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Abstract

The design of the buffer manager in database management sys-
tems (DBMSs) is influenced by the performance characteristics of
volatile memory (i.e., DRAM) and non-volatile storage (e.g., SSD).
The key design assumptions have been that the data must be mi-
grated to DRAM for the DBMS to operate on it and that storage
is orders of magnitude slower than DRAM. But the arrival of new
non-volatile memory (NVM) technologies that are nearly as fast as
DRAM invalidates these previous assumptions.

Researchers have recently designed HYMEM, a novel buffer man-
ager for a three-tier storage hierarchy comprising of DRAM, NVM,
and SSD. HYMEM supports cache-line-grained loading and an NVM-
aware data migration policy. While these optimizations improve
its throughput, HyMEM suffers from two limitations. First, it is a
single-threaded buffer manager. Second, it is evaluated on an NVM
emulation platform. These limitations constrain the utility of the
insights obtained using HyMEM.

In this paper, we present SPITFIRE, a multi-threaded, three-tier
buffer manager that is evaluated on real NVM hardware. We intro-
duce a general framework for reasoning about data migration in a
multi-tier storage hierarchy. We illustrate the limitations of the opti-
mizations used in HyMEM on Optane and then discuss how SPITFIRE
circumvents them. We demonstrate that the data migration policy
has to be tailored based on the characteristics of the devices and
the workload. Given this, we present a machine learning technique
for automatically adapting the policy for an arbitrary workload and
storage hierarchy. Our experiments show that SPITFIRE works well
across different workloads and storage hierarchies.
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1 Introduction

The techniques for buffer management in a canonical DRAM-SSD
hierarchy are predicated on the assumptions that: (1) the data must

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3452819

Andrew Pavlo David Cohen
pavlo@cs.cmu.edu david.e.cohen@intel.com
Carnegie Mellon University Intel

2195

be copied from SSD to DRAM for the DBMS to operate on it, and that
(2) storage is orders of magnitude slower than DRAM [4, 16]. But
emerging non-volatile memory (NVM) technologies upend these
design assumptions. They support low latency reads and writes
comparable to DRAM, but with persistent writes and large storage
capacity like an SSD. In a DRAM-SSD hierarchy, the buffer manager
decides what pages to move between disk and memory and when
to move them. However, with a DRAM-NVM-SSD hierarchy, in
addition to these decisions, it must also decide where to move them
(i.e., which storage tier).

Prior Work. Recently, researchers have designed HyMEM, a novel
three-tier buffer manager for a DRAM-NVM-SSD hierarchy [37].
HyMmEM employs a set of optimizations tailored for NVM. It adopts a
data migration policy consisting of four decisions: DRAM admission,
DRAM eviction, NVM admission, and NVM eviction. @ Initially, a
newly-allocated 16 KB page resides on SSD. When a transaction
requests that page, HYMEM eagerly admits the entire page to DRAM.
® DRAM eviction is the next decision that it takes to reclaim space.
It uses the CLOCK algorithm for picking the victim page [34]. ®
Next, it must decide whether that page must be admitted to the
NVM buffer (if it is not already present in that buffer). Hymem seeks
to identify warm pages. It maintains a queue of recently considered
pages to make the NVM admission decision. It admits pages that
were recently denied admission. Each time a page is considered for
admission, HYMEM checks whether the page is in the admission
queue. If so, it is removed from the queue and admitted into the
NVM buffer. Otherwise, it is added to the queue and directly moved
to SSD, thereby bypassing the NVM buffer. @ Lastly, it uses the
CLOCK algorithm for evicting a page from the NVM buffer.

HyMEM supports cache-line-grained loading to improve the uti-
lization of NVM bandwidth. Unlike SSD, NVM supports low-latency
access to 256 B blocks. HYyMEM uses cache line-grained loading to
extract only the hot data objects from an otherwise cold 16 KB page.
By only loading those cache lines that are needed, HymEM lowers
its bandwidth consumption.

HyMEM supports a mini page layout for reducing the DRAM
footprint of cache-line-grained pages. This layout allows it to effi-
ciently keep track of which cachelines are loaded. When the mini
page overflows (i.e, all sixteen cache lines are loaded), HYMEM
transparently promotes it to a full page.

Limitations. These optimizations enable HymEM to work well
across different workloads on a DRAM-NVM-SSD storage hierarchy.
However, it suffers from two limitations. First, it is a single-threaded
buffer manager. Second, it is evaluated on an NVM emulation plat-
form. These limitations constrain the utility of the insights obtained
using HYMEM (§6.5). In particular, the data migration policy em-
ployed in HYMEM is not the optimal one for certain workloads. We
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DRAM NVM SSD
Latency
Idle Sequential Read Latency 75 ns 170 ns 10 ps
Idle Random Read Latency 80 ns 320 ns 12 ps
Bandwidth (6 DRAM and 6 NVM modules)
Sequential Read 180 GB/s 91.2 GB/s 2.6 GB/s
Random Read 180 GB/s 28.8 GB/s 2.4 GB/s
Sequential Write 180 GB/s 27.6 GB/s 2.4 GB/s
Random Write 180 GB/s 6 GB/s 2.3 GB/s
Other Key Attributes
Price ($/GB) 10 45 2.8
Addressability Byte Byte Block
Media Access Granularity 64 B 256 B 16 KB
Persistent No Yes Yes
Endurance (cycles) 1010 1010 1012

Table 1: Device Characteristics — Comparison of key characteristics of
DRAM, NVM (OprtaNE DC PMMs), and SSD (OpTaNE DC P4800X).

show that the cache line-grained loading and mini-page optimiza-
tions must be tailored for a real NVM device. We also illustrate
that the choice of the data migration policy is significantly more
important than these auxiliary optimizations.

Our Approach. In this paper, we present SPITFIRE, a multi-threaded,
three-tier buffer manager that is evaluated on Optane DC Persis-
tent Memory Modules (PMMs), an NVM technology that is being
shipped by Intel [7]. As summarized in Table 1, OpTaANE DC PMMs
bridges the performance and cost differentials between DRAM and
an enterprise-grade SSD [26, 32]. Unlike SSD, it delivers higher
bandwidth, lower latency, and byte-addressability to CPUs. Unlike
DRAM, it supports persistent writes and large storage capacity.
We begin by introducing a taxonomy for data migration policies
that subsumes the specific policies employed in previous three-
tier buffer managers [22, 37]. Since the CPU is capable of directly
operating on NVM-resident data, SPITFIRE does not eagerly move
data from NVM to DRAM. We show that lazy data migration from
NVM to DRAM ensures that only hot data is promoted to DRAM.
An optimal migration policy maximizes the utility of movement
of data between different devices in the storage hierarchy. We
empirically demonstrate that the policy must be tailored based on
the characteristics of the devices and the workload. Given this, we
present a machine learning technique for automatically adapting
the policy for an arbitrary workload and storage hierarchy. This
adaptive data migration scheme eliminates the need for manual
tuning of the policy.
Contributions. We make the following contributions:

e We introduce a taxonomy for reasoning about data migration
in a multi-tier storage hierarchy (§3).

e We introduce an adaptation mechanism that converges to a
near-optimal policy for an arbitrary workload and storage
hierarchy without requiring any manual tuning (§4).

e We implement our techniques in SPITFIRE, a multi-threaded,
three-tier buffer manager (§5).

e We evaluate SPITFIRE on OPTANE DC PMMs and demonstrate
that it works well across diverse workloads and storage hier-
archies (§6).
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Figure 1: Data Migration Policy in HYMEM - The four critical decisions
in the data migration policy adopted by HymEMm.
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e We present a set of guidelines for choosing the storage hierar-
chy and migration policy based on workload (§6.6, §6.7).

2 Background

We first provide an overview of the NVM-aware optimizations
adopted by HyMEM in §2.1. We then discuss how SPITFIRE makes
use of OpTANE DC PMMs in §2.2.

