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Abstract— In this paper, we focus on using path planning and
inter-agent measurements to improve the security of multi-robot
systems against possible takeovers from cyber-attackers. We
build upon recent trajectory optimization approaches where
introspective measurement capabilities of the robots are used
in an co-observation schedule to detect deviations from the
preordained routes. This paper proposes additional constraints
that can be incorporated in the previous trajectory optimization
algorithm based on Alternating Direction Method of Multipliers
(ADMM). The new constraints provide guarantees that a
compromised robot cannot reach a designed safety zone between
observations despite adversarial movement by the attacker. We
provide a simulation showcasing the new components of the
formulation in a multi-agent map exploration task with several
safety zones.

Index Terms— Path planning, Trajectory optimization, Ob-
servation planning, ADMM, Cyber-Physical Security; Attack
Detection, Reachability region.

I. INTRODUCTION

Multi-robots systems have been used in commercial ap-
plications to take advantage of their capability of perform-
ing a large variety of settings, such as warehouse goods
transportation, unknown fields exploration, surveillance, etc.
Companies that have been employing this technology for years
include Amazon Robotics and Fetch Robotics. In the academic
research setting, applications include aerial swarms for
precision agriculture [1] and forest fire monitoring [2]. Current
multi-robot systems are typically equipped with planning
algorithms that are geared toward ensuring efficient navigation,
collision avoidance, and safety for robot-human interactions.
However, there exists an increased risk of hacking for these
systems that rely on network communications [3]. As a result,
it is important to introduce defense mechanisms that can
enhance the cyber-security of multi-robot systems.

There exist some rich literature on multi-agent pathfinding
(MAPF) problems [4], but only a few have taken safety
requirements into consideration. [5] focus on physical layer
resilient control, models the game for CPS security, and
provides resilience through a game-theoretic approach. [6],
[7] made use of the physics of wireless signals, information
from sensing infrastructure and proximity graph of vehicles,
leverage the physics of environment to defend attacks. Our
paper took a similar approach of using physical layers to
detect and mitigate attacks.

In this paper, we focus on the defense of plan-deviation
attacks, previously introduced in [8], where compromised
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robots intend to perform a deviation from the MAPF plan
and enter forbidden regions. Previous work [8], [9] posit that
the overall security of the system against this kind of attack
can be enhanced by combining the detection capabilities of
the agents (via their onboard sensors) with path planning.
This idea uses an introspection-based security layer that
detects malicious actions of compromised robots whenever a
sufficiently significant deviation from the pre-planned routes
happens. The robots observe each other according to an co-
observation schedule along specific routes; the inter-agent
observations are frequent enough such that any unexpected
absence of an agent at the pre-planned observation time
and location will trigger an alarm. On the one hand, the
joint path and co-observation schedule planning problem has
been tackled using Satisfiability-Modulo-Theory (SMT) [8],
which leads to a computationally complete algorithm (i.e.,
it always finds a solution if one exists), but is limited to
discrete abstraction (e.g., a four-connect grid map) and does
not scale well in the number of agents or the size of the
environment. On the other hand, the approach of [9] uses a
trajectory optimization algorithm based on ADMM which can
handle continuous spaces and can deal with a large variety
type of path planning constraints and complex cost functions
(e.g., field estimation uncertainty in map exploring tasks).
The latter approach provides local optimality guarantees with
respect to the planning cost but does not provide the same
strong guarantees on the detection of agents that do not follow
the planned routes.

A possible failure case is due to the case where the attacker
changes a robot’s path between two observations to reach
a forbidden region while still satisfying all the observation
times and locations from the co-observation schedule. More
broadly, the problem of solving a path optimization problem
with constraints based on the sets of locations that the agents
could potentially reach, which we call reachability regions,
has not received attention in the literature.

a) Paper contributions: In this paper, we formulate
a way to enforce an empty intersection between forbidden
region and reachability regions, such that if an attacker takes
control of the robots, they cannot perform an undetected attack
by entering forbidden regions and meeting co-observation
schedules at the same time. We propose a mathematical
formulation of reachability region that can be solved in
trajectory optimization problems together with other spatio-
temporal constraints. The constraints are formulated using
an ellipsoidal bound of the reachability region. The idea is
inspired by the heuristic sampling domain introduced by [10]
in the context of the RRT* path planning algorithm; in that



case, an ellipsoidal bound is used to limit the search space
with the initial and goal states fixed. In our case, we use
a similar bound to optimize the location of the two states
to exclude the forbidden region from the ellipsoidal region.
As a secondary contribution, we introduce the concept of
Householder rotations for defining differentiable rigid changes
of coordinates.

