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Abstract 21 

Compatibility in a range of media is vitally important for surface-enhanced Raman 22 

scattering (SERS) enabled pH detection. We report universal pH detection in a range of media 23 

using top-down nanostructured gold SERS substrates and multivariate regression. SERS substrates 24 

with vertically stacked multiple nanogap hotspots functionalized with the sensing molecule 4-25 

mercaptopyridine (4-Mpy) exhibited high spatial uniformity. Standard ratiometric pH detection 26 

enabled development of a Boltzmann equation-based calibration curve for phosphate buffered 27 

saline. This calibration curve, however, could not be used to predict pH in other media such as 28 

carbonate buffer, apple juice, milk, and wastewater. To address SERS interferences that occur in 29 

these different media compositions, multivariate regression was successfully applied to pH 30 

prediction for all five media. A total of 19 spectral features in the 4-Mpy SERS spectra were 31 

extracted and used for model development. A nonparametric Gaussian process regression (GPR) 32 

model with 5/2 Matérn kernel function exhibited the greatest pH prediction accuracy with a root 33 

mean square error (RMSE) of 0.8139 among other multivariate regression models. This model was 34 

generalizable and capable of determining pH within media that had not been used for model 35 

training.  36 

 37 
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Introduction 55 

Sensitive and accurate pH measurements in aqueous environments are important to a 56 

variety of science and engineering fields. Solution pH governs not only physical/chemical 57 

dynamics, but also affects biological activity. For example, colloidal particles in suspension show 58 

pH-dependent surface charges that affect measured interfacial potentials, and the enzymatic 59 

activity of nitrifying bacteria in biological wastewater treatment is known to be pH sensitive.1 60 

Similarly, the pH of clinical specimens (e.g., blood, serum, sputum) has physiological implications. 61 

Intracellular pH is an essential parameter for cell and organ function2,3 and extracellular pH can be 62 

used to differentiate cancer and normal cells.4 The consistent monitoring of the pH of commercial 63 

juice products can provide alarms about possible microbiological infection.5,6 64 

Surface-enhanced Raman spectroscopy (SERS) has been recognized as a promising 65 

analytical technique for pH detection.7–14 SERS has been proven to have high sensitivity for 66 

analyte detection and provides the benefits of rapidity, non-destructivity, and low-cost.15–18 67 

Furthermore, the capacity to access microenvironments and the inherent small sample volumes 68 

involved make SERS-based pH detection highly appealing. A number of SERS pH reporters 69 

containing a thiol group for surface anchoring and pH sensitive functional groups (e.g.,  amine, 70 

carboxyl, pyridyl) have been used to measure pH: 2-aminothiophenol (2-ATP),19 4-71 

mercaptobenzoic acid (4-MBA),3,20–25 and 4-mercaptopyridine (4-Mpy).26–31 The 72 

protonation/deprotonation of the pH sensitive functional groups within these pH reporters result 73 

in measurable changes in the SERS spectra.  74 

Despite a number of successes of the SERS pH sensing approach,32–35 there remain 75 

challenges that must be addressed for field application of SERS pH nanoprobes. One major 76 

challenge arises from the use of bottom-up synthesized nanoparticles. Gold nanoparticles (AuNPs) 77 
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are commonly used for SERS due to their facile synthesis, stability, and biocompatibility.36,37 pH 78 

reporters can be readily attached to the AuNP surface through strong covalent Au–S bonds.38 SERS 79 

signals obtained by this method reflect the density of SERS hotspots generated by nanoparticle 80 

aggregation. The aggregation of pH reporter functionalized AuNPs is generally uncontrollable and 81 

the resulting heterogeneous spatial distribution can lead to poor uniformity. Numerous efforts have 82 

been made to resolve this issue. For instance, blocking agents such as bovine serum albumin (BSA) 83 

have been used to form a protective layer and prevent undesired AuNP aggregation.2 In addition, 84 

co-solvent (water and ethanol) controlled aggregation has shown promise as a means to 85 

reproducibly control SERS hotspot generation.23 Nonetheless, the intrinsic heterogeneity of 86 

nanoparticle aggregation may still impact reliability.  87 

Another challenge affecting the use of SERS pH nanoprobes is the need to conduct 88 

ratiometric analyses in different media. To the best of our knowledge, all of the prior studies on 89 

the use of SERS pH nanoprobes have relied upon ratiometric analyses for pH determination. By 90 

taking two different SERS peaks whose intensities vary depending on the 91 

protonation/deprotonation of functional groups, it is possible to develop correlations between peak 92 

ratio and pH. However, the chemical/biological composition of the media can interfere with the 93 

SERS spectra and distort the correlations.39 For example, it has been shown that halide ions make 94 

the pyridinium thiolate more likely to protonate in an acidic solution and alter the SERS spectrum 95 

of 4-Mpy.40–44 Furthermore, it has been determined that SERS pH nanoprobes can be susceptible 96 

to BSA interference under physiological concentrations,25 and different cation compositions (e.g., 97 

