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When rheological models of polymer blends are used for inverse modeling, they can char-

acterize polymer mixtures from rheological observations. This requires repeated evalu-
ation of potentially expensive rheological models. We explored surrogate models based

on Gaussian processes (GP-SM) as a cheaper alternative for describing the rheology

of polydisperse binary blends. We used the time-dependent diffusion double reptation
(TDD-DR) model as the true model; it takes a 5-dimensional input vector specifying the

binary blend as input, and yields a function called the relaxation spectrum as output.

We used the TDD-DR model to generate training data of different sizes n = 30− 1600,
via Latin hypercube sampling. The optimal values of the GP-SM hyper-parameters, as-

suming a separable covariance kernel, were obtained by maximum likelihood estimation.

The GP-SM interpolates the training data by design, and offers reasonable predictions
of relaxation spectra with uncertainty estimates. In general, the accuracy of GP-SMs

improves as the size of the training data n increases, as does the cost for training and

prediction. The optimal hyper-parameters were found to be relatively insensitive to n.
Finally, we considered the inverse problem of inferring the structure of the polymer blend

from a synthetic dataset generated using the true model. Surprisingly, the solution to
the inverse problem obtained using GP-SMs and TDD-DR were qualitatively similar.

GP-SMs can be several orders of magnitude cheaper than expensive rheological models,
which provides a proof-of-concept validation for using GP-SMs for inverse problems in
polymer rheology.

Keywords: surrogate model; Gaussian processes; separable kernel; inverse modeling.

1. Introduction

Synthetic polymers power the modern economy through their use in diverse sectors

such as aerospace, medicine, automobile, electronics etc. Their properties can be tai-

lored to specific applications not only by changing the chemistry of the monomers,

but also by mixing or blending different polymers in a process that is analogous

to alloying in metals. Another important reason for their popularity is the ease
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with which they can be processed. Typically, such processing is carried out in the

molten state, which makes it imperative to develop an understanding of the under-

lying stress-strain relationships. Polymer rheology is the science that systematically

studies these phenomena, and deals with the flow and deformation of these materials

[Dealy and Larson (2006)].

Molecular models of polymer rheology take the molecular structure of a polymer

mixture as input, and yield the linear or nonlinear rheology of the sample as output

[Bird et al. (1987); Larson (1988)]. In the order of increasing spatial and temporal

resolution, these models may be arranged from atomistic molecular dynamics and

coarse-grained molecular dynamics on one end [Binder (1986); Kremer and Grest

(1990); Kröger and Hess (2000); Likhtman et al. (2007)], through lattice models

like the bond-fluctuation model and slip-link and slip-spring models [Carmesin and

Kremer (1988); Schieber and Andreev (2014); Shaffer (1994); Subramanian and

Shanbhag (2008); Tzoumanekas and Theodorou (2006)], to the mean-field tube

model, which remains the most popular theory of polymer dynamics [Bird and

Giacomin (2016); Larson et al. (2007); Masubuchi (2014)]. These different levels of

modeling offer different trade-offs between accuracy and speed. By and large, as

demands for accuracy increase, so do computational costs. Slip-link and slip-spring

models offer a compelling practical balance accuracy and speed; nevertheless, the

CPU time required to run a single simulation may vary between minutes to a day

or more [Likhtman (2005); Masubuchi et al. (2008); Schieber and Andreev (2014);

Shanbhag (2019a)].

Using predictive models of polymer rheology, processing methods can be ratio-

nally engineered to shape polymer melts into final products. Interestingly, due to

the extreme sensitivity of rheology to molecular structure, these models can alterna-

tively be used to characterize molecular weight distributions, long-chain branching,

and the presence of contaminants [Bird and Giacomin (2016); Janzen and Colby

(1999); Larson et al. (2007); Shanbhag (2012)]. This “inverse” use of molecular

models is often called analytical rheology.

In analytical rheology, we measure the rheology of an unknown sample, and

figure out the plausible polymer mixtures that might account for the measured

rheology. This is a nonlinear inverse problem that requires repeated evaluations

(∼ 103 − 106) of the rheological model [Shanbhag (2010, 2011, 2012); Takeh et al.

(2011)]. In such situations, the need for fast approximations to the molecular mod-

els become imperative. These approximations are often called surrogate models,

emulators, metamodels, or response surface models. In this work, we use the label

surrogate model (SM) to refer to these fast approximations [Deng et al. (2020);

Frangos et al. (2010); Goldstein and Rougier (2006); Kennedy and O’Hagan (2000,

2001); Li et al. (2016); Santner et al. (2018)].
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1.1. Gaussian Processes as Surrogate Models

SMs are statistical models that seek to mimic the input-output relationship, x→ h,

of computationally expensive (molecular) simulations. Loosely speaking, the input

x represents the structure of the polymer mixture in our case, while the output h

represents the rheology. Let m represent the molecular model, so that h = m(x).

Ideally, the SM m̂ approximates this model at a fraction of the computational cost.

Since m̂ is a statistical model it provides a point estimate ĥ = E[m̂(x)] ≈ h, where

E[.] denotes the expected value. We shall make these quantities more precise for our

particular application in section 2.3.

The idea is then to use these cheaper SMs in lieu of the computationally more

demanding simulations for tasks such as feasibility analysis for rational design opti-

mization, global sensitivity analysis to identify the most important inputs, inverse

modeling to obtain plausible inputs that might explain an observed output, etc.

[Bhosekar and Ierapetritou (2018); Santner et al. (2018)]. The earliest SMs studied

were univariate, h = m(x) where m : Rd → R. That is, the output of the simulation

with potentially multiple inputs denoted by the vector x = [x(1), ..., x(d)] is a scalar.

However, interest in SMs for multiple outputs, h = m(x) where m : Rd → RN

has recently surged [Bayarri et al. (2007); Conti and O’Hagan (2010); Fricker et al.

(2013); Higdon et al. (2008); Álvarez et al. (2012); McFarland et al. (2008); Tan

(2018)]. We can classify these SMs into two categories: (i) multiple-type output,

where the components of the output h = [h(1), · · · , h(N)] represent different types

of quantities, and (ii) field outputs, where the components represent quantities over

a continuous spatial or temporal field. The application considered here falls in the

second category: the output represents a continuous function of time, and consecu-

tive components of the output vector represent successive observations at discrete

time intervals.

