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Abstract

Vitrimers are polymer networks that engage in dynamic associative exchange reactions.

Their covalent cross-links preserve network connectivity but permit topology fluctuations,

making them both insoluble and processable. Here, we use a sticky Rouse model approach

to elucidate structure-viscoelasticity relationships for unentangled vitrimer melts. Two differ-

ent versions of the sticky Rouse model are explored: the simplified sticky Rouse (SSR) and

the inhomogeneous Rouse (IHR). Unlike the SSR, the IHR model accounts for interactions

between slow modes that arise due to cross-linking and fast Rouse modes of the underlying

polymer chain. First, we identify the conditions where the SSR sufficiently approximates the

IHR. Then, we use the IHR to explore the influence of structure and temperature on the zero-

shear viscosity (η0) and characteristic relaxation time (τ∗). Vitrimers with uniform and random

cross-link distributions exhibit larger η0 and τ∗ than gradient and blocky types. Polydimethyl-

siloxane vitrimer (which has a flexible backbone) shows an Arrhenius temperature dependence
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for η0, while polystyrene vitrimer (which has a rigid backbone) is only Arrhenius at high tem-

peratures. For stress relaxation measurements, the short time dynamics represent monomer

friction, while the long time dynamics encompass a combination of network strand relaxation

and cross-link exchange. Due to the different temperature dependences of the processes, time-

temperature superposition fails. The effective rheological activation energy can be estimated

a priori from the cross-link exchange activation energy and backbone Williams-Landel-Ferry

parameters. Finally, we discuss the utility and limitations of the sticky Rouse approach for

studying vitrimer viscoelasticity, and best practices for measuring η0 and τ∗.
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1 Introduction

Vitrimers are covalently cross-linked polymer networks that are insoluble in a good solvent, yet

still flow at elevated temperatures.1–5 These paradoxical traits – a combination not found in other

types of polymers – are enabled by their cross-links, which engage in thermoactivated associative

exchange reactions that cause the network topology to fluctuate. In contrast to networks with

dissociative cross-links, whose cross-link (XL) density follows an equilibrium relationship with

temperature and concentration,3,6,7 vitrimers maintain network connectivity and XL density at all

times and temperatures below degradation conditions.1–5,8 Conversion of a polymer to a vitrimer

imparts it with improved solvent resistance and mechanical strength (like a thermoset) but does

not compromise its ability to be processed by extrusion or other conventional techniques (like a

thermoplastic).9–17 This marriage between high-performance and processability inspires significant

interest into vitrimer structure-property relationships and applications.2–5 Here, we demonstrate

a generalized Rouse model approach for relating the molecular structure of a vitrimer and its

corresponding linear viscoelasticity.

The current framework for interpreting vitrimer rheology originates from the seminal epoxy

vitrimer studies of Montarnal, Leibler, et al.1,18–20 For these materials, epoxy networks featuring

β-hydroxy esters were doped with metal or organic catalyst. While at room temperature the vit-

rimers behaved as classical thermosets, at elevated temperatures the β-hydroxy esters underwent

transesterification, allowing the epoxies to fully relax stress but still remain insoluble. The transient

relaxation modulus was described by a simple Maxwell exponential decay, while the zero-shear

viscosity and terminal relaxation times followed an Arrhenius relationship with temperature. The

apparent activation energies estimated from these rheological properties (Erh
a ) were consistent with

the activation energy for transesterification of small molecule epoxy analogues (Esm
a ). Extrapola-

tion of the Arrhenius relationship provided Tv, the temperature at which the vitrimer viscosity

equals 1012 Pa s – an empirical threshold for processability. Alteration of catalyst type tuned Erh
a ,

while variation of the epoxy network chemical composition changed the glass transition tempera-
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ture (Tg).1,18–20

Following these initial studies, researchers have generally focused on two different strategies

for modifying vitrimer flow and mechanical properties: (i) altering the cross-linker exchange re-

action chemistry to tune Erh
a or (ii) varying the vitrimer backbone flexibility to change Tg. For the

cross-linker, efforts over the past decade have created a vast library of externally and internally cat-

alyzed associative exchange reactions that may be incorporated into vitrimer networks. Such chem-

ical properties as cross-linker structure,21–26 reactive functional group stoichiometry,17,27–31 catalyst

loading,1,17,18,32 catalyst pKa,33 and even coordination between cross-linker and catalyst modulate

the Erh
a and rheological profile.34 For the backbone, the vitrimer concept has been adapted to a

wide variety of commodity polymers, including those with high Tg,9,10,12,16 moderate Tg,27,35,36

low Tg,21,29,37–39 or semi-crystallinity.40–42 Inclusion of branching,43–46 macro/microphase separa-

tion,12,13,47–49 or additives within the vitrimer matrix offers additional design parameters.50–53

While the synthetic toolset for vitrimers has grown quite sophisticated, understanding vitrimer

thermorheological properties remains primitive. Vitrimers that exhibit an Arrhenius temperature

dependence generally express an Erh
a that is larger than Esm

a . Röttger et al. found that the Erh
a of

poly(methyl methacrylate) vitrimers with dioxaborolane XLs was ≈ 40 - 80 kJ/mol, much larger

than the Esm
a = 15 - 30 kJ/mol observed for small molecule dioxaborolanes undergoing metathe-

sis.9,22 Lessard et al. and Spiesschaert et al. demonstrated that the ratio of Erh
a to Esm

a for vitrimers

with vinylogous urethane XLs is a function of the backbone chemistry.15,16,54 In this work, we

hypothesize that the difference between Erh
a and Esm

a is related to the temperature dependence of

chain friction. Moreover, the stress relaxation of vitrimers near their Tg deviates from the simple

Maxwell model.2 At this temperature regime, secondary plateaus and peaks commonly appear in

small amplitude oscillatory shear measurements,29,55,56 alluding to the presence of additional re-

laxation modes and timescales. The observed relationship between the XL density and terminal

relaxation time also varies drastically across systems.38,54,57

These complexities of vitrimer flow behavior motivate several theoretical approaches for under-

standing the rheology. Terentjev et al. pioneered the development of microscopic constitutive equa-

4



tions to describe vitrimer stress relaxation, creep, and uniaxial deformation. Their theories high-

lighted the strong influence of the cross-linker exchange kinetics on the material response.44,45,58–60

Qi et al. used finite element modeling to relate cross-linker exchange to the stress distribution in

vitrimers during deformation and surface welding.61–66 Wu et al., Jourdain et al., and Fang et al.

employed time-temperature superposition to collapse rheological data into master curves. In these

works, superposition was not achieved over the entire relaxation spectrum, hinting that the sys-

tems had multiple relaxation modes with differing timescales and temperature dependences.56,67,68

In addition to continuum methods, molecular dynamics (MD) and Monte Carlo (MC) simulations

provide deep insight into the relationship between structure and flow. Although the wide range of

timescales in vitrimer systems makes it difficult to use standard atomistic molecular simulations,

Perego and Khabaz overcame this barrier by employing hybrid MD/MC simulations to study ex-

pansion and chain diffusivity around Tv.69 Using coarse-grained MD, Sciortino et al. found that

the macroscopic vitrimer viscosity is a reflection of both network topology and cross-linker ex-

change kinetics.70–72 Coarse-grained slip link modeling also offers a pathway to interrogate the

interactions between backbone relaxations and transient cross-linking.73

On a broader scale, vitrimers can be considered to be a subset of dynamically cross-linked

polymer networks, for which several rheological theories have been already developed. The his-

tory of characterizing these networks can be traced back to the transient network model of Green

and Tobolsky.74 Inspired by the theory of rubber elasticity, they proposed this model for polymer

melts in which entanglements were treated as temporary junctions that could break and reform

spontaneously.74 The basic formalism of transient networks was extended, generalized,75,76 and

specialized for physically cross-linked networks and associating polymers.77–79 For unentangled

polymers, Baxandall demonstrated that at long timescales, the dynamics of reversibly cross-linked

chains follow Rouse dynamics.80,81 Leibler, Rubinstein, et al. comprehensively fleshed out the

gelation and dynamic properties of reversible networks for unentangled (“sticky Rouse”) and en-

tangled (“sticky reptation”) chains using scaling theory as their primary tool.82–85 The resulting

framework is quite powerful and precisely portrays the dynamics of many complex polymeric
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systems, including ionomers,86,87 supramolecular polymers,88–90 complex coacervates,91–93 and

polymer-protein conjugates.94

In this work, we employ the sticky Rouse model to investigate the linear viscoelasticity of

monodisperse unentangled vitrimer melts. We assume that the lifetime of a XL (τx) obeys an Ar-

rhenius relation with activation energy Esm
a , and a prefactor that is proportional to the monomer

relaxation time – a fairly standard assumption used in modeling the rheology of dynamic net-

works.84,85,95,96 We focus on fully developed networks beyond the gel point, where the sticky

Rouse model is ideally suited. We employ both a generalized sticky Rouse model - labeled the

inhomogeneous Rouse model (IHR) - and a simplified sticky Rouse model (SSR) that provides an

approximate solution. The questions we seek to address are the following:

1. Under what conditions does vitrimer rheology follow an Arrhenius temperature dependence?

2. What is the relationship between Erh
a and Esm

a ? How does the molecular structure, backbone

flexibility, and cross-linker chemistry affect this relationship?