K+, Na+, Ca2+, Mg2+) in the cell culture medium can interfere with the SERS spectra.45 Given the 98 

possible effects of the media on the SERS spectrum, the continued application of ratiometric 99 

analyses may not be the best option for robust SERS pH measurements. 100 
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To solve the challenges faced by previous SERS pH studies, we introduce 1) top-down 101 

nanostructured Au SERS substrates and 2) multivariate regression with the aim of accurate pH 102 

sensing in a variety of media. Lithography-based top-down nanofabrication enables the 103 

sophisticated design of SERS substrates. Top-down nanostructured SERS substrates have 104 

numerous advantages over bottom-up synthesized nanoparticles in that they inherently possess 105 

greater uniformity and reusability.46 We furthermore hypothesized that the simultaneous selection 106 

of all pH sensitive SERS peaks would better reflect chemical/biological differences between media 107 

and enable more accurate and matrix agnostic pH detection. Prior studies have demonstrated the 108 

potential for SERS to measure dynamic changes within intracellular environments using multiple 109 

vibrational bands,47 and recently, machine learning algorithms that are capable of learning high-110 

dimensional variables have gained attention as a more robust means for SERS analysis than 111 

ratiometric approaches.48–50 Multivariate regression based on Gaussian process (GP) is a 112 

supervised machine learning approach that can define a statistical model to study the relationship 113 

between several correlated predictor variables and a dependent variable.51 Since GP is a family of 114 

functions, the  GP regression (GPR) is also considered a nonparametric regression that is quite 115 

flexible for the building of such relationships without strong parametric assumptions. By 116 

considering changes in several spectral features in the SERS spectrum of a pH reporter in response 117 

to pH changes, a multivariate regression model based on GP is expected to accurately predict pH 118 

in the given media irrespective of potential spectral interferences.  119 

Figure 1 illustrates the workflow for universal pH sensing using a top-down 120 

nanostructured SERS substrate and multivariate regression. We functionalized the SERS 121 

substrates with 4-Mpy as a pH reporter and incubated them in five different media: phosphate-122 

buffered saline (PBS), carbonate buffer, apple juice, milk, and wastewater. These matrices range 123 
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from quite simple, such as PBS and carbonate buffer that only contain inorganic salts, to quite 124 

complex (e.g., milk and wastewater). PBS is the most commonly used buffer for biological 125 

research and has the lowest concentration of salts that can maintain stable pH. Carbonate buffer 126 

simulates many systems for which pH is controlled by the equilibrium between the CO2 in the air 127 

and the relative concentrations of carbonate and bicarbonate.52 The food industry uses pH as an 128 

indicator of product quality control and for this reason, apple juice and milk were chosen as 129 

representatives of complex liquid food matrices. Wastewater, in contrast, is a highly heterogeneous 130 

matrix whose pH varies widely due to local differences in water quality and sewage inputs.  In this 131 

study, SERS spectra of 4-Mpy were collected over a range of pH values in each of these 132 

representative media. We then developed a multivariate regression model to accurately estimate 133 

pH given our SERS dataset and compared this accuracy with that obtained via ratiometric analysis. 134 

 135 

Figure 1 Schematic illustration of universal pH sensing enabled by the top-down nanostructured 136 
SERS substrates with different pH values (from 2 to 11) and five media: PBS, wastewater, 137 
carbonate buffer, apple juice, and milk. PU, polyurethane. The SERS spectrum of 4-Mpy deposited 138 
onto the SERS substrates was collected after incubation with different pH and media. Following 139 
SERS spectra collection, the accuracy of the calibrated pH prediction model from the multivariate 140 
regression algorithm was compared to ratiometric analysis. 141 
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Methods 142 

Reagents and solution 143 

Thiolated polyethylene glycol with a molecular weight of 1000 (1k-PEG-thiol), 4-Mpy, 144 

hydrochloric acid (HCl), sodium hydroxide (NaOH), NaHCO3, and Na2CO3 were purchased from 145 

Sigma-Aldrich (St. Louis, MO). PBS at pH 7.4 was purchased from Invitrogen (Carlsbad, CA) and 146 

a wastewater sample was collected from the influent to the wastewater treatment plant in the 147 

Hampton Roads Sanitation District (HRSD; Virginia Beach, VA). Apple juice 148 

(100% Martinelli's Gold Medal apple juice, Watsonville, CA) and milk (2% reduced-fat milk, 149 

Simple Truth Organic®™, San Diego, CA) were purchased from the local grocery store. The pH 150 

values of these media were adjusted using HCl and NaOH except for carbonate buffer solution for 151 

which the pH was adjusted by mixing different volume ratios of two 0.1 M sodium bicarbonate 152 

(Na2CO3) and disodium carbonate (NaHCO3) solutions. The bulk pH of the solution was measured 153 

using an Orion Versa Star pH meter (Thermo Fisher Scientific, Waltham, MA). All solutions were 154 

stored at 4 °C until use. 155 

Fabrication of top-down nanostructured SERS substrates 156 

Detailed SERS substrate fabrication processes are described elsewhere.46,48,53 Briefly, a 157 

composite polydimethylsiloxane (PDMS) stamp (diameter = 120 nm, periodicity = 400 nm, height 158 