2.1 NVM-aware Optimizations in HyMEM

The traditional approaches for buffer management in DBMSs are
incompatible with the advent of byte-addressable NVM. The rea-
sons for this are twofold. First, to process SSD-resident data, the
buffer manager must copy it to DRAM before the DBMS can per-
form any operations. In contrast, the CPU can directly operate on
NVM-resident data (256 B blocks) [7]. Second, NVM bridges the
performance gap between DRAM and SSD. Given these observa-
tions, researchers have designed HYMEM, a novel buffer manager
for a DRAM-NVM-SSD hierarchy [37]. The key NVM-centric opti-
mizations in HYMEM include:

Data Migration Policy. Figure 1 presents the data flow paths in
the multi-tier storage hierarchy. NVM introduces new data flow
paths in the storage hierarchy (@, @, ®, ®, @,0). By leveraging
these additional paths, HyMEM reduces data movement between
different tiers and reduces the number of writes to NVM. The former
results in improving the DBMS’s performance, while the latter
extends the lifetime of NVM devices with limited write-endurance.
The default read path comprises of three steps: moving data from
SSD to NVM (@), then to DRAM (@), and lastly to the CPU cache
(®). Similarly, the default write path consists of three steps: moving
data from processor cache to DRAM (@), then to NVM (@), and
finally to SSD (®).

As we discussed in §1, the four critical decisions in the data
migration policy adopted by HymeMm include: DRAM admission,
DRAM eviction, NVM admission, and NVM eviction. When a trans-
action requests a page, HyMEM checks if the page is in the DRAM
buffer. If it is not present in the DRAM buffer, it checks if the page
is present in the NVM buffer or not. In the former case, it brings the
data of the NVM page (0) into DRAM page. In the latter case, it ea-
gerly admits the entire page residing on SSD into the DRAM buffer
(®). It does not leverage the path from SSD to NVM (@). DRAM
eviction is the second decision that HyMEM takes to reclaim space.
It must decide whether that page must be admitted to the NVM
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Figure 2: Page Layouts in HYyMEM- The page layouts that HYMEM uses
to lower the NVM bandwidth consumption and the DRAM footprint, re-
spectively [37].

buffer. Each time a page is considered for admission, HyMEwm checks
whether the page is in the admission queue. If so, it is removed
from the queue and admitted into the NVM buffer (®). Otherwise,
the page’s identifier is added to the queue, and it is directly moved
from DRAM to SSD (). Lastly, it evicts pages from the NVM buffer
when it needs to reclaim space (®).

Cache-line-grained Loading. To lower NVM bandwidth con-
sumption, HYMEM supports cache line-grained loading to extract
only the cache lines needed from the NVM page (@) into DRAM.
As shown in Figure 2a, to support cache-line-grained pages, HYMEM
maintains a couple of bitmasks (labeled resident and dirty) to
keep track of the cache lines that are already loaded and those that
are dirtied. The r and d bits indicate whether the entire page is
resident and dirty, respectively. In this example, the first, third, and
last cache-lines are loaded, as indicated by the corresponding set
bits in resident. To support on-demand loading of cache-lines,
each cache line-grained page in DRAM contains a pointer to the
underlying NVM page. The header fits within two cache lines.

Mini Page. HyMEM supports a mini page layout for reducing the
DRAM footprint of cache-line-grained pages. This layout allows
it to efficiently keep track of the loaded cachelines. A mini page
stores up to sixteen cache-lines. As shown in Figure 2b, it contains
a slots array for directing the accesses. Each slot stores the logical
identifier of the cache-line residing in the mini page. For instance,
the 255! cache line in the underlying NVM page is loaded into
the second slot of the DRAM-resident mini page. HYMEM uses the
count field to keep track of the number of occupied slots (i.e., loaded
cache lines). When the mini page overflows, HYMEM transparently
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Figure 3: Data Flow Paths — The different data flow paths in a multi-tier
storage hierarchy consisting of DRAM, NVM, and SSD.

promotes it to a full page. The dirty bit mask determines the cache
lines that must be written back to NVM when the page is evicted
from the DRAM buffer. In this example, the second cache line must
be written back. The header of a mini page fits within a cache line.

2.2 Leveraging OpTaNE DC PMMs

OrTaNE DC PMMs can be configured in one of these two modes:
(1) memory mode and (2) app direct mode. In the former mode,
the DRAM DIMMs serve as a hardware-managed cache (i.e., direct
mapped write-back L4 cache) for frequently-accessed data residing
on slower PMMs. The memory mode enables legacy software to
leverage PMMs as a high-capacity volatile main memory device
without extensive modifications. However, it does not allow the
DBMS to utilize the non-volatility property of PMMs. In the latter
mode, the PMMs are directly exposed to the processor and the
DBMS directly manages both DRAM and NVM. In this paper, we
configure the PMMs in app direct mode to ensure the durability
of NVM-resident data.

Evaluation Platform. We evaluate SPITFIRE on a platform con-
taining OpTANE DC PMMs. We create a namespace on top of the
NVM regions in fsdax mode. This allows SPITFIRE to directly ac-
cess NVM using the load/store interface. It maps a file residing on
the NVM device using the following commands:

fd = open(("/mnt/pmem0/file", O_RDWR, 0);

res ftruncate(fd, SIZE);
ptr = mmap(nullptr, SIZE, PROT_WRITE, MAP_SHARED, fd, 0);

SPITFIRE uses the resulting pointer to directly manage the NVM-
resident buffer. To ensure the persistence of NVM-resident data,
it first writes back the cache lines using the clwb instruction and
then issues an sfence instruction so that the data reaches NVM.
The clwb instruction writes back the cache lines without evicting
them. Since this instruction is non-blocking, SPITFIRE must issue the
sfence instruction to ensure that the cache write back is completed
and the data is persistent.

We next describe how SPITFIRE leverages the additional data
flow paths introduced by NVM.

3 NVM-Aware Data Migration

We propose a probabilistic technique for deciding where to move
data. This multi-tier data migration policy works in tandem with
the page replacement policy used in the DRAM and NVM buffers.
Similar to HymEM, SPITFIRE uses the CLOCK page replacement
policy for deciding what data should be evicted from a buffer [34].
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Once a page is selected for eviction or promotion, SPITFIRE uses
the probabilistic data migration policy for determining the storage
tier to which the page must be migrated.

As shown in Figure 3, the default read path comprises three steps:
moving data from SSD to NVM (@), then to DRAM (8), and lastly
to the processor cache (®). Similarly, the default write path consists
of three steps: moving data from processor cache to DRAM (@),
then to NVM (@), and finally to SSD (®). We now describe how
SPITFIRE leverages the additional data flow paths introduced by
NVM (0.0,0,0) to minimize the performance impact of NVM and
to extend the lifetime of the NVM and SSD devices.

3.1 Bypass DRAM during Reads (D,)

Unlike SSDs, the CPU is capable of directly accessing data on NVM
during read operations (@) [18]. To access a page on SSD, in a disk-
centric DBMS, the DBMS copies it over to DRAM (@), before it
operates on the copied data. With NVM, SPITFIRE leverages this
new data flow path (@) to lazily migrate data from NVM to DRAM
while serving read operations.

SPITFIRE uses a probabilistic technique for deciding where to
move data. Let D, represent the probability that SPITFIRE moves
data from NVM to DRAM during read operations. When D, is 1,
we refer to this policy as eager migration of data to DRAM. Sp1T-
FIRE employs a wider range of lazy migration policies with smaller
values for D,. For example, when D, = 0.01, SPITFIRE moves a page
from NVM to DRAM only once every hundred times. Otherwise,
it directly serves the read operation using the page residing on
NVM. If the page is not present in the DRAM and NVM buffers,
then it must fetch the data from SSD (§3.3). These lazy policies
reduce upward data movement between NVM and DRAM during
read operations. They are beneficial when the capacity of DRAM is
smaller than that of NVM. A lazy migration strategy ensures that
warm pages on NVM do not evict hot pages in DRAM.