3. What are the potential pitfalls of using approximate methods to determine the zero-shear

viscosity (η0) and characteristic relaxation time (τ ∗) in estimating Erh
a from Arrhenius plots?

4. When do the IHR and SSR converge and diverge? What are the relative merits of one over

the other?

We use the IHR and SSR to simulate the linear viscoelasticity of model vitrimers and de-

scribe the interplay between network strand relaxation and XL exchange. As expected, the dif-

ferent temperature dependences of the chain friction and Arrhenius modes leads to a breakdown

of time-temperature superposition. XL density, kinetics, and distribution control both η0 and τ ∗.

Furthermore, due to the form adopted for τx, the relationship between Erh
a and Esm

a depends on

the chain friction and temperature window explored. This framework explains the empirical ob-

servation of Erh
a > Esm

a and contends that Erh
a may be estimated based solely on knowledge of the

Esm
a and Williams-Landel-Ferry parameters of the backbone. The presence of a pre-exponential
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factor in the model also offers an avenue for evaluating the mobility and mechanism of exchange

of XLs within a vitrimer matrix. These findings not only provide insight into fundamental vitrimer

structure-viscoelasticity relationships, but also highlight the importance of using rigorous practices

to determine η0, τ ∗, and Erh
a from rheological measurements.

2 Methods

As shown in figure 1a, we consider a bead-spring chain with N beads, of which Nx beads are sticky.

For vitrimers, these sticky beads correspond to associative XLs. We focus on fully developed

vitrimer networks of unentangled polymer melts whose XL density is above the gel point. Thus,

N ≲ Ne, where Ne is the number of monomers in an entanglement strand, and Nx ≥ 2, where Nx

is the average number of XLs per chain.

 

(a) (b)

uniform random gradient block

Figure 1: (a) Schematic diagram of a bead-spring chain with N monomers, of which Nx = 2 are
sticky (red beads). (b) Four different distributions of sticky beads are considered: uniform, random,
gradient, and block (see descriptions in text). For each distribution type, the sample chains have
N = 11 and Nx = 3.

2.1 Standard Rouse Model

For the standard Rouse model, the chain has N − 1 springs with spring constant k = 3kBT/b
2,

where kB is Boltzmann’s constant, and b is the statistical segment length. The beads are located at

Ri, where i = 1, 2, · · · , N . The spring end-to-end vectors ri = Ri+1−Ri for i = 1, 2, · · · , N−1.

The equation of motion is controlled by spring and Brownian forces.97,98 These can be cast as
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a coupled set of equations for the springs,

ṙi +
N−1∑︂
j=1

Cijrj = fBi , i = 1, 2, · · · , N − 1, (1)

where fBi is the Brownian force that satisfies the fluctuation-dissipation theorem. The tridiagonal

matrix C encodes the connectivity of the springs. For the standard or “homogeneous” Rouse model

without any sticky beads (Nx = 0), Cij = (k/ζ)Aij , where

Aij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2 if i = j

−1 if i = j ± 1

0 otherwise.

(2)

The ratio of the bead friction and spring constant, τb = ζ/k, is a natural timescale associated

with bead or monomer relaxation. The eigenvalues of the matrix C are inversely proportional to

spectrum of relaxation times,

λi =
4k

ζ
sin2

(︃
iπ

2N

)︃
, i = 1, 2, ..., N − 1. (3)

The Rouse stress relaxation time is half the end-to-end vector decorrelation time because it is

obtained from a quadratic function of the amplitude of the normal modes.99 Thus, τi = 1/(2λi),

which implies,

τi =
ζ

8k sin2(iπ/2N)
=

τ

sin2(iπ/2N)
, i = 1, 2, ..., N − 1, (4)

where τ = τb/8 is the elementary Rouse timescale.

For N ≫ 1, the relation sinx ≈ x is invoked to obtain the approximate spectrum (denoted by

“hat”),

τ̂ i =
τ1
i2

=
ζ

2π2k

(︃
N

i

)︃2

, i = 1, 2, ..., N − 1, (5)

8



where τ̂ 1 = τ̂N2, and τ̂ = τb/(2π
2). Note that the true and approximate spectra are equal only

for the slow modes (i ≪ N ). In particular, τ1 ≈ τ̂ 1, but the elementary timescale τ ̸= τ̂ . Instead,

τ/τ̂ = π2/4 > 1. In the limit of large times, slow modes dominate the stress response. The

difference in the spectrum at short timescales does not materially affect the G(t) calculation given

by,

ϕ(t) =
G(t)

G0

=
1

N

N−1∑︂
j=1

e−t/τj , (6)

with modulus G0 = ρRT/M0, where ρ is the density of the polymer melt, R is the universal gas

constant, and M0 is the molar mass associated with a bead. The zero-shear viscosity is given by,

η0 =

∫︂ ∞

0

G(t) dt =
G0

N

N−1∑︂
i=1

τi. (7)

The timescale τη associated with η0 is given by the ratio of the viscosity and modulus, τη = η0/G0.

From eqn 7, τη can be interpreted as the average relaxation time. Due to the dispersion in Rouse

relaxation times, it is biased towards slow modes. For the standard Rouse model, if we approximate

τi = τî = τ̂(N/i)2, and consider the limit of large N ,

τRη ≈ τ̂N2

N

N−1∑︂
i=1

1

i2
≈ τbN

2π2

(︃
π2

6

)︃
=

Nτb
12

. (8)

This reflects the classic η0 ∼ N dependence, which is indeed observed empirically for short un-

entangled polymer melts. Note that τRη , which represents an average over all the timescales in the

Rouse spectrum, is linear in N , while the longest relaxation time τ1 ∼ N2. Depending on the use

case, the characteristic relaxation time τ ∗ may be identified with either τη or τ1. Experimentally,

τη is obtained simply from the ratio of the viscosity and modulus, while τ1 has to be calculated by

fitting a discrete relaxation spectrum to the data.100–104

For convenience, the notation used for different timescales considered in this paper is summa-

rized in Supporting Information Table S1. We prefer to use τb = ζ/k as the fundamental unit of

time to avoid the ambiguity that arises from different definitions of the elementary Rouse time (τ
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or τ̂ ). Departures from this norm are indicated and justified wherever they occur.

2.2 Sticky Rouse Model

For the sticky Rouse model, the key idea is to incorporate the lifetime of a XL by increasing

the frictional drag associated with sticky beads. Thus, the terms XL and sticky bead are used

interchangeably in this paper. Furthermore, we assume that XLs are fully saturated, i.e., there are

no unpaired sticky beads.

Unlike many dynamically cross-linked systems where the XL density changes as a function of

temperature or concentration, for vitrimers the total number of XLs is strictly conserved. Dynam-

ical changes in network structure are mediated by exchange reactions, rather than breakage and

reformation of XLs. Due to the symmetry of XL exchange reactions, and the assumption of satu-

ration of XLs, the number and location of sticky beads on participating chains is preserved. This

makes the sticky Rouse model particularly well-suited. Furthermore, since the number of XLs is

baked in at synthesis, Nx is independent of temperature. We entertain two different versions of

the sticky Rouse model: the inhomogeneous Rouse (IHR) model and the simplified sticky Rouse

(SSR) model. The IHR is fine-grained at the level of a Kuhn segment, and can readily account for

changes in viscoelastic properties due to non-uniform distribution of XLs.

