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Abstract— In this paper, we propose Push-SAGA, a decentral-
ized stochastic first-order method for finite-sum minimization
over a directed network of nodes. Push-SAGA combines node-
level variance reduction to remove the uncertainty caused by
stochastic gradients, network-level gradient tracking to address
the distributed nature of the data, and push-sum consensus
to tackle directed information exchange. We show that Push-
SAGA achieves linear convergence to the exact solution for
smooth and strongly convex problems and is thus the first
linearly-convergent stochastic algorithm over arbitrary strongly
connected directed graphs. We also characterize the regime in
which Push-SAGA achieves a linear speed-up compared to its
centralized counterpart and achieves a network-independent
convergence rate. We illustrate the behavior and convergence
properties of Push-SAGA with the help of numerical experi-
ments on strongly convex and non-convex problems.

Index Terms— Stochastic optimization, variance reduction,
first-order methods, decentralized algorithms, directed graphs

I. INTRODUCTION

We consider decentralized finite-sum minimization over a
network of n nodes, i.e.,

P min F(z) =~ ;fz(Z), filz) = ;fm (2),
where each local cost f; : RP — R, private to node i, is
further decomposable into m,; component cost functions.
Problems of this nature commonly arise in many training
and inference tasks where large-scale data is available over
several geographically distributed nodes and the information
exchange among the nodes is not bidirectional. Examples
include robotic networks and the Internet of Things, where
multiple robots or devices possess heterogeneous training
data and may have different communication and battery
resources resulting into one-directional communication.
This paper describes Push—SAGA, a stochastic, first-order
method with a low per-iteration computation complexity,
where the nodes communicate over directed graphs that
are particularly amenable to efficient, resource-constrained
network design and often result from severing costly com-
munication links. Existing decentralized stochastic gradient
methods over general directed graphs suffer from the vari-
ance of the stochastic gradients and the disparity between the
local f; and global costs F' = ). f;. To overcome these chal-
lenges, Push—SAGA utilizes variance reduction, locally at
each node, to remove the uncertainty caused by the stochastic
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gradients, and gradient tracking, at the network level, to track
the global gradient; see Fig. |1} Since the underlying graph is
directed, Push—SAGA further uses the push-sum to enable
agreement among the nodes with network weight matrices
that are not necessarily doubly stochastic.

Decentralized stochastic gradient descent (DSGD) over
undirected graphs can be found in [1]-[3]. The steady-state
error in DSGD, due to the local vs. global cost dissimilarity,
is further removed in GT-DSGD [4], [5], with the help of
gradient tracking [6]-[10]. For L-smooth and p-strongly con-
vex problems, DSGD and GT-DSGD converge linearly to an
inexact solution with a constant stepsize (or sublinearly to the
exact solution with a decaying stepsize) due to the variance
of the stochastic gradients. Linear convergence to the exact
solution is shown with the help of variance reduction [11]-
[13]; see related work in [14]-[18]. Refs. [19], [20] propose
a combination of gradient tracking and variance reduction to
achieve optimal rates for decentralized stochastic non-convex
problems. However, all of these methods require doubly
stochastic weights and thus are not applicable to directed
graphs. Related work that does not use doubly stochastic
weights includes stochastic gradient push (SGP) [21]-[23],
that extends DSGD to directed graphs with the help of push-
sum consensus [24], and S-ADDOPT [25] that adds gradient
tracking to SGP. For smooth and strongly convex prob-
lems, both SGP and S—ADDOPT, similar to their undirected
counterparts DSGD and GT-DSGD, converge linearly to an
inexact solution with a constant stepsize and sublinearly to
the exact solution with decaying stepsizes. Of relevance are
also GP [26] and Push-DIGing/ADDOPT [10], [27], which
are non-stochastic counterparts of SGP and S—ADDOPT as
they use local full (batch) gradients at each node.