The optimal value of D, depends on the application’s workload.
An eager policy (D, > 0.7) works well if the working set fits within
the DRAM buffer. However, a policy with lower D, works well if
the working set does not fit in DRAM. This strategy ensures that
only hot data is stored in DRAM.

With the eager policy, SPITFIRE frequently brings the page to
DRAM while serving the read operation. Consequently, if the ap-
plication then updates the same page, the writes are performed on
DRAM. In contrast, a lazy policy increases the number of writes on
NVM. This is because it is more likely that the page being updated
is residing on NVM This is not a problem for applications with
skewed access patterns [3, 33]. Such applications tend to modify
hot data that is cached in the DRAM buffer even when SPITFIRE
adopts a lazy policy.

3.2 Bypass DRAM during Writes (D,,)

Ensuring the persistence of pages containing log and checkpoint
records is critical for the recoverability of the DBMS [30]. The
DBMS’s performance is constrained by the I/O overhead associated
with persisting these pages on SSD [15]. As transactions tend to
generate multiple log records that are each small in size, DBMSs use
the group commit optimization to reduce this I/O overhead [9]. The
DBMS first batches the log records for a group of transactions in the
DRAM buffer (@) and then flushes them together with a single write
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to SSD (®). This optimization improves the operational throughput
and amortizes the I/O overhead across multiple transactions.

Unlike SSDs, the CPU is capable of directly persisting data on
NVM via write operations (®) [18]. SPITFIRE leverages this path
to provide synchronous persistence with lower overhead [22]. The
write operation bypasses DRAM since the data must be eventually
persisted. This optimization shrinks the overall latency of the oper-
ation. In addition to eliminating the redundant write to DRAM, it
avoids potential eviction of other hot pages from the DRAM buffer.

Let D,, represent the probability with which the SPITFIRE uses
DRAM during write operations. In a canonical DRAM-SSD system
without NVM, D,, = 1. This is because the CPU cannot directly per-
sist data on SSD. With faster NVM technologies, SPITFIRE employs
a lazy policy with smaller D,,. This reduces the frequency of down-
ward data migration to DRAM during write operations, thereby
ensuring that pages containing log and checkpoint records do not
evict hot pages in DRAM. Our evaluation demonstrates that this
optimization improves SPITFIRE’s performance on write-intensive
workloads (§6.3).

3.3 Bypass NVM During Reads (N,)

The data migration optimizations presented in §3.1 and §3.2 im-
prove performance at the expense of increasing the number of
writes to NVM. We next describe how SPITFIRE leverages two addi-
tional data flow paths for minimizing writes to NVM.

The default read path consists of moving the data from SSD
to NVM (@) and eventually migrating it to DRAM (). SPITFIRE
instead makes use of the data flow path from SSD to DRAM (@®).
When it observes that a requested page is not present in both the
DRAM and NVM buffers, it copies the data on SSD directly to
DRAM, thus bypassing NVM during read operations. If the data
read into the DRAM buffer is not subsequently modified, and is
selected for replacement, then it simply discards it. If the page
is modified and later selected for eviction from DRAM, SPITFIRE
considers admitting it to NVM (®).

Let N, represent the probability with which SPITFIRE copies data
from SSD to NVM during read operations. With the default read
path, N, = 1. When a page is fetched from SSD and later evicted
from DRAM, an eager policy necessitates two writes to NVM: once
at fetch time and again when it is evicted from DRAM. With a lazy
policy (e.g., N, = 0.01), SPITFIRE installs a copy of a modified page
on NVM only after it has been evicted from DRAM. This eliminates
the first write to NVM when SpITFIRE fetches the page from SSD.

HyMEM adopts a lazy migration policy for NVM [37]. Unlike
SPITFIRE, it directly migrates pages from SSD to DRAM. This design
reduces data duplication in the NVM buffer. We quantify the degree

of duplication using the inclusivity ratio:
# OF PAGES IN BOTH DRAM AND NVM BUFFERS

INCLUSIVITY =
# OF PAGES IN EITHER DRAM OrR NVM BUFFERS
SpITFIRE adopts a different approach for minimizing data du-
plication across the DRAM and NVM buffers. It employs: a lazy
policy for migrating data from NVM to DRAM (D, = 0.01), and a
comparatively eager policy while moving data from SSD to NVM
(N, = 0.2). While this scheme increases the number of writes to
NVM compared to the lazy policy, it enables SPITFIRE to deliver
higher performance than Hymem (§6.5).
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3.4 Bypass NVM During Writes (N,,)

Lastly, SPITFIRE reduces the number of writes to NVM by bypassing
it while serving write operations. The default write path consists
of moving the data from DRAM to NVM (@) and then eventually
migrating it to SSD (®). Instead of using the default path, SPITFIRE
makes use of the direct data flow path from DRAM to SSD ().

By bypassing NVM during writes, SPITFIRE ensures that only
pages frequently swapped out of DRAM are stored on NVM. This
optimization is similar to the NVM admission queue mechanism
employed in HyMEM [37]. Unlike HYMEM, SPITFIRE does not ex-
plicitly maintain such a queue and instead takes a probabilistic
approach. Besides reducing the number of writes to NVM, this opti-
mization also ensures that only warm pages are stored in the NVM
buffer. If SPITFIRE employs a lazy policy while copying data from
NVM into DRAM (D, = 0.01), this optimization prevents colder
DRAM-resident pages from polluting the NVM buffer.

Let N, represent the probability with which the BM copies data
from DRAM to NVM during write operations. With the default
write path, N,, = 1. Lower values of N,, reduce downward data
migration into NVM. Such a lazy policy is beneficial when the
capacity of DRAM is comparable to that of NVM since it ensures
that colder data on DRAM does not evict warmer data on NVM.

3.5 Data Migration Policy

We define the multi-tier data migration policy in terms of the prob-
abilities with which the SPITFIRE bypasses DRAM and NVM while
serving read and write operations (§3.1,§3.2, §3.3,§3.4). A policy P
is given by the tuple:
<I)r,I)VV!DJr,PJd>

All of the above-mentioned data migration optimizations are
moot unless SPITFIRE dynamically adapts the policy P based on the
characteristics of the workload and the storage hierarchy (§6.4).
We next present an adaptation mechanism that SPITFIRE uses to
converge to a near-optimal policy for an arbitrary workload and
storage hierarchy without requiring any manual tuning.

Theoretical Analysis. We now present a theoretical analysis
of how the data migration policy works. Consider a page P that is
not present in the DRAM bulffer. If there are N read requests for P,
then the probability of P being brought into DRAM is approximated
by 1—-((1- D, )N). If we assume that D, is non-zero and accesses
to pages are independent events, as N increases (i.e., P is accessed
more frequently), this probability converges to one. We empirically
demonstrate the steady-state behavior of the policy in §6.3.

4 Adaptive Data Migration

SPITFIRE seeks to find a near-optimal policy Pop; that delivers the
highest performance on the given workload and storage hierarchy.
It is infeasible to determine the optimal policy for migrating data in
a multi-tier buffer, even when full knowledge of the future requests
are available [12]. This is because the benefit of a buffer hit depends
on the level at which it occurred (e.g., two hits in the DRAM buffer
will be better than three hits in the NVM buffer). Thus, SPITFIRE
relies on empirical analysis to identify Pop;.

Cost Function. The crux of our approach is to periodically track
a set of target metrics, and then adapt P in the background. SPITFIRE
evaluates a candidate policy across millions of buffer pool requests
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Figure 4: Architecture of SPITFIRE - Unified mapping table for the
DRAM and NVM buffers.
to ensure that its impact on the target metrics is prominently visible
to the search algorithm. Over time, the search algorithm automati-
cally optimizes P for the target workload and storage hierarchy.

