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Distributed Support Vector Machines Over
Dynamic Balanced Directed Networks

Mohammadreza Doostmohammadian
Themistoklis Charalambous

Abstract—In this letter, we consider the binary
classification problem via distributed Support Vector
Machines (SVMs), where the idea is to train a network
of agents, with limited share of data, to cooperatively
learn the SVM classifier for the global database. Agents
only share processed information regarding the classifier
parameters and the gradient of the local loss functions
instead of their raw data. In contrast to the existing work,
we propose a continuous-time algorithm that incorporates
network topology changes in discrete jumps. This hybrid
nature allows us to remove chattering that arises because
of the discretization of the underlying CT process. We
show that the proposed algorithm converges to the SVM
classifier over time-varying weight balanced directed
graphs by using arguments from the matrix perturbation
theory.

Index Terms—Support vector machines, distributed
optimization, matrix perturbation theory.

. INTRODUCTION

ACHINE-LEARNING has been an area of significant

research in recent signal processing and control litera-
ture [1]-[4]. Among the supervised-learning methods, Support
Vector Machines (SVMs) find several applications ranging
from image/video processing to bioinformatics. Motivated by
the recent applications in robotic networks and the Internet of
Things, we are interested in developing distributed solutions
for SVM classification. The basic idea is to process the raw
data at each node to train a local classifier and then fuse these
classifiers among the neighboring nodes. D-SVM (distributed
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SVM) finds applications where a subset of the data is acquired
by different nodes/servers/agents possibly at different geo-
graphic locations, privacy is of concern, and communication
to a fusion center is infeasible.

In binary classification, SVM defines the maximum-
margin hyperplane (the classifier) determined by the clos-
est data samples (Support Vectors). The preliminary work
on D-SVM (referred as Distributed Parallel SVM [5] and
Parallel SVM [6]) is focused on local computation/sharing of
the support vectors [5]-[9]. These local support vectors are
updated either via a fusion center [6]—[8], over a Hamiltonian
multi-agent cycle [5], or via a distributed method based
on alternating direction method of multipliers (ADMM) [9].
A major drawback is that these approaches require shar-
ing raw data over the network, raising data privacy and
information security issues. More recently, consensus-based
distributed optimization methods are proposed in [10]-[26],
where instead of raw data, agents share processed information,
which in case of leakage to unauthorized parties reveals little
information about the original data. Among these, the solu-
tion in [16] requires distributed computation of the Hessian
inverse, while [17], [18] consider a penalty term on con-
sensus constraint violation with certain optimality gap [27].
In contrast, Lagrangian and ADMM-based methods proposed
in [22], [23], [25] can achieve null constraint violation by
combining the benefits of dual decomposition and augmented
Lagrangian for constrained optimization. Such methods con-
verge linearly to primal/dual optimal solutions for strongly
convex loss functions [22]. Prediction-correction algorithm
is proposed in [25] based on prediction of optimal condi-
tions in time and correction on gradient descent or (damped)
Newton method. Particular application in online kernel-based
nonlinear regression learning is considered in [26], using a
penalized stochastic gradient descent with low-dimensional
subspace projection. A sub-gradient push-sum strategy over
digraphs is proposed in [19], and its regret-based extension
over dynamic networks is proposed in [21]. The perturbed
push-sum descent with linear convergence rate over digraphs
is given in [24]. Similarly, [23] proposes a linearly convergent
solution over time-varying networks based on small-gain anal-
ysis. A double time-scale algorithm is proposed by [20] with
finite number of communications per gradient-update iteration.
Other methods include finite/fixed-time algorithms [11]-[15]
that are prone to steady-state chattering due to non-Lipschitz
dynamics.

