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Consensus-Based Distributed Estimation
in the Presence of Heterogeneous,
Time-Invariant Delays

Mohammadreza Doostmohammadian
Mohammad Pirani

Abstract—Classical distributed estimation scenar-
ios typically assume timely and reliable exchanges of
information over the sensor network. This letter, in con-
trast, considers single time-scale distributed estimation
via a sensor network subject to transmission time-delays.
The proposed discrete-time networked estimator consists
of two steps: (i) consensus on (delayed) a-priori estimates,
and (ii) measurement update. The sensors only share
their a-priori estimates with their out-neighbors over
(possibly) time-delayed transmission links. The delays
are assumed to be fixed over time, heterogeneous, and
known. We assume distributed observability instead of
local observability, which significantly reduces the com-
munication/sensing loads on sensors. Using the notions
of augmented matrices and the Kronecker product, the
convergence of the proposed estimator over strongly-
connected networks is proved for a specific upper-bound
on the time-delay.

Index Terms—Distributed estimation, consensus,
Kronecker product, communication time-delays.

. INTRODUCTION

ATENCY in data transmission networks may significantly
affect the performance of decision-making over sensor
networks and multi-agent systems [1]. In particular, time-
delays may cause instability in networked control systems
which are originally stable in the corresponding delay-free
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case. For example, the consequence of communication delays
on the consensus stability are discussed in [2]-[4] among oth-
ers, and centralized observer design are discussed in [5], [6].
This work extends to distributed estimation over a sensor
network with random communication time-delays.

The literature on distributed estimation spans from multi
time-scale scenarios to single time-scale methods. The for-
mer case requires many iterations of averaging/data-sharing
(consensus/communication time-scale) between two consec-
utive system time-steps (system time-scale) [7], [8], where
the estimation performance tightly depends on the number of
consensus iterations. This is less efficient in terms of com-
putational and communication loads on sensors and, further,
requires much faster data sharing/processing rate which might
be inaccessible over large networks. In terms of observabil-
ity, in the multi time-scale method, number of communica-
tion/consensus iterations is greater than the network diameter,
and therefore, all sensors eventually gain all state information
(and system observability) between every two system time-
steps. In the single time-scale, however, every sensor performs
only one iteration of consensus, and therefore, many works
require the system to be locally observable in the neighbor-
hood of the sensors [9]-[16]; in this work, we assume global
observability as in [17]-[20]. Recall that local observability
mandates: (i) more network connectivity, and/or (ii) access to
more system outputs at each sensor, and may considerably
increase the communication/sensing-related costs [21]-[23].
This work, however, considers the least connectivity require-
ment (strong-connectivity) and least outputs at each sensor
(one output), while addressing transmission delays.

The networked estimator in this letter is single time-scale,
where sensors perform one consensus iteration on (possibly)
delayed a-priori estimates in their in-neighborhood, and then,
measurement-update using their own outputs. As in [2], we
consider arbitrary time-delays at every communication link,
but the delays are time-invariant and known. The delays are
bounded so that no information is lost over the network and
the data would eventually reach the recipient sensor. To avoid
considering a trivial case, this work makes no assumption on
the stability of the linear system. Further, similar to [10], [12],
we assume that the system is full-rank as in structurally-
cyclic/self-damped systems [24], [25]. We adopt the notions
of augmented representation [2] and the Kronecker network
product [26] to simplify the convergence analysis. We show
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that feedback gain design in the absence of delays via the
Linear-Matrix-Inequality (LMI) in [17], [27] also results in sta-
ble estimation for some upper-bounded delayed cases. Further,
we provide a solution to design delay-tolerant networked esti-
mators for a given bound on the delays. Therefore, the gain
design requires no information other than the bound on the
delays and, the LMI complexity is determined by the original
low-order system and not the high-order augmented one. Note
that in this work, we assume no measurement delays; this is
because the sensors take direct measurements, while spatially
distributed in large-scale with (possibly) delayed communica-
tions. Further, as proved in [6], stability depends only on the
measurement packet loss, not the packet delays.

Paper Organization: Section II provides some preliminaries
and problem statement. Section III states our main results on
delay-tolerant distributed estimation. Section IV provides the
simulations, and Section V concludes this letter.