b) Paper outline: We first review relevant prior work
with particular attention to the ADMM formulation from [9]
(Section II-B), which we use as our optimization framework.
We then introduce Householder rotations (Section II-C),
which are a modification of Householder transformations
that we use for defining differentiable rigid changes of
coordinates. Next, we define reachability ellipsoids and their
transformation to a canonical frame (Section III); these sets
are used to formulate four types of constraints, which consider
reachability of a point, a plane, a segment, and a convex
polygon (Section 1V). Finally, we include a simulation that
provides a demonstration of how our novel constraints can
be incorporated into a path optimization application. Our
algorithm is validated on a benchmark field exploration
task where three robots are asked to minimize the overall
sensing uncertainty on a vector field (estimated using Kalman
filtering), using the co-observation scheduled generated by
[8] as initialization.

II. PRELIMINARIES

In this section, we review various mathematical concepts
that will provide the foundations and context for our novel
constraints.

A. Differentials

We define the differential of a map f(x): R™ — R™ at a
point z( as the unique matrix 9, f € R™*™ such that
d .

@) =0:f(2(0))(0) M
dt 0

where ¢t — z(t) € R™ is a smooth parametric curve such
that (0) = x with any arbitrary tangent (0). For later part
of this paper, we will use f for % f and O, f for %. The
differentials 0, f is derived through (1) having f divided by
Z.

With a slight abuse of notation, we use the same notation
0, f for the differential of a matrix-valued function with scalar
arguments f : R® — R™X™ Note that in this case (1) is still
formally correct, although semantically different.

B. Alternating Directions Method of Multipliers (ADMM)

In this section, we briefly review the path planning
algorithm based on ADMM constraints discussed in [9]. This
algorithm can deal with a variety of types of non-convex
and non-smooth optimization constraints that are commonly
encountered in trajectory optimization tasks once they are
formulated in a certain format. The goal of the section is to
lay the groundwork for proposing our novel constraint in the
following sections.

Let z;; € R™ denote the position of agent ¢ € {1,...,n}
at the discrete-time index j € [0,...,T], with m being the

dimension of the workspace, n the number of agents, and
T the planning time horizon. Let x = stack({z;;}) denote
the aggregated vector of all the agents’ trajectories over
the entire time interval. The goal of the algorithm is to
optimize an objective function ®(x) on a set {2 defined by
nonlinear constraints. To solve the problem using ADMM,
we introduce a new set of variables z = D(x) to translate the
constraints {2 on z to (typically lower-dimensional) sets of
constraints on z, such that the projection operator on { can
be easily implemented (e.g., a constrained distance between
two agents is translated into their difference constrained to
an origin-centered sphere). The new set of constraints ¢ on
z is incorporated using an indicator function .. The main
problem is written as:

min  P(x) + O¢(z) @)
st. D(x)—z=0,
where D(x) = [D1(x)T, ..., Dy(x)T]7 is a vertical concate-

nation of different functions for different constraints.
And having the update steps shown as:

x" 1 .= argmin(®(x*) + g”D(x) —zZ" +d 2 (Ba)

z" T =T (D(xT) + u)

uk+1 = uk + D(Xk—i-l) _ Zk+1,

(3b)
(3c)

Previous work in [9] considered the following types of

constraints:

(C1) Velocity constraints: The movement of each agent is
constrained by a maximum distance in any direction over a
single discrete time step. This constraint could be adapted
also to enforce more refined dynamical models.

(C2) Convex obstacles: We use convex polygons to model
regions defining the boundary of the workspace, as well
as solid obstacles that cannot be entered by agents (note
that the latter represent a non-convex constraint set from
the point of view of the optimization problem). Obstacles
with non-convex shapes can be modeled using unions of
the convex sets.

(C3) Waypoints with flexible deadlines: We give locations
that the agents need to visit at any point in a given time
window (which can potentially contain a single time).
These constraints can also be interpreted as static, trusted
cameras that can complement the introspection constraints.

(C4) Introspection constraints: In a given time window,
agents are asked to remain at a certain distance from
each other to detect each other’s presence.