The use of Gaussian process (GP) regression is a popular surrogate modeling

technique [Rasmussen and Williams (2006)]. It provides a systematic and flexi-

ble framework to emulate simulators with multivariate input and output variables.

When used within a regression framework, training data is first accumulated by

simulating the true model at n training points x1, · · · ,xn. We use superscripts x(i)

to denote components of a vector x, and subscripts xi to denote different instances

of x, when there is a possibility of confusion. The hyper-parameters of the GP

are typically inferred using maximum-likelihood estimation (MLE). At this point

the SM is trained, and can be used to make predictions at a test input point, x∗.

See supporting information (SI) section ?? for an illustration of these steps for a

standard univariate case.

GPs have two features that make them particularly attractive as SMs: (i) they

interpolate the true model at the training points; thus hi = m(xi) = E[m̂(xi)] for

i = 1, · · · , n and (ii) they provide uncertainty estimates σ̂2
∗ = V[m̂(x∗)], where V[.]

denotes the variance in the SM prediction at input point x∗. Thus, the SM provides

us with a prediction that takes the form ĥ∗ ± σ̂∗, where ĥ∗ = E[m̂(x∗)] represents
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the expected value or mean prediction of the SM, and σ̂2
∗ represents the expected

variance. Thus, we can visualize GP-based SMs (abbreviated henceforth as GP-SM)

as sophisticated interpolants with built-in uncertainty quantification.

1.2. Motivation and Scope

Typical methods of polymer synthesis result in polydispersity around the target

chain length. Here, we explore a SM to predict the viscoelasticity of a blend of two

polydisperse components. We label these materials as binary blends, and describe

them in section 2.

Since the focus of this work is the development of a GP-SM and its use in

analytical rheology, we use a somewhat simple theory called the time-dependent

diffusion-double reptation (TDD-DR) theory as the first part of our simulation

model. The simplicity allows us to easily generate large training datasets, and also

test inverse modeling using the SM. In the future, it can be swapped with a more

accurate and expensive model. TDD-DR is described in section 2.1; it takes in

a description of a binary blend x, and yields the linear viscoelasticity in terms

of the normalized stress relaxation function ϕ(t). The stress relaxation function

varies over several orders of magnitude and is not particularly smooth; it decays

exponentially fast at long times. Therefore, a smoother function called the relaxation

spectrum h(s), which can be extracted from ϕ(t) using a program called pyReSpect

[Shanbhag (2019b)], is used as the direct target for GP regression here (see figure

1a). The relationship between ϕ(t) and h(s), and the computational methods used

are described in sections 2.1 and 2.2.

Incorporating field outputs like ϕ(t) or h(s) as the output of a GP presents

its own challenges. Here, we discretize the spectrum on a fine mesh, using N grid

points. The hyper-parameters of a GP-SM are learned from training samples (xi,hi)

with i = 1, 2, · · · , n that are generated from the true model (figure 1b). Naive

GP regression involves inverting an nN × nN matrix during each iteration in the

MLE estimation of GP hyper-parameters, which becomes overwhelming for typical

values, n ≈ 100 − 1000 and N ≈ 100. Thus, we assume a separable covariance

kernel as an approximation, to reduce the computational burden from O(n3N3) to

O(n3) +O(N3). This technique is described in section 2.3.

Once the optimal hyper-parameters θ̂ are learned, the optimized GP-SM can

be applied to predict the relaxation spectrum h∗ at any test point x∗ (figure 1c).

Inverse modeling involves carrying out this step in reverse; i.e. instead of informa-

tion about the polymer mixture x∗, we are given an observed spectrum ho and

expected to describe the polymer mixtures that are approximately consistent with

the observation (figure 1d). Note that the forward model h = m(x) is unique, but

the inverse model x = m−1(h) is not. If this were not the case, then the SM could

be directly trained to mimic the inverse model. We evaluate the predictive abilities

of the GP-SM in section 3.2, and demonstrate its use in inverse modeling with a

single illustrative example in section 3.4.
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Fig. 1. Schematic diagram showing (a) the true model m(x) (dotted line), which includes the
TDD-DR model and the pyReSpect program. It takes in blend information in the form of x =

[Z̄1, Z̄2, ρ1, ρ2, w1] and yields the resulting relaxation spectrum; (b) training data generated using

m(x) is used to fit GP-SM hyper-parameters θ̂ using maximum likelihood estimation; (c) the
trained GP-SM model can be used in lieu of the true model at arbitrary input points x∗; (d) in

inverse modeling, the probability distribution of possible blends schematically denoted by π(x)

that are consistent with an observed spectrum ho are sampled using Markov-chain Monte Carlo
in conjunction with either the true or surrogate models.

We find that the optimal hyper-parameters θ̂ are relatively insensitive to the

size of the training data n. Nevertheless, the accuracy of GP-SMs improves as n

increases, as does the cost for training and prediction. The solution to the inverse

problem obtained using GP-SMs and TDD-DR are found to be qualitatively similar.

Since GP-SMs are much cheaper than expensive rheological models, this study offers

a proof-of-concept validation for using GP-SMs in analytical rheology.

2. Methods

Industrial synthesis of polymers leads to mixtures that contain polymer chains of

different lengths. This distribution of chain lengths or molecular weights is called the

molecular weight distribution (MWD). A popular parameterization used to describe



June 14, 2022 10:30 WSPC/INSTRUCTION FILE Manuscript

6 Pankaj Chouhan, Sachin Shanbhag

101 102

Z

0.00

0.01

0.02

0.03

0.04

w
L
(l
og
Z

)

101 102

Z

0.000

0.005

0.010

0.015

0.020

0.025

0.030

w
L
(l
og
Z

)
(a) ρ2 = 1.1 and w1 = 0.5 (b) ρ2 = 1.3 and w1 = 0.7

Fig. 2. MWD of a blend (thick red line) with Z̄1 = 40 and Z̄2 = 20. The polydispersity of the first

component is held fixed at ρ1 = 1.1. The blend MWD is resolved into contributions from the first

(thin blue) and second (thin gray line) components via Eq. 3.