2.2.1 Inhomogeneous Rouse Model

The IHR model is a generalization of the standard or homogeneous Rouse model. It relaxes the

constraint of uniform spring constants and drag coefficients; therefore, ki ̸= k and ζi ̸= ζ , where ki

is the spring constant of the ith spring, and ζi is the drag coefficient of the ith bead. This model was

initially proposed by three different groups, nearly simultaneously, to predict the linear rheology

of amorphous mixtures of block polymers.105–107 In these studies, the difference between the two

blocks was represented as a difference in friction coefficients. Similar versions of the theory were

also used to study bidisperse homopolymer melts with short and long chains,108 analyze chain

dynamics near the glass transition temperature,109 and to investigate the eigenmodes of relaxation
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in associating polymers by invoking the idea of sticky Rouse beads.110

In the IHR model, the equation of motion is still governed by eqn 1, albeit with a more general

tridiagonal matrix C. For i = 1, 2, ..., N − 1, the nonzero elements of C are given by,

Ci,i−1 = −ki−1/ζi

Ci,i = ki/ζi + ki/ζi+1

Ci,i+1 = −ki+1/ζi+1, (9)

assuming k0 = kN = 0, in these expressions. In this work, we set ki = k = 3kBT/b
2, assuming

that all the beads (regular or sticky) are separated by the same average distance b. The frictional

drag associated with the Nx sticky beads is denoted by ζx; similarly the drag associated with

the remaining N − Nx regular beads is denoted by ζ . The eigenvalues of C can be numerically

evaluated to obtain the spectrum of N − 1 relaxation times, τi = 1/(2λi),110,111 from which the

stress relaxation response can be obtained using eqn. 6.

2.2.2 Simplified Sticky Rouse Model

For the simplified sticky Rouse (SSR) model, an approximate solution is obtained when the sticky

and regular Rouse modes are well-separated (ζx ≫ ζ), and the number of XLs/chain is sufficiently

large (Nx ≫ 1). The SSR model asserts that the stress relaxation of unentangled monodisperse

associating polymers contains two sets of non-interacting Rouse-like contributions,80,82,86,112

ϕ(t) =
G(t)

G0

=
1

N

[︄
Nx−1∑︂
j=1

exp

(︃
− j2t

τxN2
x

)︃
+

N−1∑︂
j=Nx

exp

(︃
− j2t

τN2

)︃]︄
. (10)

The first summation contains slow sticky modes that arise due to XL exchange, and the second

summation includes fast Rouse modes of the underlying polymer chain. Here, the timescales τx

and τ are related to the viscous drag, ζx and ζ , associated with the sticky and regular Rouse beads

(figure 1a), respectively. As demonstrated in sec. 3.1, under certain conditions, the SSR model is
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an excellent approximation to the IHR model.

It is helpful to highlight the differences between the two versions of the sticky Rouse model

considered here. Unlike the SSR model, the IHR model does not regard the regular and sticky

modes as independent contributions that can be summed up. Instead, it considers a single Rouse

chain where the slow and fast modes are free to interact. The expression for the Rouse time

τxN
2
x , corresponding to the XLs in the SSR, implicitly assumes Nx ≫ 1, which may not be

true for lightly cross-linked chains. The N ≫ 1 approximation inherent in the SSR is valid for

systems studied here so that artifacts that arise due to small number of effective segments are

negligible. Nevertheless, caution should be exercised for low molecular weight polymers with stiff

backbones, where this assumption may be questionable. The IHR does not directly invoke this

approximation, and is therefore less susceptible to this problem. Furthermore, the response of the

IHR can account for different distributions of sticky beads along the chain. As shown later, when

Nx ≫ 1, τxN2
x ≫ τN2, and the XLs are distributed uniformly or randomly, the IHR and SSR

models agree with each other. Thus, the SSR can be thought of as a special case of the IHR, which

is convenient to use under appropriate conditions.

2.3 Distribution of XLs

Recent advances in polymer chemistry have opened the door for synthesizing vitrimers with a vari-

ety of different microstructures.2 Thus, it is interesting to examine how XL distribution throughout

the vitrimer network affects viscoelasticity. Here we consider four different distributions of sticky

beads, as depicted schematically in fig. 1b: (i) uniform, (ii) random, (iii) gradient, and (iv) block.

Note that we do not account for composition fluctuations or microphase separation, essentially

assuming that the χ-parameter characterizing the enthalpic interaction between regular and sticky

beads is zero.

For uniform distribution, we determine the spacing ∆N = (N +1)/(Nx +1). When possible,

N and Nx are selected so that ∆N is an integer; otherwise ∆N is rounded to the nearest integer.

The probability ρix of marking bead i as sticky is assumed to be ρix = 1 when i/∆N is an integer,
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and zero otherwise. In the example shown in fig. 1b, N = 11 and Nx = 3; thus, ∆N = (11 +

1)/(3 + 1) = 3, and beads 3, 6, and 9 are marked as sticky beads. This protocol is deterministic: a

particular choice of N and Nx uniquely determines the architecture of the sticky Rouse chain.

For random distribution, we consider each bead along the chain in turn. With a constant prob-

ability ρx = Nx/N , it is marked as a sticky bead; otherwise it is marked as a regular bead. Since

this protocol is stochastic, the number of XLs on any particular chain nx may deviate from the

prescribed Nx, and is binomially distributed,

π(nx; ρx, N) =

(︃
N

nx

)︃
ρnx
x (1− ρx)

N−nx . (11)

For the random distribution of XLs, we average the response over an ensemble of 1000 chains.

For gradient distribution, the probability ρix is not constant. Instead, it increases from one end

to the other. Thus, we set ρ1x = 1, and ρNx = 0. For internal beads, we assume a form,

ρix =

(︃
N − i

N − 1

)︃α

, (12)

where α is determined by requiring the average or expected number of XLs per chain to equal Nx,

N∑︂
i=1

ρix =
N∑︂
i=1

(︃
N − i

N − 1

)︃α

= Nx. (13)

The value of α is determined numerically, and for large N and Nx, it is usually close to α ≈ ρ−1
x −1.

Note that the method is stochastic, and like random distributions, we average the response over an

ensemble of chains.

Block distribution can be thought of as an extreme case of gradient distribution, where all

the sticky beads are concentrated at one end. Therefore, ρix = 1 for i = 1, · · ·Nx, and ρix =

0, for Nx < i ≤ N . Block and uniform distributions are deterministic, while the other two

distributions are not. One can think of random distribution as a stochastic perturbation of the

uniform distribution. Similarly, one can think of gradient distribution as intermediate between
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random and block distributions.

2.4 Cross-link Frictional Drag

Since the lifetime of a XL is governed by a chemical reaction, it follows an Arrhenius relation,113

τx = τ 0xe
Esm

a /RT (14)

where Esm
a is the activation energy for the chemical reaction, and τ 0x is the pre-exponential factor.

In the homogeneous Rouse model the timescale τ ∼ ζ/k. Since k ∼ kBT/b
2 is assumed to be

uniform, it implies ζ ∼ τ and ζx ∼ τx. However, based on scaling arguments for the self-diffusivity

of chains, we can derive a more general expression for the usual scenario where τx > τ .

First, we recap the argument presented by Colby et al.95 The diffusivity D0 of a Rouse chain

without XLs (Nx = 0) with relaxation time T0 ∼ τN2 and dimensions R2 ∼ Nb2 is,

D0 ∼
R2

T0

=
Nb2

τN2
=

b2

τ

1

N
(15)

For a sticky Rouse chain with ρx ≪ 1, we can crudely approximate T ≈ τxN
2
x + τN2 so that

it is governed by the slowest (regular or sticky) Rouse mode. If the sticky modes dominate the

late-time response, τxN2
x ≫ τN2, then T ≈ τxN

2
x , and,

D ∼ R2

T
=

Nb2

τxN2
x

=
b2

τx

N

N2
x

. (16)

Note that this argument implies D ∼ N−2
x , which is empirically observed for unentangled, lightly

sulfonated polystyrene ionomers.95 In general, however, the ratio of the diffusivities,

D0

D
= 1 +

τxN
2
x

τN2
. (17)

For free-draining chains, we can obtain an expression for the ratio of the diffusivities in terms
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of the drag coefficient, using the Einstein relation. For a plain Rouse chain without any XLs,

D0 = kBT/(ζN), which is identical to eqn. 15 with ζ = kτ . For a sticky Rouse chain, the total

drag may be written as ζxNx + ζ(N −Nx). The ratio of the diffusivities,

D0

D
= 1 +

(ζx − ζ)Nx

ζN
. (18)

Comparing eqns 17 and 18, we find the ratio of the drag coefficients δ, corresponding to sticky and

regular beads, is approximately proportional to the product of the τx and Nx,

δ =
ζx
ζ

= 1 +
τx
τ

Nx

N
. (19)

When slow modes dominate the response, i.e., τxNx ≫ τN , δ is proportional to the product of

τx and Nx because δ ≈ τxNx/(τN). As such, we obtain the anticipated ζx ∼ τx relation. In the

opposite extreme, when the chain is lightly cross-linked (ρx ≪ 1) and the lifetime of a XL is short

(τx ∼ τ ), δ ≈ 1.