The main contributions of this paper include: (i) We
show that Push—-SAGA converges linearly to the global
optimizer of P for smooth and strongly convex problems;
(ii)) We characterize the performance of Push—-SAGA in
terms of an explicit directivity constant that quantifies the
directed nature of the communication and reduces to 1 for
undirected graphs; (iii) We develop regimes of practical
relevance where Push—SAGA exhibits linear speedup and
network-independent convergence.

The rest of the paper is organized as follows. We develop
Push—-SAGA in Section [[I] whereas Section describes
the main results and contributions. Section [IV] provides the
convergence analysis, while Section |V| contains numerical
experiments on strongly convex and non-convex problems.



Fig. 1.

(Left) Node-level: Each node computes the gradient at a random data sample and then estimates the local batch gradient with the help of variance

reduction. (Right) Network-level: The nodes implement global gradient tracking with the help of inter-node fusion and push-sum.

II. MOTIVATION AND ALGORITHM DEVELOPMENT

In order to motivate Push—SAGA, we first describe DSGD,
a decentralized extension of SGD, and its performance with
a constant stepsize . Let z* denote the global minimum of
Problem P and let x¥ € R? denote the DSGD estimate of z*

at node 7 and iteration k. Each node i updates x% as

XL = Z wirx®

where W = {w;,} € R™*™ is a network weight matrix such
that w;; # 0, if and only if, node j can send information
to node 7, and sf is chosen uniformly at random from the
set {1,...,m;} at each iteration k. Assuming that each local
cost is L-smooth and pu-strongly convex and that each local
stochastic gradient has a bounded variance, ie
EllIVF; o (x) = VADIE |xf] <o, ik,

it can be shown that, for a certain constant stepsize «, the

a'vfi,sf(xf)v k=0, (1

error e¥ := E[||x¥ —z*||2], at each node i, decays at a linear
rate of ( (’)(ua))k to a steady—state given by [28]
o 2
llﬂsup L Ze = (9( —J + Q(ILA)O + 26 >\)277)7 (€5

where 1) : 1 3 IVfi(z )||2 and (1 — ) is the spectral
gap of W. Equatlon () is based on a constant stepsize «
that leads to a linear but inexact convergence and our goal
is to recover linear convergence to the exact solution.

We now consider the error terms in (Z). The first two
terms both depend on the variance o2 introduced due to
the stochastic gradient and vanish as 02 — 0; a variance
reduction scheme that replaces the local stochastic gradi-
ents V f; .x, in DSGD (TJ), with an estimate of the local batch
gradient 2 V fi,; thus potentially removes this variance. The
last term in (Z) involves 7, which quantifies the disparity
between the local costs f;’s and the global cost F' (recall
that VF(z*) = 0). A mechanism that uses the local gradi-
ent estimators (from the variance reduction step) to learn
the global gradient thus removes 7); this is realized with
the help of dynamic average consensus [7]. In summary,
adding local variance reduction and global gradient tracking
to DSGD potentially leads to linear convergence for smooth
and strongly convex problems. However, the weights w;,
in DSGD are such that W = {w;,} is doubly stochastic,
which in general requires the underlying communication
graph to be undirected.

In directed graphs, the weight matrix may either be
row stochastic or column stochastic, in general, but
not both at the same time. Consequently, the proposed

method Push—SAGA uses primitive, column stochastic
weights B = {b;} € R"*™, for which it can be verified that
the nodes do not reach agreement, i.e., B1,, # 1,,, where 1,,
is a column vector of n ones. In fact, assuming 7 to be right
eigenvector of B corresponding to the eigenvalue 1, the iter-
ations x*+! = Bx* — B*x? = w1, x°, Wthh only leads
to an agreement among the components of x*, when its i-
th component x¥ is scaled by the i-th component 7; of .
This asymmetry, caused by the non-1,, (right) eigenvector
of B, is removed with the help of the push-sum correction.
In particular, push-sum estimates the non-1,, eigenvector 7
with y*+1 = By* yY = 1,,; subsequently, each component
of x* is scaled by the corresponding component of y*
to obtain an agreement in the x%/y* iterate. We note
that y* > 0, Vk, from the Perron Frobenius theorem [29].