MWDs is the lognormal distribution which is given by,[cite L. H. Peebles, Molecular

Weight Distributions in Polymers, Vol. 18, Interscience Publishers, New York 1971.]

π(logZ;µZ , σZ) =
1√︁
2πσ2

Z

exp

(︃
− (logZ − µZ)

2

2σ2
Z

)︃
. (1)

This distribution in Eq. (1) is normalized so that
∫︁
p(logZ) d logZ = 1. The pa-

rameters of the lognormal distribution σ2
Z and µZ can be related to weight-averaged

number of entanglements Z̄ and the polydispersity ρ characterizing the MWD via,

σ2
Z = log ρ

µZ = log Z̄ +
1

2
log ρ. (2)

Thus, the overall MWD a binary blend with polydisperse components can be written

as,

wL(logZ) = w1 π(logZ;µZ,1, σZ,1) + w2 π(logZ;µZ,2, σZ,2). (3)

where µZ,i and σZ,i are obtained from Eq. (2) with Z̄ = Z̄i and ρ = ρi for

components i = 1 and 2. Thus, the input vector x can describe a wide array of

mixtures of polymers. Two examples are illustrated in figure 2.

2.1. Time-Dependent Diffusion-Double Reptation Model

The three mechanisms of relaxation in polymers at equilibrium are reptation,

contour-length fluctuations, and constraint release [de Gennes (1979); Doi and Ed-

wards (1986)]. The double reptation theory models constraint release by stipulating

that an entanglement between two chains relaxes as soon as one participant diffuses

away, and that reptation time is unaffected by constraint release [de Cloizeaux (1988,

1990); Tsenoglou (1987, 1991)]. Despite its simplicity, it is useful in describing the
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linear viscoelasticity of polydisperse systems [Mead (1996); Read et al. (2018); van

Ruymbeke et al. (2007); Wasserman and Graessley (1992); Watanabe et al. (2004)].

In the double reptation theory, ϕ(t) is related to the MWD by,

ϕ(t) =
G(t)

G0
N

=

(︃∫︂ ∞

0

wL(Z)F (t, Z) d logZ

)︃β

. (4)

WhereG(t) is the shear relaxation modulus,G0
N is the plateau modulus, and β is the

“double reptation” mixing exponent. Originally, β = 2 and F (t, Z) = exp(−t/βτd),
with τd = τ0Z

3 or τ0Z
3.4 was commonly used [Tsenoglou (1991)]. However, for

polydisperse high molecular weight polymers, the time-dependent diffusion double

reptation (TDD-DR) model, [de Cloizeaux (1990)] with β = 2.25 was empirically

found to be more accurate [van Ruymbeke et al. (2002)]. In TDD-DR, the kernel is

replaced by,

F (t, Z) =
8

π2

∑︂
p=odd

1

p2
exp

(︁
−p2U(t, Z)

)︁
, (5)

where,

U(t, Z) =
t

τd
+

1

H
g

(︃
Ht

τd

)︃
. (6)

with τd = τ0Z
3, H = Z/Z∗

TDD, and [Shanbhag (2020a)],

g(x) =

∞∑︂
n=1

1− exp(−n2x)

n2
≈ π2

6
erf(0.865

√
x). (7)

In this work, we set the relaxation time of an entanglement strand τ0 = 1 sec, and

Z∗
TDD = 10. With this choice, τ0 is effectively the unit of time.

2.2. Extraction of the Relaxation Spectrum

The mathematical relationship between the normalized stress relaxation and the

corresponding relaxation spectrum h(s) is given by a Fredholm integral equation of

the first kind,

ϕ(t) =

∫︂ ∞

−∞
h(s) e−t/sd log s. (8)

The process of inferring h(s) from ϕ(t) is non-trivial, but well-studied because it is

a problem of central importance in linear viscoelasticity. Here, we use the publicly

available python program pyReSpect, which implements non-linear Tikhonov regu-

larization using a Bayesian criterion, to infer h(s) [(Shanbhag, 2019b, 2020b; Takeh

and Shanbhag, 2013)]. The regularization method used to extract the spectrum from

stress relaxation measurements is described in detail in Shanbhag (2019b), and the

implementation of the Bayesian criterion is fleshed out in Shanbhag (2020b). Here,
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Fig. 3. Solid lines depict the (a) normalized stress relaxation functions ϕ(t) and (b) relaxation
spectrum h(s) of a bidisperse blend with chain lengths Z̄1 = 50 and Z̄2 = 5. The components are

relatively monodisperse (ρ1 = ρ2 = 1.01). The weight fraction w1 is varied between 0.1 and 0.9.

The dashed lines shows how the response corresponding to w1 = 0.5 changes when the individual
components are polydisperse (ρ1 = ρ2 = 1.5).

we represent the spectrum on a fine grid using N = 100 (logarithmically) equi-

spaced grid points between smin = s(1) = 10−2 and smax = s(N) = 107,

s(i)

smin
=

(︃
smax

smin

)︃ i− 1

N − 1
. (9)

We keep this grid constant and independent of the input x. Thus, given an input

x, we use the TDD-DR model to obtain ϕ(t), and pyReSpect to extract the re-

laxation spectrum via Eq. (8). As shown in fig. 1a, the output of this pipeline is

thus an N -dimensional vector h = [h(1), · · · , h(N)] defined on the constant grid,

s = [s(1), · · · , s(N)], where h(i) = h(s(i)).

Figure 3 illustrates ϕ(t) and h(s) for a bidisperse blend with Z̄1 = 50 and

Z̄2 = 5. Solid lines represent a blend with relatively monodisperse components, ρ1 =

ρ2 = 1.01. When w1 = 0.1, we observe a two step relaxation in ϕ(t); the first step

corresponds to the relaxation of the short chains, while the second step corresponds

to the longer chains. As w1 increases to 0.5 the height of the first step decreases

while the terminal relaxation time increases due to the larger fraction of long chains.

The spectrum corresponding to this blend shows two clear peaks corresponding to

the two fractions, unlike the w1 = 0.1 case, where the peak corresponding to Z̄1 is

barely perceptible. As w1 increases to 0.9, the contribution of Z̄2 to ϕ(t) is barely

noticeable, while the peak attributable to Z̄1 becomes much stronger in h(s). In all

cases, the terminal response is marked by an exponentially fast decay in ϕ(t).