Constraint (C4) is the main mechanism that was provided

in [9] for forcing agents to stay away from the forbidden

region. However, this mechanism alone cannot provide strong
guarantees in this regard. This motivates the introduction
of our novel ellipsoidal constraints in Sections IV-A, TV-B.

This novel constraint is defined with the assumption that the

velocity constraints still hold under attack.

C. Householder rotations

To formulate the operator 11 for our novel constraint, we
will define a differentiable transformation of the constraint



set to a canonical form. This transformation will include a ro-
tation that we derive from a modified version of Householder
transformations [11]. With respect to the standard definition,
our modification ensures that the final operator is a proper
rotation (i.e., not a reflection). We call our version of the
operator a Householder rotation. In this section we derive
Householder rotations and their differentials for the 3-D case;
the 2-D case can be easily obtained by embedding it in the

z = 0 plane.
Definition 1: Let vr and veg be two unitary vectors
(lvzll = |lvell = 1). Define the normalized vector u as
!
U
U =vEtve, u= o (4)
[/l

The Householder rotation H(vx,ve) is defined as

H(vr,ve) = 2uu™ — I. 5)
The main property of interest for our application is the fact
that H is a rotation mapping vr to Vg, as shown by the
following.
Proposition 1: The matrix H has the following properties:
1) It is a rotation, i.e.
a) H'H = I,
b) det(H) = 1.
2) Vg = HV]:.
Proof: For subclaim 1 )a:

HY'H = B? = 4wu uu® — 4w + 12 =1,  (6)

since uTu = 1.
1

For subclaim /)b, let U = [u uf-,uﬂ, where ui, uy
are two orthonormal vectors such that I = UUT = uu™ +
ui-(ui)T + uz (uz)T; then, substituting I in (5), we have
that the eigenvalue decomposition of H is given by

H = Udiag(1,-1,-1)UT. (7)

Since the determinant of a matrix is equal to the product of
the eigenvalues, det(H) = 1.

For subclaim 2), first note that Hu = 2uuTu — u = w. It
follows that the sum of vx and v¢ is invariant under H:

H(vr+ve) = Hullvr+ve|| = ullve+ve|| = ve+re, (8)
and that their difference is flipped under H:

Hvr—ve) = 2uuT(1/]: —ve)— (vr—ve)? = —(vr —ve).
©)
Combining (8) and (9) we obtain

1
Hvr = i(H(V]:—i-Vg)-I-H(V]:—VE)) = Vg (10)

|

We compute the differential of I implicitly using the

relation (1). We will use the notation [v]y : R® — R3*3 to

denote the matrix representation of the cross product with
the vector v, i.e.,

U1 0 —v3 V2
V2| V3 0 -1, )
V3 —U2 (%) 0

such that [v]xw = v x w for any w € R3. One can verify by
direct computation the following property:

T T

wvr —ow = [[v]xw]« (12)

Proposition 2: Let vz(t) represent a parametric curve.
Then we have

H = H[-2Mv¥] (13)
where the matrix M € R3*3 is given by
I —wu™) (I —vrrk
= ||u')|(|u;n Lo
Proof: From the definition 01L H 1n (5), we have
H = 2(iu™ 4 uu™) (15)

Recall that @ = ma —uuT)?/ (see, for instance, [12]),
which implies (I — uuT)d' = 4’ It follows that # flips sign

under the action of HT:

I — T
H % = (Quu™ — I)wu’
[l
= Tl (Quu™ — I — 2uuuu™ + uu)d
u
1 . .
= fm(l —wut)i' = —u  (16)

Inserting HH™ = I in (15), and using 12, we finally have
H=2HH" (1™ 4+ vi’) = 2H (—iu® + ui™)

= — 2H [[u] x ]«
I—uu®) (I— I 17
— 9o [U]x( uu /)( V]:V]-')D}_ (17)
[ [[vFl
= —2H[MvF],
which is equivalent to the claim. [ ]

III. ELLIPSOIDAL REACHABILITY CONSTRAINTS

In this section, we first provide the definition of an ellip-
soidal reachability region. We then provide a differentiable
map to transform such region in a canonical axis-aligned form
where the operator II; and its differential can be obtained;
these operators are then extended to the general case via
the aforementioned transform. The overall goal is to define
the functions D(q), its differential, and the operator II; for
ellipsoidal reachability regions with respect to single points
in the forbidden regions that can then be used in the ADMM
formulation reviewed in section II-B.