2.5 Temperature Dependence

The pre-exponential factor τ 0x in eqn 14 subsumes a lot of interesting and ill-understood physics.

This is true even for interpreting chemical reaction experiments of non-polymeric systems. Over

limited temperature windows, τ 0x is often assumed to be independent of temperature as its variabil-

ity is typically dwarfed by the exponential term. However, this assumption of constancy can lead

to serious errors (of the order of 10 - 50%) in estimating the activation energy from small molecule

studies, especially when Ea/RT ≲ 10.114 When more precise analyses are required, especially

when experiments are performed over a wide temperature range, τ 0x is modeled as a function of

temperature. For polymers, a fundamental timescale is set by monomer friction. As such, it is

perhaps natural to propose τ 0x ∼ τ , where τ ∼ ζ/k is the elementary Rouse timescale. We set

τ 0x = 2τ to account for the decreased mobility of a XL bead which is connected to four strands,

instead of two.115 We discuss the repercussions of this assumption in sec. 4.1.
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Above the glass transition temperature Tg, the temperature dependence of τ for polymers and

networks is empirically described by the Williams-Landel-Ferry (WLF) equation,116

log10 αT =
−C1(T − T0)

C2 + (T − T0)
, (20)

where T0 is the temperature at which αT = 1, and C1 and C2 are parameters. For T ≈ Tg,

αT is usually very sensitive to temperature. However, at sufficiently high temperatures, where

T ≫ T∞ ≡ T0 − C2, αT becomes less sensitive to temperature. In this regime, the WLF equation

can be described approximately using an Arrhenius form,117

αT ≈ exp

(︃
EWLF

RT

)︃
with

EWLF

RT
=

2.303C1C2T

(C2 + T − T0)2
. (21)

With this choice for τ 0x , we anticipate acceleration of dynamics with increased temperature.

Since τx is a product of a WLF and an Arrhenius term, its temperature dependence is stronger

than both the WLF and Arrhenius contributions. This trend is indeed observed in ionomers, where

the formation and disassociation of XLs is governed by electrostatic interactions and dielectric

contrast.56 WLF parameters may be perturbed when chains are chemically modified to enable

cross-linking; however, this perturbation is neglected in this work.

The modulus G0 also varies with temperature, although it exhibits a somewhat weaker depen-

dence. This change is often described using a vertical shift factor,

bT =
ρ(T )T

ρ(Tr)Tr

, (22)

where Tr is any convenient reference temperature. The WLF equation can be shifted to the refer-

ence temperature Tr, by defining,

aT =
αT (T )

αT (Tr)
, (23)

so that aT (Tr) = 1, instead of the default αT (T0) = 1.
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3 Results

We first compare the IHR and SSR models to delineate the regime in which the latter is a useful

approximation. We then probe the general properties of the IHR model, including the influence

of XL distribution on viscoelasticity, which cannot be studied with the SSR model. We use the

IHR model to study the temperature dependence of viscoelasticity for three different polymer

matrices. We find that time-temperature superposition cannot be performed across the entire time

spectrum using a single set of shift parameters. We finally investigate the temperature dependence

of viscosity on the terminal relaxation time in these systems, and offer guidelines for ensuring

accurate measurement of these parameters.

3.1 Comparison of IHR and SSR Models

Figure 2 compares the IHR and SSR models for different values of τx and Nx. We assume that

N = 119, τb = ζ/k = 1, and that the XLs are distributed uniformly along the chain. As τx/τ

increases from 102 to 103, the “stickiness” of the XLs also increases. Regardless of this ratio, the

correspondence between the IHR and SSR in the limit of Nx = 0 and Nx = N is quite good. In

these two limiting cases, only one of the two summations in eqn 10 describing the SSR model is

operative. The response is effectively Rouse-like, which is evident in figure 2. The vertical dotted

lines denote the longest relaxation times (τ1) of the bare chain and fully sticky chain – τN2 and

τxN
2, respectively. For the two limiting cases, δ = 1 when Nx = 0, and δ ≈ τx/τ (102 or 103)

when Nx = N . Note that we use the ratio τx/τ instead τx/τb to characterize the relative stickiness

of XLs because it serves as a convenient proxy for δ. It is also a natural choice in the SSR due to

the form of eqn 10, and is used in figures 2 and 3 where comparisons to IHR are made.

Figure 2 also illustrates the response for Nx = 19, where only some of the beads are sticky,

rather than all or none. Its stress relaxation response lies between these two extremes. Values of

Nx and N are chosen so that the number of beads between the uniformly spaced XLs is an integer.

When τx/τ = 103 (δ ≈ 160), the agreement between the two models is still good because the sticky
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Figure 2: Comparison between SSR (dashed lines) and IHR (solid lines with symbols) models for
a chain with N = 119 and varying values of Nx (marked by different symbols). The vertical dotted
lines indicate the longest relaxation times (τ1) of the bare chain (Nx = 0) and the fully sticky chain
(Nx = N ). For Nx >

√︁
τ/τxN , the correspondence between the two models improves, as the

stickiness of the XLs increases. (a) τ/τx =100. The dashed black line shows the SSR response
when Nx = 4, which is less than the critical threshold of

√︁
τ/τxN . (b) τ/τx =1000.

and regular Rouse modes are well-separated, i.e., τxN2
x/τN

2 ≈ 25. In contrast, when τx/τ = 102

(δ ≈ 16), τxN2
x/τN

2 ≈ 2.5, creating deviations between the two models that appear in figure 2a.

In the case that the XL density is equal to or less than the critical limit ρx = Nx/N ≲
√︁

τ/τx,

violation of the τxN
2
x ≫ τN2 assumption causes the SSR model to fail. When τx/τ = 102, a

value of Nx < N/10 ≈ 12 generates a physically incorrect response. In figure 2a, for example,

the dashed black line shows the response for Nx = 4. Despite the presence of sticky beads, this

response decays faster than the bare Rouse chain.

Figure 3 plots the average relaxation time τη = η0/G0, which more clearly demonstrates the

failure of the SSR model. Here, τη is estimated using the IHR and SSR for N = 119 at τx/τ =

101 − 103 and as Nx is systematically increased. The τx/τ = 102 and 103 curves are shifted up

by one and two decades, from τRη /τb ≈ 10 to ≈ 100 and ≈ 1000, respectively, to reduce visual

clutter. At Nx = 0, both the IHR and SSR reduce to the bare Rouse chain, and the curves for all

τx/τ values coincide at τRη /τb = N/12 ≈ 10 (see eqn 8). As Nx increases, the IHR predicts a

monotonic increase in τη. Conversely, the SSR predicts an unphysical non-monotonic behavior.
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The τη obtained from the SSR decreases initially as Nx increases, reaches a minima, and then

increases to catch up with the IHR result. This is most clearly visible at τx/τ = 101, but is present

in all cases. As alluded to previously, this behavior is observed when the criterion τxN
2
x ≫ τN2 is

violated; in this regime, the SSR is not expected to work.

0 20 40 60 80 100 120
Nx

100

102

104

106

τ η
/τ

b

τx/τ= 101

τx/τ= 102

τx/τ= 103

Figure 3: The characteristic relaxation time τη = η0/G0 for the IHR (orange) and SSR (blue)
models at τx/τ = 101 (triangles), 102 (circles), and 103 (squares) as a function of the number
of XLs for a chain with N = 119 beads. XLs are distributed uniformly. The τx/τ = 102 and
τx/τ = 103 curves are shifted upwards by a factor of 10 and 100, respectively, for improved
visibility.

To summarize, when τxN
2
x ≫ τN2 and Nx ≫ 1, the IHR and SSR models agree with each

other. In this regime, it is perhaps preferable to use the SSR model due to its simplicity. This

condition may be violated for chains with very few XLs (small Nx), or when the activation energy

corresponding to the exchange reaction is relatively small. The latter is the case for dioxaborolane

metathesis and imine exchange reactions, where Esm
a ≈ 10− 30 kJ/mol was measured from small

molecule analogues.22 Under these circumstances, the use of the more general IHR model is ad-

vised. It has the advantage of being able to distinguish between different distributions of sticky

beads, and remains valid even when τx and Nx are small.
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Figure 4: Normalized stress relaxation modulus for vitrimers with uniformly distributed XLs, as
calculated by the IHR model. G(t) is presented for varying (a) stickiness δ = ζx/ζ and (b) number
of XLs Nx. Dashed line depicts the response of the bare Rouse chain with N = 119. For (a),
relaxation dynamics are retarded as δ is increased. The slopes of -1/2 corresponding to the bare
and sticky Rouse modes are identified. For (b), increasing Nx increases the terminal relaxation
time and the plateau modulus.