The dashed lines show the effect of increased polydispersity. When ρ1 = ρ2 = 1.5
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with w1 = 0.5, the MWDs of the individual components are no longer distinct, and

show a significant overlapping region. Consequently, the “steps” in ϕ(t) and the

“peaks” in h(s) become diffuse. Due to the large polydispersity, a small fraction of

the chains can get quite long and dominate the terminal response.

2.3. Surrogate Modeling with Gaussian Processes

Thus, the combination of TDD-DR and pyReSpect specifies the true simulation

model. Given an input x = [Z̄1, Z̄2, ρ1, ρ2, w1], it yields the relaxation spectrum on

a fixed grid represented by theN -dimensional vector s. We may represent this model

as h = m(x), where h is an N -dimensional output vector. We can use this modeling

pipeline to generate training data for n different input vectors xi resulting in output

training data hi, for 1 ≤ i ≤ n. As shown schematically in figure 1b, training a GP

involves determining the optimal value θ̂ for the hyper-parameters.

In principle, the function describing relaxation spectra for binary blends h(s;x)

can be modeled with a GP by assuming the response to be a scalar function of

a 6-dimensional input vector z = (s,x). However, this neglects the structure of

the problem (the output grid is conserved), and incurs a very high computational

cost O(N3n3) during the optimization of GP parameters. To address both these

issues, we use a separable covariance kernel where the contributions from the s and

x co-ordinates are separately incorporated as,

k(z, z′) = σ2
hRs(s, s

′)Rx(x,x
′), (10)

where Rs and Rx are correlation functions, and σ2
h captures the variance. Due to the

smoothness of the relaxation spectrum, we use a squared exponential correlation to

define a N ×N grid correlation matrix Rs whose (i, j) element is given by,

[Rs]ij = Rs(s
(i), s(j)) = exp

(︃
− (log s(i) − log s(j))2

2γ2
s

)︃
. (11)

γs is a “length-scale” parameter associated with Rs. Since we are unsure about

the smoothness properties with respect to input parameters, we use a Matérn cor-

relation function with smoothness parameter set to 3/2 [Santner et al. (2018); Tan

(2018)]. We build a n × n input correlation matrix Rx, which is assumed to

be a product of Matern kernels over the d = 5 dimensions of x. If we denote the

components using superscripts, x(1) = Z̄1, x
(2) = Z̄2, x

(3) = ρ1, x
(4) = ρ2, and

x(5) = w1, then the (i, j) element is given by

[Rx]ij = Rx(xi,xj) =

5∏︂
k=1

(1 + pk) e
−pk , with pk =

√
6

γx,k

⃓⃓⃓
x
(k)
i − x

(k)
j

⃓⃓⃓
(12)

where γx,1, γx,2, · · · , γx,5 correspond to the length-scale parameters associated with

each component of the input vector x. Let θ = (σ2
h, γs, γx,1, · · · , γx,5) denote the

7 unknown kernel parameters or GP hyper-parameters, which are to be jointly

estimated from the training data.
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2.3.1. Estimation of Kernel Parameters

We stack the output of the training data into an Nn × 1 column vector H =

[h1, · · · ,hn]
T . We standardize the output data-vector, H ←H−H̄, by subtracting

the mean value H̄ =
∑︁

i,j h
(j)
i /(Nn). We implicitly define the Nn×Nn covariance

matrix K = σ2
h ·Rx ⊗Rs, where ⊗ denotes a Kronecker product.

Assuming a zero-mean GP, the log-likelihood L(θ) of observing the training data
H with kernel parameters θ can formally be shown to be [Rasmussen and Williams

(2006)],

L(θ) = −1

2
HTK−1H − 1

2
log |K| − Nn

2
log 2π. (13)

The likelihood depends on the kernel parameters implicitly through the covariance

matrix K(θ). For a given training set with fixed N and n, the last term can be

ignored in the optimization. The first and second terms can be identified with data-

fit DF = HTK−1H, and complexity penalty CP = log |K|, respectively. The cost

function C can be defined as the sum of these two contributions.

C(θ) = DF + CP = HTK−1H + log |K| . (14)

The kernel parameters θ̂ that maximize L (or minimize C) by optimally trading off

data-fit and complexity penalty give us the maximum likelihood estimates (MLE).

In practice, we use the truncated Newton algorithm (TNC in scipy.optimize) with

10 well-dispersed initial conditions to mitigate entrapment in local minima. We

require all parameters to be non-negative, and choose θ̂ corresponding to the best

(maximum L) of these 10 estimates.

Computationally, separability of the covariance makes the problem tractable.

Otherwise, for typical values of n ≈ 102−103, and N ≈ 100, computing K−1 would

be a formidable O(N3n3) operation at each iteration of the optimizer. Fortunately,

the properties of a Kronecker product allow us to compute the inverse and log

determinant of the covariance matrix in terms of the inverse and covariance of the

smaller correlation matrices,

K−1 = (R−1
x ⊗R−1

s )/σ2
h

log |K| = N log |Rx|+ n log |Rs|+Nn log σ2
h. (15)

This reduces the computational burden to O(N3 + n3) required for separately in-

verting the correlation matrices.

2.3.2. Prediction

Once the kernel parameters θ̂ are regressed and the GP describing the posterior

distribution is calibrated, it can be used to predict the response at a test input

point x∗. A point-estimate can be obtained from the expected value at the test

point [Rasmussen and Williams (2006)],

ĥ∗ = K̂
T

∗ K̂
−1

H, (16)
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where K̂∗ = σ2
h(r̂

∗
x ⊗ R̂s) and r̂∗x is the n× 1 column vector, whose ith element is

[r̂∗x]i = Rx(xi,x∗). Quantities decorated with a “hat” use the MLE parameters θ̂;

for example, K̂ denotes the covariance matrix using these parameters. The variance

vector associated with this mean prediction is given by,

σ̂2
∗ = σ2

h1− diag
(︂
K̂

T

∗ K̂
−1

K̂∗

)︂
, (17)

where 1 is an N×1 column vector with all elements equal to 1, and diag(·) extracts
the diagonal vector from an N ×N square matrix.