Il. THE FRAMEWORK
A. System-Output Model

We consider discrete-time system and measurements as,
Xp =AXp—1+ v, Yk=Cxk + 84, k=0 1

with x; € R” as system states, yx € RV as system outputs,
& ~ N(,R) and v ~ N(0, Q) as independent noise vari-
ables, all at time-step k. It is nor assumed that p(A) < 1
(potentially unstable system), while det(A) # O (full-rank),
with p(-) and det(-) as the spectral radius and determinant.
Examples of such full-rank systems are structurally cyclic [25]
and self-damped1 systems [24], [25] as in, e.g., social opin-
ion dynamics [28] and target tracking [13]. Without loss
of generality, we assume N sensors each with one scalar
output y;.

Assumption 1: Every sensor knows the system matrix A.
The pair (A, C) is observable (similar arguments for detectable
case), implying global observability. However, in general, the
pair (A, C;) is not necessarily observable at any sensor i.

For a full-rank system A, the output matrix C can be defined
via graph-theoretic methods [17], [23], [29], saying that one
output from (at least) one state in every irreducible block of
A ensures structural (A, C)-observability. The optimal output
selection strategies are also of interest as in [25], [30], [31].

B. Preliminaries on Consensus Algorithms

Consider discrete-time consensus algorithms [2], [32] over
a network of sensors G = {V, £} (V and £ as the node and link
sets) with z; as sensors’ states which evolve as zy = Pz;_;.
Matrix P (as the consensus weight) represents the communi-
cation between the sensors via graph G. The sensor network
is in general directed. For notation simplicity denote P(i, j) by
pij» where 0 < p;; < 1 if (j, i) € £ and 0 otherwise. P is row-
stochastic, i.e., Z;v=1 pij = 1, and p;; # 0 for all i. Further,
G is strongly-connected (SC), i.e., there is a path from every
node i to every node j Vi,j € V, implying that fusion matrix
P is irreducible. Such P is stochastic, indecomposable, and
aperiodic (SIA), where limy_, o P* € span(ly) [2], with 1y
as all-ones vector of size N, and p(P) = 1.

TA linear system is self-damped if its matrix A has non-zero diagonal
entries [24], [25]. Similarly, network G = {V, £} is self-damped if for every
node i € V we have (i, i) € &, i.e., there is a self-link at every node. Examples
of such structurally full-rank CPS models are given in [24].

C. Delay Model

In this work, it is assumed that the data-transmission over
the link (j, /) from sensor j to sensor i has a-priori unknown
bounded (integer) time-delay, t;;, where 0 < 7; < T < o0, and
T is an upper bound to the delays in all links. The messages
are time-stamped (e.g., via a global discrete-time clock over
the network G), so the recipient knows the time-step the data
was sent. Further, 7;; = 0, i.e., every sensor i knows its own
state with no delay. To model the delayed state vectors we
adopt the notations in [2]. In a network of N sensors, define
an augmented state vector X, = (Xg; Xg—1; .. .; Xg—7) with
as column concatenation, and X;_, = (x,i_r; coxy_,) for0 <
r < 7. Then, for a given N-by-N matrix P and maximum delay
T, define the augmented matrix P as,

Py P P ... -1 Pz
Iy Oy Oy ... On Oy

— ON In ON cee ON ON

P= Oy On Iy . Oy Oy |- 2)
Oy Onv Oy ... Iy On

with Iy and Oy as the identity and zero matrix of size N. The
non-negative matrices P, are defined based on the time delay
0 < r <7 on the network links as follows,

.. iis If Tij=7r1
Pri.j) = {l(;,j Othejzrwise. ©)
Assuming fixed delays, for every (j,i) € &, only one of
Po(i,j), P1(i,j), ..., Pz(i,)) is equal to p; and the rest are
zero, and thus, the row-sum of the first N rows of P and P
are equal, i.e., Z;V:(f+1)?(i,j) = vazl P@,j) for 1 <i <N
and P = Y [_, P, for k > 0. Therefore, for a row-stochastic
matrix P, the augmented matrix P is also row-stochastic.? In
the proposed estimator, the matrix P is not needed and is only
defined to simplify the mathematical analysis.

Assumption 2: For the time-delay 7;; on link (j, 7):

i) The delay is known and bounded 7;; < T. The upper-
bound T guarantees no lost information, i.e., the data
sent from sensor j at time k would eventually reach the
recipient sensor i (at most) at time kK + T (a T + 1-slot
transmission buffer).

ii) Delay 7;; is arbitrary, constant, and may/may-not differ
for different links (heterogeneous/homogeneous delays).