= 150 nm) was prepared by soft lithography.54 We used UV-curable polyurethane (PU; NOA83H, 159 

Norland Product Inc., USA) to fabricate periodic nanopillar arrays on a flexible and optically 160 

transparent polyester (PET) film. After 10 min UV curing, an additional overnight heat-curing was 161 

performed in a convection oven at 80 °C. We then deposited alternating layers of Au (30 nm) and 162 

SiO2 (6 nm, 8 nm, and 12 nm from the bottom) by electron-beam deposition (PVD250, Kurt J. 163 

Lesker Company, USA). One nm of Cr on PU nanopillar arrays and 1 nm of Ti at every metal-164 
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dielectric interface were deposited as adhesion layers. We used 10:1 buffered oxide etchant (BOE) 165 

solution (Transene Inc., USA) to partially etch SiO2 layers for 20 s to open dielectric nanogaps, 166 

thereby activating SERS hotspots. 167 

Collection of SERS spectra of 4-Mpy in response to pH 168 

To functionalize 4-Mpy on the top-down nanostructured SERS substrate, the substrate was 169 

cut into pieces of 5 mm × 5 mm. One piece was attached to the small petri dish in the diameter of 170 

47 mm using a UV curable PU optical adhesive (NOA 61, Norland Product Inc., USA) with 5 s of 171 

UV curing. Then, the piece was immersed in 5 mL of 10 µM 4-Mpy solution for one hour. To 172 

stabilize the substrate, after 4-Mpy functionalization, the suspension was replaced by 5 mL of 1k-173 

PEG-thiol (0.5% weight ratio) and further incubated for another hour. PEG coating can enhance 174 

substrate biocompatibility55,56 and inhibit metal dissolution.57 Then, the suspension was decanted 175 

and the substrate was washed several times by deionized water. The final functionalized SERS 176 

substrate was stored in deionized water at room temperature and covered with aluminum foil until 177 

use. For pH sensing, the supernatant was decanted, and the substrate was dried under a gentle flow 178 

of N2 gas. An aliquot of 100 µL of pH solution was pipetted onto the SERS substrate and the SERS 179 

spectrum was immediately collected. The pHs of PBS, apple juice, milk, and wastewater solutions 180 

were adjusted in the range of pH 2-11 at one pH unit increments by adding HCl and NaOH. The 181 

pH range of carbonate buffer was limited between 8.6 to 10.2. The carbonate buffer pH was 182 

adjusted by mixing different ratios of Na2CO3 and NaHCO3 to minimize pH change with time due 183 

to CO2 transfer from the air. For milk, due to the high turbidity of the milk solids, the pipetted 184 

volume was reduced to 10 µL. 185 

Instrumentation and data processing 186 

The SERS spectra of 4-Mpy with different pH values on the SERS substrate were collected 187 
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using a confocal Raman spectrometer (Alpha500R, WITec, Germany) with a 785 nm diode laser 188 

(Toptica Photonics, Germany) and 10× objective lens. The laser power was set to 10 mW, and a 189 

300 grooves/mm grating was used. Single point SERS spectra were measured using 10 s 190 

integration time per point with 6× accumulation. Single acquisitions from three different regions 191 

of the substrate were collected as triplicates. Before measurement, instrumental calibration was 192 

verified by the silicon peak at 520 cm-1. The collected SERS spectra were processed using built-193 

in software (Project Five v. 5.0, WITec, Germany). Each SERS spectrum was first processed by 194 

graph smoothing and cosmic ray removal (CRR). Then, the baseline was subtracted using the 195 

shape function. 196 

Ratiometric analysis and multivariate regression 197 

For ratiometric analysis, among the many spectral features, the intensities at 1576 and 1612 198 

cm-1 (I1576 and I1612) were selected.26,28 The peak ratio (I1576/I1612) for each medium was plotted 199 

against the bulk pH measured by a pH meter. The best-fit calibration for the PBS solution was 200 

obtained using the Boltzmann equation and its compatibility to other media was investigated.  201 

For multivariate regression, all spectral features in the SERS spectrum were extracted after 202 

normalization by the peak at 77 cm-1. This pseudo-peak generated by a long-pass filter originates 203 

from plasmon-enhanced electronic Raman scattering (ERS). We have recently reported that ERS-204 

based SERS calibration can more accurately determine concentrations at plasmonic hotspots with 205 

reduced spatial and temporal variations, thus enabling more rigorous quantitative analysis.58–60 206 

Based on this benefit of ERS normalization, it is expected that the multivariate regression model 207 

can be developed across a variety of nanostructured SERS substrates with spatially varying SERS 208 

hotspots. Several distinct SERS peaks between 350 and 1800 cm-1 were selected using automated 209 

peak labeling within the WITec Control Five (v. 5.0) software with the minimum relative height 210 
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(i.e., height to the average of all peaks) set to 0.1. Using this function, 19 spectral features were 211 

identified: 371, 390, 421, 484, 553, 680, 708, 780, 821, 1003, 1040, 1095, 1208, 1274, 1412, 1462, 212 