In this letter, a D-SVM method is proposed that over-
comes the challenges of semi-centralized (fusion center based)
solutions and the chattering phenomena. Moreover, in contrast
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to [10]-[26], where either continuous-time (CT) or discrete-
time (DT) protocols are considered, we propose a hybrid
algorithm to address the topology switching of the multi-
agent network in DT incorporated in a CT gradient-descent
update [28]. Our hybrid approach enables more flexibility in
considering mixed-dynamics [28], [29], which allows solving
D-SVM via CT protocols over general dynamic digraphs in DT
domain, in contrast to DT dynamics where the sampling times
may be constrained [20]-[26], [30]. To analyze the proposed
hybrid model, we use matrix perturbation theory [31] to char-
acterize the eigen-spectrum of the proposed dynamics, which
enables convergence analysis in the hybrid DT-CT setup.
Due to Lipschitz-continuity of the proposed CT approach,
it’s DT approximation is free of the aforementioned chatter-
ing inherent to the non-Lipschitz dynamics [11]-[15]. Further,
the proposed solution is free of penalty-based approximation
inaccuracies in [17], [18], [27].

We now describe the rest of this letter. Section II recaps
some preliminaries on algebraic graph theory, while Section III
formulates the D-SVM problem. Section IV states our CT
gradient descent method to address D-SVM, whereas the con-
vergence analysis over dynamic WB-digraphs is available in
Section V. Section VI provides an illustrative example, and
finally, Section VII concludes this letter.

Il. PRELIMINARIES ON ALGEBRAIC GRAPH THEORY

We represent the multi-agent network by a strongly-
connected directed graph (SC digraph) G. Assuming a positive
weight w;; for every link (from node j to node i) and zero
otherwise, the irreducible weighted adjacency matrix of G is
W = {w;}, and the Laplacian matrix W= {wy;} with wj; = wy;
for i # j and wj; = — Z}Ll wjj for i = j. The SC property of
the graph is directly related to the rank of its Laplacian matrix
as given in the next lemma.

Lemma 1 [32]: The given Laplacian W for a SC digraph
has eigenvalues whose real-parts are non-positive with one
isolated eigenvalue at zero.

Next, we define a WB-digraph as an SC digraph with equal
weight-sum of incoming and outgoing links at every node i,
i.e., Dy wji = > wy, implying the following lemma.

Lemma 2 [32]: For the Laplacian W of a WB-digraph, the
vectors 1; and 1, are respectively the left and right eigen-
vector associated with the zero eigenvalue, i.e., I,IW =0,
and W1,, = 0,,, where 1,, and 0, are the column vectors of 1°s
and 0’s of size n, respectively.

In the rest of this letter, ||A]|o denotes the infinity norm of
a matrix, i.e., ||[Allco = maxi<j<y Z]’Ll laij|.

I1l. PROBLEM STATEMENT

Consider binary classification of N points x; € R"!,
i=1,...,N, each belonging to one of two classes labeled
by l; € {—1, 1}. Using the entire training set, the SVM problem
is to find a hyperplane @' x — v =0, for x € R”~!, based on
the maximum margin linear classification to partition the data
into two classes. Subsequently, a new test data point X’ belongs
to the class labeled as g(¥) = sgn(@' X — v). In the linearly
non-separable case, the data points are first projected into a
high-dimensional space F via a nonlinear mapping ¢ (-) asso-
ciated with a kernel function K(x;, x;) = ¢(X,»)T¢(Xj). By
proper mapping ¢ (-), a linear optimal hyperplane can be found

in F such that g(¥) = sgn(w' ¢ (X) — v) determines the class
of X. The SVM problem is to find the optimal @ and v by
minimizing the following convex loss [33]:

min ® o+ CY Y max{l — (@ ¢(x;) — ). 00" (1)

where p ={1,2,...} defines smoothness and the positive
constant C determines the margin size. We adopt the stan-
dard convention of modifying the hinge loss in SVM, that
is not differentiable, with a twice differentiable cost func-
tion [12]. Therefore, max{z, 0}’ for p =1 in (1) is replaced
by L(z, u) = ilog(l + exp(uz)). It can be shown that the
maximum gap between the two functions inversely scales with
u, ie., L(z, u) — max{z, 0} < l, and the two can become
arbitrarily close by selecting w sufficiently large [34].