Currently, SPITFIRE keeps track of the transactional throughput
(T) metric to guide the adaptation mechanism. The cost function
associated with a candidate policy P is given by:

costT(P) = %

Search Algorithm. SPITFIRE adapts the policy using simulated
annealing (SA) [21]. This iterative search technique finds a policy
Pop: that minimizes the cost function. SA is guaranteed to find
the globally optimal policy Pop; with high probability. Internally,
it uses a temperature parameter t for controlling the magnitude
of cost fluctuations. During the initial tuning steps of SA, when t
is high, the probability of picking worse policies is high. Despite
temporarily increasing the cost, such non-beneficial steps allow
for a more extensive search for Pyp;. SA gradually decreases t
over time. This corresponds to slowly decreasing the probability of
accepting worse policies as it explores the state space.

5 System Architecture

We next present the system architecture of SPITFIRE. In particular,
we discuss how SPITFIRE supports the NVM-centric data migration
policies presented in §3, including an adaptive data migration mech-
anism. We begin with an overview of how SPITFIRE manages the
DRAM and NVM buffers in §5.1. We then describe the concurrency
control and recovery mechanisms of SPITFIRE in §5.2. We conclude
with a discussion of the storage system design problem in §5.3.

5.1 Multi-Tier Buffer Management

We may configure SPITFIRE to manage one or two buffers residing
in DRAM and/or NVM. Consider a three-tier configuration with
DRAM and NVM buffers. With this configuration, SPITFIRE seeks to
keep the hot, warm, and cold database pages on DRAM, NVM, and
SSD, respectively. Since the CPU is capable of directly operating on
both the DRAM and NVM buffers, SPITFIRE maintains a mapping
table on DRAM to bound latency. This mapping table serves to keep
track of pages buffered in DRAM and NVM.

When a page is requested, SPITFIRE performs a table lookup that
returns a shared page descriptor containing the locations (if any) of
the logical page in the DRAM and NVM buffers. If the page is found
on DRAM, then it returns a reference to the DRAM-resident buffer
frame. Otherwise, if the page is found on NVM and the migration
policy allows SPITFIRE to bypass DRAM, then it returns a reference
to the NVM-resident buffer frame. If the page is not found in both
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DRAM and NVM buffers, SPITFIRE retrieves the page from SSD and
places it in one of those two buffers based on the multi-tier data
migration policy.

As shown in Figure 4, SPITFIRE maintains a shared page descrip-
tor for every logical page ¥ in the mapping table. The descriptor
contains latches for thread-safe data migration and pointers to the
DRAM and NVM page descriptors. The device-specific page de-
scriptors contain additional metadata: (1) number of users of the
page, (2) a bit indicating whether the page is dirty, (3) and a physical
pointer to the page frame residing on the device.

Similar to HymEM, SPITFIRE adopts the CLOCK cache replace-
ment policy to reclaim space in the DRAM and NVM buffers [34].
It relies on the cache replacement policy and the data migration
policy to work in tandem to place the pages in the appropriate tiers
based on their access frequency.

5.2 Concurrency Control and Recovery

To support concurrent operations, we leverage the following data
structures and protocols: (1) a concurrent hash table for manag-
ing the mapping from logical page identifiers to shared page de-
scriptors [17], (2) a concurrent bitmap for the cache replacement
policy [40], (3) multi-versioned timestamp-ordering (MVTO) con-
currency control protocol [39], (4) concurrent B+Tree for indexing
with optimistic lock-coupling [24], and (5) lightweight latches for
thread-safe page migrations.

Concurrent Index. The introduction of NVM into the storage
system increases the overall buffer capacity, thereby reducing the
number of operations hitting SSD. The reduction in I/O overhead in-
creases the importance of computational overhead associated with
index lookups. We implement a concurrent B+Tree with optimistic
lock-coupling on top of SPITFIRE [24]. The optimistic lock-coupling
technique reduces the contention overhead associated with pes-
simistic one, especially when the working set fits within the buffers.

Thread-Safe Page Migration. While migrating a page #, SpIT-
FIRE must ensure that there are no concurrent operations on P. It
accomplishes this using a bespoke page-level latching protocol de-
signed to maximize concurrency. As shown in Figure 4, the shared
page descriptor associated with # contains three latches corre-
sponding to the three storage tiers. While migrating # from a tier
X to tier Y (e.g., NVM to SSD), it grabs the latches associated with
these tiers before performing the I/O operation. This fine-grained
latching protocol maximizes concurrency (as opposed to using a
single latch for all data flow paths). For example, when P is to be
written back from NVM to SSD, SPITFIRE only acquires the latches
for the NVM and SSD tiers, thereby allowing concurrent operations
on the copy of £ in the DRAM buffer.

SpITFIRE handles the upward data flow path from NVM to DRAM
(®) differently. While migrating ¥ along this path, there may be
concurrent operations on the copy of # in the NVM buffer if Spit-
FIRE adopts a lazy data migration policy. In this case, the newly
installed copy of # in the DRAM buffer might not contain the modi-
fications made on the one in the NVM buffer. SPITFIRE circumvents
this problem by: (1) acquiring the latches associated with the DRAM
and NVM tiers, (2) waiting for all references to the copy on the
NVM buffer to be dropped before migrating the page to DRAM,
and (3) finally releasing the acquired latches.
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Recovery. SPITFIRE ensures recoverability by implementing an
NVM-aware write-ahead logging protocol. It initially persists the
log records in a shared NVM log buffer to exploit its persistence
and latency characteristics. A log record consists of: (1) transaction
identifier and page identifier, (2) type of record, (3) log sequence
number of previous log record for this transaction, and (4) before
and after images. Once the commit log record of a transaction
is persisted in the NVM log buffer, the transaction is considered
committed. When the NVM log buffer size reaches a threshold, its
contents are asynchronously appended to an on-disk log file. In
the background, SPITFIRE periodically flushes dirty pages in the
DRAM buffer to allow log truncation and to bound recovery time.
However, the modified pages in NVM buffer are not flushed down
to SSD since NVM is persistent. Therefore, pages in NVM buffer
might be newer than their SSD counterparts.

During recovery, SPITFIRE first reconstructs the contents of the
NVM buffer to identify the latest version of a page. This is accom-
plished by scanning the NVM buffer to collect the page ids and to
construct the mapping table. Second, the NVM log buffer needs to
be appended to the log file since the buffer is persistent. Once the
mapping table is recovered, and log file is complete, SPITFIRE pro-
ceeds to recover the database using a traditional recovery scheme
(analysis, redo, and undo phases).

5.3 Storage System Design

We have so far focused on identifying the optimal data migration
policy for a particular workload and storage hierarchy. The tuning
algorithm presented in §4 assumes that we have already provisioned
a multi-tier storage hierarchy that is a good fit for the workload.
However, it is unclear how to select such a hierarchy for a particular
workload given a system cost budget. Prior research on NVM-aware
storage management has not tackled this problem of designing a
multi-tier storage system [2, 10, 20, 22, 31, 37]. We empirically
investigate this problem by running SPITFIRE on diverse storage
hierarchies identified using a grid search algorithm in §6.6.

6 Experimental Evaluation
Our evaluation aims to answer the following questions:

o Benefits of NVM and App-Direct Mode: How do equi-cost
NVM-SSD and DRAM-SSD (memory-mode) hierarchies com-
pare against each other? (§6.2)

Data Migration Policies: How does the optimal data migra-
tion policy vary? (§6.3)

Adaptive Data Migration: Does the adaptation mechanism
work? (§6.4)

Revisiting HyMEM’s Optimizations: How do the optimiza-
tions introduced in HyMeEM work on OpTANE DC PMMs? (§6.5)

Storage System Design: How should we provision a storage
system given a cost budget? (§6.6, §6.7)

6.1 Experimental Setup

Implementation. We implemented SpITFIRE with around 14,000
lines of C++ code. We leverage the concurrent data structures in
Intel’s Thread Building Blocks (TBB) library [17].