1500, 1576, and 1612 cm-1. We collected a total of 144 (48 pH values × 3 replicates per pH) SERS 213 

spectra for different pHs and media. Each SERS spectrum can be labeled as a corresponding bulk 214 

pH measured by a pH meter (numeric). The SERS dataset thus consists of 144 pHs × 19 spectral 215 

features. The multivariate regression models were trained using the regression learner application 216 

in Mathworks MATLAB/SIMULINK (ver. R2020a). It offers a variety of regression models (e.g., 217 

GPR, support vector machine (SVM), linear regression, regression trees, the ensemble of trees) 218 

with sub-specialized functions. To validate the model, 12-fold cross-validation was conducted. 219 

Simply put, the 144 pH labeled dataset was divided into 12 subsets of equal size. Iteratively, 11 of 220 

the subsets were used for training, while one was used for testing. For each test, the root mean 221 

square error (RMSE) of the test points from the prediction model was calculated. We evaluated 222 

the model by the average of RMSEs from 12 test results.  223 

Results and Discussion 224 

Nanostructured SERS substrate characterization 225 

Figures 2A and B show photographic and top-view scanning electron microscope (SEM) 226 

images of our large-area (≈16 cm2) top-down nanostructured SERS substrate. Our recent studies 227 

indicate that vertical stacking of multiple metal-insulator-metal (MIM) layers on periodic 228 

nanopillar arrays create vertically-oriented (out-of-plane) nanogaps that provide uniform 3D 229 

plasmonic hotspots with a SERS enhancement factor (EF) ≈ 5×107.46,48,53 More detailed 230 

characterization of our SERS substrate is provided in our prior publications.46,48,53 Top-down 231 

molding-based soft nanolithography offers fabrication scalability and enables cost-effective, mass 232 

production of reusable nanostructured SERS substrates. 233 



12 
 

We functionalized the SERS substrates with 4-Mpy as a pH reporter. 4-Mpy consists of a 234 

pyridine ring with a thiol group that attaches to the Au surface via the Au–S bond while exhibiting 235 

a large Raman cross-section due to the pyridine ring (Figure 1). Changes in pH result in 236 

protonation/deprotonation of heterocyclic nitrogen that can be detected by SERS. Figure 2C 237 

illustrates the SERS spectra for 4-Mpy in PBS at pH 7. This result shows the successful 238 

functionalization of 4-Mpy on the SERS substrates. To evaluate the uniformity of 4-Mpy 239 

functionalization across a substrate, we collected SERS spectra from a 10 µm ×	10 µm area with 240 

10 × 10 (X × Y) points and 1 s integration time per point. Using the characteristic peak at 1096 241 

cm-1 we then examined the spatial distribution of its intensity (I1096) across the scan area. As shown 242 

in Figure 2D, I1096 was evenly distributed with a relative standard deviation (RSD) of 7.2%. The 243 

low RSD reflects the high uniformity of the functionalized SERS substrates.61 Given the 244 

homogeneity of the SERS substrates, we then elected to collect SERS spectra from three different 245 

regions of a given substrate using a single point collection of 10 s integration time and six 246 

accumulations throughout this study. In this manner, we were able to rapidly collect high signal-247 

to-noise ratio (SNR) 4-Mpy SERS spectra. A high SNR is critical to the development of a 248 

multivariate regression model since it is needed to facilitate monitoring of small peak responses to 249 

changes in pH. 250 
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 251 
Figure 2 (A,B) Bright field and SEM images of the top-down nanostructured SERS substrates (C) 252 
The SERS spectrum of 4-Mpy functionalized SERS substrates in PBS at pH 7 (D) Histogram of 253 
the Raman intensity at 1096 cm-1 for 4-Mpy functionalized SERS substrates across a 10 µm × 10 254 
µm scanning area with 10 × 10 (X × Y) points. The inset shows the spatial distribution of the 255 
Raman intensity at 1096 cm-1 across the scanning area.  256 
 257 

SERS spectra of 4-Mpy with different pH and media 258 

SERS spectra of 4-Mpy were collected as a function of pH in a number of different matrices. 259 

The collected SERS spectra are visually presented hereafter by normalization using the intensity 260 

of the 77 cm-1 pseudo-peak as an internal standard. Figure 3A shows the SERS spectra of 4-Mpy 261 

on the SERS substrates in PBS at pH 2 and 11. While their intensities vary, several distinct peaks 262 

with positions between 350 and 1800 cm-1 were observed in the SERS spectra at both pH values. 263 

The 4-Mpy structure contains a number of chemical bonds that produce SERS peaks that reflect 264 

different C―C, C―N, C―S, and C―H bonds, orientations, and vibrational modes (Table S1).  265 
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The SERS spectrum at pH 11 had remarkably higher signal intensities at 1000, 1095, 1274, 266 

and 1612 cm-1 than the SERS spectrum at pH 2. This difference reflects the different ionization 267 

states of 4-Mpy on the surface. Theoretically, there are two ways that 4-Mpy attaches to the Au 268 

surface (Figure 1). 4-Mpy can associate with Au either through the formation of a covalent Au–S 269 

bond or non-covalently through the lone pair of electrons on sulfur.27  Under low pH conditions, 270 