In distributed SVM (D-SVM), the data points are distributed
over a network of n agents and each agent i possesses a
local dataset with ; data points denoted by x!,j=1,...,N;.
Since each agent has access to partial data, the locally found
values w; and v;, obtained by solving (1) over the local
dataset xi', j=1,...,N;, may differ for each agent i. The
idea behind D-SVM is thus to develop a distributed mech-
anism to learn the global classifier parameters by making sure
that no agent reveals its local data to any other agent. The
corresponding distributed optimization problem is given by:

n
min filw;, v) 2
@1,V],...,@n,Vn
i=1
subjectto @; = - =w,, V] =---=1Vy,, 3)

where each local cost f; : R" — R is approximated as
(withz=1— lj(w;r¢(x}) — v;) and large enough p > 0)

N;
fi@i,v) =0 @+ CY_ Llog(l +exp(u2).  (4)
j=1

Let x; = [wlT; v;] € R™ and let x = [X1;Xp; -+ ; X,] € R™
be the global state with the symbol ‘;’ denoting the column
concatenation. Then, Problem (2) takes the following form:

min F(x), F(x) = ;ﬁ(xi)

subject to X] =Xy = -+ = Xp. 5)

We next provide the following lemma on the cost functions.

Lemma 3 [12]: Each local cost f; is twice differentiable
and strictly convex, i.e., the m x m Hessian matrix sz,-(xl-) is
positive definite, for all non-zero x; € R™.

Clearly, any solution x;-k, i=1,...,n, of (5 must sat-
isfy >0, Vfi(x¥) =0, such that x] =... =x} =X", for
some X* € R™ In other words, the optimality condi-
tion VF(x*) =0,,, must hold for some x* € R™ such
that x* = 1, ® X*, where VF : R™ — R™ is the gradient
of F: R™ — R.

IV. PROPOSED ALGORITHM:
DYNAMICS AND AUXILIARY RESULTS

To solve problem (5), we consider the following continuous-
time linear dynamics:

n
i =— Y whxi —x) — ayi, Q)
j=1
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where x;(t) € R™ represents the state of agent i at time ¢ > 0,
x; =t W, = {w?} is the weighted adjacency associated
with G, (g is the switching index), and « > 0 is the step-
size. We note that instead of the standard descend direc-
tion Vf;(x;), the x;-update descends towards an auxiliary
variable y;(f) € R™, which tracks the sum of local gradients,
asymptotically, and is updated via the following dynamics:
n
) d
yi=-— ;j ai(yi = ¥)) + - Vi(x), (7)

where y; = % and A, = {a .} is the weighted adjacency

matrix with the same Zero/non Zero structure as the matrix W.
Let y=1[y1;¥2;...;¥s] € R™ and note that EVf,-(x,- =
V2fi(x;)X;. We emphasize that the proposed algorithm, (6)
and (7), is in continuous-time, however, the structure of the
underlying graph G, may change in a discrete fashion. This
makes the proposed dynamics hybrid where the states, x and y,
evolve in CT collated with DT switching signal g. We make
the following assumption on W, and A,.

Assumpnon 1: The weights W, = {w i} and Ay = {a -}

(wlj, . > () are associated with strongly connected WB-

dlgraphs Further, } 7 1w <land )7 1“, < 1.
Following Assumptlon 1 we obtain from (6) and (7):

Zyl = Z %Vﬁ(x», ®)

i=1

in =) Vi ©)
i=1 i=1

Integrating (8) with respect to ¢ and initializing the auxiliary
variable y(0) = 0,,,,, we have

n n n
Z)’q =—a Zyi =—a ZVfi(Xz‘),
i=1 i=1 i=1

which shows that the time-derivative of the sum of states x;’s is
towards sum gradient. Therefore, the equilibrium (X; = 0,,) of
the dynamics (6)-(7) is x* satisfying (l;lr QL) VF(x*) =0,
(I, as the identity matrix of size m), which is the optimal state
of problem (5) [10].

Lemma 4: Initializing from any x(0) # 1, ® Xg, for some
non-zero X9 € R™, and y(0) = 0,,,, the state [x*;0,,,] with
(1;1r ® I,)VF(x*) = 0,, is an invariant equilibrium point of
the dynamics (6)-(7).