3.2 Properties of IHR Model

Since the IHR model is both more general and robust than the SSR model, all results presented

henceforth in this work are obtained from it. As our base case, we consider once again a chain with

a total of N = 119 monomers. XLs are uniformly distributed along the backbone, and values of Nx

are chosen so that the spacing between XLs is an integer. This choice ensures that the IHR model

calculations are not jagged, and are free from artifacts that arise due to rounding or truncation.

Figure 4a portrays the change in G(t) as the stickiness of the beads δ = ζx/ζ is increased from

1 to 104. Here, Nx = 11 so that ∆N = 10. The dashed gray line represents the case where δ = 1

and ζx = ζ , which is equivalent to the response of the bare Rouse chain. When δ is increased to

10, the dynamics of the chain are retarded, and the G(t) curve shifts rightward. As δ is increased

further the response becomes slower. For δ > 1, the initial decrease in the modulus deviates

from the G(t) ∼ t−1/2 trend of the bare Rouse chain. For sufficiently large δ ∼ 103 − 104, the

plateau associated with the XLs becomes conspicuous. The height of this plateau Gx = ρxG0 is

independent of δ. The terminal relaxation associated with XL exchange reactions also follows a
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Rouse-like pattern; beyond the plateau, we observe a second characteristic G(t) ∼ t−1/2 regime,

before complete relaxation at approximately τxN
2
x . For large δ and fixed ρx = Nx/N , eqn 19

implies that τx is proportional to δ. In this regime (δ ≳ 102), the average relaxation time τη ∼ δ.

As δ increases by a factor of 10, τη and η0 also increase by a factor of 10.

Figure 4b depicts the variation of the modulus with the number of XLs. As in figure 4a, we

consider a chain with N = 119 and uniformly distributed XLs. Here δ = 100 is held fixed. The

dashed line corresponding to the bare Rouse chain is indeed the same in both subfigures. As Nx

increases from 2 to 19, the number of monomers between successive XLs falls from 40 to 6. Unlike

δ, increasing Nx affects both Gx and τη. Gx increases with increasing Nx because it is proportional

to ρx. τη increases with the number of XLs, becoming approximately proportional τη ∼ Nx for

Nx ≫ 1. This can be understood through the standard Rouse model dependence of viscosity on

molecular weight, or eqn 8, where N and τb are replaced by the number of sticky Rouse beads Nx

and their lifetime τx, respectively.

Figure 5 focuses on the effect of the XL distribution. In figure 5a, we consider uniform and

random distributions for a chain with Nx = 4, 14, and 29 XLs. For the random distribution, we

report an average over 1000 independent replicas. At a given value of Nx, the stress response of the

two distributions is effectively the same. Unlike the IHR, the SSR model cannot directly account

for the impact of the distribution of the XLs on the dynamics. However, in the large Nx regime

the insensitivity to random or uniform distribution suggests that the SSR is a reasonable model to

compute the linear viscoelasticity of random or uniformly distributed XLs.

Figure 5b concentrates on Nx = 29, and compares the response of the gradient and block distri-

butions to the uniform and random distributions shown previously. Due to its stochastic nature, the

response of the gradient distribution is averaged over 1000 independent replicas, just like random

distribution. It shows significantly faster relaxation than random or uniform distributions. This is

further exaggerated for block distributions, in which sticky beads are completely sequestered to

one of the chain ends. Qualitatively, these observations are general, and persist for a broad range

of values of N , Nx, and δ.
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Figure 5: (a) Solid and dashed lines depict the stress relaxation response for randomly and uni-
formly distributed XLs, respectively, for a chain with N = 119 and δ = 100. Three different
values of Nx = 4, 14, and 29 are shown. Subfigure (b) focuses on one of these samples (Nx =
29), and compares the response of uniform and random XL distributions with blocky, and gradient
distributions. The average relaxation time τη (proportional to η0) is plotted as a function of (c) Nx

with δ = 100, and (d) δ with Nx = 29.
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Figure 5c examines the average relaxation time τη as a function of distribution type. We con-

sider chains with N = 119 and δ = 100, and vary the number of XLs/chain. As expected, τη is

independent of distribution type for the extreme cases of Nx = 0 (bare Rouse chain) and Nx = N

(all beads are sticky). The difference between random and uniform distributions is barely percep-

tible over the entire range of Nx explored. The gradient and block distributions follow trends that

are anticipated from figure 5b. At a given Nx, as the distribution of XLs changes from even or

approximately even (uniform/random) to concentrated at one of the ends approximately (gradient)

or strictly (block), η0 decreases.

Figure 5d varies δ between 100 − 104, with Nx = 29 held constant. For sufficiently large δ

(≳ 500), τη ∼ δ is independent of the type of distribution. However, the relative order of viscosities

(uniform ≈ random > gradient > block) is preserved. In this limit, the ratio of viscosities with

different distributions becomes constant. At the other end, as δ approaches 1 and the sticky beads

become less sticky, the four curves converge to the bare Rouse chain result.

We posit that the gradient and block XL distributions exhibit fast relaxations because they have

a relatively long dangling chain end. Strong evidence for this pattern of relaxation is presented

in the original paper on the retardation time spectrum of multiblock polymers.105 Besides other

configurations, diblock (AB) and triblock (ABA and BAB) polymers were compared, where the

“A” and “B” blocks correspond to sticky and regular beads, respectively. At a fixed concentration

of sticky beads, it was found that relaxation was fastest (slowest) for BAB (ABA), where the

sticky beads were confined near the core (near the ends) of the polymer. The relaxation of the

corresponding diblock polymer was in between these two extremes.

To summarize, the IHR model can explore the linear viscoelastic response as a function of

XL distribution. The linear rheology of uniform and random distributions of XLs are similar, and

converge in the limit of large Nx. For uniformly distributed XLs, when δ ≳ 500 and Nx ≳ 20 the

IHR model predicts that the average relaxation time τη is approximately proportional to δ and Nx.

The plateau associated with XLs, Gx, is independent of δ but proportional to Nx. At a given value

of δ and Nx, the relative order of viscosities η0 for different XL distributions is given by uniform
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≈ random > gradient > block. This trend, however, is only applicable for homogeneous vitrimer

systems where χ-parameter between regular and sticky beads is zero.

Table 1: Selected properties of three common vitrimer matrices: polydimethylsiloxane (PDMS),
polystyrene (PS), and poly(methyl methacrylate) (PMMA).

PDMS PS PMMA
Ne 165 127 100
Me 12293 13309 10013
Tg [K] 150 373 407

WLF parameters117,118

C1 1.9 12.7 9.4
C2 [K] 222 50 447
T0 [K] 303 373 463

3.3 Temperature Dependence of Viscosity

We now use the IHR model to examine the thermorheological properties of model vitrimers. Table

1 shows the properties of vitrimer matrices based on polydimethylsiloxane (PDMS), polystyrene

(PS), and poly(methyl methacrylate) (PMMA).117,118 As a base case, we first consider PDMS with

N = Ne and Nx = 10 uniformly spaced XLs. We set Esm
a = 28.1 kJ/mol, corresponding to the up-

per bound of measured activation energies of metathesis between small molecule dioxaborolanes.22

Since G0 and τb are also functions of temperature, we select a reference temperature Tr = 413 K,

and express the modulus and time by normalizing with Gr
0 = G0(Tr) = ρRTr/M0 and τ rb = τb(Tr),

respectively. To decouple the temperature dependence of the XL exchange kinetics and monomer

friction, we define an Arrhenius shift factor (eT ) that is analogous to the WLF shift factor (aT , eqn.

20),

log eT =
Esm

a

R

(︃
1

T
− 1

Tr

)︃
. (24)

Figure 6a shows the acceleration in the PDMS vitrimer dynamics as temperature is increased.

For context, as T increases from 313 – 463 K, δ falls about 30× from ∼6000 to ∼180 (figure 7),

while G0 ∼ T . Thus, the change in the modulus is much weaker; it increases only by 50%, even
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Figure 6: (a) Stress relaxation of PDMS with N = Ne and Nx = 10 XLs uniformly distributed
along the chain as temperature is varied between 313–463 K. (b) The WLF and Arrhenius temper-
ature shift factors. The response from (a) is shifted vertically, and horizontally using (c) WLF and
(d) combined WLF-Arrhenius shift factors.
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over this artificially large window of temperature spanning 150 K. On a log-log plot, this change is

not clearly visible. Because the effect of temperature is manifested primarily through variation in

δ, figure 6 bears a qualitative resemblance to figure 4a. The plateau due to the XLs has a modulus

that is insensitive to δ, and is followed by Rouse-like relaxation.
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Figure 7: Variation of δ with temperature for PDMS samples in the temperature range 313 – 463
K. δ falls about 30x from ∼6000 to ∼180 over this temperature range.