A. Definition of reachability region

The reachability region is defined as the set of locations
x(t) that a robot can reach between two given fixed positions:

Definition 2: The reachability region for two waypoints
z(t1) = x1, x(ta) = x2 is defined as the sets of points
2’ in the workspace such that there exist a trajectory x(t)
where z(t') = 2/, t; <t <ty and z(t) satisfies the velocity
constraint d(x(t), z(t + 1)) < Vmag-
This region can be analytically bound via an ellipsoid:



Fig. 1: The ellipse is a showcase of the reachability region.
The black line is the trajectory of an agent, x1 and x5 are
two locations this agent are expected at given time ¢; and
t2, blue and red line are possible trajectories if the agent is
compromised in after reaching x;. Agent that goes outside
the reachability region like the red line could not be able to
get back to xo at s.

Definition 3: The reachability ellipsoid is the region

E(z1,22) ={Z € R" : d(z1,Z) + d(T + x2) < 2a}, where
a = Um%(tg — tl).
The region £(x1,x2) is an ellipsoid with foci at x1, xo, center
0g = %(931 + x2), and the major radius equal to a. Let
ce = 3llz1 — x2]| = |log — z1]| be the distance from the
center to a foci.

The reachability ellipsoid is an over-approximation of the
exact reachability region; the difference between the two is
due to the discretization of the trajectory, and the fact that £

does not consider the presence of obstacles.

B. Transformation to canonical coordinates

To simplify the problem, a canonical rigid body transfor-
mation is used to transform the ellipse £ from a global frame
JF to a canonical frame Fg. The latter is defined such that
the center of the ellipsoid is located at the origin and the foci
are aligned with the first axis of F¢. Since the transformation
depends on the two foci, i.e., two waypoints of an agent,
the challenge here is to construct the transformation in a
differentiable way.

For the convenience of derivation, we define the coordinate
transformation from F to Fg using a rotation RZ and
a translation og , which, to simplify the notation, from
now on we simply refer to as R and o, respectively. The
transformation of a point from the frame F¢ to the frame F
and its inverse are given by the formulation:
z€ = R (27 — o).

27 = Rz +o,, (18)

The reverse transformation is ¢ = RT (27 — o).
We define vr and vg to represent the x-axis unitary vector
of F¢ in the frames F and Fg, respectively. formally:

/
v
V]::i

) Ve = [1,070}717
lvFll

V=19 — 11, (19)
see Fig.1 for an illustration. Note that v¢ is constant and, for
the sake of clarity, we have suppressed the dependency of vx
on z1,ry. We then define the rotation R using a Householder

rotation, while from (18) we see that o represents the center

of £(x1,x2) expressed in F, i.e.:

0= 1(:L’l +z2). (20)

2

To simplify the notation, in the following we will consider
H to be a function of xy,zo directly, i.e. H(x1,x2).

R = H(VJ-'(3717$2)7 Vs(l’hl’z)),

IV. REACHABILITY CONSTRAINTS VIA ELLIPSOIDS

In this section, we define constraints that consider the
ellipsoid regions from the section above against different
types of forbidden regions: a point, a plane, a segment, and
a convex polygon. For each one, our goal is to define the
function D(z), the set ¢ and the projection II; that can be
incorporated in the ADMM optimization (2); we also include
derivations for the differential 9, D(x), which can be used
to significantly speed up the optimization.

A. Point-ellipsoid constraint

Consider a forbidden region in the shape of a single point
Javoid- The goal is to design the trajectory z(t) such that
Gavoid & E(x1,22). We first define a projection function
Tp(Qavoid; X1, T2,a) = qp, Which returns a projected point
dp of Gauvoia outside the ellipse, i.e., as the solution to

min H%woid - qu2

21
s.t. qp €& @D

where £¢ is the set complement of the region £.
Then, the constraint quuoia ¢ E(x(t1),z(t2)) can be
written as:

D(x) = 7T-P(qavoicﬁ x(tl)a .Z‘(tg), T) — Gavoid = 0 (22)

For cases where qquoia ¢ E(z(t2), z(t1),7), Tp(qavoid) =
Gavoid- And for cases where quuoia € E(21,22,7), D(x)
needs to be projected to the boundary of the ellipse, which
is discussed below.