Evaluation Platform. We evaluate SPITFIRE on a two-socket
platform with OpTaNE DC PMMs. The platform contains 24 physical
cores on each node. It is equipped with 384 GB DRAM (2 socket X
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6 channel x 32 GB/DIMM), 3 TB NVM (2 socket X 6 channel X 256
GB/PMM), and a 375 GiB Intel Optane DC SSD (DC P4800X Series,
PCIe NVMe 3.0 x4). We run Fedora 27 with Linux kernel version
4.18.10 compiled from source. We disable hyper-threading and set
the CPU to use the highest possible clock frequency. We bind all
the threads of SPITFIRE to the first socket to avoid NUMA effects.
We measure the number of buffer manager operations processed
per second (i.e., throughput).

Workloads. We next describe the workloads that we use in our
evaluation. These workloads differ with respect to skew and ratio
of persistent writes.

e YCSB: This is a widely-used key-value store workload that
is representative of the transactions handled by web-based
companies [6]. It contains a single table comprised of tuples
with a 4 B primary key and 10 columns of random string data,
each 100 B in size. Thus, each tuple’s size is approximately 1 KB.
The keys are accessed by following a Zipfian distribution(z =
0.3) [14]. If not mentioned otherwise, we use a database with
100 million tuples (~100 GB).

The workload consists of two transaction types: (1) a read
transaction that retrieves a single tuple based on its primary
key, and (2) an update transaction that modifies a single tuple
based on its primary key. We use three workload mixtures
that allow us to vary the I/O operations that SPITFIRE executes.
These mixtures represent different ratios of read and update
transactions:

e Read-Only (YCSB-RO): 100% reads
o Balanced (YCSB-BA): 50% reads, 50% updates
e Write-Heavy (YCSB-WH): 10% reads, 90% updates

e TPC-C: This benchmark is the industry standard for evaluat-
ing the performance of transaction processing systems [35]. It
simulates an order-entry environment of a wholesale supplier
(e.g., Amazon). The workload consists of five transaction types,
which keep track of customer orders, payments, and other
aspects of a warehouse. Transactions involving database mod-
ifications account for 88% of the workload. We configure the
benchmark to manage 350 warehouses (~100 GB) by default.

6.2 Benefits of NVM and App-Direct Mode

We begin by comparing SPITFIRE’s throughput on an equi-cost
memory-mode DRAM-SSD and NVM-SSD storage systems to high-
light the utility of NVM and make the case for app-direct mode
(§2.2).

Evaluation Platform. For this experiment, we use a different
server that supports memory mode. This server contains 28 physical
cores on each node. It is equipped with 192 GB DRAM (2 socket X
6 channel X 16 GB/DIMM), 1 TB NVM (2 socket X 4 channel x 128
GB/PMM), and a 3.2 TB Intel SSD (DC P4610 Series). We bind all
the threads of SPITFIRE to the first socket to avoid NUMA effects.
Within one socket, 96 GB DRAM and 512 GB NVM is available
to applications. When the server is configured in memory-mode,
DRAM serves as L4 write-back cache for NVM, resulting in 512 GB
memory capacity. In this mode, we configure the buffer capacity to
be 140 GB. Since this exceeds the capacity of real DRAM, at least
140 GB of NVM is used. This translates to an equi-cost 340 GB
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Figure 5: Benefits of NVM and App-Direct Mode: Comparison of

throughput on NVM-SSD (app-direct mode) and DRAM-SSD (memory
mode) hierarchies with varying database size settings.

NVM buffer NVM-SSD hierarchy (app-direct mode). We run these
workloads on SPITFIRE with 16 threads: YCSB-RO, YCSB-BA and
TPC-C. We warm up the system until the buffer pool is full. We
vary the database size from 5 GB to 305 GB.

From the results shown in Figure 5, we observe that when the
workload is cachable, DRAM-SSD hierarchy outperforms NVM-
SSD hierarchy by up to 1.12x. However, once the database is not
cacheable with DRAM-SSD, NVM-SSD hierarchy outperforms the
DRAM-SSD by up to 6x on YCSB-RO. This is because the buffer
capacity of NVM-SSD is 2.42% that of DRAM-SSD which is able to
cache workloads across all the database sizes in the experiment. For
YCSB-BA and TPC-C, we observe that NVM-SSD outperforms the
DRAMS-SSD hierarchy by up to 2.28x when database size exceeds
the DRAM buffer capacity. This is due to the fact that NVM-SSD
hierarchy reduces the number of SSD operations with a larger buffer
and the elimination of flushing dirty pages in NVM buffer. For TPC-
C, we observe that NVM-SSD performs as well as DRAM-SSD when
workload is cacheable in DRAM. This is because SPITFIRE needs to
flush dirty DRAM pages down to SSD, whose overhead offsets the
latency advantage of DRAM over NVM.

From the-above observations, we make the case for using app-
direct mode in buffer management. First, memory-mode requires
an upfront NVM capacity at least equal to the size of DRAM. In
contrast, with app-direct mode, it could give a higher buffer capacity
due to its cost advantage, though the NVM is bit slower. This is
especially useful with a large working set. Second, with app-direct
mode, SPITFIRE exploits the persistence property of NVM to reduce
the overhead of recovery protocol by eliminating the need to flush
modified pages in NVM buffer.

6.3 Data Migration Policies

In this section, we look at the impact of data migration policies on
runtime performance and the number of writes performed on NVM.
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Migration Probabilities 0 0.01 0.1 1
Bypassing DRAM (D)

YCSB-RO 0 0.064 0.159 0.170
YCSB-BA 0 0.148 0.221 0.244
YCSB-WH 0 0.134 0.229 0.250
TPC-C 0 0.188 0.237 0.248
Bypassing NVM (N)

YCSB-RO 0 0.122 0.125 0.171
YCSB-BA 0 0.152 0.152 0.240
YCSB-WH 0 0.146 0.147 0.250
TPC-C 0 0.194 0.196 0.248

Table 2: Inclusivity Ratio of DRAM & NVM Buffers — We quantify the
degree of duplication across the buffers (lower non-zero values are better).
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Figure 6: Performance Impact of Bypassing DRAM: Comparison of
SPITFIRE’s throughput when it adopts lazy and eager policies for DRAM.

We begin by comparing the performance of the buffer manager
when it employs the policies presented in §3. We consider a storage
hierarchy with 12.5 GB DRAM and 50 GB NVM buffers on top
of SSD. We quantify the performance impact of four data flow
optimizations: (1) bypassing DRAM (D;, D,y), and (2) bypassing
NVM (N, N,y) while serving read and write operations. We run the
experiments under single- and multi-threaded configurations. We
report the inclusivity ratio of the DRAM and NVM buffers across
different policies in Table 2.

Performance Impact of Bypassing DRAM. Figure 6 illustrates
the impact of bypassing DRAM. We vary the DRAM migration
probabilities (D, D,,) in lockstep from 0 through 1. We configure
SPITFIRE to adopt an eager policy for NVM (N, N,, = 1). Since
the DRAM migration probabilities are updated in lockstep in this
experiment, we denote them by 9. With the baseline policy (D =
1), the buffer manager eagerly moves data to DRAM. The results
in Figure 6 demonstrate that the lazy policies work well for DRAM.

