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Atmospheric nitrogen (N) and sulfur (S) pollution increased over much of the U.S. during
the 20™ century from fossil fuel combustion and industrial agriculture 1. Despite recent
declines 3%, N and S deposition continue to affect many plant communities in the U.S. 7,
although which individual species are at risk remains uncertain. We used species
composition data from >14,000 survey sites across the contiguous U.S. to evaluate the
association between N and S deposition and the probability of occurrence for 348
herbaceous species. We found that the probability of occurrence for 70% of species was
negatively associated with N or S deposition somewhere in the contiguous U.S. (56% for N,
51% for S). Fifteen percent and 51% of species potentially decreased at all N and S
deposition rates, respectively, suggesting thresholds below the minimum deposition they
receive. Although more species potentially increase than decrease with N deposition,
increasers tend to be introduced, and decreasers tend to be higher-value native species.
More vulnerable species tend to be shorter with lower tissue N and Mg. These relationships
constituted predictive equations to estimate critical loads. These results demonstrate that
many herbaceous species may be at risk from atmospheric deposition and can inform

improvements to air quality policies in the U.S. and globally.

Atmospheric deposition of nitrogen (N) and sulfur (S) are two key drivers of plant biodiversity
decline worldwide after habitat loss and climate change 8. N deposition reduces biodiversity
through several mechanisms !, including soil acidification and subsequent foliar nutrient
imbalances *!'°, increased pest pressures on nutrient-enriched foliage '!, and stimulating growth

of opportunistic species allowing them to outcompete local neighbors through light limitation or
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other processes '>'*. Sulfur deposition primarily reduces diversity by acidifying soils, again

leading to base cation imbalances, as well as frost sensitivity and inhibition of germination %!>16,

In the U.S., levels of N and S deposition have declined after decades of successful air quality
policies enacted under the Clean Air Act *>!7. These amendments have reduced total N and S
deposition in the eastern U.S. by an average of 23.7% and 56.9%, respectively, between 2000-
2002 and 2013-2015 °. Nevertheless, N and S deposition both remain 5-10 times above pre-
industrial levels (i.e., 0.4 kg N ha™! yr'!, 0.1 kg S ha! yr!, 17) across most of the country, and N
deposition trends are flat or increasing in many areas outside of the eastern U.S. >3,
Furthermore, the composition of N deposition is shifting from regulated forms (i.e., oxidized
NOx) to largely unregulated forms (i.e., reduced NHx, except as a portion of particulate matter

which is regulated) >!°.

Current levels of both N and S deposition remain elevated above many known thresholds

17.20-22 " and likely will remain so in the

(termed “critical loads”) for detrimental ecological effects
near future 7?2, To date, most critical loads have been developed for ecosystems or ecoregions
rather than species (2, 16), although species-level estimates are beginning to emerge in Europe
(20, 21). Simkin et al. (2016) compiled a database of herbaceous plant species composition
across 15,136 plots in the contiguous U.S. ’. Comparing this with the spatial gradient of N
deposition they found that total richness had a unimodal association with N deposition — one that
was steeper in more acidic soils and in grasslands compared with forests — and that decreases in
total richness were potentially occurring in 24% of plots 7. However, it was not reported which

among the roughly 4000 species in that dataset are potentially vulnerable, where they occur, their

conservation value, and whether any traits may be associated with sensitivity versus insensitivity.
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Many of these species are too rare to confidently assess, but for those that remain we fill these

critical knowledge gaps with a comprehensive analysis of the Simkin et al. (2016) database.

We found that 348 species had sufficient data to analyze according to our criteria. Of these, 70%
(243 species) decreased with increasing N or S along some portion of the deposition gradient.
For some of these species, however, even the best models don’t explain much variation in the
probability of occurrence (i.e., AUC < 0.7 or R? < 0.1) because species distributions are a
complex function of many factors including but not exclusive to those evaluated here (e.g.,
historical land use, disturbance, ozone, grazing pressures, etc.). Thus, we focused on a subset of
198 species that we considered had “robust relationships” with the predictor variables included
(i.e., AUC > 0.7, R? > 0.1, and monotonically increasing, decreasing, or unimodal relationships
with N; Table 1, S1, Figure S1). Results for all 348 species are in Table S2. Of these 198 species,
54% had a unimodal relationship with N (107 species), 20% had a monotonically increasing
relationship (40 species), 15% had a monotonically decreasing relationship (30 species), and
11% had no association with N deposition (21 species) (Figure 1a-f). The steepness of these
relationships, and the N deposition associated with the highest species occurrence, also varied
widely among species (Figure 1). For S deposition, 62% had negative associations (123 species),
whereas 22% had positive associations (43 species), and 16% had no association with S

deposition (32 species). The steepness of these relationships also varied widely (Figure 1g-1).

Most species had a negative association at some level of N or S deposition received (Table 1).
This suggests that many species may be threatened by N and/or S deposition in the U.S. The
most common joint response by far was a unimodal relationship with N and a decreasing

23,24

relationship with S (41% or 81 species, Table 1). This agrees with ecological theory as well

as empirical "*> and modeling %¢ studies, which show that low levels of N input acts to relieve
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nutrient limitation and enhance growth for many species "-?*. Higher levels of N deposition
reduce these benefits and can acidify and enrich soils with nutrients, progressively excluding
species unable to tolerate or capitalize on the new conditions. The few species that decreased
monotonically with N could be poor competitors in the community that persisted only in low N
conditions. Greenhouse and field experiments demonstrate that such species may be out-
competed due to light limitation brought on by growth of opportunistic neighbors 2. The average
N-response was for a negative association around 10 kg N ha™! yr'! (Figure 1f), a common critical
load from community-level research 2?7, S deposition acidifies soils, explaining the large
number of species that had negative associations with S 2%, The few species with positive
associations with S deposition we hypothesize are acid tolerant species that benefitted from the
loss of competitors, rather than evidence of a fertilization effect from S. S-limitation can occur,
but such cases are rare in natural communities 23°. There is more evidence that a shift towards
P-limitation may occur with high N deposition **3!. In agricultural settings, S-limitation can

occur but only when N and P are abundant *2, which is likely not the case for our plots.

We then calculated N and S critical loads using partial derivatives of the best statistical model for
each species (cf. Simkin et al. 2016 — Supplemental Table S2, SI). Mean critical loads for N
ranged from 3.2 kg N ha'! yr'! (Cirsium arvense) to 17.6 kg N ha! yr'! (Solidago canadensis)
(Figure 2a). The intervals in Figure 2a represent spatial variation in the CL — not error associated
with the mean. Such variation reflects how species can have lower or higher CLs in a particular
location based on covarying factors (e.g., lower CLs in more acidic conditions). This has been
reported elsewhere for habitats in Ireland 3, where the CL for a species may vary widely across

habitats.
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The wide variability for species-level N-critical loads across a species’ range demonstrates that
vulnerability for any given species depends strongly on its environmental context **°. This is
more realistic ecologically — for example, adding 2 kg of N to a strongly N limited site elicits a
different response than would occur at a more fertile site. This wide variation, however, also
cautions against using any single critical load for most species. Instead, this supports using the
partial derivative from multivariate models like we did, which retains relationships with relevant
covariates, allowing one to refine estimates of the critical load using local edaphic or climatic

factors (Table S2; SI, eqn 1-4).