Proof: From (10),
ax=x*=1, Qx",

(10)

the following uniquely holds

n
> ki =—a(l, @ L)VF(X*) =0,
Further, from (6) we have x; = 0,, and from (7),
d _ e
Yi = V) = V)&% = O,

which shows that [x*; 0,,] is an invariant equilibrium point
of the dynamics (6)-(7). [ |

Lemma 4 only shows that [x*; 0,,,], with x* as the optimal
point of (5), is the equilibrium of the networked dynam-
ics (6)-(7). The first term in Eq. (6) drives the agents to
reach consensus on X;’s, while the second term along with
Eq. (7) implements the gradient correction [35], [36]. The
pseudo-code of the proposed D-SVM is given in Algorithm 1.

Algorithm 1: The Proposed D-SVM Algorithm

1 Given: data x; € R7™=1j=1,...,N, costs fi(x;) with
X; = [wiT; vi] € R™ as SVM parameters,
agents i =1, ..., n, WB-digraphs G,, weights W,, A,,
switching signal g, running-time 7Ty

2 Initialization: y;(0) = 0,,, x;(0) is set randomly

3 for t < T,yq do

4 Every agent i finds Vf;(x;);

Every agent i shares x; and y; over gq;

Every agent i updates x; and y; via Eq. (6)-(7);

5
6

7 Return: x* as optimal SVM parameters ®;, v;*

V. PROOF OF CONVERGENCE

In this section, we show that dynamics (6)-(7) converge
to the equilibrium state described in Lemma 4. Define
the nm-by-nm Hessian matrix H = blockdiag[Vzﬁ(x,-)]. The
dynamics (6)-(7) can be written in a compact form as

X X
<y) M0, q>(y>, (1
. Wy ® Iy — oy
Mt o q) = (H(qu®lm) Zq®1m—aH>' a2

The networked dynamics (11)-(12) represent a hybrid
dynamical system because: (i) the matrix H varies in CT; and
(ii) the structure of Laplacian matrices Wq and A may change
in DT in case of dynamic network topology, Wthh is motivated
by robotic networks and dynamic resource availability at the
agents. In this direction, W, and A, follow a switching signal ¢
(and a jump map) fulfilling all the proper assumptions for sta-
bility!; see also [37] for related work on regularity conditions
on the weight matrices. In this hybrid setup, towards conver-
gence analysis, (i) we evaluate the stability properties of the
matrix M at every time-instant using the matrix perturbation
theory [31]. Specifically, we show that, under Assumptions 1,
the algebraic multiplicity of zero eigenvalues of M is m and
the rest of eigenvalues have negative real parts. Recall that
our methodology only mandates strict convexity (Lemma 3) in
contrast to strong convexity condition in [20]-[26]; (ii) then,
using a Lyapunov analysis, we show that the rate of conver-
gence (decrease in Lyapunov function) depends on the largest
non-zero eigenvalue of M; and, (iii) following the continuity
of the Lyapunov function at the jump points, we generalize the
convergence to the entire (hybrid) time horizon [28]. In the rest

IThe proposed model (11) represents a “differential equation whose right-
hand side is chosen from a family of functions based on a switching
signal” [28]. Define the hybrid state { = ((X;y), ¢, T) with 7 as the timer state
andg:te€R>p— Q0 ={1,2,...,q) as the index of the network topology G4
(and the Laplacians Wq Zq) over a bounded time-interval. Then, the flow map
isF:Xy)=Mta,qxy),qg=07¢cl0, L ] with the flow (domain) set

¢ € C=R¥" x Qx [0, 1]. Then, the change in the hybrid state at each jump
(known as the jump map) is J : (x;y)T = (x;y), g7 € 0, 7T = 0 over the
jump domain set £ € D = R" x Q x {1}, implying that the hybrid system
jumps to a new mode g € Q whenever { € D with the time-interval length
depending on the timer rate 7 for each mode g. For example, for minimum
length time-interval tp, the rate is T = % implying that ¢ = 1 (the jump
happens) at the time tp. Clearly, at the jump, g switches to a new mode, ©
starts over, while the state (x;y) is continuous and unchanged. Such a jump
map is categorized as a piece-wise constant mapping with finite number of
discontinuities (jumps) in each time interval and satisfies the so-called “Basic
Assumption” for stability [28].
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of this letter for notation simplicity, we drop the dependence
of M on (t, a, g) and dependence of A, Wq on g, unless where
needed, despite the fact that they are a function of mapping g,
time ¢, and stepsize «.