4-Mpy primarily has the aromatic ring with the protonated thiol group. Under this condition, both 271 

C=N and C=C have large Raman cross-sections. Under high pH conditions, two resonance 272 

ionization states of 4-Mpy (i.e., the thiol-thione tautomer) are common, leading to a decrease in 273 

the aromaticity of the pyridine ring and a relatively lower fraction of C=N.27 The reduction in 274 

aromatic pyridine ring formation led to a decrease in the intensity at 1000 cm-1. The different ratios 275 

of C=N to C=C bonds are reflected by whether the spectrum has two distinct peaks at 1576 and 276 

1612 cm-1 or a single strong peak at 1576 cm-1. Also, the C=S bond in the thione structure exhibits 277 

strong SERS intensity at 1095 cm-1 corresponding to the co-called X-sensitive band.27  278 

We compared the SERS spectra of 4-Mpy in different media at pH 9 (Figure 3B). The 279 

consistency and clarity of the SERS spectra of 4-Mpy across this range of media illustrate the 280 

robustness of the SERS substrates. However, while the SERS profiles are fairly similar there 281 

remain distinct differences in peak intensities. Such differences reflect interferences in the SERS 282 

spectra that result from chemical/biological constituents within the various media. For example, 283 

prior studies have reported the effect of halide ions on the SERS spectrum of the pyridine ring.28,40–284 

44 At low pH, protonated pyridine (i.e., pyridinium) transforms into pyridine in the vicinity of 285 

halide ions. In addition, some proteins can form a steric protection layer with Au–S bonds that 286 

decrease the intensity of the ring breathing mode at 1000 cm-1.62,63 The matrices used in this study 287 

were purposely chosen as they are pertinent to a variety of fields: biotechnology (PBS), medical 288 



15 
 

science (carbonate buffer), food industry (apple juice and milk), and environmental science 289 

(wastewater). Each media has distinct levels of chemical/biological constituents such as ionic 290 

components and organic/inorganic matter. Such differences are expected to impact the SERS 291 

profiles of 4-Mpy at the same pH.  292 

 293 
Figure 3 (A) Comparison of SERS spectra of 4-Mpy on the SERS substrates in PBS for pH 2 and 294 
11. (B) Vertically stacked SERS spectra of 4-Mpy on the SERS substrates in five different media 295 
at pH 9 296 
 297 

Ratiometric analysis to predict pH 298 

Similar to prior work with SERS pH nanoprobes, we first applied ratiometric analysis to 299 

develop a pH calibration curve. Given the various pH-dependent ionization states of 4-Mpy 300 

different intensity ratios can be used to develop a ratiometric analysis. Previously, the peaks with 301 

the highest SNR have been commonly used for ratiometric analysis: 1000 vs. 1095 cm-1,63 1208 302 

vs. 1274 cm-1,2  or 1576 vs. 1612 cm-1.26,28 Figure 4A shows vertically stacked SERS spectra of 303 

4-Mpy in PBS solution at pH 2-11. The inset spectra indicate the variation of two characteristic 304 

peaks (red-colored columns, 1576 and 1612 cm-1) that showed the most sensitive spectral change 305 

in response to pH and represent the best-fit calibration curve amongst the three previously reported 306 

intensity ratios (Figure S1). When the pH increased, I1612 decreased, while I1576 was essentially 307 

constant since 4-Mpy was deprotonated. Given this dataset of 4-Mpy SERS spectra at different 308 

pH, we then plotted the peak ratio (I1576/I1612) for five media against the pH values measured by a 309 
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pH meter (Figure S2). In each case, a positive correlation between the peak ratio and pH was 310 

observed. Each calibration curve was readily fit by a Boltzmann expression with R2 > 0.93 except 311 

for carbonate buffer. The small standard deviations for the majority of the peak ratios (~10%) for 312 

triplicate measurements illustrate the excellent homogeneity and uniformity of the SERS substrates. 313 

Unfortunately, however, the calibration curve for each plot differed considerably from one another. 314 

Such a result implies that interferents impact SERS spectra of 4-Mpy within the various media, 315 

and thus the calibration curves shift.  316 

Figure 4B shows a comprehensive plot relating the peak ratios and the pH values measured 317 

by a pH meter for all media. As a standard, the best-fit curve and the corresponding 95% 318 

confidence region for the PBS data points were embedded to investigate how well a specific 319 

media’s data points overlap with them. The best-fit curve for PBS using the Boltzmann equation 320 

had a high correlation (R2 = 0.97, I1576/I1612 = 𝟒. 𝟗𝟓 − 𝟑.𝟔𝟑

𝟏%𝐞𝐱𝐩	(𝒑𝑯#𝟖.𝟕𝟖𝟏.𝟗𝟖 )
). However, the other media’s 321 

measured points differed significantly from the PBS-based calibration curve. This result was 322 

especially true under highly acidic and basic conditions (e.g., pH 2-4 and 9-11) where the majority 323 

of the data points for the other four media deviated from the calibration curve and fell outside the 324 