Average critical loads could not be defined for species that monotonically increased or
decreased, because thresholds (if present), are outside the range of the observed data (Figure 2b).
For these species there is no observed threshold in the probability of occurrence, and thus a
critical load cannot be quantified. This limitation is partly explained by the range of
observational data for each species, and partly by our approach. Only monotonic relationships
with S were allowed for ecological and statistical reasons (see SI), and more complex
mathematical relationships (e.g., sigmoid) were not explored, which may have revealed critical
loads for some species. Supplemental analysis revealed that species receiving a minimum N
deposition greater than 4 kg N ha™! yr'! were less likely to have unimodal and more likely to have
decreasing relationships (Chi? = 28.04, P < 0.001; Table S3). Short deposition gradients may be

especially problematic analytically for species that only occur in the western U.S.

Many species-level critical loads reported here and elsewhere are below community-level critical
loads (e.g., ~8-20 kg N ha'! yr'!, 173336) This is expected given that community-level critical
loads are essentially averages over sensitive and insensitive species. Many species critical loads

reported here are lower than those from acid grasslands across Europe (roughly 8 — 22 kg N ha!
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yr'!, 3%), but comparable to those from Ireland (roughly 2.8 — 19 kg N ha™! yr'!, 3%). This may be
explained because most of the plots from the acid grassland study were from Great Britain and
mainland Europe *” where deposition rates are higher (8-35 kg N ha™! yr!), as opposed to the
U.S. and Ireland where N deposition was lower (2-20 kg N ha™! yr'!). The Irish study also found
critical loads of a species could vary widely among different habitats, and bootstrapped intervals
within a habitat were also often 2-6 kg N ha™! yr! wide **. We compared our results with critical
loads for 304 European species (24 from acid grasslands in *® and 280 across many habitats in
Ireland in **). There were only eight species in common between our study and those (Table S4,
Figure S2) and only one that was present across all three (Campanula rotundifolia, Figure 3).
The critical load for C. rotundifolia reported here (7.9 kg N ha! yr'! average, 5.7-14.8 kg N ha!
yr'! for 5"-95" interval) compared well with estimates from Ireland (two habitats: 6.2 and 8.2 kg
N ha! yr'!), and all three estimates were lower than from European acid grasslands (13 kg N ha!
yr'"). The correspondence between our estimates and those from Ireland is encouraging since the
methods were completely independent (i.e., TITAN analysis versus partial derivatives),
suggesting both approaches are capturing similar ecological relationships. One advantage of our

approach is the predictive equation that retains the associations among moderating factors. One

advantage of the TITAN approach is that it is not restricted to any particular mathematical form.

We next assessed the floristic quality of species positively and negatively associated with N and
S deposition. We were primarily concerned with the following question - are species potentially
at risk highly valued natives or are they common or non-native species? We used results
compiled from many plant surveys across the U.S. based on “coefficients of conservatism” (C
values: 0-10) assigned to individual plant species (C;) based on their tolerance to human

disturbance and the degree to which the species represent natural undisturbed habitats **. Higher
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C-scores are associated with higher quality flora and habitats, with non-natives receiving score of
zero. Natives range from 1-10 based on their tolerance to disturbance (higher C-score for lower
tolerance). Of the 137 species that were associated negatively with N along some portion of the
gradient, roughly 84% were highly or moderately valued (i.e., Ci > 7, 4 < C; < 6, respectively).
There was a negative correlation between C-scores and the species average N critical loads (r = -
0.260, P = 0.001), indicating that species of higher conservation value had lower critical loads.
Of the 123 species that were associated negatively with S deposition, ~82% were of moderate-to-
high conservation value. These include Muhlenbergia cuspidata, Lysimachia quadriflora, and

Prosartes lanuginose, all highly valued native species (average C>7.8) of North America.

To determine spatial patterns of vulnerability to N and S deposition, we calculated the
percentage of species that were positively or negatively associated with local deposition in each
12 km x 12 km grid cell. Overall, more species were positively than negatively associated with N
deposition. But, most eastern areas had significant fractions of decreasers (>15%, Figure 4a and
4c). Out of the 3,122 grid cells containing one or more of the focal 198 species, 75.8% had an
exceedance for one or more species, and 24.3% had an exceedance of 50% or more unique
species in the grid cell. Hotspots of negative associations with N deposition included southern
Minnesota, eastern West Virginia, and scattered grid cells in the Northeast, Mid-Atlantic, and
Midwest. There was wide variation in the fraction of species potentially at risk even in high
deposition areas, suggesting that fine scale processes affect local risk (e.g., differences in species
composition, historical land use, the degree of nutrient limitation, and other stressors such as
ozone that were not included 7*). Lower fractions of species at risk were estimated in the west,
likely partly due to shorter N deposition gradients that did not make our threshold for assessment

(see SI).
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Hotspots of decreasers with S deposition occurred throughout the U.S., even in relatively low
deposition areas in the west (Figure 4b). Our leading explanation for this is the dominant
mechanism for N is through eutrophication while the dominant effect for S is through
acidification — thus, species and communities may benefit from low levels of N deposition which
transitions to harm at higher levels, while species and communities are generally harmed by S
deposition. Another plausible explanation is S deposition was not allowed to have complex
nonlinear patterns (e.g., sigmoid, unimodal) that would facilitate a flat or positive response
transitioning to a negative response. Notably, we found higher fractions of increasers (>50%)
with S in historically highly polluted sites like West Virginia, which could be indicative of a

local community that has already shifted towards acid tolerant species.

Of the 198 species with robust responses, critical loads were exceeded at more than half the
observed sites for 17% (34 species) and 55% (108 species) for N and S, respectively. Because
these plots are not a random sample across the conterminous U.S. (see Figure 3), it is not

possible to say how this translates to vulnerability across the entire range of each species.

Finally, we determined if simple predictive relationships existed between species traits and their
potential sensitivity to N deposition. Such a relationship would yield a predictive tool for
decision makers to apply to species lacking plot occurrence data across a deposition gradient. We
found that simple plant functional groups were generally poor predictors (all R?<0.02) of either
the shape of the response or the CL (Table S5), although natives tended to have more negative
relationships (P=0.036) and lower CLs (P=0.028) than introduced species, perennial species
tended to have lower CLs than non-perennials (P=0.046), and legumes tended to have more
decreasers (P=0.104). These broad trends are in line with ecological theory, where native and

perennial species tend to have traits focused on N-retention and slower growth, and legumes rely
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partly or wholly on fixing atmospheric N, both strategies that may be more susceptible to
competitive exclusion from opportunistic non-native or annual species ****°. Although not
inconsistent with ecological theory, these relationships were notably weak (e.g. not all natives
decreased with N deposition and invasives increased), reinforcing the notion that these broad
groups may be less helpful than we’d like in describing ecological responses. We found
physiological traits were much more predictive of the critical load, and led to several predictive

equations:
(1) CL(N) = 6.20 + 7.32*LMgC + 0.06*VH; AdjR* = 0.36; P < 0.001; N=37
(2): CL(N) = 5.03 + 2.63*LNC; AdjR* = 0.22; P<0.001; N = 55
(3): CL(N) =4.28 + 2.51*LNC + CSj; AdjR* = 0.32; P <0.001; N=55,

The best overall model (equation 1) predicted the N critical load was a two-factor model with
leaf magnesium content (LMgC, P<0.001) and vegetative height (VH, P=0.06). Leaf Mg is
strongly associated with photosynthetic rates *!, while vegetative height influences access to
light. Thus, species that were more potentially vulnerable had lower photosynthetic rates and
were shorter-statured as reported in many other site-specific studies '22%?*3 Leaf magnesium,
however, is not commonly available for most species, and photosynthetic rates are also
correlated with leaf N > (LNC and LMgC were highly correlated in our study: r=0.57, P=0.001).
To develop an operational equation for wider use we examined relationships based on more
widely available traits (i.e., LNC, SLA, and the six categorical traits). We found that LNC was
also highly predictive (equation 2), and adding a factor for cotyledon status (monocot, dicot,
fern; CS;) improved the model further (equation 3, CL(N) =+1.7, +0.7, and -2.8 for dicot,

monocot, and ferns respectively) with no significant interaction in slope (P=0.36). Nitrogen CLs
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from the three equations were also correlated (all r > 0.65) and generally within +/-1 and +/-2 kg
N ha! yr'! of one another (for 56% and 80% of species, respectively). This is the first instance

we know of reporting a predictive equation for critical loads of individual plant species.