Lemma 5 [38], [39]: Let an n-by-n matrix P(x) depend
smoothly on a real parameter o > 0. Assume P(0) has [ < n
equal eigenvalues, denoted by A; = ... = X, associated with
right and left eigenvectors vy, ..., v; and uy, ..., u;, which
are linearly independent. Let A;(«) denote the eigenvalues
of P(@), as a function of «, corresponding to A;,i € {1, ..., 1},
and P = %lazo. Then, % |o=0 is the i-th eigenvalue of the
following /-by-/ matrix,

u]—P’Vl ulTP/Vl

u;rP/ Vi ll;rP/V[

Theorem 1: Let Assumption 1 hold. For sufficiently
small «, all eigenvalues of M have non-positive real-parts,
Vt, g, and algebraic multiplicity of zero eigenvalue is m.

Proof: Let M = Mo + aM; with

MO — < W_® Im 0_mnxmn>
HW @Iy A®Iy)

M] — Omnxmn _Imn
Omnxmn —-H ’
where 0,,,,%mn 1S the zero matrix of size mn. Since matrix My
is block (lower) triangular we have,

oMo) =0 (W1Iy) Uo (AR Iy, 13)

where o (-) represents the eigenspectrum of the matrix. From
Lemma 1, both matrices W and A have n — 1 eigenvalues in
the LHP (left-half plane) and one isolated eigenvalue at zero.
Therefore, matrix My has m sets of eigenvalues associated
with m dimensions of vector states x;, i.e.,

Re{Aznj} < ... <Re{Az;} < A2 =A1,;=0,

where j = {1, ..., m}. Using Lemma 5, we analyze the spec-
trum of M by considering it as the perturbed version of M
via the term oM. We check the variation of the zero eigen-
values A1 ; and A2 ; by adding the (small) perturbation aMj.
Denote these perturbed eigenvalues by A1 j(r) and A j(@). To
apply Lemma 5, define the right eigenvectors corresponding
to Ay and Az as,

vevival= (Y %) i, (14)
0, 1,

Similarly, the left eigenvectors are V. These eigenvectors

are defined using Lemma 2 and satisfy V'V = I,,,. Recall

that, dngé“) le=0 = M and following Lemma 5,

0m><m

(L ® 1) TH(1, ® 1) ) (15

Following the definition of the Hessian matrix H,

V'I']‘/[1 V= <0m><m

—nly,

— (L ® L) THA, @I, = — Y Vfi(x) <0, (16)
i=1

where the last inequality follows the strict convexity of the
loss function (see Lemma 3). Recall that from Lemma 5

the derivatives %M:O and %b:o depend on the eigen-
values of (15), which clearly form a lower triangular matrix
with m zero eigenvalues and m negative eigenvalues (follow-
ing (16)). Therefore, %M:O =0 and %Iazo < 0, which
implies that considering oM as a perturbation, the m zero
eigenvalues A2 j(a) of M move toward the LHP while A1 j(a)’s
remain zero. We recall that the eigenvalues are a continu-
ous functions of the matrix elements [31], and therefore, for
sufficiently small ¢ we have,