Note that the separable covariance structure assumed for the kernel is some-

what restrictive. An alternative is to use a GP based on a Karhunen-Loève ex-

pansion [Azzi et al. (2019); Huang et al. (2001); Jain (1976); Phoon et al. (2005);

Tan (2018, 2019)]. This method can use the eigendecomposition of the empirical

covariance function obtained from training data, which makes it possible to describe

non-stationary kernels naturally. Other advantages of this method includes compu-

tational efficiency, less restrictive assumptions, and more fine-grained uncertainty

quantification. Preliminary work on our problem using this method, while promis-

ing, seems to yield results comparable with the separable covariance assumptions.

However, more work is needed to make stronger claims and is currently underway.

3. Results

The first step in implementing GP-SM is selecting training data. In our work, we

assume that the chain lengths are confined to 5 ≤ Z̄2 < Z̄1 ≤ 50, and that the

polydispersities are confined to 1.01 ≤ ρ1, ρ2 ≤ 1.5. These limits are arbitrary,

and may be changed as desired. The weight fraction w1 is necessarily confined to

0 ≤ w1 ≤ 1. Note that we require Z̄1 > Z̄2 to uniquely define a binary blend with

nonzero w1; otherwise the positions of the two components can be interchanged.

We draw n training data x = (Z̄1, Z̄2, ρ1, ρ2, w1) using Latin hypercube sampling

[McKay et al. (1979)]. Since each training data point is 5-dimensional, it is not trivial

to visualize. Figure 4 depicts projections of n = 53 samples on 3 different 2D planes

(out of the possible 5C2 = 10). A triangular pattern is observed in figure 4a because

of the constraint Z̄1 > Z̄2. This is reflected in figure 4b, where the cloud of points

appears to be concentrated in right half of the plot, but uniformly dispersed along

the vertical (w1) axis. Finally, in figure 4c, the points appear to be distributed

uniformly.

We also standardize and internally rescale the input data x so that the upper

limit of each component is of order 1. This involves dividing Z̄1 and Z̄2 by the

maximum allowed value of 50. The other components of x are inherently ∼ O(1).
This normalization assists with the MLE estimation. We use this shifted data to

infer the GP hyper-parameters, which are summarized in table 1 for the n = 53

training points shown in figure 4.

The model is trained in a few seconds, showing the computational advantage of

using a separable covariance structure. We initialize 10 independent optimization
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Fig. 4. Training data (n = 53) drawn using Latin hypercube sampling is projected on three different

2D planes.

Table 1. MLE estimates θ̂ for n = 53

C(θ̂) −6.0× 104 γ̂x,1 1.9

time (s) 3.4 γ̂x,2 0.62

σ̂2
h 3.1× 10−3 γ̂x,3 0.99

γ̂s 3.6× 10−1 γ̂x,4 5.0

γ̂x,5 3.5

runs by randomly selecting the kernel parameters to the range [1, 3], and selecting

the set that that leads to the largest L(θ). We use multiple runs to avoid being

trapped in local minima, and to overcome bad initial guesses in which the algorithm

fails to converge. Figure ?? in supplementary information visualizes the negotiation

between data-fit and complexity penalty and the convergence to a minimum.

3.1. Interpolation and Prediction

Figure 5 shows the output of the trained GP-SM for test datapoints. In figure 5a,

x∗ = (31.27, 10.45, 1.19, 1.38, 0.33) is chosen to be identical to one of the training

data points. Unsurprisingly, the “estimated” spectrum ĥ∗ overlaps with the true

spectrum, due to the interpolation property of GPs. Furthermore, the uncertainty

associated with the estimated spectrum is correctly identified as zero.

Figure 5b shows the prediction of the GP-SM at a unseen test data point x∗
= (43.0, 18, 1.15, 1.34, 0.38). Unlike figure 5a, the true and estimated spectra no

longer overlap perfectly. The shaded region around the mean estimate depicts the

±2.5σ̂∗ uncertainty band. In light of the uncertainty expressed by the prediction,

the agreement between the two spectra appears to be reasonable.

Finally, figure 5c shows the ϕ(t) corresponding to these two spectra predictions

obtained by numerical integration of Eq. (8). The mean prediction seems to be

reasonably good until about t ≈ 105. However the tiny bump seen in spectrum

near s ≈ 104 translates to significantly slower terminal relaxation for ϕ(t > 105).
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Fig. 5. (a) GP-SM prediction when x∗ = (31.27, 10.45,1.19,1.38,0.33) is selected as one of the

training point coincides with the true model prediction. (b) This is not true for an unseen test

point x∗ = (43.0,18,1.15,1.34,0.38). The ±2.5σ̂∗ uncertainty interval is shown by the shaded
region. The gray line is the output of the true model. (c) The ϕ(t) generated using the relaxation

spectra predicted by the GP-SM from (b) is compared with the true ϕ(t).

The uncertainty bands for ϕ(t) are obtained from 1000 independent samples of h

drawn from the trained GP. The bands are rather large and sufficiently reflect the

deviation of the mean estimate from the true relaxation modulus.

3.2. Evaluation of the GP-SM

In order to quantitatively test the SM model with θ̂ regressed from the n = 53

training data set, we generated ntest = 251 independent test samples for x∗. These

samples were also chosen using Latin hypercubic sampling, but with different ran-

dom seeds. For the predictions, we used θ̂ shown in table 1 along with Eq. (16) and

Eq. (17). To quantitatively summarize our findings we define three evaluation met-

rics; the root mean squared error (RMSE), the median absolute deviation (MAD),

and the coverage metric Dα.

For a particular test input x, let the N -element vector ∆h = ĥ∗−htrue captures

the deviation between the predicted point-estimate (ĥ∗) and true (htrue) spectra.

Then, the RMSE for a particular input is defined via the 2-norm of ∆h,

RMSE =
1√
N
||∆h| |2. (18)

If the absolute value of the ith component of ∆h is denoted by |∆h(i)|, then the

MAD for a particular prediction is defined as,

MAD = median
{︂
|∆h(1)|, · · · , |∆h(N)|

}︂
. (19)

Relative to the RMSE, we expect MAD to under-emphasize outliers, and estimate

the typical deviation at a randomly selected grid point. These two metrics compare

the deviation of the mean prediction or expected value from the true spectra.