It is important to note our assessment of 348 species represents only about 10% of the species in
the initial dataset, and it is unknown whether species that were not assessed are more or less
vulnerable to N or S deposition. Most species were excluded on the basis of rarity (3,643 had
fewer than 50 presences), but many also had deposition gradients that we considered too short
relative to interannual variation to assess (3,433 had N deposition gradients <7 kg N ha™! yr'!).
However, evidence from N fertilization experiments suggests that rarer species are more likely to

be lost with N addition '3,

It is difficult to confidently assign causality to deposition in a gradient study such as ours 7. We
addressed this by assessing correlations among predictor variables individually for each species
and summarizing these as variance inflation factors (VIFs) for nitrogen (VIF-N) and sulfur (VIF-
S) (see SI). Lower VIFs mean less of a change for spurious correlations to affect results. There
were larger correlation concerns with S than N, with fewer species under the conventional or
conservative cutoffs for S as opposed to N (Table S6). Comparing the results for the 22 species
with low multicollinearity (i.e., both VIFs < 3) with the full set of 198 species yielded several
insights. The proportion of species with decreasing and unimodal relationships with N was
nearly identical between the two sets of species (14% vs. 15% for decreasers, 50% versus 54%
for unimodal, Table S6). The same was true for species with decreasing relationships with S
(Table S6). 'However, in the set of species with low VIFs we found no species that increased
with S, and no species that showed no change with N (Table S6). Thus, results are likely robust

for species that decrease with N or S and for species with unimodal N-relationships, but results
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for species that increase with S or show no change with N may be interpreted cautiously. Given
the large numbers of species tested, we also tested our results for possible Type I errors using a
Holm Bonferroni multiple comparisons adjustment **, and found that 66% of species
relationships with N remained significant after such an adjustment (see SI). Given decades of
research documenting that climate, soil pH, and atmospheric deposition affect plant communities
(2, 33, 50), we assume relationships that lost significance after adjustment are likely still

ecologically valid.

Thus, even though a correlative study such as ours cannot confidently assign causality, the

13,44-46

confluence of findings from controlled experimental manipulations , gradient studies such

33,37,47 48,49

as ours , communities tracked through time as deposition changes , and dynamic

modeling 26->°

, all suggest that N and S deposition alter plant community composition. We found
that 70% of the 348 species assessed, and 85% of the 198 species that had a robust relationship,
were negatively associated with N and/or S somewhere in the contiguous United States. Our
results are unprecedented at this scale and in numbers of species assessed in the U.S., strongly
indicating widespread vulnerability to N and/or S deposition, and that species respond differently
based on local environmental context. The wide range of thresholds even within a species
strongly suggests that potential vulnerability is linked to local edaphic factors and atmospheric
co-pollutants. This work can help inform the review of the U.S. Environmental Protection

Agency's secondary standards for oxides of nitrogen, oxides of sulfur, and particulate matter’! to

identify species and regions of particular concern from these stressors to natural ecosystems.

Methods

Data assembly and species filtering
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Simkin et al. (2016) compiled data from a variety of sources to develop a consolidated dataset
that included plot level information for species composition (percent abundance), temperature,
precipitation, soil pH, and N deposition for 15,136 plots nationwide. All variables were selected
to represent long term conditions at a site. Temperature and precipitation were 30-year normals
from PRISM *2, soil pH was from a combination of locally assessed empirical measurements and
SSURGO 7, and N deposition was calculated as the sum of the 1985-2011 mean annual wet
deposition interpolated from NADP plus 2002-2011 CMAQ modeled mean annual dry
deposition ’. Updated deposition estimates from the Total Deposition project (TDEP>?) were not
available at the time of Simkin et al. (2016), but Simkin et al. (2016) reported good
correspondence between our estimate and TDEP (i.e., r2 = 0.89, TDEP(2000-2012) =
SimkinNdep(1985-2011)*0.91 + 0.3, 7°%). Total S deposition was calculated in the same manner

as N deposition.

To filter plots and species to a subset to analyze, we restricted plots to those that were 100-700m?

as was done in Simkin et al. (2016) to reduce effects of species-area relationships, and removed
all taxonomic groups that were only identified to genus or functional group. We excluded rare
species by removing species with fewer than 5 records overall, and sparse species that did not
have at least 5 records or comprise 5% of records in at least one Alliance using the National
Vegetation Classification system >*. The second condition is needed because in a
presence/absence dataset such as ours, we needed to identify the “core community” from which
to draw the absences. This filtering reduced the number of plots to 15223 and species to 1027.
We then required that each species span an N deposition gradient of at least 7 kg ha™! yr'!,
reducing the number of plots to 14041 and species to 348. The choice of a 7 kg ha™! yr! gradient

was arbitrary, but was guided by the assumption that the spatial gradient of deposition should



305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

exceed inter annual variation in N deposition (often 2-3 kg ha™! yr'!, %) by roughly double to

detect a spatial trend. See SI for more details.
Species analysis

We performed binomial generalized linear models (GLMs) separately for each species on
presences and absences from the set of Alliances that were considered its core community. We
ran all possible models using 12 candidate terms: N deposition (Ndep), S deposition (Sdep),
precipitation (P), temperature (T), soil pH (pH), Ndep?, P2, T2, pH2, Ndep*pH, and Sdep*pH,
and Ndep*Sdep. Rationale for individual terms is described in the SI. To prevent model
overfitting, we required there to be at least 5 detections per model term (e.g., for the full model
with all 12 predictors plus the intercept, the species was required to have 65 observations). We
compared all remaining models using AICc (Akaike Information Criterion) and AUC (Area
Under ROC Curve) and selected the best model as the one that optimized both AICc and AUC.
We did this by first examining all models with an AICc within 2.0 of the best overall model
(which are considered statistically indistinguishable, %), and then selecting the model with
highest AUC. We assessed bivariate correlations among predictors using Pearson’s correlations
between N or S and all other factors, and multivariate correlations among predictors using
Variance Inflation Factors (VIFs) between N or S and all other main effects in the best model.
We interpret our results using a conventional cutoff for VIF of 10.0 °” and a conservative cutoff
of 3.0. A VIF of 10.0 and 3.0 mean that 1/10™ and 1/3™ of the information, respectively, in the
predictor is uncorrelated with other predictors. Given the large number of species assessed, we

checked for multiple comparisons using a Holm-Bonferroni adjustment *3.