Re{n j(@)} < -+ < RefAs j(o)}

< M j(a) < Apj(@) =0, (17)
which completes the proof. |

Theorem 1, similar to [10]-[15], only requires strict
convexity of the loss function, as compared to strong
convexity in [20]-[26]. Moreover, the matrix perturbation
method allows eigen-spectrum analysis of the time-varying
matrix M, including possible discrete jumps in the hybrid
mode. From Theorem 1, for sufficiently small «, the
matrix M has m zero eigenvalues, while all other eigenvalues
remain in the LHP. In order to determine upper-bound
on « ensuring the results of Theorem 1, some relevant
concepts regarding the eigen-spectrum o (M) and o (M) are
provided next. Define the optimal matching distance [40]
as  d(o(M), o (Mp)) = ming maxi<i=amm(ri — Ar (@),
where m(i) represents the ith permutation over all pos-
sible permutations {1,...,2nm}. It can be verified
that, d(oc(M),o(Mp)) is the smallest-radius circle cen-
tered at Ayj,..., A2, j, which includes all the eigenvalues
of M denoted by Ajj(a),..., Az (). Loosely speak-
ing, d(o (M), o0 (Mp)) represents the farthest distance between
the eigenvalues of M and My. From Theorem 1, the first 2m
eigenvalues of the perturbed matrix M are Apj(a) =0
and A3 j(a) < 0. To show that all the other (2n — 2)m eigen-
values A3 j(a), ..., Az, j() remain in the LHP, it is sufficient
that d(c(M),o(Mp)) <X with A = minj<j<, |Re{i3;}].
This guarantees that the distance between the (2n — 2)m
eigenvalues of My and M is less than A and therefore all
the (2n — 2)m eigenvalues of M remain in the LHP. In
this direction, the following lemma provides a useful bound
on d(o (M), o (Mp)) and subsequently bound «.

Lemma 6 [40]: For M = My + oM, we have Vt, g,

1

1 L
d(o (M), 0 (Mo)) < 4([Molloo + M |oc) '~ laMy |1 25

Lemma 7: Define Yy = max|<j<mm Zj"fl |Hjj| and
A = minj<j<; | Re{A3;}|. Then, the real-part of the eigenval-
ues, Re{As j(a)}, ..., Re{Az, j(a)}, is negative, if 0 < o <@
where for y < 1,

@ = argmin [4(max{4 + 4y + ay, 4+ 2y +ap) “mam — 2],

a>0
(18)
and for y > 1,
@ = argmin |4(4 + 4y +ay)17ﬁ(ay)ﬁ —Al. (19

a>0

Proof: From Assumption 1 and Lemmas 2 and 3, ||Mp||cc <
2(1+ y). This is because, from Assumption 1 and Lemma 3,
the row sum of the absolute values of matrix W and H(W®1,,,)
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are at most 2 and 2y, respectively. Thus,

[IM|loo < max{2+y(2+«a),2+ «a},
[laMi||oo < max{ay, a}.

Then, for y < 1,

4201+ y) + max(2 + y 2+ @), 2 + a}) e < A,

and for y > 1,

1 1
44 +y@E+a)!Tm(ay)m < i

Since the left-hand-side of the above inequalities are monoton-
ically increasing for o > 0, the largest « satisfying the above
inequalities is given by (18)-(19). |

Despite the conservative upper-bound in Lemma 7, the
eigenvalue condition in Theorem 1 may be valid for possible
less-conservative choice of « > «. For a proper «, matrix M
has m zero eigenvalues associated with the eigenvectors Vj
in (14), and the null space of the time-varying matrix M,
N (M) = span{[1,; 0,] ® L,,}, is independent of time.

Theorem 2: Let the conditions in Lemma 4, Lemma 7, and
Theorem 1 hold. The proposed dynamics (6)-(7) converges
to [x*; 0,,,,,] with x* as the optimal solution of problem (5).

Proof: Consider the positive-definite Lyapunov function
V() = 3878 = 11813 with § = [x;y] — [X*; 0] € R¥™.
Since, from Lemma 4, [x*;0,,] is an invariant state of
the dynamics (11)-(12), we have § = [X; ¥] — [X*; 0] =
M([x; y] — [X*; Opn]) = M3, where M[X*; 0] = Oy
Then, the time-derivative of the proposed Lyapunov func-
tion is V=68"86 =8"Ms. Following Theorem 1, recall
that A1 j(o) = 0, while the remaining eigenvalues have nega-
tive real parts, i.e., Re{A;j(a)} <0,for2 <i<2n,1<j<m.
It is known that [32],

8TM§ < max Re{roj(@)}8's. (20)
1<j<m

Since M varies in time, maxi<j<, Re{A; j(a)} also changes in
time. However, from Theorem 1, it is always negative, imply-
ing that V < 0 for 8 # 0y, while V remains continuous at
the jump (switching) points. We thus have V = 0 < & = 02,
and, from LaSalle’s invariance principle, convergence to the
invariant set {§ = 0y,,,} follows [28]. [ |

From (20), the convergence rate of the dynamics (11)-(12)
depends on Re{A; (o)} and the parameter «. Therefore, to
improve the convergence rate, a needs not to be very small.