On the YCSB benchmark, the peak throughput of YCSB-RO work-
load observed is when D is 0.01, which is 58% higher than that
with the eager migration policy. The reasons for this are threefold.
First, the lazy policy reduces the data migration between NVM and
DRAM by 16 times compared to the eager policy(D = 1). Second, it
ensures that only frequently referenced data are moved to DRAM.
Third, the lazy policy ensures a lower inclusivity ratio, as shown
in Table 2, which results in allowing 10% more pages to be cached
in the DRAM and NVM buffers in comparison to the eager policy
(D = 1). This reduces the time spent on SSD operations by 1.13
X. When D is 0, we observe a 20% drop in throughput compared
to the peak throughput. This is because the DRAM buffer is ef-
fectively disabled, thereby reducing the total buffer space. With
the YCSB-BA and YCSB-WH workloads, the performance gap be-
tween lazy (D = 0.01) and eager policy shrinks to 22% and 13%,
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Figure 7: Performance Impact of Bypassing NVM: Comparison of SpIT-
FIRE’s throughput when it adopts lazy and eager migration policies for NVM.

since they involve more dirty page flushes. With the multi-threaded
configuration, as shown in Figure 6b, the lazy policy outperforms
eager policy across all workloads. The performance gap between
these policies increases on write-intensive workloads since the SSD
constrains them in this configuration.

The lazy policy (D = 0.01) also works well on the TPC-C bench-
mark, as shown in Figure 6a. It outperforms the eager policy by 35%.
We attribute this to the benefits of being able to directly update
pages on NVM on a mixed workload [5]. With eager policies, more
pages are updated in DRAM, and they must be flushed down to
lower tiers of the storage system (even when the update is localized
to a small chunk of the page). In contrast, with a lazy scheme, Sp1T-
FIRE updates page in NVM, thereby reducing write amplification.
We observe a similar trend with the multi-threaded configuration.

Performance Impact of Bypassing NVM. Figure 7 illustrates
the performance impact of bypassing NVM. We vary the NVM
migration probabilities (N, Nyy) in lockstep from 0 through 1.
Since these probabilities are updated in lockstep, we denote them
by N. The results in Figure 7 show that a lazy migration policy (N
=0.01) works well for NVM.

On the YCSB benchmark, as shown in Figure 7a, the throughput
peaks when N is 0.01. With the YCSB-RO workload, lazy policy
outperforms the eager one 1.25X. This is because it allows SPITFIRE
to buffer 7% more pages due to lower inclusivity, as shown in Table 2.
We observe similar trends on the YCSB-BA, YCSB-WH, and TPC-C
workloads. With the multi-threaded configuration, the performance
gap between these policies shrinks since SSD is saturated with both
policies. When N = 0, we observe a 25% compares to lazy policy
on the YCSB-RO workload. This gap is further widened to 103%
with sixteen worker threads (much larger than that seen in Figure 6
when D = 0). This is because we effectively reduced the total buffer
space by 6x and scale the workload by 16X. Thus, N = 0 is likely not
going to be a viable setting in practice due to the higher capacity
and lower cost of the NVM buffer.

The most notable observation from these experiments is that
lazy policies work well for both DRAM and NVM buffers. This is
because with Optane PMMs having comparable latency to DRAM,
the best migration policy would be the one that maximizes the total
buffer space available while keeping the hottest data in DRAM.
Impact of NVM Bypass on Writes to NVM. Besides improving
runtime performance, lazy data migration policies also reduce the
number of writes performed on NVM. Figure 8 presents the impact
of these policies on the number of NVM writes. On the YCSB-RO
workload, SPITFIRE performs 91.8x fewer writes to NVM with a
lazy policy (N = 0.1) in comparison to its eager counterpart (N
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Figure 9: Impact of Storage Hierarchy: Comparison of the optimal data
migration policy for bypassing DRAM across different storage hierarchies
on the YCSB-RO workload.

= 1). This is because, with the eager policy, SPITFIRE aggressively
migrates pages from SSD to NVM when the page is not in DRAM
and NVM buffers during reads. On the YCSB-BA, YCSB-WH, and
TPC-C workloads, we observe that the writes to NVM is reduced by
1.58%, 1.45%, and 1.31Xx with the lazy policy. The is because these
workloads are more write-intensive. These results illustrate that
the optimal policy must be chosen depending on the performance
requirements and write endurance characteristics of NVM.

Impact of Storage Hierarchy. We next consider how the opti-
mal data migration policy varies across storage hierarchies. In this
experiment, we configure SPITFIRE to use a 10 GB NVM buffer on
top of SSD. We then vary the size of the DRAM buffer: 1.25 GB,
2.5 GB, and 5 GB. Thus, the ratio of the capacities of the DRAM
and NVM buffers vary from 1:2, 1:4, and 1:8. The results for the
YCSB-RO workload, as depicted in Figure 9, show that the utility
of lazy data migration varies across these storage systems.

We observe that when the ratio is 1:8, the optimal policy is to set
D =0 (i.e., completely disabling DRAM). This is because, with the
eager policy, the performance improvement brought by adding the
comparatively smaller DRAM buffer (1.25 GB) is shadowed by the
cost of data migration between DRAM and NVM. However, as the
ratio increases, a lazier policy (D = 0.01) works better by lowering
inclusivity and thereby reducing SSD operations.

These results show that the optimal policy depends not only on
the workload and device characteristics, but also on the relative
size of the DRAM and NVM buffers.

6.4 Adaptive Data Migration
In the previous experiments, we examined the utility of a fixed data
migration policy. In the real world, identifying the optimal data mi-
gration policy is challenging due to the diversity of workloads and
storage hierarchies. Thus, we now examine the ability of SPITFIRE
to automatically adapt the management policy at runtime.

In this experiment, SPITFIRE begins executing the workload with
an eager policy for both DRAM (D = 1) and NVM (N = 1). During
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execution, it adapts the policy using the tuning algorithm presented
in §4. This technique searches for the policy that maximizes the
throughput given a target workload and storage hierarchy. We set
a and y to 0.9 and 10, respectively. We configure the initial and
final temperatures of the annealing process to 800 and 0.00008. We
configure the duration of a tuning epoch to be 5 s to ensure that the
performance impact of policy changes are prominently visible to
the tuning algorithm. We configure SPITFIRE to use 2.5 GB DRAM
and 10 GB NVM bufers in this experiment.

The results in Figure 10 show that the SPITFIRE converges to
a near-optimal policy for the YCSB-RO and YCSB-BA workloads
without requiring any manual tuning. For the YCSB-RO workload,
tuning the data migration policy increases throughput by 52%. Sp1T-
FIRE converges to a policy with lazy migration for both buffers on
these workloads. The reasons are twofold. First, this policy reduces
the I/O amplification between DRAM and NVM by utilizing the
byte-addressability of NVM to directly read and update chunks of a
page on NVM. Second, it ensures a smaller inclusivity ratio, allow-
ing SPITFIRE to cache more pages in the DRAM or NVM buffers.

We observe that the throughput converges over time in Fig-
ure 10. We attribute this to the gradual cooling mechanism in SA
that decreases the probability of accepting worse policies. The per-
formance bumps are caused by dirty page flushes associated with
the recovery protocol. Even on the YCSB-RO workload, SPITFIRE
updates pages containing meta-data related to the MVTO protocol.

6.5 Revisiting HymMEM’s Optimizations

In this section, we examine how HyMEM performs on real OPTANE
DC PMMs. We configure both HYMEM and SPITFIRE to use an 8 GB
DRAM buffer and a 32 GB NVM buffer. We run the YCSB-RO and
TPC-C workloads operating on ~20 GB SSD-resident databases.

We configure similar dataset sizes and buffer capacities to match
the experiments described in Hymem [37].

Admission Queue Size. As shown in Table 3, HYMEM’s migration
policy consists of eager migration for DRAM (D, = 1, D,, = 1).
In the case of NVM, each time a page is considered for admission,
HymEM checks whether the page is in the admission queue (§1).
If so, it removes the page from the queue and admits it into the
NVM buffer. Otherwise, it adds the page identifier to the queue and
directly moves the page to SSD, thereby bypassing the NVM bufer.
Thus, HYyMEM eagerly moves the data to DRAM and then stores the
pages evicted from DRAM on NVM using the queuing mechanism.