Critical loads estimation
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Critical loads are formally defined as “quantitative estimates of exposure to one or more
pollutants below which significant harmful effects on specified sensitive elements of the
environment do not occur according to present knowledge” >®. Here we interpret the N
deposition value above which the probability of occurrence potentially declines as an estimate of
the critical load. We estimated the critical load using the same approach in Simkin et al. (2016),
by taking the partial derivative of the best statistical model with respect to N and to S deposition
and solving for N or S deposition. Using this approach, the critical load can be an expression,
where the deposition value depends on other covarying terms (e.g., lower under more acidic

conditions or when S deposition is already high). See SI for further details.
Assessment of floristic quality

We used “coefficients of conservatism” (C-scores: 1-10) from various Floristic Quality
Assessments (FQAs) conducted across the U.S. FQAs are plant surveys conducted by
professional botanists to determine the quality of the flora in a particular area *, usually as part
of the process of applying for a state or federal permit. C-scores are assigned to individual plant
species by professional botanists based on their tolerance to human disturbance and the degree to
which the species represent natural undisturbed habitats **. Non-native species are assigned a
score of zero, and natives are assigned a score from 1-10, with 10 being the highest conservation
value. Freyman et al. (2016) compiled C-scores from 30 inventories across the country
representing >100,000 species into an online tool called the Universal Floristic Quality
Assessment (FQA) Calculator (https://universalfqa.org/about). We used this database to assess
the C-scores for all 348 species analyzed in our study, averaging across inventories if the C-score

for a species differed across inventories. We consider species with C-scores from 7-10 and 4-6 to
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be of “high” and “moderate” conservation value, respectively (see SI for more information and

59).
Relating plant traits to critical loads

We ran three analyses to relate plant traits to critical loads. First, using the focal 198 species, we
used Contingency Analyses to relate the shape of the relationship (i.e., increase, decrease, flat,
unimodal for N; increase, decrease, or flat for S) to six plant functional groups from the USDA

PLANTS database (https://plants.usda.gov/): (1) functional group (2 levels: forb, graminoid), (2)

taxonomic group (monocot, dicot, fern), (3) invasive (yes, no), (4) life history (perennial, non-
perennial), (5) native status (native, non-native), and (6) whether the species was in the Fabaceae
family or not (i.e., to capture the potential for N-fixation). Second, we used ANOVA to assess
whether the average CL for the focal 198 species differed among the same six plant functional
groups above. Results are in Table S5. The highly imbalanced composition of the different
subgroups limited our ability to examine combinations of characteristics (e.g., introduced
grasses). Third, detailed trait information was available for a subset of 98 species for nine traits:
leaf nitrogen content (LNC), leaf carbon content (LCC), specific leaf area (SLA), vegetative
height, (VH), leaf lignin content (LLC), leaf phosphorus content (LPC), leaf calcium content
(LCaC), leaf potassium content (LKC), and leaf magnesium content (LMgC). We used trait
information from one region (Wisconsin, Don Waller pers comm) rather than from different
geographic locations (e.g., the TRY database, ¢°) to limit the degree to which geographic
variation in trait values could confound variation among species. We ran all possible linear
models relating 16 traits (i.e., 6 plant functional groups above, 9 physiological traits, and the

species C-score) as candidate predictors, to the average CL from each species. We compared
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371  models with AICc and explored many different competing model structures. Not all

372  combinations of traits were available for all models, explaining the differences in sample sizes.
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Figure Legends

Figure 1: Species response curves for nitrogen (177 species, a-f) and sulfur (166 species, g-
i). For N, response types are decreasing (a, 30 species), unimodal (b-d, 107 species), or
increasing (e, 40 species). Species with unimodal relationships are split into three panels based
on the N deposition where probability of occurrence was highest to improve readability (b: peak
at 3.1-10 kg N/ha/yr, 39 species; c: peak at 10.1-12 kg N/ha/yr, 32 species; d: peak at 12.1-19 kg
N/ha/yr, 36 species). For S, response types are decreasing (g, 123 species) or increasing with S
deposition (h, 43 species). The average response across all species is shown for N (f) and S (i) as
a solid black line, and the 25th and 75th percentiles are shown in dotted black lines, (individual
species curves from panels a-e and g-h are shown in gray). Other factors are evaluated at the
species-level average. Species with no relationship (21 and 37 species for N and S, respectively)

or a “U” shaped relationship with N (45 species) are not shown.

Figure 2. Spatial variation in species-level nitrogen critical loads. Nitrogen critical loads for
(a) 107 species with a unimodal shaped relationship and (b) 50 species with a monotonic
relationship that either decreased (V), or increased (A) with N deposition. In (a), the mean
(circle), min and max (bars), and 25™ to 75 percentile range (box) represent spatial variation
(not error) in the critical load based on covarying factors that affect sensitivity (more sensitive
species have lower critical loads). In (b) only point estimates are shown because the CL for
decreasers is below the minimum N deposition, and the CL for increasers is above the maximum
(how far outside of this range is not known). The 20 species with a “see-saw” relationship are not

shown because the average CL is not meaningful.

Figure 3: Detailed example of species response. GLM results for Campanula rotundifolia

(common name: harebell). Shown above are the marginal probabilities of occurrence
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individually by term from the best model for N deposition (a), N x pH (b), Nx S (¢), S
deposition (d), S x pH (e), soil pH (f), precipitation (g), and temperature (h). All terms P<0.01
(Table S4). Black lines in main effect plots are average response and red lines are 95" CI. For
interaction terms (b, c, e) the effect of the modifying term is shown as separate quartile lines
(Q1-Q4). The best model is shown below the species name. Also shown is a photo of the species
(i), a range map from the USDA (j, "), and a plot map from this study (k). C. rotundafolia is a
northern latitude wildflower that grows in drier, low nutrient soils.®? This species had a hump
shaped relationship with N (average CL = 7.9 kg N ha™!' yr''; 10%-90" CL = 5.9-10.6 kg N ha™! yr’
1, and a negative relationship with S. Interactions were statistically significant with little effect
on marginal relationships, except for the N x S interaction, where the eutrophication effect was
stronger (i.e., higher peak and lower N CL) if S deposition was low. The 10""-90'" interval
reported here is similar to that reported for C. rotundafolia in Ireland ** and lower than that found

in acid grasslands across Europe *¢. See Figure S1 for results for all 198 species.

Figure 4: Geographic variation in sensitivity to N and S deposition. Shown are the percent of
species that decrease (a) or increase (¢) in probability of occurrence with increasing N
deposition, and decrease (b) or increase (d) with increasing S deposition. Plots were aggregated
within a 12 x 12 km grid cell and unique species were only counted once if they were potentially
vulnerable anywhere in the cell. Note the color ramps are flipped between decreasers and
increasers, with hotter colors denoting negative effects (i.e., more decreasers and fewer

increasers, most species assessed were native).
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Table 1: Summary of responses and vulnerability to N and S deposition. Shown are the
number of species out of the 198 with robust results for N or S that monotonically decreased,
showed no response, monotonically increased, or had a unimodal relationship (N only) with N or
S deposition. Shadings represent qualitative levels of vulnerability: high (red - decrease with
both), moderate (orange - decrease with one and unaffected by the other), conditional (yellow -
either contrasting relationships or conditional on the rate of deposition), or neutral (grey - no
relationship with either). Species that partially benefit (light green - increase with one and
unaffected by the other), or strongly benefit (dark green, increase with both) are also indicated.
Species with “U-shaped” N relationships (45 species) are omitted as not ecologically realistic,

and species names in each category are in Supplemental Table S1 and S2.

S relationship
Decrease None Increase Total
o | Decrease d 5 (3%) 14 (7%) 30(15%)
G | None 5(3%) | 15 (8%) 1(1%) 21(11%)
2 | Increase 26 (13%) | 6(3%) 40 (20%)
2 | Unimodal 81 (41%) 6 (3%) 20 (10%) 107 (54%)
= Total 123 (62%) | 32(16%) | 43(22%)| 198 (100%)
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Figure 3
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Supplemental Information

Contents:

Supplemental Material and Methods

Table S1: Individual species curve results

Table S2: Full table of results

Table S3: Contingency Analysis on whether the minimum N deposition affected the
shape of the curve that was reported

Table S4: Comparison of US and EU critical loads for eight species reported in both
regions.

Table S5: Table of statistical results of how different species Plant Functional Groups
affected vulnerability to N

Table S6: The percent of species with different relationships either from the set of 22

species with low VIFs or from the 198 focal species.

. Figure S1: All species curves

. Figure S2: Comparison of our average N critical loads with those from Europe estimated

using TITAN.