VI. SIMULATION: NONLINEAR SVM EXAMPLE

We consider the example given in [41] with N = 6000
uniformly distributed sample data points in Fig. 1 (Left), rep-
resented in two classes: blue *’s and red o’s. Clearly, these
points x; = [xi(1); x;(2)] are not linearly separable in R2. The
nonlinear mapping ¢(x) = [xi(D% %% V2 (D xi@)],
proposed by [41], properly maps the data to R> such that
the projected points are linearly separable (see Fig. 1 (Right))
with the kernel function K(x;, x;) = (qb(x,-)Tqb(xj))z.

We evaluate the proposed dynamics (11)-(12) (with @ = 10)
for D-SVM over a network G, of n =5 agents considered
as the union of a cycle and a 2-hop digraph (as in [2])
with weight-balanced links. Using the loss function (2)-(4)
with u = 3 and C = 1.5, every agent finds the optimal
hyperplane parameters x; = [w;r; vi] (wj € R3) and

3 2 0 1 2 3

%

Fig. 1. (Left) Training data and the optimal nonlinear classifier (the
ellipse) in 2D. (Right) The same points mapped into 3D space via a
nonlinear mapping. Linear SVM optimally classifies the data points via
the gray hyperplane which represents the ellipse in the left figure by
inverse mapping.
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Fig. 2. The time-evolution of the SVM classifier parameters »; and v;
(at all 5 agents) under dynamics (11)-(12) along with overall loss func-
tion F(x) and sum of the gradients 2?21 Vfi(x;). The optimal values
based on the centralized SVM are also shown for comparison.
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Fig. 3. Time-evolution of w; and v; under (Left) finite-time [13] and

(Right) fixed-time [11] dynamics chatter around the optimal value in
steady-state due to non-Lipschitz dynamics.

shares x; along with the auxiliary variable y; over G,. Using
MATLAB’s randperm, the node’s permutation is randomly
changed every 0.05 sec to simulate a dynamic network with
switching signal ¢ : t - Q ={1,2,...,N!} and timer rate
T = ﬁ = 20. The time-evolution of x; = [w;r; ;] € R*, loss
function F(x), and sum of the gradients Z,S: 1 Vfixi) € R* are
shown in Fig. 2.

The agents reach consensus on the optimal value
X" = [w(1), ®(2), »(3), v]", which represents the separating
ellipse 5(1)1% +5(2)z% —V =0 (z1 and zo as the Cartesian
coordinates in R2). For comparison, similar D-SVM solu-
tions under finite-time [13] (with B;; = 3) and fixed-time [11]
dynamics (withae =4, 8 =y = 1,a =2, b = 9) are shown in
Fig. 3. Recall that finite/fixed-time dynamics are non-Lipschitz
and result in undesirable chattering of the SVM parameters in
steady-state.
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VIlI. CONCLUSION AND FUTURE RESEARCH

In this work, a Lipschitz dynamics is proposed to solve
D-SVM over a dynamic WB-digraph in a hybrid setting using
matrix perturbation analysis. Our CT results can be easily
extended to the DT case by adopting, for example, approx-
imate Euler-Forward discretization and replacing matrix M
in (12) with My = I4+TM, where T is the sampling time. Then,
the explicit upper bound on T such that stable CT dynamics
from Theorems 1-2 remains stable after discretization can be
defined. On the other hand, implicit discretizations, e.g., Euler-
Backward, impose no upperbound on 7, but they are more
time-consuming and harder to implement. As future directions,
extensions to time-delayed networks, online D-SVM, and
sparse digraphs are of interest.
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