95% confidence interval. As discussed earlier, these differences reflect spectral inferences due to 325 

the chemical/biological components of the other media. In addition to the PBS-based calibration 326 

curve, a comprehensive calibration curve was obtained by fitting a Boltzmann expression to the 327 

results collected in all media to explore the applicability of ratiometric analysis for universal pH 328 

detection (Figure S3). The calibration curve exhibited a relatively poor fit to data points from all 329 

media with an R2 of only 0.76. We, therefore, concluded that while ratiometric analysis may be 330 

appropriate for a single highly-controlled media its applicability in other media is questionable. A 331 
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more robust approach is required to achieve media agnostic comprehensive SERS-enabled pH 332 

detection. 333 

 334 
Figure 4 (A) Vertically stacked SERS spectra of 4-Mpy in PBS solution for bulk pH 2-11 335 
measured by a pH meter. Gray regions indicate the 19 selected spectral features used for the 336 
development of the multivariate regression model. The zoomed-in SERS spectra show the two 337 
characteristic peaks at 1576 and 1612 cm-1 used for ratiometric analysis. (B) The comprehensive 338 
plot of I1576/I1612 vs. bulk pH in different media. The blue line and region indicate the best-fit curve 339 
(Boltzmann equation) and 95% confidence region for the plot from the PBS solution.  340 

 341 

Multivariate nonparametric regression to predict pH  342 

We used multivariate nonparametric-regression to build a pH prediction model that can be 343 

universally applied across highly variable media. To date, we found only a single literature report 344 

that used multivariate spectral analysis for SERS pH sensing.64 In that effort, they analyzed 345 

spectral features using principal component analysis (PCA) and achieved significant improvement 346 

in pH prediction relative to a ratiometric approach. However, the capability of PCA is strictly 347 

limited to pH discrimination. In other words, because there is no defined calibration curve, pH 348 

cannot be quantitatively predicted with PCA. Hence, we developed a multivariate nonparametric 349 

regression model that can be used to directly predict pH by producing a predictive formula (i.e., 350 

the mathematical calibration equation) without imposing strong modeling assumptions. The use of 351 

a robust spectral analysis is expected to avoid false pH predictions that arise from disruptive 352 
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spectral signals that may arise due to variations between media. The gray-colored regions within 353 

Figure 4A indicate the 19 spectral features selected for the development of the multivariate 354 

regression model. Figure 5A summarizes the scheme used to obtain the spectral features and 355 

optimize the multivariate regression model. We tested 10 different pH values from 2 to 11 for PBS, 356 

apple juice, milk, and wastewater at 1-unit pH increments. In contrast to the other media, the pH 357 

of carbonate buffer was adjusted by mixing different ratios of NaHCO3 and Na2CO3 to achieve 8 358 

different pH values at ~0.2-unit increments (Table S2). A total of 144 (48 pH values × 3 replicates 359 

per pH) SERS spectra were numerically labeled based upon the corresponding pH meter 360 

determined bulk pH. Accordingly, a dataset consisting of 144 labeled pH values (numeric 361 

dependent variable) × 19 spectral features (independent variables) was collected. The multivariate 362 

regression model for pH detection was determined based upon the best-fit calibration curve where 363 

the difference between labeled and predicted pH values is minimized. The accuracy of the pH 364 

prediction model was estimated by plotting predicted pH values against those determined by a pH 365 

meter. Here, a GPR was applied to build a pH regression model based on the combined SERS 366 

dataset. GPR is the multivariate nonparametric regression that has the advantage of providing 367 

uncertainty bounds on the predictions while retaining suitability to small datasets. The Gaussian 368 

process is stochastic (i.e., a collection of random variables) with a multivariate Gaussian 369 

distribution and is a family of functions. Hence, GPR is considered a nonparametric regression. 370 

The process is governed by different kernel functions that measure the similarity between training 371 

inputs (𝒙𝒊) and the predicting input (𝒙-) (|𝒙𝒊 − 𝒙-|). The governing equations for the different 372 

GPR kernel functions used in this study are provided in Table S3.  373 

Figure 5B illustrates pH prediction based on the GPR model with the 5/2 Matérn kernel 374 

function that is commonly used due to its’ flexibility. The GPR model was trained by the dataset 375 
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consisting of the SERS spectra in all media and showed high agreement between the prediction 376 

and labeled pH (i.e., bulk pH measured by a pH meter). All of the data points from the different 377 

media fell within the regime of pH prediction with ± pH 1-unit deviations (gray dashed lines) with 378 

a RMSE of 0.8219 and an R2 of 0.92. As well as improving the accuracy of prediction, the model 379 

showed a higher sensitivity for pH prediction than did the ratiometric analysis. As mentioned 380 

earlier, the ratiometric analysis in the case of carbonate buffer, apple juice, milk, and wastewater 381 

samples showed limited sensitivity for pH prediction in the range of pH 2-8. On the contrary, the 382 

data points for all samples were well linearized from pH 2 to 11 by the GPR model. The 383 

multivariate regression model showed higher superiority for pH prediction than the ratiometric 384 

analysis since it addresses the issue of background interferents within complex media simultaneous 385 

to model development. As discussed earlier, the ratiometric analysis failed to address the 386 

contribution of complex media for pH detection, showing a poor-Boltzmann fit across all media 387 