Figure 6b plots aT and eT for this system as a function of inverse temperature for T = 313 –

463 K. They intersect at Tr = 413 K, where both aT and eT are equal to unity by definition. For

PDMS, this temperature range is sufficiently removed from the glass transition temperature and

T∞ = T0 − C2 = 81 K. Consequently, the WLF equation takes the approximate Arrhenius form

given by eqn 21, which is evident from the linear dependence of log aT on 1/T in the subfigure.

For PDMS, the dependence of aT on temperature is weaker than the eT dependence, largely due

to the small value for the coefficient C1. As shown shortly, this is atypical; PS and PMMA, for

example, have relatively high T∞ and C1. If τ 0x = 2τ , as assumed here, the overall dynamics

are governed by τx through a product of aT (monomer friction) and eT (XL exchange).119 This

is shown by the dashed black line in figure 6b. This dependence is stronger than either aT or eT .

Activation energies inferred from the slopes of aT , eT , and the product aT · eT , are 11.5, 28.1, and

39.6 kJ/mol, respectively.

Figures 6c and 6d apply the horizontal and vertical shift factors to the PDMS vitrimer stress
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relaxation data. bT , aT , and eT are calculated using eqns 22, 23, and 24. Since the temperature

dependence of monomer friction and XL dynamics are different, time-temperature superposition

(TTS) cannot be performed using a single set of horizontal shift factors. When the curves are

shifted using the WLF shift factor aT (figure 6c), only the short time dynamics superimpose (t ≲

τ 0x ). When the curves are shifted using the combined WLF-Arrhenius shift factor eT (figure 6d),

the long time dynamics collapse (t ≳ τ 0x ). Concurrently, there is a dispersion at short times.

This divergence in superposition suggests that the short and long time dynamics are governed by

different processes. The short time dynamics are controlled by the mobility of the monomer, as

specified by the WLF equation τ(T )/τ(Tr) = aT , where τ(Tr) is the elementary Rouse timescale

at the reference temperature. In this regime, the network is unaware of XL exchanges. The long

time dynamics, however, are dictated by the combination of network strand relaxation and XL

exchange. Mathematically, this implies that the longest relaxation time of the IHR model obeys

the relationship τ1(T )/τ1(Tr) ≈ aT · eT .

Figure 8 depicts the variation in η0 as a function of inverse temperature for PDMS, PS, and

PMMA vitrimers that have N = Ne and Nx = 10 uniformly spaced XLs. η0 is normalized by

the product of G0 and the monomer relaxation time at the reference temperature (which has units

of viscosity). We neglect the change in polymer density, and assume G0 ∼ T . In the figure, the

temperature ranges used for PDMS, PS, and PMMA are 383 – 463 K, 463 – 600 K, and 463 – 500

K, respectively. The degradation temperatures for PDMS and PS are around 600 K, while it is only

500 K for PMMA.120,121 Thus, the upper range of temperatures explored for PS and PMMA are

close to their respective degradation temperatures.

The four subplots span the spectrum of activation energies that have been observed for vari-

ous vitrimer XL chemistries. Esm
a = 15 and 30 kJ/mol correspond to the lower and upper limits

for small molecule dioxaborolane and imine metathesis.22 Esm
a = 75 kJ/mol and 100 kJ/mol are

consistent with transesterification.67 The range of the inverse temperature and normalized viscos-

ity in the four subplots is kept identical to illustrate both the change in magnitude, and the slope

as a function of Esm
a . By comparing each subplot, we observe that the viscosity changes by sev-
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eral orders of magnitude as the activation energy increases. This is expected because viscosity is

governed by the XL exchange reactions which slow down exponentially with increasing Esm
a .
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Figure 9: The temperature dependence for viscosity of PS, with Esm
a = 15 kJ/mol from figure 7a is

zoomed. The curvature at low temperatures (high 1/T ) highlights the departure from Arrhenius-
like behavior.

Figure 8 also highlights the different temperature responses for each vitrimer matrix. PDMS

vitrimer exhibits the classical Arrhenius-type dependence log η0 ∼ 1/T . This is related to figure

6b; at sufficiently high temperatures, WLF follows an apparent exponential form. The slope of η0

versus 1/T gives the activation energy from viscosity, Erh
a . In nearly all cases, Erh

a > Esm
a . This

indicates that, in general, the activation energy inferred from rheology is larger than the activation

energy obtained from small molecule studies. In contrast to PDMS, PS vitrimer exhibits curvature

for η0 versus 1/T , especially at low temperatures (high 1/T ) (see figure 9). At low temperatures,

WLF contributions are manifested by nonlinearity in the η0 versus 1/T plot. At sufficiently high

temperatures, however, the non-Arrhenius behavior that arises from WLF modes can be visually

masked over a limited temperature range. PMMA vitrimer demonstrates an apparent Arrhenius-

type dependence for η0 due to the limited temperature range that is explored.

Figure 10 compares Erh
a obtained from the figure 8 against the underlying Esm

a . Erh
a is extracted

from the high temperature (low 1/T ) part of the temperature window, where Arrhenius-type de-

pendence is observed. The smallest discrepancy between Erh
a and Esm

a is observed for PDMS,
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Figure 10: Erh
a versus Esm

a for the cases considered in figure 8. The dashed gray line is the depen-
dence expected for Erh

a = Esm
a . Dashed blue, orange, and green lines denote Esm

a offset by 10, 63,
and 82 kJ/mol, respectively. These offsets are approximately equal to EWLF corresponding to the
three polymers.

where the two energies deviate by about 15%. This is consistent with the reasonably close corre-

spondence between the slopes of the PDMS η0 curves and the Esm
a dashed lines in figure 8. Erh

a

increases from ≈12 kJ/mol to 109 kJ/mol as Esm
a increases from 15 to 100 kJ/mol. The differ-

ence between Erh
a and Esm

a is larger for PS and PMMA. For activation energies of 30 kJ/mol and

above, the difference Erh
a −Esm

a ≈ EWLF is approximately constant and is equal to about 10 kJ/mol

for PDMS, 65 kJ/mol for PS, and 80 kJ/mol for PMMA. In this regime, a simple approximate

relationship between the two activation energies exists, and is given by Erh
a ≈ Esm

a + EWLF.

This is not surprising; it is a manifestation of the observation that terminal relaxation at different

temperatures can be superposed by using the combined WLF-Arrhenius shift factors (see figure 6d,

for example). Indeed, it can be traced back to the assumption of ζx = ζδ, or τx = τ 0xe
Esm

a /RT . For

temperatures sufficiently above Tg, aT approximately follows an Arrhenius relationship, as does

the product aT · eT (see figure 6b). Note that deviations from Erh
a = Esm

a + EWLF are expected

when T ∼ Tg, as aT does not follow an Arrhenius form at that temperature regime.

To summarize, the IHR model predicts that the vitrimer matrix and XL chemistry profoundly

impact viscoelasticity. For all samples, the short time dynamics are controlled by monomer fric-
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tion, while the long time dynamics are governed by the combination of network strand relaxation

and XL exchange. The viscosity of PDMS vitrimers, which have a fairly low Tg, demonstrates

the expected Arrhenius temperature dependence. For PS vitrimers, which have high Tg, Arrhenius

behavior is only displayed at very high temperatures. PMMA vitrimers exhibit Arrhenius behav-

ior over the small temperature range that was explored. For temperatures sufficiently above Tg,

the observed Erh
a for all systems can be estimated a priori using the Esm

a and WLF parameters,

as Erh
a ≈ Esm

a + EWLF, where EWLF is given by eqn 21. This explains the general observation

Erh
a > Esm

a .

4 Discussion

4.1 Influence of Pre-exponential Factor on Temperature Dependence

For the generalized sticky Rouse model approach presented in this manuscript, the drag on a sticky

bead is proportional to τx = τ 0xe
Esm

a /RT , where the pre-exponential factor τ 0x = στ . We treated

σ as a constant, i.e., σ = 2. While the functional form of τ 0x is simple, it relies on two major

assumptions: (i) σ is independent of temperature and cross-link density, and (ii) the monomer

relaxation time τ follows a WLF relationship with temperature.