The third metric Dα seeks to evaluate whether the uncertainty σ̂∗ associated

with the mean prediction is appropriately calibrated. It is defined as the fraction
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of 100α% credible intervals that contain the true value. A SM that is perfectly

calibrated, and whose error follows a normal distribution, will have Dα ≈ α, where

α ∈ [0, 1], so that a plot of Dα v/s α is a diagonal straight line. Deviations from

this trend quantitatively summarize the dispersion about the mean prediction, and

helps us qualitatively asses whether the SM is over- or under-confident.

To compute Dα, we create a list of Nntest elements, ξ = {∆h
(i)
j /σ̂

(i)
∗,j}, where

1 ≤ i ≤ N and 1 ≤ j ≤ ntest. For a perfectly calibrated model, these scaled

deviations are expected to follow a unit normal distribution, which has a cumulative

distribution function given by cdf(z) = 0.5[1 + erf(z/
√
2)]. For a particular value

of α, Dα is then the fraction of elements of ξ that are less than or equal to ξα =√
2 erf−1(2α− 1).

The mean and standard error for MAD and RMSE are estimated to be 4.5 ±
0.5 × 10−3 and 1.0 ± 0.1 × 10−2 respectively. To contextualize these numbers, the

magnitude of h is O(0.1), so the relative error bars implied by MAD and RMSE

are on average about 10 - 20 times smaller than the magnitude of h.
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ξ= ∆h/σ ∗
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Fig. 6. (a) The empirical distribution of the scaled test deviations ξ (blue histogram) appears to
follow a mixture of two Cauchy distributions (red line), rather than a normal distribution (gray
line). (b) The deviation of Dα (blue symbols) from the straight line corresponding to a normal

distribution reveals finer structure of the empirical data. The red line shows the theoretical Dα

for the mixture of Cauchy distributions fitted to the empirical Dα.

Figure 6a shows the empirical distribution of the ntestN elements of ξ, repre-

senting scaled deviations. Unlike MAD or RMSE, which treat positive and negative

deviations alike, the elements of ξ are signed. The observed histogram is symmetric

about zero, indicating that positive and negative deviations about htrue are equally

likely. Furthermore, ξ is also scaled by the estimated error σ̂∗. We might expect

that these samples to follow a normal distribution with unit variance, depicted by
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the gray line. However, relative to a normal distribution, the empirical distribution

has more probability mass, both near the mean ξ = 0 and far away from the mean

ξ → ±∞.

This implies that for a large fraction of the samples, the observed error is actually

smaller than that implied by a normal distribution. Simultaneously, the fraction of

outliers is also significantly larger suggesting that the distribution is fat-tailed. At

first glance, the empirical distribution appears to follow a Cauchy distribution whose

PDF is given by,

π(x; γC) =
1

πγC(1 + (x/γC)2)
, (20)

where the parameter γC controls the width of the distribution.

Finally, figure 6b shows Dα versus α. If the data were normally distributed, we

would expect it to track the diagonal gray line. The observed Dα shown by the

blue symbols hovers around the diagonal, intersecting it at α ≈ 0.23, 0.5, and 0.77,

besides the two end-points. The intersection at α = 0.5 reflects the symmetry of

the distribution. For small values of α < 0.23, Dα lies above the diagonal indicating

the presence of a fat left tail. Far away from extreme negative outliers, the observed

distribution has a dearth of samples relative to the standard normal. This causes

Dα to “catch up” with the diagonal at α ≈ 0.23. This trend continues, and Dα

goes below the diagonal between 0.23 ≲ α ≲ 0.5 as most of the probability mass

is concentrated near the center which corresponds to α = 0.5. This part is clearly

visible in figure 6a as well.

The symmetry of the PDF about its center is reflected in the symmetry of Dα.

For α in the range [0.50, 0.77], Dα lies above the diagonal, again reflecting the

concentration of the probability mass near the center. For α ≳ 0.77, Dα again slips

below the diagonal reflecting the presence of positive outliers which eventually, and

abruptly, pull up Dα to 1.

Recall that for a given α, the cutoff ξα =
√
2 erf−1(2α−1). Thus, the theoretical

Dα for a Cauchy distribution is given by the cumulative distribution function,

DCauchy
α (α, γC) =

1

2
+

1

π
tan−1

(︄√
2 erf−1(2α− 1)

γC

)︄
. (21)

Unfortunately, a Cauchy distribution with a single γC parameter is not able to

describe the observed Dα. It can either capture the center of the distribution near

α = 0.5, or the outliers near α = 0 and 1. In fact, the true empirical distribution is

best described by a weighted average of two Cauchy distributions which is shown

by the red line in figure 6b,

Dα ≈ 0.3DCauchy
α (α, 0.07) + 0.7DCauchy

α (α, 1.03). (22)

The corresponding PDF of the mixture of Cauchy distributions is also shown in

figure 6a.
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Fig. 7. Variation of MLE estimates θ̂ with training data size n. Components of θ̂ with comparable

magnitudes are grouped together.

3.3. Dependence on Size of Training Data

Thus far, we used a rather small training data set with n = 53 samples. Here, we

explore how GP hyper-parameters, performance metrics and computational cost

change as the size of the training data is varied between n = 30 − 1600. The

particular values of n chosen are 30, 53, 102, 202, 402, 815, and 1606.

3.3.1. MLE Parameters

Figure 7 shows the variation of MLE estimates θ̂ corresponding to the 7 hyper-

parameters as n is increased. Quantities with comparable magnitudes are plotted

together. By and large, values of the components of θ̂ appear to be relatively stable,

and insensitive to n. This is fortunate because computationally, θ̂ is easier to esti-

mate from smaller training datasets. The relative stability of the parameters means

that good initial guesses for θ̂ of large datasets can be obtained by first solving the

parameter estimation problem on a smaller representative subset (say n ≈ 100) of

the training data. Supplying a good initial guess can thus reduce the number of
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Fig. 8. Variation of (a) MAD, and (b) RMSE with training sample size n represented using box-
plots. The red dashed line indicate the RMSE varies as n−0.6. The number of test data is ntest =

251.

iterations required to estimate θ̂ for large datasets, even as the cost per iteration

increases.