Algorithm Description: The proposed Push—-SAGA al-
gorithm is formally described next, see also Fig. [T}

Algorithm 1 Push-SAGA at each node ¢
wl =gl =Vfi(z)), a>0,

Grad. table: {V f; j(27)}71,, {v;; = 2] }71
1: for k=0,1,2,--- do

ire: x0 — 70
Require: x; = z; € RP,

2 xS byxkE - wh

R D DR T

" A Xk+1/yk+1

5: Select s* uniformly at random from {1,--- ,m;}
6: gf“ — Vf k+1( k+1) - Vf- k1 (Vf:,f,l_,_l)

7 TR R ) |

8: Vi k+1(zk+1) <~V k+1(vf,:',_€1+1) in grad. table
o WS bwh gl gl

10: if j=s{t then viT? « 2T else vIT?  viT!
11: end if

12: end for

We note that Push—SAGA has three main components:
(1) Variance reduction, which utilizes the SAGA-based gra-
dient estimator [12] to estimate the local batch gradient V f;
at each node ¢ from locally sampled gradients; (ii) Gradient
tracking, which is based on dynamic average consensus [7]
to estimate the global gradient VF' from the local batch
gradient estimates; and, (iii) Push-sum consensus [24], which



cancels the imbalance caused by the asymmetric nature of
the underlying (directional) communication.

Push-SAGA requires a gradient table at each node ¢,
where m; component gradients {V f; ;}", are stored. At
each iteration k, each node 7 first computes an SGP-type
iterate z} with the help of the push-sum correction. It is
important to note that the descent direction in the xj-
update (and thus in the z-update) is wi, which is the
global gradient tracker, in contrast to the locally sampled
gradient as in DSGD (). Subsequently, node i generates a
random index s¥ and computes the SAGA-based gradient
estimator gF, with the help of the current iterate z¥ and
the elements from the gradient table. The gradient table
is updated next only at the sF-th element, while the other
elements remain unchanged. Finally, these estimators g¥’s
are fused over the network, with the help of dynamic average
consensus, to obtain w¥’s that track the global gradient.

We remark that the computation and communication ad-
vantages of Push—SAGA are realized at an additional stor-
age requirement. In particular, each node requires O(pm;)
storage that can be reduced to O(m;) for certain prob-
lems [12]. The main results and the convergence analysis
of Push—-SAGA are provided next.

III. MAIN RESULTS AND CONTRIBUTIONS
The main results of Push—SAGA are described next.

Theorem 1. Consider Problem P and let M := max; m;,
m = min; m;, and each f;; be L-smooth and each f;
to be p-strongly convex. For the stepsize o € (0,@), for
some « >0, Push-SAGA linearly converges, at each
node, to the global minimum z* of F. In particular, for
a = o, Push—SAGA achieves an e-optimal solution in

M k% 1
@) (maX{M, m(lﬂ)\)Q}IOg 6) )

component gradient computations (in parallel) at each node,
where k:= L/u, (1 — \) is the spectral gap of the weight
matrix, and ) > 1 is a directivity constant.

We explain the implications of the above theorem as follows.

(1) Linear convergence. Push—SAGA is the first linearly-
convergent stochastic method to minimize a finite sum
of smooth and strongly convex cost functions over arbi-
trary directed graphs. We emphasize that the analysis of
Push-SAGA does not extend directly from the methods over
undirected graphs. This is because: (i) the underlying weight
matrices do not contract in the standard Euclidean norm; and,
(ii) the algorithm has a nonlinear iterative component due to
the push-sum update.

(2) Directivity constant. We quantify the directed nature
of the graph with the help of an explicit directivity con-
stant @ > 1, which is 1 for undirected graphs, and thus,
for finite-sum problems, this work includes DSGD, SGP,
GT-DSGD, S—ADDOPT, and GT—-SAGA as special cases.