The assumption of independence of σ with temperature is consistent with established theoreti-

cal models of XL dynamics,115 but it neglects the elaborate choreography involved in bringing two

XLs together to facilitate an exchange reaction. Associative cross-linking within a vitrimer is not

a mean-field process; the density, spatial distribution and orientation of the cross-links most likely

play an important role. As proposed by de Gennes, reactive groups attached to flexible polymer

chains explore their surroundings via sub-diffusive and compact random walks.96 Based on this

idea, the tethering of the vitrimer XLs to network strands reduces their mobility and probability of

encountering another XL, reactive group, or catalyst.115,122,123 XLs may even reassociate with old

partners in ways that do not relieve stress along the backbone.84 These impediments significantly

delay terminal relaxation by orders of magnitude.124 Although the influence of vitrimer structure
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on XL mobility is outside the scope of this study, it can potentially be evaluated through the IHR

or SSR models by treating σ as a fitting parameter rather than a constant. Precise calculation of

σ will permit accurate estimation of processing parameters, e.g., η0 and Tv. However, we must

emphasize that like the standard Rouse model, the IHR is fundamentally a single chain model. It

cannot directly account for nontrivial multi-chain interactions.

At the moment, direct comparison of the IHR model to vitrimer rheology data in the literature

is limited due to both (i) the current state of experimental data on unentangled vitrimers and (ii)

the model itself (in particular, σ). Experimental studies on vitrimer systems in which Erh
a and

Esm
a are separately measured are complied in Table S2 of Supporting Information. In all of these

studies, the vitrimer chains are nominally entangled, which makes them unsuitable to test the

IHR. The second reason that impedes direct comparison with experiments is the uncertainty of

τ 0x . By assuming τ 0x = στ with σ = 2, the dependence of the prefactor τ 0x on cross-link density,

spatial distribution of cross-links, etc., is ignored. As long as σ is independent of temperature,

claims about Arrhenius behavior and the temperature dependence of the terminal dynamics ought

to remain valid. However, the predicted values of τη and τ1 are likely underestimations. For these

reasons, we believe that more rigorous rheology data sets on model unentangled vitrimer systems

are needed to fairly test the IHR theory and learn more about the form and magnitude of σ.

The WLF assumption, standard for polymeric systems, establishes the combined temperature

dependence of τ and the exponential factor. Consequently, Erh
a is predicted to be greater than Esm

a

for PDMS, PMMA, and PS vitrimers. The difference between two activation energies is approx-

imately equal to EWLF, especially for T ≫ Tg. For PDMS, EWLF ≈ 10 kJ/mol, the difference

between the two activation energies is within experimental uncertainty. For PMMA and PS, EWLF

is approximately equal to 65 kJ/mol and 80 kJ/mol, respectively, making it greater than Esm
a in some

cases. This relationship among Erh
a , Esm

a , and EWLF provides a simple and convenient method for

predicting viscosity. However, the mechanism of the XL exchange within the vitrimer matrix will

impact the relationship between Erh
a and Esm

a . If another process that has a weaker temperature

dependence is rate-controlling, e.g., proper alignment of reacting elements, then τ 0x ∼ τ may no
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longer be valid. In such a situation, σ would dominate τ 0x . Small molecule diffusion, which typ-

ically has an Arrhenius temperature dependence,56 may also mediate XL exchange in externally

catalyzed vitrimers. If catalyst transport is the rate limiting step for relaxation, then τ 0x inherits the

Arrhenius relationship. A plot of log η0 versus 1/T would be linear, but the slope of the line would

be a function of the activation energy for catalyst diffusion.

In some of these situations it is quite possible that σ is temperature-dependent. If the τx =

τ 0xe
Esm

a /RT form is still valid then we obtain,

ln τx = ln τ + lnσ +
Esm

a

RT
∂

∂(1/T )
ln τx =

∂

∂(1/T )
ln τ +

∂

∂(1/T )
lnσ +

∂

∂(1/T )

Esm
a

RT

Erh
a = EWLF + Eσ

a + Esm
a , (25)

where Eσ
a is the activation energy corresponding to σ(T ). In such situations, Eσ

a may be an impor-

tant parameter that encodes interesting physics underlying the XL exchange.

4.2 Recommended Practices to Extract Accurate Erh
a

Conceptually, vitrimers are viscoelastic liquids. At sufficiently high temperatures and long timescales

they reach terminal relaxation, and their relaxation corresponds to a unique zero-shear viscosity η0.

As mentioned previously, τη and η0 depend on the slowest relaxation mode, τ1. Thus, timespans of

t > τ1 need to be evaluated to accurately probe these parameters. Otherwise, the estimated τη and

η0 are not unique, and are influenced by the method of both measurement and analysis.

Figure 11 depicts simulated vitrimer linear viscoelasticity data for various types of rheology

experiments: stress relaxation, creep, and small amplitude oscillatory shear. To find η0, one must

first check if the sample has indeed completely relaxed by looking for a characteristic rheological

signature. Depending on the experiment used, this is manifested in different ways. For stress relax-

ation, logG(t) ∼ t; for creep compliance, J(t) ∼ t; for small amplitude oscillatory shear (SAOS),
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G′(ω) ∼ ω2 and G′′(ω) ∼ ω. Caution must be exercised in interpreting η0 obtained when these

signatures of terminal relaxation cannot be ascertained. While stress relaxation/SAOS measure-

ments over long-time/low-frequency scales are limited by the torque resolution of the rheometer,

creep does not suffer from this issue, making it especially well-suited for characterizing terminal

properties.
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Figure 11: Normalized (a) G(t), (b) J(t), and (c) G∗(ω) are replotted for the δ = 104 sample
considered in figure 4(a) to highlight signs of terminal relaxation. The horizontal time or frequency
axis is normalized by the longest relaxation time τ1 (marked by vertical gray lines) instead of τb to
emphasize the behavior in the terminal regime. For t > τ1 and ω < 1/τ1, signatures of terminal
relaxation are observed, viz. logG(t) ∼ −t/τ1, J(t) ∼ t/η0, and G′ ∼ ω2 and G′′ ∼ ω.

Figure 11a depicts the G(t), J(t), and G∗(ω) for the δ = 104 sample previously considered in

figure 4a, where G(t) was shown on a log-log plot. To convert G(t) to J(t) in figure 11b we used

the spectrum of relaxation times {τi} obtained from the IHR model, and performed interconversion

to creep compliance using the Prony series method.125,126 As evident from figure 11, we need to

probe times of the order of 2 − 5τ1 to ascertain characteristic signatures of terminal relaxation

associated with these measurements.

Although accurate evaluation of Erh
a requires the sample to reach terminal relaxation, rheolog-

ical measurements on vitrimer systems have been typically run for inadequate timespans. Failure

to reach t ≳ τ1 can create systematic errors in the estimation of Erh
a . To emphasize this point with

a concrete example, we reconsider the PDMS sample used in figure 6a. Recall that for this sample,

N = Ne, Nx = 10 (uniformly dispersed XLs), and Esm
a = 28.1 kJ/mol.
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Figure 12 plots the normalized stress relaxation function ϕ(t) at a particular temperature, viz.

the T = 313 K sample, with linear and logarithmic vertical axes. The horizontal axis is common

and logarithmic. A popular, but ill-advised, procedure for determining the characteristic relaxation

time τ ∗ from stress relaxation experiments is to define it as the time point where ϕ(t) falls to 1/e

of its original value (marked by dashed gray lines in the figure). Fundamentally, this threshold is

appropriate if relaxation is governed by a single Maxwell mode (in which case, τ ∗ = τ1 = τη).

For polymeric systems with a wide spectrum of relaxation times, however, this is inaccurate. In

particular, for vitrimer systems this method runs the risk of probing timescales much shorter than

τ 0x , and underestimating η0 by several orders of magnitude. As shown in the figure, the difference

between these characteristic timescales defined as either ϕ(τ ∗) = 1/e or as the longest relaxation

time τ ∗ = τ1 (marked in black), is over five decades. More problematically, using the 1/e threshold

complicates the analysis of the temperature dependence of τ ∗. As observed in figure 6, TTS cannot

be obtained using a single set of parameters. Any estimates of τ ∗ obtained by probing t < τ 0x only

reveal the influence of temperature on the elementary Rouse timescale τ (and perhaps τ 0x ), but not

τx or τ1.