Unfortunately, the size of the admission queue is not mentioned
in [37]. So, we conduct an experiment to determine a performant
queue size. We observe that the queue size is proportional to the
size of the NVM buffer. In particular, setting the queue size to be
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Policy Dy Dy N; Ny
HymewMm [37] 1 1 0  AdmQueue
SpITFIRE-Eager 1 1 1 1
SpITFIRE-Lazy  0.01 0.01 0.2 1

Table 3: Migration Policies: List of policies used in the ablation study.
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Figure 12: Ablation Study of HymEM and SPITFIRE: The performance

impact of the optimizations in HYMEM across different data migration poli-

cies and workloads. (Spf-Eager: SPITFIRE-Eager ; Spf-Lazy: SPITFIRE-Lazy)

half the number of the pages in the NVM buffer works well on both
workloads (~8 MB).

Optimal Granularity for Loading Data on NVM. Recent ef-
forts have highlighted that OptaNE DC PMMs perform device-level
operations at 256 B granularity (not 64 B granularity as assumed
in HYMEM) [25, 36]. So, we seek to determine the optimal granular-
ity for loading data from NVM. We perform an experiment using
YCSB-RO workload with an eager migration policy.

The most notable observation from the results shown in Fig-
ure 11 is that the cache line-grained loading optimization proposed
in HYMEM does not work well on OpTaNE DC PMMs. HYMEM's
throughput instead peaks at 256 B granularity. We attribute the
1.1x lower throughput at 64 B granularity to the I/O amplification
stemming from the mismatch between the device-level block size
and loading granularity.

Policy Comparison & Ablation Study. We next conduct an ab-
lation study to delineate the performance impact of the key opti-
mizations in HyMEM and SPITFIRE with the data migration policies
listed in Table 3. We configure HymEM’s loading granularity to
be 256 B and set the admission queue size to be 8 MB. For each
of the policies, we incrementally add these two optimizations to
the baseline configuration: (1) fine-grained loading to improve the
utilization of NVM bandwidth, and (2) mini-page layout to reduce
the DRAM footprint of fine-grained pages.

The results are shown in Figure 12. With the YCSB-RO work-
load, fine-grained loading improves performance by reducing the
amount of I/O operations on OpTANE DC PMMs. The throughput
increases by 18% with HYMEM’s migration policy and 37% with
the eager migration policy, respectively. In contrast, the mini-page
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time: The number of NVM writes using different migration policies.

optimization only delivers 6% improvement for both policies. We
attribute this to the increase in the time taken for sorting the slots,
given the larger loading unit size. In the case of the lazy policy
in SPITFIRE, fine-grained loading has a minuscule impact. This is
because with this policy, the amount of data migration between
DRAM and NVM is already reduced by 6.5% since SPITFIRE directly
operates on the larger NVM buffer with comparable latency. This
renders the impact of I/O reduction between DRAM and NVM via
fine-grained loading to be less prominent.

As for the TPC-C workload, fine-grained loading only improves
performance by 7% and 9% with the HyMEM and eager policies. This
is because the time spent on data migration between DRAM and
NVM is smaller than that spent on SSD operations. Thus, the mini-
page optimization does not work well on write-intensive workloads
across all migration policies.

On both workloads, we observe that even the baseline config-
uration of the lazy policy outperforms other policies with these
optimizations enabled. This implies that the choice of the migration
policy is more important than the other optimizations. Furthermore,
the benefits of the optimizations proposed in HYMEM vary based
on the migration policy and work well with the eager policy.

Impact on NVM Device Lifetime. Lastly, we measure the num-
ber of NVM writes using different migration policies. We compare
SPITFIRE’s lazy migration policy(SPITFIRE-Lazy) against Hymem. To
ensure n fair comparison, we enable the fine-grained page loading
optimization in both policies, as this helps reduce the amount of
I/0 to NVM. The results are shown in Figure 13. The SPITFIRE-Lazy
policy performs 1.05-1.4X more writes than Hymem. This is because
SPITFIRE eagerly writes data on NVM and aggressively bypasses
DRAM to maximize runtime performance. This policy will shrink
the lifetime of NVM devices with limited write-endurance. In con-
trast, HYMEM’s policy performs more writes on DRAM, thereby
reducing the number of NVM writes.

6.6 Storage System Design

We next focus on the storage system recommendation problem pre-
sented in §5.3. In this experiment, we compare the performance/price
numbers of multi-tier storage hierarchies. If the cost of a storage
hierarchy is $ C and the throughput it delivers is 7~ operations per
second, then the performance/price number is given by % . This
represents the number of operations executed per second per dol-
lar. Given a system cost budget and a target workload, we seek to
identify the storage hierarchy with the highest performance/price
number. Each storage system consists of at most three devices:
DRAM, NVM, and SSD. We vary the capacity of the DRAM and
NVM devices from 0 GB through 32 GB, and from 0 GB through
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Figure 14: Storage System Design: (a) The total cost of the DRAM, NVM,
and SSD devices used in a multi-tier storage system. (b-d) The perfor-
mance/price numbers of candidate storage hierarchies on different work-
loads. Given a cost budget and a target workload, we perform a grid search to
identify the storage hierarchy with the highest performance/price number.

160 GB, respectively. We examine the runtime performance of Sp1t-
FIRE on both two- and three-tier storage hierarchies: DRAM-SSD,
NVM-SSD, and DRAM-NVM-SSD. We configure the SSD to 200 GB
for all the hierarchies. Since the SSD device is used in every hierar-
chy, the cost for SSD device remains unchanged for all hierarchies.
For three-tier storage hierarchies, we use SPITFIRE-Lazy listed in Ta-
ble 3 as the migration policy. For both YCSB and TPC-C workloads,
we configure the database size to be 100 GB. For YCSB workloads,
we configure the skew factor to be 0.5. We run all the experiments
with eight worker threads.

Storage Hierarchy Recommendation. Figure 14 shows the per-
formance/price numbers of candidate storage hierarchies across
different workloads. These numbers are derived from the cost listed
in Figure 14a. We perform a grid search to identify the storage
system with the highest performance/price number on a target
workload given a cost budget. With the YCSB-RO benchmark, as
shown in Figure 14b, the storage system that delivers the highest
performance/price number consists of a 4 GB DRAM buffer and an
80 GB NVM buffer and on top of SSD. Expanding the capacity of
the DRAM buffer to 32 GB only improves the performance by 4%.
However, it also raises the storage system cost by 29%. We observe
that the NVM-SSD hierarchy does not work well for YCSB-RO since
NVM read latency is 3x higher than DRAM. In contrast, SPITFIRE-
Lazy is able to migrate the hottest data in DRAM and directly read
the warm data on NVM.

With the YCSB-BA benchmark, as shown in Figure 14c, the high-
est performance/price number is achieved with a hierarchy consists
of an 8 GB DRAM buffer and an 80 GB NVM buffer on top of SSD.
This hierarchy reduces the number of SSD operations by absorbing

2205

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

—g HYMEM SPF-EAGER SPF-LAZY == NVM-SSD DRAM-SSD

2800

8000

% A\‘*\_‘ % . N\,
Ba0o0 NG 81400 R;*
2 Ny B 2
[ — [
< e <
= =
0 0
O P PSS PO PO O PP ES PO PO
Database Size (GB) Database Size (GB)
(a) YCSB-RO (b) YCSB-BA
2100 6900
m - n T—ing
=3 =3 H—t—-—o—*—aﬂ_ﬂ
Q e le) Y
< ~ = By
21100 \‘3*‘\?_ 2 3500 { \\7.
< <
= =
3 3
< [
= =
= =]
0 0
CPRRRE SO P® CPRSE S PO P
Database Size (GB) Database Size (GB)
(c) YCSB-WH (d) TPC-C

Figure 15: Impact of Database Size: Comparison of throughput
onSPITFIRE-Eager, SPITFIRE-Lazy, HYMEM, DRAM-SSD, and NVM-SSD with
varying database sizes. The first three run on DRAM-NVM-SSD hierarchy.

persistent writes in NVM and keeping the hot pages in DRAM.
Increasing the DRAM buffer space does not improve the perfor-
mance/price number. Another interesting observation is that the
performance/price number of NVM-SSD hierarchy is close to the
optimal DRAM-NVM-SSD hierarchy. On write-intensive workloads,
as shown in Figure 14d, the optimal performance/price number is ac-
tually achieved with the NVM-SSD hierarchy (though the maximal
absolute performance metric is achieved with a DRAM-NVM-SSD
hierarchy). This is because these workloads are bottlenecked by
the performance of the recovery protocol that flushes dirty DRAM
pages downward. With the NVM-SSD hierarchy, this overhead is
reduced since modifications to NVM pages are persistent.