(3) Linear speedup and Network-independence. In a big-
data regime where M ~ m > k?1(1 — \)~2, Push-SAGA

with a complexity of O(M log%) is n times faster than
the centralized SAGA, and this convergence rate is further
independent of the network parameters.

(4) Improved Performance. In the aforementioned big-data
regime, Push—SAGA improves upon the related linearly-
convergent methods [14], [15] over undirected graphs in
terms of the joint dependence on x and m; with the exception
of DSBA [16] and ADFS [17], both of which achieve a
better iteration complexity at the expense of computing the
proximal mapping at each iteration.

IV. CONVERGENCE OF PUSH-SAGA

This section provides the formal analysis of Push—SAGA.
We start with the following assumptions.

Assumption 1 (Column stochastic weights). The weight
matrix B associated with the directed graph is primitive and
column stochastic, i.e., 12@ = 1I and Bm = w, where 1,
is a vector of n ones and T is the right (positive) eigenvector
of B for the eigenvalue 1 such that 1) 7w = 1.

Column-stochastic weights can be locally designed at
each node by choosing b,; = 1/d3", where d¢" is the out-
degree at node i. From Perron Frobenius theorem, we
have B* :=limy,_,o, B® = 71]. Let || - ||z and ||-||, de-
note the standard vector 2-norm and the matrix norm induced
by it, respectively, and define a weighted inner product
as (x,z)n:=x ' diag(m) 'z, for x,z € RP, which leads to
a weighted Euclidean norm: ||x || := ||diag(y/7) ~1x||2. We
denote ||- ||, as the matrix norm induced by || - ||~ such
that VX € R™", || X || . := ||| diag(v/7) ~* X diag(v/7) |||,.-
Under this induced norm, B contracts in the eigenspace or-
thogonal to the eigenspace corresponding to the eigenvalue 1,
see [30] for formal arguments, i.e.,

A=B-B*|, <1=(1-X) <1, 3)

where (1 — \) is the spectral gap of the weight matrix B.
Moreover, it can be verified from the norm definitions
that ||« |« <70 - [l2 and |- [ls < 75 - [, where 7
and 7 are the maximum and minimum elements of 7, re-
spectively, while || B[, = | B* ||, = | L — B> ||, = L

Assumption 2 (Smooth and strongly convex cost functions).
Each local cost f; is p-strongly convex and each component
cost f; ; is L-smooth.

We define the class of pu-strongly convex and L-smooth
functions as S, ;. It can be verified that f; € S, 1, Vi,
and F' € S, 1; consequently, F' has a global minimum that
is denoted by z* € RP. For any function in S, 1, we define
its condition number as k := L/u. Note that x > 1.

A. Auxiliary Results

We now write Push-SAGA in a vector-matrix format.
To this aim, we define global vectors x*,z*, gF w*, all
in RP™ and y"”‘ € R™ that concatenate the local vec-
tors xF,zF gF wF, all in RP and y¥ € R, respectively;
whereas the global matrices are defined as B := B® I,
and Y}, := diag(y*) ® I,,, both in RP"*P", We note that Y}



is invertible for all ¥ and Push—SAGA in Algorithm [I| can
now be equivalently written as

xk+ = BxF —a-wF, (4a)
y* = By", (4b)
z’C =Y, Ixkr (4c)
whtl = BwF 4 ghtl — gk, (4d)

For analysis, we define four errors: (i) Network agreement
error: EHX — B>°x*||?; (ii) Optimality gap: E|X* — z*|?,
where X* := 1 (1] ® I,)x*; (iii) Mean aux1hary gap: E[tF],
where t :— Z?:l( D —2z*||3); (iv) Gradient
tracking error: E[|w* BDO - H2 Lemmalnext provides a
relationship between these errors with the help of Lemma [T}
Lemma 1. Consider Assumption with Y >° := limy_ o Y},
then || Yy — Y ||, < TA*,Vk, where T := Vh||1,, — n||
and h :=7/m > 1.