10. Figure S3: Map of the 14,041 plots analyzed in this study.

11. Figure S4: Numbers of unique species increasing, decreasing, and the difference

(decreasing — increasing) in each 12 x 12 km grid cell.
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Supplemental Methods:

Data assembly. We compiled data from a variety of sources to develop a consolidated dataset

that included plot level information for species composition, temperature, precipitation, soil pH,
and N and S deposition. Vegetation data came from multiple sources and used the same initial
site filters as Simkin et al. (2016). Using the same sources and approach as Simkin et al. (2016),
we overlaid the coordinates of each vegetation sampling site onto our modeled deposition and
climate raster data to extract total N deposition (wet plus dry), S deposition (wet plus dry), mean
annual precipitation, mean annual temperature, and soil pH. Total N deposition was calculated as
the sum of the 1985-2011 mean annual wet deposition interpolated from NADP plus 2002-2011
CMAQ modeled mean annual dry deposition ’. The mismatch in years between wet and dry N
deposition was because of a desire to capture the long-term deposition experienced at a site
(which includes the 1980s and 1990s), and the fact that earlier years for dry deposition nationally
from CMAQ are not available. Comparisons with other years (e.g., most recent 5 years) and data
sources (e.g., TDEP), was conducted in the original Simkin et al. (2016) effort and compared
well (see SI in Simkin et al. 2016). Simkin et al. (2016) reported our estimated total N deposition
correlated well with TDEP (i.e., r2 = 0.89, TDEP(2000-2012) = SimkinNdep(1985-2011)*0.91 +
0.3, 3). Total S deposition was calculated in the same manner as N deposition. Mean annual
temperature and precipitation were extracted from the 1981-2010 PRISM climate normals 2.
Soil pH was measured on-site or extracted from SSURGO © if local field samples were not
available. For further details see Simkin et al. (2016). To determine the potential range of a
species, we calculated the number of detections and non-detections of each species in each
community alliance following the National Vegetation Classification System >*. Because many

species are not nationally distributed, including the entire database would have included
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absences beyond the known range of the species. Thus, alliances where a given species was

almost always absent (see detailed criteria below) were excluded for that species.

Data processing. The 16,395 unique sites and 4,730 “species” in the initial dataset, were filtered

to identify a robust subset of species for further analyses. First, as in Simkin et al. (2016) we
restricted plots to those that were 100-700m? to reduce effects of species-area relationships,
reducing the number of plots to 15,980 and species to 4,334. Of particular note, many of the
California sites were excluded from this analysis because of the smaller plot sizes (15-68 m?)
that introduced complications with plot area. Second, we removed species that were only
identified to genus or classified in broad categories (e.g., “Forb”), reducing the number of plots
to 15,946 and species to 3,945. Some of these were included in Simkin et al. (2016) because that
effort focused on total species richness, and if there was an additional species that was only
identifiable by functional group, that would be included in Simkin et al. (2016) but excluded
here. Third, because rare species have low sample sizes, the modeled response to climate or
deposition is less likely to be reliable, so these were excluded from the analysis. We excluded
rare species using two methods, by removing (a) species with fewer than 5 records overall, and
(b) species that did not have at least 5 records or comprise 5% of records in at least one Alliance.
The Alliance condition is present because with presence/absence analyses such as this one where
most species are not nationally distributed, we needed to identify the “core community” from
which to draw the absences. This third filtering step reduced the number of plots to 15,223 and
species to 1,027. Most of the reduction was from very rare or sparse species, with 1,781 species
having fewer than 5 observations, and the remaining not having enough observations in any
Alliance to assign a core community. We then required that each species span an N deposition

gradient of at least 7 kg N ha™! yr'! to increase the chances of detecting a response, reducing the
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number of plots to 14,041 and species to 348 (Figure S3). The choice of using a 7 kg N ha™! yr!
gradient was arbitrary, but balanced conflicting objectives to focus on species where we were
likely to see a pattern (encouraging a long gradient), but that included a large number of species
(encouraging a short gradient). Given that inter annual variation in N deposition can be 2-3 kg N
ha! yr'! 3° we felt that the gradient should at least double what is experienced across years at any
given site (i.e., 4-6 kg N ha™! yr'"). Shorter gradients may be sufficient in less polluted sites in the
west, but we wanted to apply a common approach throughout the contiguous U.S. We did not
consider the range of S deposition in the filtering process; however, N and S deposition are often
correlated and so a similar span for S deposition resulted (range > 5.9 kg S ha™! yr'! for all
species). We recognize that there are many insights that remain to be found with the rarer and
sparsely distributed species, and/or examining shorter deposition gradients, but feel that

beginning with a species set with robust data is the appropriate place to start.

Data Analysis. We performed binomial generalized linear models (GLMs) separately for each
species on presences and absences from the set of Alliances that were considered its core
community (described above). GLMs extend the linear regression framework to variables that
are not normally distributed; GLMs are commonly used to model binary data, such as presence
absence data. We ran all possible models using 12 candidate terms: N deposition (Ndep), S
deposition (Sdep), precipitation (P), temperature (T), soil pH (pH), Ndep?, P2, T2, pH?, Ndep*pH,
and Sdep*pH, and Ndep*Sdep. Quadratic terms (same as “unimodal’) for Ndep, P, T, and pH
were included to allow for positive and negative effects for Ndep, and to capture the possibility
for species to have an “optimum” precipitation, temperature, and soil pH for their presence. The
three interactions were selected to allow for the Ndep and Sdep effects to vary with pH

(Ndep*pH, Sdep*pH) and for Ndep and Sdep effects to depend on the other (Ndep*Sdep).
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Additional terms in a full second-order model were considered (e.g., Ndep*T, Ndep*P, T*P,
Sdep”2) but not included because of high multicollinearity, a lack of theory supporting such
interactions, and/or our focus on the effects of atmospheric deposition of N. To prevent model
overfitting, we required there to be at least 5 detections per model term. If this condition was not
met, then the model complexity was reduced until the condition was met (e.g., if there were only
15 presences then the most complex model for that species would have three terms). Most of the
species requiring model simplification did not have “robust relationships” described below. We
compared all remaining models using AICc (Akaike Information Criterion) to estimate model
quality relative to other models and AUC (Area Under ROC Curve) to summarize the accuracy
of the model. ROC is the receiver operating characteristic that shows the ability of a quantitative
diagnostic test to classify subjects correctly as the decision threshold is varied). We selected the
best model by first examining all models with an AICc within 2.0 of the best model, and then

selecting the model with highest AUC.

For some of the 348 analyzed species, even the best model as assessed by AICc and AUC is not
very predictive with the set of predictors we evaluated and responses of these models are not
further summarized. Specifically, model quality was determined to be “robust” if three criteria
were all met: (1) AUC > 0.7, (2) an estimated McFadden’s R? > 0.1, and (3) the nitrogen
response was not “U” shaped. There were 243 species that met conditions #1 and #2. Of these,
there were 45 species with “U” shaped N responses and thus 198 that constituted the species with

“robust relationships” for which we report N and S results.

We used two methods to assess multicollinearity between Ndep, Sdep and other variables for
each species. These were: (1) correlations of N and S deposition with other variables

(precipitation, temperature, and pH), and (2) variance inflation factors (VIFs) for N and for S.



