a wave-

length. This suggests that two- and three-dimensional
gases also should show superradiance and directional su-
perradiance for enough atoms.
Data used in this publication is available at [70].
Note added: After submission of this manuscript, we

became aware of related work in Ref. [71]

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation under Grant No. 2109987-PHY.

Appendix A: Equivalence of superradiance definition

This appendix shows that the condition g(2)(0) > 1 of
Ref. [65] is the same as γ̇(0) > 0 from Eq. (18). From
Eq. (12) in App. B of Ref. [65], the superradiance condi-
tion is

N
∑

ν=1

Γ2
ν − 2NΓ2 > 0 (A1)

with Γν the eigenvalues of Γ. Since Γ is a real, symmetric
matrix, the sum of the squares of the eigenvalues can be
related to the trace of the squared matrix:

N
∑

ν=1

Γ2
ν = Tr[Γ Γ] (A2)
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Substituting this expression into Eq. (A1) immediately
gives

Tr[Γ Γ]− 2NΓ2 = γ̇(0) > 0. (A3)
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