Proof: We note that Vk > 0, y*°
Y5 =Yl < VAN B — Bl lly**
< NVl =y 2

and the proof follows [25], [31].

Lemma 2. Consider Push—SAGA under Assumptions
and let y := supy, || Yi ||y y— := sup, |HY,€_1 l ,» and for
all k > 0, define u* s* ¢ R* and G, H, € R*** as

= B*®y*. Thus,

o0
T

E[[|x* —kB“kaIi] E[]|x*|]3]
Eln|x" — z*||3] 0
k._ 2 k._
u’ = E[tk] , ST i= 0 ,
| E[L7?|wF — Bew"|2] 0
r 1422 202 L%
22 =3 0 (2) 2 17>\2
. 20¢LH11)7T 1 — % QanL 0
Gar=| e 2° |1 0|
m M
188 1697 1 38x~ ! 3422
L T2 1—X2 1-X2 4
[ 0 0 0 O
2
. 2@/[; P 0 0 0 T)\k )
T2 0 0 00 ’
18812
T2 0 0 O

where m := min; m;, M := max; m;, and 1 := yy? (1+
T)h is deﬁned as the directivity constant. For the stepsize
0<a< we have
ut < GouTl 4 Hy st 6)
See [32] for a formal proof of Lemma @ which uses stan-
dard arguments from the gradient tracking literature. We note
that for doubly stochastic weights, T'= 0 since m = %ln,
while 1 > 1 can be interpreted as a directivity constant,
i.e., for undirected graphs ) = 1. Moreover, the LTI system
described in (B) reduces to the one in [18] for undirected
graphs, where ¥ =1 and 7' = 0. Our strategy to establish
linear convergence of Push-SAGA is to show that u”
converges linearly to zero, which leads to z¥ — z* linearly
at each node 7. We establish the linear decay of G, next.

22
28L1~cw ’

Lemma 3. Consider Push—-SAGA under Assumptions 72
If o € (0,@) is such that @ := mln{ L m (-0 } then

5Mp° M 400Lke [’
3 . 1—-X
p(Ga) <N Galll, < 7= 1—min{ 57, i url,
where p(-) i

o I8 the norm
induced by the weighted max-norm || - ||%,, for some § > 0,.

The above lemma uses the fact that if G,6 < vd for some
6 >0, and v = (1—2£), then p(G,) < 7; see [32] for
the proof. Moreover, we have A < p(G,,) implying that Hj,
decays faster than G,,. We next show that [[u”|s — 0.
Lemma 4. Consider Push—SAGA under Assumptions
For a € (0,@), we have that |[u” |y — 0 linearly at O((y+
EF), where X < 1 and ¢ > 0 is arbitrarily small.
Proof: Expanding (6) and taking the norm leads to
[u®llz < [Gau®ll2 + Z}H IG&™" " Hy s"]|2,

< (I +FQZ o lIs"l2 )"

for some positive constants I';,I'>. It can be shown that

s™[l2 < 6(y? + 7)|lu" |2 + 3y>n||z* ||, which leads to (af-

ter using b := 6'2(y? + 7) and c := 3T2y%n||z*||3)
lu*lla < (T1 + e+ 3202, w7 fl2)*

Let v, := Z - \u Il2; ek := (T'y +kc) , and by, := by¥.

Then, we have [u¥le = vpyr —op < (1"1 + ke + bup)vF,

leading to Vg1 < (14 bg)vg + ¢k For non-
negative sequences {uvx},{brx}, and {cp}, such that
Vg1 < (14 bg)og + ek, VE, ZEO:O by, < o0, and

Yoo ¢k < oo, we have from [33] that {v;} converges and
is thus bounded. Hence, V0 € (v, 1), we can write

k
< lim (T1 + ke + buk)y
k—o0 0’“

e
k—oo OF

In other words, 3¢ > 0 such that |[u*||s < ¢(y + &), Vk
where £ > 0 is arbitrarily small and the lemma follows.
With the help of the above, we next prove Theorem [T}
Proof of Theorem I: Recall that z is the estimate of z*
at node 4 and iteration k, and z* concatenates these local
estimates in a vector in RP"™. We have that