732 VIFs measure the amount of multicollinearity in a set of multiple regression variables. For best
733  models that contained N or S deposition, VIFs were calculated by regressing N or S deposition
734 against the other main effect terms included in the best model (e.g., N dep ~ intercept + S dep +
735  precip + temp + pH), and using the R? from that model in the equation for VIF (i.e., VIF = 1/(1-
736 R?)). For species with a correlation between N or S deposition and any other variable that is

737  greater than 0.4-0.6, and/or with a VIF of 3.0 or more, the causal effect of atmospheric

738  deposition may be considered in question but not determined (i.e., it could be a spurious

739  correlation, or it could just be a correlation). Many textbooks recommend a conventional VIF
740  cutoff of 10.0 °7, but we also considered a VIF cutoff of 3.0 to be more conservative. We found
741  that 167 and 98 species met the conventional and conservative VIF criteria for N deposition,
742 respectively, and 61 and 29 species met the corresponding criteria for S deposition. Twenty-two

743  species met the conservative criteria for both N and S (Table S6).

744  Given the large number of species tested, we checked our N results using a multiple comparisons
745  approach. Specifically, we used the Holm-Bonferroni correction, which adjusts for family-wise
746  error rates **. We had to check results separately for each relationship type (i.e., linear, hump,
747  saddle), given that different P-values are ranked and compared for different relationship types.
748  Specifically, the linear N terms are compared for increasing and decreasing relationships, the

749  quadratic N terms are compared for hump-shaped relationships, and the N-interaction terms are
750  compared for saddle species (e.g., N*pH, for a species whose N response depended on soil pH).
751  For hump-shaped species, we found that of the 94 species with conventionally significant

752  quadratic N terms (i.e., P <0.05), 62 remained significant after adjusting for multiple

753  comparisons (see Table S2). There were 13 species for which the quadratic N term was not

754  significant at P = 0.05, and thus multiple comparisons was not performed. However, it is



755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

important to note that we are using an information theoretic approach based on AIC to select the
best overall model; thus, even though the quadratic N term was not conventionally significant
(i.e., P =0.05), it was in the best overall model and thus included in our assessment. For species
with a linear relationship with N, we found that of the 30 species with a linear N term significant
at P <0.05, 17 remained significant after adjusting for multiple comparisons. For species with a
see-saw relationship with N, we found that 16 of 20 relationships remained significant after

adjusting for multiple comparisons.

It is also worth mentioning that we assert that adjusting for multiple-comparisons is a useful
cross-check, but not one that changes our findings. All the terms included in the models are
known to affect species abundances; thus, the relationships found are likely not a result of
spurious correlations brought on by multiple comparisons of unrelated factors. Furthermore, the
information-theoretic approach used here (as opposed to null-hypothesis testing approach)
assumes that the best model is among those being tested. Thus, for completeness we include all
P-values for all terms in Table S2. Most relationships retained conventional statistical
significance under null-hypothesis testing — for example, of the 107 species with a hump shaped

relationship, 94 had a P-value for the N? term that was less than 0.05.
Calculating species critical loads

To calculate the critical load for a given species, we followed the same approach in Simkin et al.
(2016), by taking the partial derivative of the best statistical model with respect to N and to S
deposition and solving for N or S deposition. We briefly summarize here the approach using N

deposition and a linear model as an example (eqn. 1-3).
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(1) Y = By + BN + BopH + B3T + B4P + BsS + BsN? + B,pH* + BgT? + BoP? + -

BioN * pH + 11N = S + 1,5 * pH
ay
() PYvi B1+ 2BeN + BiopH + B11S

(3) B1 + 2B¢N + B1opH + B115 <0

The best statistical model for any given species describes how various factors (i.e., Ndep, Sdep,
T, P, pH) affect the occurrence of that species (eqn. 1). The partial derivative with respect to
Ndep of the best statistical model describes how the probability of occurrence for a species
changes with N deposition (eqn. 2). Setting that expression to less than zero (eqn. 3) changes the
meaning of the equation to now describe the conditions under which the probability of
occurrence decreases. Any combination of variables that satisfies the inequality in eqn. 3
indicates conditions where the probability of occurrence is decreasing. For species with a
significant negative quadratic N term (i.e., a “unimodal” shaped species, S < 0), solving for N,
gives the value of N deposition above which the probability of occurrence declines for a species,

which we interpret as an expression for the critical load (eqn. 4).

@ CL(N) =N > Bl+31°§;’+3115
- 6

For species without a significant negative quadratic N term (i.e., B¢ = 0), then eq. 4 does not
apply, but equation 3 can still be used to find combinations of variables that satisfy the
inequality. In these cases, the relationship with N is either monotonically increasing or
decreasing depending usually on the sign of the 8 term. In these cases, the CL is assigned as in
Pardo et al. 2010 as less than the minimum N dep experienced (for monotonic decreasing

relationships), greater than the maximum N dep experienced (for monotonic increasing
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relationships), or as “NA” (for flat relationships). For species that have a non-flat relationship
with N dep (or S dep), a species is considered to be “decreasing” if N dep is above the critical
load, and “increasing” if N dep is below the critical load. In rare cases, species with monotonic
relationships may flip directions (e.g., from decreasing to increasing, or vice versa), depending
on the sign and magnitude of the interaction terms with N (f;, and ;7). In these cases, the
relationship can be a “see-saw” where the species either increases, or decreases (21 species for
N, 37 species for S, 48 total [10 had both N and S see-saw relationships]). For these species,
there was generally a dominant relationship (i.e., either increasing or decreasing), which is how
these species were categorized in Table 1 (but see Supplemental Table 2 for full information).
Furthermore, for see-saw species the distribution of the CL is bimodal, either being below the
minimum (if it is decreasing) or above the maximum (if it is increasing). Thus, we did not
calculate an “average CL” for these see-saw species as they are misleading, albeit

mathematically calculable.
Assessment of conservation value

Floristic quality assessments (FQAs) are conducted by professional botanists to determine the
quality of the local flora in a particular area, often at the behest of a state or federal agency (e.g.,
US Forest Service and the Fish and Wildlife Service) for environmental assessments, planning,
or permit reviews). They are based on “coefficients of conservatism” (C values: 1-10) assigned
to individual plant species based on their tolerance to human disturbance and the degree to which
the species represent natural undisturbed habitats **. The most conservative species (C values >7)
are typically found under long unchanged conditions similar to those under which such species
and communities evolved. In contrast, the least conservative species (C values <3) tend to be

widely distributed and adapted to many conditions including higher levels of anthropogenic
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disturbance that usually eliminate more conservative species. We used the online database from
5% to assess the C-scores for all 348 species analyzed in our study (Table S2). We compared the
species in our dataset with all inventories in the FQA Calculator. Since different species can have
different values (i.e., C-scores) in different regions, we averaged the C-scores across regions.
The negative correlation between C-score and the average CL may be spurious, since C-scores
for species found in disturbed habitats tend to be lower. That being said, the botanists conducting
FQAs are often discerning whether a site is “perturbed” or not on the basis of severe perturbation

(e.g., bulldozing, toxic spills), not more subtle perturbation from atmospheric deposition >°.

Examining whether traits predict vulnerability

We used two overall approaches to explore how plant functional groups and physiological traits
are associated with sensitivity to N deposition: (1) univariate analyses comparing how six broad
plant functional groups (PFGs) are related to either the shape of the relationship (i.e., categorical
Contingency Analysis for four shapes: increase, decrease, flat, unimodal) or the average CL (i.e.,
ANOVA relating the same six groups to the average CL), and (2) general linear models (GLMs)
to examine how the relationship between these six plant functional groups plus an additional 10
physiological and quantitative traits related to the average CL. For the first approach, we used

the USDA PLANTS database (https://plants.usda.gov/) to collect basic information on eight

species characteristics for the 198 species with robust results: (1) functional group (2 levels: forb,
graminoid), (2) taxonomic group (monocot, dicot, fern), (3) federal noxious status (listed, not
listed), (4) invasive (yes, no), (5) threatened and endangered (listed, not listed), (6) life history
(perennial, annual, biennial, mixed), (7) native status (native, non-native), and (8) whether the
species was in the Fabaceae family or not (i.e., to capture the potential for N-fixation). There

were no threatened and endangered species or federal noxious species among our filtered set of
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species; thus, these categories were removed from the analysis. We then analyzed differences
among levels within each grouping using Contingency Analyses (Pearson’s and Likelihood), and
differences between mean CLs differed among levels using simple ANOVA. Results are shown
in Table S3. The highly imbalanced composition of the different subgroups limited our ability to
detect more significant results and examine combinations of characteristics (e.g., introduced
graminoids). These findings underscore two conclusions: (1) natives (P = 0.036), perennials (P =
0.046) and marginally legumes (P = 0.104) appear to be more vulnerable to increasing N
deposition that other PFGs, and (2) broad functional and taxonomic classifications are too coarse
to capture trends, and more detailed trait-based characteristics may be better able to predict

responses.