1) Projection to the standard ellipse: The ellipse &
expressed in Fg is given by £¢ = {2€ € R™ : d(z§,2) +
d(x€,2§) < 2a}, where the coordinates of the two foci
x$, 2§ in Fg are

=l 00", af=[- 0 0, @3

with ¢ = lz2zz1ll

The ellipsoid £ in the canonical frame can be described
as the zero level set of the quadratic function

Ef(2%) = mgTng -1 (24)

where
Q = diag(a™2,b72,b72), (25)

and b = v/a? — 2. The ellipse parameters a,b represent the
lengths of the major axes.

The point to project, ggvoid, can be likewise expressed in
Fe as qgavoid = H(q]:a'uoid - 0)'

We now turn our attention to the problem of projecting
4% suoiq ON the zero level set of E€ (i.e., the reachability
ellipsoid in the canonical frame). The derivations below are
loosely inspired by [13].



Let qg be the point on the surface of the ellipsoid, i.e.,
E%(¢5) = 0, corresponding to the projection of the point
qui 4- Using Lagrange multipliers applied to the constrained
optimization problem (21) (after transforming it in the
canonical frame), one can show that the vector from a point to
its projection, &, ., — q;:, must be collinear with the gradient
of £¢, ie.

G5 — Qavoia = S0, E°(a5)" = sQqy, (26)
for some scale s € R; thus qz‘f can be written as:
E -1 & &
qp = (I + SQ) Qavoid = chwoid (27)

where S = (I+sQ) L. Using the fact that since qg is a point
on the ellipse, s can be solved as the root of the equation
obtained by substituting (27) in E€(2f):

T T
0="F(s)=¢ Qa5 —1=bria Q()q500ia—1 (28)

where
, T ) a2 b2 b2
Qs) = 57Q5 = diag ((s+a2)2’ (s +62)2 (s+b2)2>
(29)
Detailed methods for computing s can be found in [13].
Then the point-to-ellipse projection function can be repre-
sented as:

mpe (1) = R™H (), 2(t2))g5 + 0
= Ril('x(tl)v x(tQ))nguoid +o
- R_lsR(qavoid - 0) +o (30)

In our derivations, we consider only the 3-D case (m = 3);
for the 2-D case, let P = [I O] € R2%3: then 7712)12 =
Pﬂ—zg(PTqavoid;PTxlv-PTx%a)'

2) ADMM constraints: The corresponding constraint is
written as

U g((L’) — Gavoid Yavoid € 57
D =<7 31
»(@) {0 otherwise. 1)
and feasible set and projection function as:
(={z e R" :|[Dy(x)[ = 0}, I(Dy(x)) =0 (32)

3) Differential of the constraint:

Proposition 3: The differential of the projection operator
Tpe (Tavoid; L1, T2, a) With respect to the foci x1, z2 is given
by the following (where we use ¢ as a shorthand notation
for qtfz:void)

6[ ]7Tpg = —2H[SH(q — 0)]><U
+((¢"0:Q"q) " H™'Q'qq" (4Q'H[g — o] x U

+2Q'HOy0 — 0,Q'qq0,b) — sH ™ S%0,Qq0,b)
— 20" 'SH[g — o|xU + (H 'SH — I)d,0 (33)
Proof: To make the notation more compact, we will
use O, f instead of Jz11f for the remainder of the proof.
The differential of (30) can be represented as:

e :H71SH(Qa1)oid - 0) + HﬁlSH(Qavoid - 0)
+ H'SH(qavoia — 0) + (H 'SH — I)o

Z1
Z2

(34)

where
S =—S%(Qs+ sC
2(Qs + ,SQ) ‘ 35)
=— S5(Q0y st — 0pQ0,b)
where s
Q= Qb—g diag{0,1,1} (36)

To compute the derivative 0,7, we need the expression of
0;b, 0,0 and J,s; the first two can be easily derived using
the equations above:

1
8zb = Zb [1‘1 — T2,T2 — l‘l]T (37)
dg0 = [1/2,1/2]" (38)

In order to get d,s, we use the fact that F'(s(z)) = 0 for
all 2; hence F'(Z(t)) =0, and 0,F = 0. We then have:

0=F=2¢"Q"4+¢"0.Q'¢5+q"0Q'ab (39
where
, ) 2a2 202 202
Q= — . 4
86@ dlag ((s + a2)37 (S + b2)37 (S + b2)3 ( O)