(R2 = 0.76). Meanwhile, the PBS-based multivariate regression model also showed the poor 388 

predictive capacity for other media similar to the ratiometric analysis (Figure S4), the model based 389 

on all five media showed significant improvement in pH detection. We further compared the 390 

models developed in different numbers of media; one (PBS), two (PBS, carbonated buffer), three 391 

(PBS, carbonated buffer, apple juice), four (PBS, carbonated buffer, apple juice, milk) (Figure 392 

S5). All models exhibited high accuracies with RMSE of < 0.8834 and R2 > 0.90. 393 
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 394 

Figure 5 (A) The scheme of the dataset consisting of different labeled pH values (dependent 395 
variable), spectral features (independent variables), and different media with replicates, the 396 
development of a multivariate regression model, and pH prediction (B) pH prediction by the 397 
optimized GPR model with 5/2 Matérn kernel for five media. Data points and error bars indicate 398 
the average of predicted pH values from triplicate measurements and the standard deviations. The 399 
black and gray dashed lines indicate the perfect agreement and its ± pH 1-unit differences. 400 
 401 

To further validate the GPR model and investigate its field applicability, we predicted the 402 

pH of a set of commercially available media that were not used for training under a wide range of 403 

pH values: sports electrolyte drink (pH 2.11), white wine (pH 2.54), aloe drink (pH 3.42), green 404 

tea (pH 6.02), pond water (pH 6.28), soy milk (pH 7.13), and cleaning solution (pH 10.20) (Figure 405 

6). The pH values predicted by the GPR model were all within ± pH 1-unit of the labeled pH 406 

values except for two cases. The pH for pond water predicted by the model was higher than the 407 

labeled pH by 1.28 pH unit. It is reasonable that the large quantity of natural organic matter in the 408 

pond water could interfere with the SERS spectrum.65 The pH for cleaning solution predicted by 409 

the model was lower than the labeled pH by 1.15 pH unit. The cleaning solution tested in this study 410 

contained a surfactant for cleaning purposes that could also result in SERS interference.66 The 411 

effect of such potential interferents could be minimized by the removal of natural organic matter 412 

and surfactant. Also, the model can be improved with better compatibility by feeding additional 413 
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SERS datasets from a wider range of media that include comparable amounts of natural organic 414 

matter and surfactant. We also adjusted the pH of the media under acidic, neutral, and basic 415 

conditions to investigate if these independent media also exhibited the linear pH dependence in 416 

the GPR model (Figure S6). The result showed that the GPR model can linearize the pH values 417 

of these media as well.  Based on the high accuracy and compatibility of the multivariate regression 418 

model for pH prediction, we believe that multivariate regression can be applied in other parameter 419 

analysis in addition to pH. For example, hydrogen peroxide (H2O2) and hypochlorite (ClO-) can 420 

be quantitatively detected using the SERS reporters, 3-mercaptophenylboronic acid (3-MPBA) 421 

and 4-mercaptophenol (4-MP).67–72 Similar to pH detection, to the best of our knowledge, 422 

ratiometric analyses are typically applied for both targets and the compatibilities of these 423 

calibrations in other media have yet to be fully explored. It is expected that the application of 424 

multivariate regression to other targets can further expand the applicability of SERS-based 425 

detection in variable media. 426 

 427 
Figure 6 pH prediction of test media (sports electrolyte drink (pH 2.11), white wine (pH 2.54), 428 
aloe drink (pH 3.42), green tea (pH 6.02), pond water (pH 6.28), soy milk (pH 7.13), and an 429 
cleaning solution (pH 10.20)) by the optimized GPR model with 5/2 Matérn kernel. Data points 430 
and error bars indicate the average of predicted pHs from triplicate measurements and the standard 431 
deviations. The black and gray dashed lines indicate the perfect agreement and its ± pH 1-unit 432 
differences. 433 
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 434 
Comparison of multivariate regression models 435 

We compared a number of multivariate regression models to determine the most powerful 436 

regression model for pH prediction by SERS spectra: GPR, SVM, linear regression, regression 437 

tree, and the ensemble of trees. The set of boxplots and scatter points in Figure 7 shows the RMSE 438 

and R2 values of the multivariate regression models for pH prediction. RMSE and R2 are indicators 439 

of the model prediction performance. Each boxplot consists of 12 test results from the 12-fold 440 

cross-validation. Both GPR and SVM are kernel-based regressions. The GPR model uses the 441 

kernel to define the covariance of a prior distribution (i.e., the probability before the new data is 442 

collected) while SVM uses a kernel-based hyperplane that separates data points. We applied 443 

commonly used kernel functions for GPR (i.e., exponential, rational quadratic, 5/2 Matérn, and 444 

squared exponential). For SVM, parametric (linear, quadratic, cubic), and non-parametric (fine, 445 

medium, coarse Gaussian) kernel functions were applied. Linear regression is the simplest 446 

parametric regression that assumes a linear relationship between independent and dependent 447 

variables. A robust objective function (i.e., robust linear regression), can make the model less 448 

sensitive to outliers. The regression tree generates the tree from the root node with two-way 449 