Figure 13 shows how the method used to specify the characteristic relaxation time τ ∗ impacts

the estimated activation energy Erh
a . Since Erh

a is obtained from the slope of log τ ∗ versus 1/T , the

(logarithmic) vertical axis is normalized by τ ∗ at the reference temperature Tr = 413 K (τ ∗r ), which

causes different curves to pass through a common point. When τ ∗ is defined through ϕ(τ ∗) = 1/e

(blue), the activation energy estimated from the slope is comparable with EWLF ≈ 11 kJ/mol

which is shown by the dashed line. This is not surprising, since 1/e ≈ 0.37 is greater than the

Gx/G(0) ≈ 0.1 plateau in fig 12 which is associated with the XLs. Thus, τ ∗ determined using

this criterion effectively probes the temperature dependence of short time dynamics, i.e., chain

friction. On the other hand, the Erh
a estimated when τ ∗ is defined as either the average (τη) or

longest relaxation time (τ1) are identical. It corresponds quite well with the activation energy

estimated using Erh
a = Esm

a + EWLF ≈ 40 kJ/mol, shown by the dotted line.

This analysis suggests a useful rule of thumb when the rubbery plateau Gx corresponding to
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the XLs is visible on a log-log plot. Any timescale that probes G(t) < Gx such as τη or τ1 in

figure 12b is a good proxy for the characteristic relaxation time τ ∗ for extracting Erh
a . Interestingly,

defining τ ∗ implicitly via G(τ ∗)/Gx = 1/e instead of G(τ ∗)/G0 = 1/e avoids the problem noted

in figure 13. However, it should be noted that experimentally it may be difficult to determine Gx

and probe timescales long enough to observe terminal relaxation. This is especially true when

δ is large, and Nx/N is small. In entangled vitrimers, additional complexity arises because Gx

combines with the plateau modulus G0
N that arises from entanglements. The example considered

in figures 12 and 13 presents a case where the contributions of monomer mobility (τ ) and XL

lifetime (τx) are well-separated. In some systems, however, these relaxation modes may overlap.

Resolving these modes experimentally – i.e., by exploring a large temperature/time scale window

– may be hampered due to the thermal sensitivity of the sample. In such situations, simulations of

the IHR model may be used in conjunction with experiment to tease apart contributions from the

different relaxation mechanisms.
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Figure 13: Arrhenius plot of the characteristic relaxation time τ ∗, determined using three different
methods, versus inverse temperature for the PDMS samples shown in figure 6a. τ ∗ is normalized
by the characteristic relaxation time at Tr = 413 K (τ ∗r ) to facilitate comparison of slopes. The
overlapping orange and dashed black lines correspond to τ1 and τη respectively. Blue circles denote
τ ∗ obtained using ϕ(τ ∗) = 1/e. The slopes of the dashed and dotted gray lines correspond to
EWLF ≈ 11 kJ/mol, and Erh

a = Esm
a + EWLF ≈ 40 kJ/mol, respectively.
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4.3 Utility and Limitations of IHR and SSR Models for Vitrimer Systems

The IHR and SSR models are powerful tools for forecasting and analyzing vitrimer viscoelasticity.

They capture many of the rheological signatures that have been observed experimentally (e.g.,

Arrhenius temperature dependence, secondary peaks and plateaus in small amplitude oscillatory

shear, strong dependence on the matrix and XL chemistry). Based only on knowledge of the

vitrimer composition and XL exchange kinetics, they predict the linear viscoelastic response across

the entire time/frequency domain for multiple types of measurement techniques. To achieve a

specific rheological profile, the optimal pairing of XL structure and backbone can be identified

a priori. Moreover, these models offer insight into the network topology and dynamics. The

presence of defects in the vitrimer network may be probed by comparing the measured plateau

modulus Gx to the anticipated value from rubber elasticity theory.127–130 σ potentially serves as a

proxy for XL mobility, as mentioned earlier. Thus, the IHR and SSR can serve as platforms for

connecting macroscopic flow behavior (as determined by rheology) to microscopic dynamics (as

observed by dielectric relaxation spectroscopy or other techniques).

While these models can be used to advance understanding of structure-property relationships,

they do have limitations. Generalized Rouse models like the IHR or SSR only apply to homoge-

neous vitrimers composed of unentangled linear chains; the XLs solely interact with the backbone

monomers via the propagation of frictional drag. In real vitrimers, however, branches and en-

tanglements enhance the elasticity and delay relaxation.43–46 Strong thermodynamic interactions

between the XLs and backbone induce concentration fluctuations and macro/microphase separa-

tion.12,13,47–49 Slip link models have the capability to resolve multi-chain interactions in entangled

polymer melts, and early work shows much promise.73 They are sufficiently coarse-grained to ac-

cess long relaxation times observed at low temperatures, while retaining the ability to model the

complex interchain dynamics.131–133 Furthermore, as seen from the comparison of the SSR and

IHR models, if the timescales associated with chain relaxation and kinetics of exchange reactions

are well-separated, we can envision a hierarchy of additive models, ranging from molecular dy-

namics that capture fine details of chain motion to slip link models that resolve terminal relaxation.
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In this work, we identify the conditions under which vitrimer viscosity follows an Arrhenius

temperature dependence. Yet, vitrimers are not unique in this regard. Many types of polymeric

systems have Arrhenius rheology.134–137 In particular, polymer networks with dissociative covalent

XLs express this relationship because their network connectivity hinges on the equilibrium bal-

ance between the bonded/debonded states of the XLs.3 This mechanism is identical to that of the

dynamic polymer networks outlined in the original sticky Rouse and sticky reptation papers.82–85

As such, the IHR and SSR models presented here can be adapted for systems with dissociative

covalent XLs, but the XL density Nx must be modified so that it is a function of temperature.

The similarity in rheological behavior, however, does not mean vitrimers and dissociative co-

valent polymer networks are the same. Vitrimer XLs maintain network connectivity at all tem-

peratures, rendering them insoluble in good solvents. In contrast, dissociative covalent polymer

networks will dissolve. Vitrimers are unique among polymers because of their combination of

insolubility and processability. Both properties are necessary criteria for determining if a material

is a vitrimer. It is not sufficient to only characterize their rheology.

5 Conclusions

The IHR model for unentangled, fully developed vitrimer networks describes the interplay be-

tween chain friction and XL exchange. When the lifetime of a XL (τx) is modeled as a product of

WLF and Arrhenius contributions, the effective activation energy determined from rheology, Erh
a ,

is typically larger than the activation energy for the exchange reaction between small molecule

analogues, Esm
a . The difference between Erh

a and Esm
a depends strongly on the chemistry of the

polymer matrix and the temperature range investigated, even when the XL chemistry is the same.

At sufficiently high temperatures, Erh
a ≈ Esm

a +EWLF. For PDMS vitrimer, EWLF is relatively small,

and Erh
a ≈ Esm

a . On the other hand, for PMMA vitrimers, EWLF ≈ 80 kJ/mol is large, resulting in

substantial differences between Erh
a and Esm

a . Similar trends are observed for PS vitrimers; how-

ever, at the lower end of the temperatures probed, non-Arrhenius behavior is observed. Estimation
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of Erh
a from an Arrhenius plot depends on the determination of η0 or τ ∗. Systematic errors that

arise from some common but ill-advised methods of data analysis are illustrated using the IHR

model.

As a consequence of WLF and Arrhenius contributions, time-temperature superposition cannot

be achieved over the entire relaxation spectrum. Use of WLF shift factors allows superposition

of short time dynamics, which corresponds to relaxation of individual monomers. In contrast, a

combination of WLF and Arrhenius shift factors are required to obtain superposition of long time

relaxations due to the interplay between backbone relaxations and XL exchanges. This is similar

to observations in other dynamic polymer network systems.

A comparison of the SSR and IHR model indicates that the SSR is a good approximation when

three conditions are met: (i) Nx ≫ 1, (ii) τxN2
x ≫ τN2, so that the sticky modes are well-separated

from the regular Rouse modes, and (iii) the distribution of XLs is random or uniform. However,

when any of these conditions is violated, use of the IHR model is advised. The rheology of a

sticky Rouse model with random and uniformly distributed sticky beads are expected to be within

experimental error limits, especially as Nx increases. However, gradient and block distributions

are quite different, and typically relax much faster than random and uniform distributions.

Vitrimers are a unique class of polymers, and there is still much left to be learned about their

flow behavior. The first decade of vitrimer research has enabled the preparation of well-defined

model materials in scalable amounts. Consequently, research efforts are now shifting towards es-

tablishing critical structure-viscoelasticity relationships. Inspired by previous achievements in the

field of dynamic polymer networks, we believe that the use of more sophisticated network models

offers one pathway towards success in this goal. Deep understanding of vitrimer flow and process-

ability can only be achieved through a union of rigorous synthesis, experimental characterization,

and modeling.
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(i) Mathematical Notation for Different Timescales and (ii) Experimental Data on Vitrimer Sys-

tems.
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