E[llz" — (1, ® z)|3] < 3y E[||x" — B>x"||3]
+3ny” YE[[X" — 2° (3] + 3n(y-TA")?||z" |3

< 6y (y* +7) 0"z + 3ny? T?4"(|z* 3

<62 (7 +T)o(v + &) +3ny> T2 (v + &)*|12*|3

<w(y+9)F,

where w := 6y2 (y* + T)¢ + 3ny>T?||z*||3. To reach an ¢-
accurate solution ]E[||zk -1, ®z" H%] < ¢, we thus need

Elllz* — (1, @ 2")[3] < e”70FO w < e,

which leads to

20M 1600M r24p w
k = max { T—20M¢€ > m(1—N)2—1600Mr2PE }1 e

=0.

iterations per node, where recall that £ > 0 is arbitrarily
small and the theorem follows.



V. NUMERICAL EXPERIMENTS

We now provide numerical experiments to compare the
performance of Push—SAGA with related algorithms imple-
mented over directed graphs, shown in Fig. 2]

Fig. 2. (Left) Directed exponential graph with n = 16 nodes. (Right)
geometric graph with n = 500 nodes.

Logistic Regression (strongly convex): We first consider
binary classification of N = 12,000 labelled images (taken
from two classes in the MNIST and CIFAR-10 datasets)
divided among n nodes with the help of logistic regres-
sion with a strongly convex regularizer. We compare SGP
(DSGD plus push-sum) [21], S-ADDOPT (SGP plus gradi-
ent tracking) [25], and Push—-SAGA; along with GP [26]
and ADDOPT [10], [27], which are the deterministic coun-
terparts of SGP and S—ADDOPT, respectively. Note that
ADDOPT (GP plus gradient tracking) converges linearly to
the exact solution since it uses the full batch gradients
at each node. We plot the optimality gap F(z") — F(z*),
where z" := 1 3™ zF, of each algorithm versus the number
of epochs, where each epoch represents m; gradient compu-
tations per node, i.e., one epoch is one iteration of GP and
ADDOPT and m; iterations for the stochastic algorithms SGP,
S—-ADDOPT, and Push—SAGA. Fig. [3| (Top) compares the
algorithms over an n = 16-node exponential graph, when the
data is equally divided among the nodes, i.e., m; = 750, Vi.
This scenario models a controlled training setup over a well-
structured communication network as, e.g., in data centers.
Similarly, Fig. 3] (Bottom) illustrates the performance over
a n = 500-node geometric graph when the data is divided
arbitrarily among the nodes modeling, e.g., ad hoc edge
computing networks. It can be verified that Push—-SAGA
converges linearly for smooth and strongly convex problems
and is much faster compared with its linearly-convergent
non-stochastic counterpart ADDOPT over directed graphs.

MNIST CIFAR-10
10° 10°
8 0 5 o
G} O o
> 10¢ >0
= —— GP = —— GP
- 107
E 71 o AppoeT E Lo-10) —+— ADDOPT
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O 101 o pushsAGA R O 104 _a— pushSAGA
m
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Epochs Epochs
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Q.. 107t
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(G Q. .,
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g 1044 —+— ADDOPT g 1071+ ADDOPT el
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Q. »— SADDOPT Q107171 —— SADDOPT
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Fig. 3. Comparison over a directed exponential graph with n = 16 nodes

(Top) and a directed geometric graph with n = 500 nodes (Bottom).