The relative stability of the θ̂ with n also helps with interpretation, since it

captures general trends in the data. Meaning can be ascribed to the variance (σ̂2
h ≈

O(10−3)) and length-scales (γ) associated with the individual variables. Thus, for

example, γs ≈ O(10−1) corresponds to extent of log s over which the spectrum

decorrelates. This is quite different from γx,1 and γx,2 ≈ O(1) which correspond to

the normalized chain lengths Z̄1/50 and Z̄2/50. The lengthscales corresponding to

the polydispersities are γx,3 and γx,4 ≈ O(5) are comparable with that associated

with w1.

Remarkably, the values of θ̂ regressed from the largest training data sets are

consistent with those shown in figure 7 for n ≈ 102 − 103. For context, training

the n = 53 dataset costs 3.4 sec, compared with ≈ 3 days required for training the

n = 12480 dataset (see section ?? in SI).

3.3.2. Performance Metrics

Figure 8 summarizes the variation of MAD and RMSE with the number n of train-

ing data points. At a particular value of n, a GP is trained to obtain the MLE

parameters θ̂ shown in figure 7. Let us denote a GP trained with n data points as

GP-SM-n (e.g GP-SM-53 or GP-SM-1606).

We test the predictive ability of each trained GP-SM on ntest = 251 unseen test

data points x∗. At each individual test point, we obtain a MAD and RMSE using

Eq. 19 and Eq. 18. The distribution of the MAD and RMSE over all the ntest test

data is presented in the form of box-plots in figure 8.

As expected, the median values of both MAD and RMSE decrease with n. This

indicates that the predictive ability of the GP-SM improves as it is trained on more
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data. RMSE decreases with n, approximately as n−0.6. The number of outliers cor-

responding to large values of MAD and RMSE remains stubbornly high, regardless

of n. However, recall that both these metrics consider the discrepancy between the

true spectrum and the point-estimate ĥ∗, without regard to the expressed uncer-

tainty.

0.0 0.5 1.0
α

0.0

0.5

1.0

D
α

n=  53
n=  402
n=  1606

Fig. 9. This figure illustrates the deviation of Dα for n = {53, 402, 1606}. The gray line represents
the Dα for a unit normal distribution. For 0.0 ≤ α ≲ 0.5, Dα for GP-SM-402 and GP-SM-1606 lie

below the Dα for GP-SM-53, and for 0.5 ≲ α ≤ 1 they lie above the Dα for GP-SM-53. Therefore,
the distributions of ξ for GP-SM-402 and GP-SM-1606 are more strongly peaked than that for
GP-SM-53. This indicates that as n increases, the fraction of outliers decreases. The intersection

of Dα curves with gray line at α ∼ 0.5 reflects the symmetry of the distributions.

Figure 9 compares the Dα at three different values of n. The blue line corre-

sponding to GP-SM-53 was previously shown in Fig. 6b. The overall shape of theDα

curves is similar. The number of extreme outliers, observed as a “jump” near α = 0

and 1 for GP-SM-53, decreases for GP-SM-402 and GP-SM-1606. Interestingly, the

jump is slightly less pronounced for n = 402 compared to n = 1606. Currently, we

do not have a good explanation for the lack of any trend once n ≳ O(100).
In general, the accuracy of GP-SMs is improved by using larger training datasets.

A major impediment is that the computational cost increases rapidly with the size

of the training data. Numerous workarounds have been devised to circumvent some

of these issues, which can be adapted for our problem in the future. These in-
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clude sparse [Furrer et al. (2006); Gneiting (2002); Kaufman et al. (2008)], low-rank

[Hensman et al. (2013); Seeger et al. (2003); Snelson and Ghahramani (2006); Tit-

sias (2009)], or local [Gramacy and Apley (2015); Nguyen-Tuong et al. (2008); Park

and Apley (2018); Rasmussen and Ghahramani (2001); Snelson and Ghahramani

(2007); Vanhatalo and Vehtari (2008)] approximations.

3.4. Demonstration of SM for Inverse Modeling

Once we have a “forward model” h = m(x) or an h ≈ m̂(x), we can consider using it

for inverse modeling. Here, the original (m(x)) and approximate (m̂(x)) models cor-

respond to the TDD-DR and GP-SM, respectively, as the first step (see figure 1) of

the forward model. One feature of analytical rheology that makes it very attractive

for inverse modeling is that rheology is extremely sensitive to changes in molec-

ular structure. This makes the inverse problem correspondingly robust [Shanbhag

(2010)].

In the typical inverse modeling setup, we are provided an observation ho, and

the goal is to make inferences about x by somehow inverting the forward model, viz.

x = m−1(ho). Nonlinear inverse problems often have multiple solutions. Thus, it is

unwise to pose the inverse problem as an optimization problem, where we search for

the input x to the forward model that results in the best-fit with the observation

ho. A better strategy is to pose the question as a Bayesian inference problem. This

avoids overfitting that may arise from potential uncertainties in the observed data

or model specification.

For example, let ho = m(xo) be the true observed spectrum resulting from a

binary blend described by the input vector xo. Let us subsequently pretend that

we do not know xo, and seek to find the distribution of binary blends that yield

a spectrum consistent with ho. According to Bayes theorem, the distribution of x

that is consistent with the observation ho, is given by

π(x|ho) ∝ π(ho|x)π(x), (23)

where the posterior distribution π(x|ho) is proportional to the product of the like-

lihood π(ho|x) of observing ho given x, and the prior π(x). We assume that the

prior is uniform on the domain used to train GP-SMs, i.e. π(x) =
∏︁

πi(x
(i)). Thus,

π3(x
(3) = ρ1) and π4(x

(4) = ρ2) are uniform distributions U [1.01, 1.5]. Similarly,

π5(x
(5) = w1) ∼ U [0, 1] and π1(Z̄1) = U [5, 50]. Since, Z̄2 < Z̄1, the conditional

distribution π2(Z̄2|Z̄1) = U [5, Z̄1].

As an illustrative example, let us reconsider the test data point xo =

(43.0, 18, 1.15, 1.34, 0.38) originally encountered in figure 5. Thus, we take ho (the

spectrum shown by the gray line in figure 5b) as the “synthetic” observed data for

this illustration. The goal is to infer the distribution of binary blends x that lead

to the same or similar spectra.