By moving term $ to the left-hand side we can obtain:
§=(¢"0.Q' ) (20" Q"4 + 4" Q' qd)
= (qTasQIQ)il(_‘quQIH[Uﬂx (Gavoid — 0)
—2¢"Q'Hé + ¢"0,Q'qb)
= (¢"0,Q"q) " (—4¢" Q' Hqavoia — 0] x Ui
—2¢"Q'Ho+q"9,Q'qh) (41)
The second term of equation (34) turns into:
H™'SH(qavoia — 0) = —H Qg3 — sH ' 5°9,Qqb
= ((¢"0,Q'¢9)""H'Q'qq¢" (A4Q"H[qavoia — 0] xU
+2Q'Hz0 — 0,Q'qq0,b) — sH ™' S?0,Qq0,b) &
(42)

Thus equation (34) could be written as:

e = (— 2H[SH (qavoia — 0)]xU
+ ((¢70:Q"q) "H™'Q'qq" (4Q' H[qavoia — 0]x U
+2Q" Hd,0 — 0,Q'qq0,b) — sH_lSQ&,Qq&b)
— 2H ' SH|qavoia — 0)xU
+ (H'SH — 1)9,0)&, (43)

from which the claim follows. ]
The differential of D, is the same as the one for mp¢.

B. Plane-ellipsoid constraint

Consider a forbidden region in the shape of a hyperplane
L(z) = {Z € R" : nT7 = d}. The reachability constraint
not can then be defined as £ N &(x1,z2,a) = (. Using
the transformation introduced in (III-B), all ellipse can be
transferred into a standard one with the new hyperplane in

the form of £¢(%) = {# € R™ : nl7 = dg¢}, where,
ng = H(z1,22)n (44)

de = —nTo+d (45)



1) Projection via the tangent interpolation point: For each
Le, there exist two planes £&1 = {Z € R™ : nf7 = dg;}
and L£f5 = {7 € R™ : nf % = —dg;} that are parallel to £
and tangent to the ellipse, where

der = \/ngQ 1ne. (46)
The corresponding tangent points are given as
de:Q 'ng  Q 'ng
f=—r <= , (47)
ngQ ne dgt
P = —pf. (48)

We use these two tangent points to define a novel measure
of displacement between a plane and an ellipse.
Definition 4: The tangent interpolation point is defined as

e deQ 'ng

be = ngQ 'ng

Note that pi € L and when dg = dg; or dg = —dg,

p‘z = pf or pi = p§, respectively. It is clear that when

de € [—dgt,dgs], the plane £ and the ellipsoid € have at

least one intersection, thus violating our desired reachability

constraint. Using this fact, we define the following projection
operator:

(49)

pfl _pi dg € [O7d5t]a
Tne(®) = (Pl — Pz de € [~der,0),  (50)
0 otherwise.
2) ADMM constraints: Transforming the projection 7€
back to F we have:
Dy (w) = H™' (x(t1), 2(t2))mpe (v) + 0, (51
with the corresponding constraint written as
Ca={x € R" : ||Dy(z)|| = 0} (52)
I, (Dn(z)) =0 (53)

3) Gradients for the projection function:
Proposition 4: The differential of the projection function
1€ ¢ (z) with respect to the foci 1 and x5 is given by:

8Ipfl - 8£Ep% dE S [O7d5t];
DuTrye (€)= { Dupfy — 0upl  d € [=der,0),  (54)
0 otherwise.
where
deinT0y0 — 2dg0,d _
Oupr = (- = Qe
£t
deOpyQ *ngdyb —2deQ 1 H U
L de b Q™ N i eQ " Hnlx 55)
dg,
Q_lngawdgt 81,(2_1%589;{) — QQ_IH[n]X U
8wp1 = — 7 .
de, dey
o (56)
Proof: We first need to derive dg and dg;
de = —nT 0,08 (57)

der =(ng Q 'ne +ngQ 'ne +nEQ 'ng) /\/nEQ  ng

=(\/nEQ ng) "t (—2n"H[Q 'nel U

+ng0pQ tngdpb — 2neQ Hln]« U) x

(58)
Next, we need to derive p;1, P2 and pr. Since py could be
written as 40!
n,
pe= (59)
£t
we have
. dg nTaxo — 2dgaxdg _
b= ((_ . pE t)Q "ne
£t
deOpQ 'ngdyb —2deQ 1H U
e b Q™ e i eQ ' H[n]x >x 60)
dg,
5 ( Q 'negdydey
1=\ "%
dZ,
Q tngdyb—2Q 1H U
. h Q™ e Q [1] x ) i (6D
det
subtracting ¢ from (60) and (61), we can derive the result
shown in (49) |