Linear speed-up: We next show the linear speed-up of
Push—-SAGA over its centralized counterpart SAGA. For
illustration, SGP and S—ADDOPT are also compared with
their centralized counterpart SGD. To this aim, we study
binary classification based on the MNIST dataset over ex-
ponential graphs with n = 4,8,16,32, and 64 nodes, and
plot the ratio of the number of iterations of the central-
ized algorithm and its decentralized counterpart to reach
a certain optimality gap €;: €; = 107!° for Push—SAGA
and SAGA, since they linearly converge to the exact solution;
while e; = 1073 for SGP, S—-ADDOPT, and SGD, since they
linearly converge to an error ball (with a constant stepsize).
Recall that one iteration involves one gradient computation
in centralized SAGA and n (parallel) gradient computations
in Push-SAGA. Fig. [ (left) shows that Push-SAGA, per
node, is O(n) times faster than SAGA thus acting effectively
as a means for parallel computation.

32 nodes

16 nodes
SGP vs. SGD >
601 —— SADDOPT vs. SGD B S 102 & 10
—=— PUShSAGA vs. SAGA -~

A

150

! I L o gt o, |
& 20 40 60 8 100 0

Epochs

&

T 2 30 o s
Number of nodes

Epochs
Fig. 4. (Left) Linear speedup: The plot shows SGP and S-ADDOPT vs. SGD
to achieve an optimality gap of 10~3; Push—SAGA vs. SAGA to achieve
an optimality gap of 10715, (Middle and Right) Network-independent
convergence for Push—SAGA: Each figure spans different graphs of varying
connectivity while keeping the number of nodes n fixed.

Network independent convergence: We now demonstrate
the network-independent behavior of Push—SAGA in the
big-data regime, i.e., when M = m > r%)(1 — X\)~2. For
this purpose, we choose the binary classification problem
based on the MNIST dataset, with N = nm = 12,000 total
images equally divided over a network of n nodes, and
keep x ~ 1 with an appropriate choice of the regularizer.
We start with the base directed cycle and generate additional
subsequent graphs by adding random directed edges until
the graph is almost complete. The family of graphs in a
fixed n-node setup thus ranges from least-connectivity (a
directed cycle with A — 1) to improved connectivity by the
addition of edges. For each family of graphs (fixed n), we
plot the optimality gap of Push-SAGA in Fig. 4] (middle and



right), for n = {16, 32} nodes that leads to m = {750,375}
data samples per node. We observe that as long as m
is sufficiently larger than v(1 — \)~2, the convergence of
Push-SAGA is almost the same across all topologies gen-
erated by keeping a fixed number of nodes n. Push—-SAGA
loses network-independence for the n = 32-node network;
this is because the big-data regime does not apply as it can
be verified that m = 375 and m ~ (1 — \) 72,

Neural Networks (mon-convex): Finally, we compare
the stochastic algorithms, i.e., SGP, S—ADDOPT, and
Push-SAGA, for training a neural network over directed
graphs. For each node, we construct a custom two-layered
neural network comprising of one fully-connected, hidden
layer of 64 neurons. We consider a multi-class classification
problem on the MNIST and CIFAR-10 datasets with 10
classes each. Both datasets consist of 60,000 images in total
and 6,000 images per class. The data samples are evenly
distributed among the nodes that communicate over the 500-
node geometric graph of Fig. P (right). We show the loss
F(Z") and the test accuracy in Fig. [5| It can be observed
that Push—SAGA shows improved performance compared
to other methods particularly over the CIFAR-10 dataset.

MNIST MNIST
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2.0 —— SADDOPT 0.95
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Fig. 5. Two-layer neural network over a 500-node geometric digraph.

VI. CONCLUSION

This paper proposes a first-order decentralized stochastic
method Push—-SAGA for finite-sum minimization over arbi-
trary directed graphs. Push—SAGA uses variance reduction
to eliminate the uncertainty caused by stochastic gradients
and employs gradient tracking to address the distributed
nature of data. We show that Push—SAGA linearly converges
to the optimal solution for smooth and strongly convex
problems. Moreover, we characterize the regime in which the
convergence rate is network-independent and Push—-SAGA
achieves a linear speed-up compared to its centralized coun-
terpart. Numerical experiments illustrate the performance
comparison of Push—SAGA with corresponding methods for
strongly convex and non-convex problems.
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