The results in Figure 14 illustrate how the selection of a multi-
tier storage system for a given workload depends on the working
set size, the frequency of persistent writes, the performance and
cost characteristics of NVM, and the system cost budget. We distill
these results into a set of design principles:

o To achieve the highest absolute performance, the hierarchy
usually consists of DRAM (since DRAM has the lowest latency).

o If the workload is read-intensive, DRAM-NVM-SSD hierarchy
is the best choice from a performance/price standpoint, since
it is able to ensure the hottest data resides in DRAM.

o If the workload is write-intensive, NVM-SSD hierarchy is the
best choice from a performance/price standpoint, since NVM
is able to reduce the recovery protocol overhead.

6.7 Impact of Database Size

In this section, we focus on the performance impact of database size
on different migration policies and storage hierarchies. Specifically,
we compare five configurations: DRAM-NVM-SSD (Sp1TFIRE-Eager,
SpITFIRE-Lazy, HyMEM), NVM-SSD, and DRAM-SSD. For fairness,
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we enable the two optimizations in HymeMm for the first three con-
figurations. We include the NVM-SSD and DRAM-SSD hierarchies
to illustrate their strengths and weaknesses.

For three-tier hierarchies, we provision the capacity of the DRAM
and NVM buffers to be 20 GB and 60 GB, respectively. For DRAM-
SSD and NVM-SSD hierarchies, we configure the capacity of DRAM
buffer and NVM buffer to be 46 GB and 104 GB, which are similarly
priced with the three-tier ones. We then vary the database size of
YCSB and TPC-C workloads from 5 GB to 140 GB. This ensures that
we cover a wide range of buffer hit ratios. For all experiments, we
first warm-up the buffer pools for 300 s by running the workloads.

The results shown in Figure 15 indicate that varying database
size for different migration policies and hierarchies has significant
performance impact. For YCSB-RO workload shown in Figure 15a,
when the database size is cacheable in DRAM buffers, all policies
and hierarchies with DRAM perform similarly well. For the NVM-
SSD hierarchy, its throughput is up to 1.33X lower than others
because of the higher latency of NVM. However, the NVM-SSD
hierarchy performs better by up to 2.5x after database size reaches
80 G. This is because the NVM-SSD hierarchy reduces expensive
SSD operations due to larger buffer capacity. For DRAM-SSD hi-
erarchy, it shows the highest performance when the database is
DRAM-cacheable and degrades significantly when that is not the
case. For three-tier storage hierarchies, SPITFIRE-Lazy performs
better than SpiTFIRE-Eager and HYyMEM in almost all settings. The
reasons are twofold. First, SPITFIRE-Lazy has a larger buffer space
because of the lower inclusivity between DRAM and NVM buffers.
This enables SPITFIRE-Lazy to reduce more SSD operations. Second,
the lazy policy reduces the migration cost between DRAM and
NVM. We also note that for YCSB-RO, SpITFIRE-Lazy is performing
as well as DRAM-SSD. This is partly because the lazy migration
policy ensures that the hottest data resides in DRAM buffer.

On YCSB-WA and YCSB-WH workloads, NVM-SSD hierarchy
starts with similar or lower throughput than other configurations
with DRAM when the database is cacheable in DRAM. It outper-
forms all of them when the database size is 50 GB. The reasons
are two-fold. First, there are no dirty page flushes with the NVM-
SSD hierarchy. Second, the buffer capacity of the NVM-SSD hierar-
chy is 25% and 126% larger than that of three-tier hierarchies and
DRAM-SSD hierarchy. This reduces the number of expensive SSD
operations. The second-best performing policy is SPITFIRE-Lazy
because of its larger buffer capacities and lower data movement.
HymEeMm and SpiTFIRE-Eager perform the worst in settings when the
database is not DRAM-cacheable.

With the TPC-C benchmark, as shown in Figure 15d, we observe
that the DRAM-SSD hierarchy maintains the highest throughput
up to 65 GB of database size where the workload cannot be easily
cached. Among three-tier policies, SPITFIRE-Lazy maintains similar
or higher throughput across all databases sizes, especially when
the database size exceeds the buffer capacities. NVM-SSD hierar-
chy delivers the highest throughput after 80 GB of database size
and maintains the throughput across all the database sizes. This is
because TPC-C has a smaller working set than YCSB and the large
capacity of the NVM-SSD hierarchy is able to cache most of the
page accesses.

From these observations, we could summarize the strengths and
weaknesses of the policies and hierarchies as follows:
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For three-tier hierarchies, SPITFIRE-Lazy is the ideal policy for
delivering the highest throughput.

For read-intensive or small working-set workloads, SPITFIRE-
Lazy is the ideal policy as it increases the effective buffer ca-
pacities and ensures that the hottest data remains in DRAM.

For write-intensive or large working-set workloads, NVM-SSD
hierarchy stands out due to its buffer capacity advantage and
its ability to reduce the flushing overhead of recovery protocol
by performing persistent writes to the pages in NVM buffer.

7 Related Work
We now discuss the previous research on buffer management.

Buffer Management in Systems with NVM. Renen et al. pre-
sented HYMEM, an NVM-aware multi-tier buffer manager that ea-
gerly migrates data from SSD to DRAM [37]. We highlighted the dif-
ferences between HymeMm and SPITFIRE in §1 and §6.5. SOFORT [31]
is a storage engine that targets a two-tier storage system with
DRAM and NVM. FOEDUS is a scalable OLTP engine designed
for a two-tier storage system with DRAM and NVM [20]. NHC is
a novel caching technique that augments caching with dynamic
load admission and request offloading in a two-tier storage hierar-
chy [38]. Unlike these systems, SPITFIRE focuses on managing and
designing multi-tier storage hierarchy with DRAM, NVM, and SSD.

Buffer Management in Systems without NVM. Researchers
have studied buffer management in storage systems without NVM [1,
11, 27, 29]. LeanStore is a concurrent DRAM-SSD buffer manager
that is based on pointer swizzling [13] and a low-overhead replace-
ment policy [23]. ERMIA is a memory-optimized system designed
for handling heterogeneous workloads [19]. FlashStore is a key-
value store that uses an SSD as a fast cache between DRAM and
HDD and minimizes the number of SSD accesses [8]. Deuteron-
omy is a data caching system that exploits latch-free access to a
log-structured store [28]. Unlike these systems, SPITFIRE focuses
on NVM-aware buffer management.

8 Conclusion

This paper presented SPITFIRE, a multi-threaded buffer manager
for managing a three-tier storage hierarchy comprising of DRAM,
NVM, and SSD. We introduced a taxonomy for NVM-aware data mi-
gration policies and discussed why the data migration policy must
be synthesized based on the workload and the storage hierarchy.
We presented an adaptation mechanism in SPITFIRE that achieves a
near-optimal policy for an arbitrary workload without requiring
any manual tuning. Our results demonstrate that SPITFIRE outper-
forms HYMEM, the state-of-the-art multi-tier buffer manager, across
diverse workloads. We demonstrate that the choice of the migra-
tion policy is more important than the fine-grained loading and
mini-page optimizations. We discuss how these latter optimizations
must be tailored for OpTANE DC PMMs.
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