For the second approach, we examined the detailed trait information available from an intensive
study in Wisconsin (Don Waller, unpublished data). We considered using global databases of
trait values (e.g., TRY®?), but decided that trait information specific to the Wisconsin survey sites
was more relevant than trait information from many different geographic locations. Trait
information from one region preserves the distribution of traits among species, which is
important for this type of analysis. We hypothesized that species with lower critical loads would
have traits associated with slower growth and/or were shorter-ruderal species (e.g., lower LNC,
LPC, LMgC, SLA, VH; higher LCC, LLC). We then ran all possible linear models with 16 traits
(i.e., the 6 plant functional groups, 9 physiological traits, and the C=score) as candidate
predictors, and compared these with the average CL from each species (N=98). We compared

models with AICc and explored many different competing model structures.
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Table S1: Identity of the 198 species from Table 1 with different combinations of N and S

responses (first row in each cell repeats the number of species from Table 1). Vulnerability is

color coded for each set of species as in Table 1.

S relationship

N relationship

Bouteloua gracilis

None

Increase

Decrease

5

14

Carex brunnescens

Carex disperma

Carex tetanica

Hexastylis virginica

Cinna latifolia

Dichanthelium ovale

Muhlenbergia cuspidata

Conyza Canadensis

Eryngium yuccifolium

Verbascum thapsus

Epifagus virginiana

Goodyera pubescens

Veronicastrum virginicum

Eupatorium compositifolium

Poa cuspidata

Lespedeza procumbens Gymnocarpium dryopteris
Decrease Lespedeza repens Hydrophyllum canadense
Lysimachia quadriflora Juncus effuses
Rudbeckia hirta Prosartes lanuginose
Spartina pectinata Pycnanthemum virginianum
Stylosanthes biflora Scutellaria elliptica
Tiarella cordifolia
Trillium erectum
Viola Canadensis
5 15 1
Echinacea angustifolia Carex communis Saururus cernuus
Euthamia graminifolia Carex laxiculmis
Helianthus giganteus Chenopodium album
Helianthus grosseserratus Cirsium vulgare
Juncus arcticus Dactylis glomerata
Dryopteris cristata
None Elymus virginicus

Salvia lyrata

Solidago bicolor

Symphyotrichum
lanceolatum

Symphyotrichum patens

Trillium sessile

Veronica hederifolia




Zigadenus elegans

Increase

26

6

h

Agrimonia rostellata

Carex albursina

Arctium minus

Alliaria petiolata

Carex swanii

Asarum canadense

Allium stellatum

Carex virescens

Polygonum cespitosum

Bromus inermis

Desmodium canadense

Polygonum virginianum

Cerastium arvense

Ranunculus hispidus

Prenanthes racemose

Circaea canadensis

Silphium asteriscus

Solidago caesia

Desmodium perplexum

Sporobolus cryptandrus

Dicentra cucullaria

Woodwardia areolate

Elymus canadensis

Geum virginianum

Glycyrrhiza lepidota

Houstonia purpurea

Hydrophyllum virginianum

Muhlenbergia sobolifera

Polygonatum biflorum

Polypodium appalachianum

Ranunculus recurvatus

Sanicula odorata

Sericocarpus tortifolius

Silphium compositum

Symphyotrichum laeve

Symphyotrichum undulatum

Thalictrum thalictroides

Urtica dioica

Viola sororia

Zizia aptera

Unimodal

81

6

20

Actaea rubra

Antennaria neglecta

Allium cernuum

Agoseris glauca

Bouteloua curtipendula

Boehmeria cylindrical

Allium tricoccum

Carex hirsutella

Carex arctata

Andropogon gerardii

Cirsium arvense

Carex debilis

Andropogon glomeratus

Deparia acrostichoides

Dryopteris carthusiana

Andropogon virginicus

Woodwardia virginica

Fragaria virginiana

Anemone quinquefolia

Koeleria macrantha

Antennaria plantaginifolia

Leersia oryzoides

Apocynum androsaemifolium

Melampyrum lineare

Aquilegia canadensis

Microstegium vimineum

Aristolochia serpentaria

Mitella nuda

Asplenium platyneuron

Murdannia keisak




Athyrium filix-femina

Peltandra virginica

Bromus ciliatus

Phytolacca americana

Calamagrostis stricta

Pilea pumila

Campanula rotundifolia

Solidago Canadensis

Carex albicans

Solidago nemoralis

Carex blanda Trientalis borealis
Carex gracillima Viola hastate
Carex pedunculata Viola rotundifolia

Carex pensylvanica

Carex radiata

Carex rosea

Circaea lutetiana

Clintonia borealis

Cryptotaenia canadensis

Danthonia spicata

Desmodium nudiflorum

Elymus hystrix

Elymus trachycaulus

Erechtites hieraciifolia

Euphorbia corollata

Eurybia macrophylla

Galium concinnum

Galium triflorum

Geranium maculatum

Geum canadense

Geum triflorum

Hepatica nobilis

Hesperostipa comata

Liatris pycnostachya

Lysimachia quadrifolia

Maianthemum canadense

Milium effusum

Muhlenbergia glomerata

Oligoneuron riddellii

Oligoneuron rigidum

Onoclea sensibilis

Oryzopsis asperifolia

Osmorhiza claytonii

Osmunda claytoniana

Oxalis dillenii

Pediomelum esculentum
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871

Phegopteris connectilis

Phryma leptostachya

Poa compressa

Poa pratensis

Polygonatum pubescens

Pteridium aquilinum

Pulsatilla patens

Sanguinaria canadensis

Sanicula canadensis

Sanicula marilandica

Schizachyrium scoparium

Solidago flexicaulis

Solidago missouriensis

Solidago odora

Sorghastrum nutans

Streptopus lanceolatus

Symphyotrichum ciliolatum

Symphyotrichum ericoides

Symphyotrichum oolentangiense

Symphyotrichum sericeum

Thalictrum dasycarpum

Thalictrum dioicum

Tragia urens

Trillium grandiflorum

Uvularia grandiflora

Uvularia sessilifolia

Viola pubescens

Zizia aurea




872  Table S2: (separate file, full db of results with metadata embedded)

873



874  Table S3: Contingency Analysis on whether the minimum N deposition affected the shape of the
875  curve that was reported. We found a strong effect, where if the minimum N deposition was > 4
876 kg N ha'! yr'!, the species was more likely to have a decreasing relationship and less likely to

877  have a unimodal relationship than if the minimum N deposition was < 4 kg ha™! yr'! (P=0.0001).