First, we consider the inverse problem using the TDD-DR model. For many

nonlinear models, inversion of synthetic output data does not lead uniquely to inputs
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Fig. 10. Gray lines depict 50 of the 500 samples generated using the MCMC method for the (a)

TDD-DR, (b) GP-SM based on n = 53 training data, and (c) GP-SM based on n = 202 training

data. The solid line denotes the target ho spectrum generated using xo = (43.0, 18, 1.15, 1.34, 0.38).

used to generate that data. This will become apparent shortly. Suppose we guess

an input x, and use the forward model to compute the spectrum h = m(x). We

can define the “distance” between h and the target spectrum ho as the Euclidean

distance (2-norm) between the two spectra,

d(x) =

⃦⃦⃦⃦
h− ho

σ

⃦⃦⃦⃦
2

, (24)

where σ is the uncertainty associated with the model prediction. Using this distance

function, we propose a simple form for the likelihood function,

π(h0|x) ∝ exp (−αdd(x)) , (25)

where αd is a scaling constant. Thus, evaluating the likelihood at a sample point x

requires us to evaluate the forward model at that point, and compute the distance

d(x). By construction, the likelihood function is large when the distance between

the two spectra is small. The form assumed here for π(h0|x) is not unique, and any

other reasonable form may be used instead.

When we use TDD-DR as the forward model, we take σ = constant, which has

the effect of subsuming the uncertainty parameter into the constant αd. To deter-

mine αd, which calibrates the distance function, we perform a short precalibration

run by randomly selecting 100 well-dispersed input points x, and computing the

distance function at each x. We set αd = 5/sd, where sd is the standard deviation

of the distances explored in the precalibration run.

We then perform a Metropolis Markov Chain Monte Carlo (MCMC) simulation

to obtain 5000 samples from the posterior distribution given in Eq. (25). The al-

gorithm used is presented in detail in sec. ?? of Supplementary Information. The

choice of αd and proposal moves result in acceptance rates of ≈ 40%. The acceptance

rates are summarized in table ?? of SI.
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Fig. 11. The true MWD obtained from xo is shown by the solid red line. The MWDs corresponding

to the average of MCMC simulations with (a) TDD-DR, (b) GP-SM-53, and (c) GP-SM-202 (solid

black lines) are also shown. The shaded gray region corresponds to the uncertainty of the inferred
MWD.

Figure 10a compares the target spectrum (ho), and the mean prediction (ĥ∗) of

10% of the MCMC samples using the TDD-DR as the forward model. Figures 10a

and 10c repeat this calculation, using GP-SMs with n = 53 and 202 rather than

TDD-DR as the underlying model. Samples appear to straddle the target spectrum

as expected. The spectra sampled by the GP-SM-53 are qualitatively similar to the

(true) TDD-DR model, and quantitatively similar to the more complex GP-SM-202.

The cost of generating one MCMC sample for GP-SM-53 is under 0.2 sec, which is

3.5x smaller than the comparable cost for GP-SM-202.

Finally, figure 11 compares the true molecular weight distribution (MWD)

wL(logZ) with the mean prediction from the MCMC samples, and the associated

error bar. To generate the inferred mean MWD curves, we constructed the MWD

for each MCMC sample, and averaged over all of them. The shaded region repre-

sents the standard deviation computed over all the MCMC samples. Interestingly,

the all three inverse models entertain the idea of a smooth unimodal MWD lead-

ing to ho. Perhaps the smooth form (single observable maxima) of ho favors this

“simpler” interpretation. All three curves miss the high chain length shoulder in

the true MWD corresponding to xo.

TDD-DR, and to some extent GP-SM-202 capture the low molecular weight

part of the MWD rather well. The mean predictions of all three inferred MWDs

underestimate the fraction of high molecular weight chains. The uncertainty as-

sociated with the inferred MWD is lowest for TDD-DR. Nevertheless, if the true

model establishes the best we can expect, the performance of the GP-SMs is quite

satisfactory.
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4. Summary and Conclusions

We explored a GP-based SM for describing the relaxation spectra of binary blends,

and illustrated its use in inverse modeling, where the MWD of an unknown sample is

inferred from a measured spectrum. We used a combination of the TDD-DR model

and the program pyReSpect to obtain the spectrum h(s) from a 5-dimensional in-

put vector x that characterizes binary blends. We used this true model to generate

training data of different sizes between n = 30−1600 via Latin hypercube sampling.

The hyper-parameters θ of a GP-SM with a separable covariance structure were ob-

tained using the training data and MLE. The GP-SM interpolates the training data

by design, and offers reasonable predictions of relaxation spectra with uncertainty

estimates for other test binary blends.

The magnitude of the error as measured by the RMSE and MAD varied be-

tween one and two orders of magnitude smaller than the magnitude of the relax-

ation spectra depending on the training data size. Analysis of Dα suggests that

scaled deviations of GP-SMs follow a PDF that is best described by a sum of two

Cauchy distributions. These PDFs, while symmetric, are narrower than unit normal

distributions near the mean, but also have fatter tails.

The seven hyper-parameters of the GP-SM obtained by MLE are relatively

insensitive to the size of the training data n. This is fortunate because training a

GP-SM, even with the separable covariance assumption, is an order O(N3)+O(n3)

operation. From this observation it is possible to reduce the number of iterations

required to train the GP-SM for large n, by using the optimized parameters from a

small n calculation as an initial guess. Both the MAD and RMSE decrease as the

size of the training data increase, although a large number of outliers persist even

at n = 1606. The shape of Dα versus α is preserved, although the tails become

thinner as n increases beyond 100. In general, the accuracy of the GP-SM models

increases as n is increased.

Finally, we considered the problem of inferring the MWD from synthetic data

ho, which was generated by running the TDD-DR model on a known sample, xo. A

MCMC-based sampling method was used to characterize the distribution of binary

blends that are roughly consistent with the synthetic spectrum. Despite the modest

difference in sampled spectra (figure 10), the MWD suggested (figure 11) by both the

TDD-DR and GP-SM based models are surprisingly similar. In general, GP-SMs

can be several orders of magnitude cheaper, which provides validation for using

SMs for inverse problems in rheology. Interestingly, no big difference is observed

between GP-SM-53 and GP-SM-202, although the generality of this finding needs

to be further tested.
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