branches to a leaf node. Several binary nodes with the branches from the root to the leaves 450 

determine the final response. Depending on the number of leaves, a fine tree (a large number of 451 

small leaves) and a medium/coarse tree (the fewer large leaves) can be applied. Finally, the 452 

ensemble of trees is the regression that combines multiple regression trees with least-squares 453 

boosting (boosted) or bootstrapping bagging (bagged) methods.  454 

Among the regression models, all GPR, the SVM with some of the kernel functions (i.e., 455 

linear, quadratic, and medium Gaussian), and the linear/robust linear regression models showed 456 

the comparably lowest RMSE values based on the post-hoc Duncan’s method (𝜶 = 0.05). The 457 
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RMSE values for the others followed the order of coarse Gaussian SVM ≤ boosted ensemble ≤ 458 

cubic SVM ≈ bagged ensemble ≤ medium tree ≤ fine tree ≤ coarse tree ≤ fine Gaussian SVM. 459 

Generally, the regression tree and the ensemble models showed significantly larger RMSE values 460 

than the GPR, SVM, and linear regression models. 461 

To evaluate the stability of the regression models, the coefficient of variation (i.e., 462 

variabilities) of RMSEs from the 12 points were compared. The GPR models had small standard 463 

deviations in the range of 25.4 to 28.2%. The linear and medium Gaussian SVM models showed 464 

comparable variabilities of ~25.0%. Even though linear regression models showed great pH 465 

predicition accuracy, they had relatively higher variabilities of 29.8 and 34.6%. The larger 466 

variabilities imply a greater chance of overfitting. Besides, since there is no clearly defined 467 

mathematical relationship between pH and the spectral features, nonparametric regression (GPR 468 

or Gaussian SVM) would be preferred over parametric linear regression. Overall, among the 469 

multivariate regression models, the GPR and medium Gaussian SVM models showed the best 470 

performance for pH prediction with the lowest RMSEs and variabilities.  471 
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 472 
Figure 7 Comparison of the RMSEs of different multivariate regression models: (red) GPR with 473 
exponential, rational quadratic, 5/2 Matérn, squared exponential kernel functions, (blue) SVM 474 
models with linear, quadratic, cubic, fine/medium/coarse Gaussian kernel functions, (green) linear 475 
and robust linear regression, (purple) fine/medium/coarse regression tree, (orange) boosted and 476 
bagged ensemble tree. Each boxplot was made from 12 points from 12-fold cross-validation results, 477 
upper and lower quartiles, the outlier whisker, median, mean (square). Corresponding R2 values 478 
for each model are shown in the upper graph. Error bar indicates the standard deviation of 12 479 
points. 480 
a,b,c,d,e Data annotated with the same character are not significantly different based on the post-hoc Duncan’s method (𝛼 = 0.05) 481 
  482 

Conclusions 483 

In this study, top-down nanostructured SERS substrates were used for universal pH sensing. 484 

The SERS substrates functionalized with the pH reporter 4-Mpy showed high spatial uniformity 485 

of a SERS signal at 1096 cm-1 with a RSD of 7.2% across the scan area (10 µm × 10 µm, 10 × 10 486 

points). We collected SERS spectra of 4-Mpy on the top-down nanostructured SERS substrates 487 

with different solutions and pH values. pH-dependent protonation of 4-Mpy was reflected by 488 

changes in the SERS spectra. We initially applied ratiometric analysis to estimate the pH of five 489 
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media (i.e., PBS, carbonate buffer, apple juice, milk, and wastewater). The peak ratio I1578/I1612 490 

was plotted against the bulk pH, and the clear positive correlation between the two was observed 491 

with a well-fitted Boltzmann equation. However, the PBS-based calibration curve showed poor 492 

compatibility with other media due to SERS interferences. To collectively reflect all potential 493 

effects of different media on the SERS spectra in response to pH, we developed a multivariate 494 

regression model that was trained with 19 spectral features. The GPR model with a 5/2 Matérn 495 

kernel function showed the highest accuracy pH prediction with an RMSE of 0.81. The low 496 

variability of 12 cross-validation test results and accurate pH prediction for other media that were 497 

not used for training indicate the generalizability of the approach.  498 

Associated content 499 

SERS peaks and corresponding assignments; carbonate buffer solution recipe by mixing 500 

Na2CO3 and NaHCO3 solutions with different volume ratio; governing equations for GPR kernel 501 

functions; The set of the plots of three SERS peak intensity ratios (I1000/I1095, I1208/I1274, I1576/I1612) 502 

and bulk pH measured by a pH meter in PBS; The set of the plots of SERS peak intensity ratios 503 

(I1576/I1612) and bulk pH measured by a pH meter in five different media: PBS, wastewater, 504 

carbonate buffer, apple juice, and milk; The comprehensive plot of I1576/I1612 vs. bulk pH in five 505 

media; pH prediction by the optimized PBS-based GPR model with 5/2 Matérn kernel for five 506 

media; pH prediction by the optimized one to four media based GPR model with 5/2 Matérn kernel; 507 

pH prediction of commercially available media that were not used for training by the GPR model 508 

with 5/2 Matérn kernel 509 
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