Based on the previous proposition, the differential of (51)
can be written as:

OpDne = —2H[II® ye] M + H10,1I e (62)

C. Line-segment-ellipsoid constraint

To avoid (or stay in) a region defined by several hyper-
planes, the relative position between the ellipse and segment
of the hyperplane needs to be studied instead of the whole
plane. Assume the segment have endpoint p; and ps, the
segment could be defined as:

(p1 — P2)T} { PQT }
< — 63
[(Pz —p)" b= —pt (P1 = p2) (65)
And using the p, defined in (49), we could be defined
Di(p1) (p1—p2)"(pc —p2) <0
Dyeg(x) = ¢ D1(p2)  (p2 —p1)"(pc —p1) <0 (64)
Dy(pr) otherwise

where Dp¢ and D¢ are corresponding constraint function
introduced in section IV-A and IV-B with the constraint set
and projection written as:

Cseg = {2 € R™™ : || Dyeg(z)]| = 0}
Heg(Dseg(z)) =0

(65)
(66)

D. Convex-region-ellipsoid constraint

To keep an ellipse away from a convex region, first, we
need to keep all segments of the hyperplanes outside the
ellipse, and to prevent cases where the ellipse is a subset of
the region, two foci need to be kept outside of the region
using the convex obstacle constraint introduced in [9].



V. RESULTS

In this section, we test our constraints using a three-agent
map exploration task in simulation. Definition of the objective
function is introduced in [9]. The simulation is done using the
Matlab toolbox developed in [9]. The reachability constraint
is set by specifying the corresponding function D(q), its
Jacobian, and the projection operator II, introduced in section
Iv.

The environment is a square region with edge length of
8 meter, an obstacle Zone I and two safezones Zone 2, 3
which are shown in Fig.2a. The robots have a maximum
velocity of 0.5m/s and a time limit of 20s. All robots have
the task of collecting sensor information on the underlying
vector field. Assuming that the sensors on return data with
higher accuracy for locations closer to the agent, robots
should ideally perform a boustrophedon pattern. We first
set up co-observation schedules considering two forbidden
regions using the solver introduced in [8], and add reachability
constraints in between the co-observation schedule.

The co-observation schedule generated in a grid world is
shown in Fig.2a. No task has been assigned to the agent
besides the start and goal location. Given the fact that agent
3 is operating alone at lower right corner, the solver will not
return a secure plan unless an additional observation point is
required by the solver at time 4 (either by a sensor on the
field or by introducing an additional agent). Assuming agent
3 can be observed at time 4, the co-observation plan is: agent
1 and 2 meet at time 8 and 14, agent 2 and 3 meet at time
18. This result is also used as the initial trajectory input for
the ADMM solver. Based on the schedule, reachability for
agent 1 in-between time 0, 8, 14 and 20, agent 2 in-between
time 0, 8, 18 and 20, and agent 3 in-between time 0, 8, 18
and 20 are constrained.

The result of the simulation is shown in Fig.2b. Reachability
regions are shown as black ellipsoids and all of them avoid the
intersection with Zone 2 and 3. Noticed that no constraint has
been set between reachability regions and obstacles, assuming
robots have the basic obstacle avoidance capability and can
not go through any hard obstacles. Therefore, the intersections
between obstacles and ellipsoids, i.e. the case here between
agent 3 and zone 1, are tolerable. All constraints have been
satisfied and, to the best of their capability, agents have spread
out across the map to perform the best possible exploration
task.

VI. CONCLUSION

In this paper, we have incorporated the reachability con-
straint in our ADMM based trajectory optimization algorithm.
Together with the co-observation schedule generated through
previous work, our planning algorithm can be used to enhance
the security of a multi-agent system while still have the
capability of fulfilling a relatively complex task. Simulation
results are used to illustrate our method. The current method
assumes a simple dynamic of the robots, future work will
focus on incorporating more complex dynamics on a higher
dimensional workspace.
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Fig. 2: Simulation results.
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