Contingency Analysis of N_curve_shape_2 By Min N dep

Mosaic Plot
1.00
increase I
0.75
N
3 hump
g 050
2
o
2
3
°
z 025
flat I
decrease I
0.00 =
Min N dep
Contingency Table
N_curve_shape_2
Count decrease flat hump increase
Total %
Col %
Row %
Cell Chi*2
<4kg 7 5 66 10 88
3.54 2.53 33.33 5.05 44.44
23.33 23.81 61.68 25.00
7.95 5.68 75.00 11.36
@‘ 3.0083 2.0119 7.1537 3.4028
z >4kg 23 16 41 30 110
c
= 11.62 8.08 20.71 15.15 55.56
76.67 76.19 38.32 75.00
20.91 14.55 37.27 27.27
2.4067 1.6095 5.7229 2.7222
30 21 107 40 198
15.15 10.61 54.04 20.20
Tests
N DF -LogLike RSquare (U)
198 3 14.481423 0.0620
Test ChiSquare Prob>ChiSq
Likelihood Ratio 28.963 <.0001 *
Pearson 28.038 <.0001 *

878
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Table S4: Comparison of our average N critical loads (Ave N CL) and 5" — 95" intervals (Quant

05 N CL and Quant 95 N _CL) with the center point from Europe estimated using TITAN

(TITAN.cp, *) and the 5" — 95" bootstrapped intervals (TITAN.5th and TITAN.95th,

respectively). The symbol is the first letter of the genus and species, followed by a 4-digit code

to classify the Annex I Habitat (36). All European data are from 3, except Cr-6230 which is

from °. Averages and intervals could not be calculated for Equisetum arvense and Prunella

vulgaris in our study because of the curve shape (“N_curve shape”).

Quant Quant

Species Symbol TITAN.cp | TITAN.5th | TITAN.95th | Ave NCL | 05 _N_CL | 95 N_CL | N_curve shape
Athyrium filix-femina Af-91A0 11.21 7 12.9 12.30 10.45 14.54 | hump
Athyrium filix-femina Af-91EOQ 15.28 13 15.5 12.30 10.45 14.54 | hump
Campanula rotundifolia Cr-5130 6.11 2.8 6.11 7.91 5.70 14.80 | hump
Campanula rotundifolia Cr-6210 8.26 5.7 8.26 7.91 5.70 14.80 | hump
Equisetum arvense Ea-6410 6 3.8 8.5 saddle/decrease
Koeleria macrantha Km-5130 2.9 2.8 5.9 9.27 8.45 10.49 | hump

Koeleria macrantha Km-6210 7.16 6.3 8.1 9.27 8.45 10.49 | hump

Poa pratensis Pp-6410 6.88 4.1 7 13.18 9.71 18.95 | hump

Prunella vulgaris Pv-6210 5.98 5.98 6.5 none
Pteridium aquilinum Pa-91A0 8.78 8 14.3 9.95 7.76 13.01 | hump
Trifolium repens Tr-6410 4.28 4.28 9.5 14.31 14.31 14.28 | hump
Trifolium repens Tr-5130 4.62 4.62 5.2 14.31 14.31 14.28 | hump
Trifolium repens Tr-6230 6.45 4 7.5 14.31 14.31 14.28 | hump
Trifolium repens Tr-6210 8.46 7.3 8.5 14.31 14.31 14.28 | hump
Campanula rotundifolia Cr-6230 13 8 215 7.91 5.70 14.80 | hump
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Table S5: Table of statistical results of how different species Plant Functional Groups

affected vulnerability to N. Shown are the results for two responses: (1) curve shape (number of

species in Decrease [D], Unimodal [U], Increase [1], None [N] categories) using contingency

tables and Pearson’s Chi test (results the same with nominal regression and Likelihood ratio

tests), and (2) the average CL among groups (ANOVA). Bold cells are significant at P<0.05.

Species with a see-saw relationship were categorized according to the dominant relationship for

the curve shape analysis, and were excluded for the CL analysis (because the average CL is not

meaningful for these species, see SI).

Response: Curve Shape

Response: CL

Characteristic Levels D U | N Pearson Mean ANOVA

G inoid 9 30 7 6 10.9

Functional group raminot 0.565 0.607
Forb 21 77 33 | 15 11.3
i 29 [ 102 | 34 |17 11.0

Native status Native 0.036 0.028
Introduced 1 5 6 4 13.9
Monocot 12 41 9 8 10.5

Cotyledon status Dicot 17 | 57 | 29 |12 0.479 11.8 0.136
Fern 1 9 2 1 10.2
i 4 14 11.6

Invasive status Invasive 0.332 0.635
Non-invasive 26 93 33 | 15 11.2
-fi 3 2 3 0 11.1

N-fixation N-fixer 0.104 0.947
Non-N-fixer 27 | 105 | 37 |21 11.2
i 26 | 102 | 35 | 18 11.0

Life history Perennial 0.204 0.046
Annual/Biennial/Mixed | 4 5 5 3 13.5




897  Table S6: The percent of species with different relationships either from the set of 22 species
898  with low VIFs (both N and S VIFs < 3.0) or from the 198 species without accounting for VIF

899  (numbers of species in parentheses).

900
Low VIFs Any VIF
Decrease 14% (3) 15% (30)
o
£
s None 0% (0) 11% (21)
E
g Increase 36% (8) 20% (40)
Unimodal 50% (11) 54% (107)
o
s Decrease 64% (14) 62% (123)
& | None 36% (8) 22% (43)
()
(%]
Increase 0% (0) 16% (32)

901
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Figure S1: Relationships for all 198 species with robust results (see separate file). Shown are the
marginal probabilities of occurrence individually by term from the best model for N deposition
(a), Nx pH (b), N x S (¢), S deposition (d), S x pH (e), soil pH (f), precipitation (g), and
temperature (h). Black lines in main effect plots are average response and red lines are +/- 1.96
standard deviations for that term. For interaction terms (b, ¢, €) the effect of the modifying term
is shown as separate quartile lines (Q1-Q4). All terms not in a plot are held at their average for
that species. The best model is shown below the species name, and summary diagnostics for each
species are in the lower right, which include the average N critical load, AUC, R2, number of
observations, VIF N and S, and the bivariate correlation between N and S. Other bivariate

correlations, estimated values and significance of all terms (among other information) are in

Table S2.
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Figure S2: Comparison of our average N critical loads (x-axis) with those from Europe
estimated using TITAN (y-axis, ®*). There were only eight species in common (15 in common
for species in multiple European habitats) between our 348 species and studies from European
acid grasslands *¢ and several Irish habitats **: Athyrium filix-femina (Af), Campanula
rotundifolia (Cr), Equisetum arvense (Ea, not shown, saddle relationship with N in our study),
Koeleria macrantha (Kr), Poa pratensis (Pp), Prunella vulgaris (not shown, no relationship with
N in our study), Pteridium aquilinum (Pa), and Trifolium repens (Tr). After the species symbol
are the codes for the habitat types (5130: Juniperus communis formations on heaths or calcareous
grasslands; 6210: Semi-natural dry grasslands and scrubland facies on calcareous substrates
(Festuco-Brometalia), 6230: Species-rich Nardus grasslands, on silicious substrates in mountain
areas (and submountain areas in Continental Europe); 91A0: Old sessile oak woods with //ex and
Blechnum in the British Isles). Reference 1:1 line (solid), +/- 1 (dashed), and +/- 2 (dotted) kg
ha! yr! shown. Whiskers are for 5" —95%" intervals (horizontal, our study; vertical, TITAN

analyses from ** and 3¢, Table S4)
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Figure S3: Map of the 14,041 plots analyzed in this study.
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931  Figure S4: The number of species affected by N deposition (left) or S deposition (right)

932  across the U.S. Shown are the number of unique species in a 12 x 12 km grid cell that decreased
933  with N deposition (a), increased (b), the difference between these (¢; Naecrease - Nincrease; positive
934  numbers indicate more species decreasing than increasing.). The same relationships for S

935  deposition are in d-f.
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