Suppose that we know either an upper-bound on the delays

we may have or their probability (which is of finite support),
e.g., r < T steps delay with probability P(r) and zero proba-
bility for T 4 1 and above. Then, even though either the exact
distribution or the actual delays are unknown and might be
time-varying, agents know the maximum possible delay, say T,
and may choose to update and communicate every T + 1 steps
(of system dynamics) after all delayed information is received;
see more on this in [2] and Section III-D. On the other hand,
for static sensors where the communication distances over the
wireless sensor network are fixed, it is likely that we have
constant propagation delays (which are proportional to the
constant distances), see more in [33], [34].

2Note the subtle difference between our notation vs. [2]. In [2] column
augmented matrix is introduced, while we consider row augmented matrices.
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D. Problem Statement

The problem in this work is to design a networked estima-
tor for the system-output model (1) satisfying Assumption 1,
where every sensor relies only on its partial system output (par-
tial observability) and the received (possibly delayed satisfying
Assumption 2) information from its in-neighbors. This work
particularly differs from [9]-[16] via the following remark.

Remark 1: Let N; = {j|(j,i) € &} denote the set of
in-neighborhood of sensor i over the network G. The pair
(A, Z <n; Gj) is not necessarily observable at any sensor i,
1mp1y1ng no local observability assumption.

[1l. DISTRIBUTED ESTIMATION IN PRESENCE OF DELAYS

Every sensor i performs the following two steps for dis-
tributed state estimation in the presence of time-delays,

Rt = PRy + ) Zpu

jeN; r=0
Ky = Xipy + K€ ()’2 - Ci%k,o, 5)

where I ;;(r) is the indicator function defined as [2],

k rlk— rIk—r,ij(r)a 4

L ifry=r
0, otherwise.

Ik,ij(r) = { (6)
In (4), 3(7(',(4 denotes the sensor i’s a-priori state estimate
at time k given all the (possibly delayed) information up
to time k — 1 from its in-neighbors A, with Xg—; denot-
ing the column-concatenation of i’l;lk_ s (similarly for Xk|ko)-
Eq. (4) represents one iteration of information-consensus,
where sensor i sums the weighted estimates of sensors j € N;
as they arrive knowing their delays. Recall that, for every
link (i, /) the indicator Iy, ;(r) is only non-zero for one r
between 0 and T (due to fixed delay assumption). The second
step (5) is a measurement-update (or innovation) to modify
the a-priori estimate using the new sensor measurement yé‘.
Clearly, the protocol (4)-(5) is single time-scale with one step
of information-sharing/consensus-update between k — 1 and
k. Usmg the notion of augmented vector, define X, e X1 =
(Ak|k 1,Xk k=25 -+ Xk Tk—T— 1) and snmlarly Xk|k Then
the augmented version of (4)-(5) is,

Xpp—1 = ﬁgk—uk—l’ (7N
~ ~ T+1 -~ =
Xk = Xpe—1 + b{*' @ KD{ (yi — Dcdé\{%gkm—l)’ @®)

where PA is the modified augmented version of P ® A as,

0®A PI®A* ... Pr | QAT Pr@ATH!
Inn Onn Onn Onn

- ONn INn ONn ONn

PA = . , (9
ONn ONn T ONn ONn ( )
ON,, ONn INn ONn

and D¢ = blockdiag(C;), K = blockdiag(K;), and the aux-
iliary matrix El’.f’? is an m x (T + 1)m matrix defined as
gl = bT+1 ®1,)" with bfJrl as the unit column-vector of
the i’th coordmate (1 <i <7 4 1). Define the augmented state
X, = (nv®xp; In®X4_1; ...; Iy ®X¢_7) and the augmented
error ¢, at time k as ¢, = x; _gk\k- Define vy = 1y ® v and

v = bt+l®vk We have D . Yy = DTDC(IN(X)xk)—i—D . Recall
that the row-stochasticity of P and P along with the system
dynamics (1) implies that x; = mgk_l + vy From with (1)
and some calculations (skipped due to space limitation) we
get,

€ =X — (quk—] +b{" @ KD yi — DCE?{'%@\/(—l)

=x; — PAX, g — b ® KD{ (yx — Dc EVEPAR, 14 1)
= PAg, | —b]"' ® KDcEYLPAe, | +11,
:&kfl +77k9 (10)

whereA PA— bH'1 ®KDCS
D¢ = D cDc, and M, collects the noise terms as,

PA is the closed-loop matrix,

n, =y - b?rl ® KDy — bﬁLl ® KDch

=b{*' ® B — KDc¥i — KD &). (11

The error dynamics in the absence of any delay is as follows,
er = (P®A—KDc(P®A)er1 +nx = Aex1 +mx (12)

where 7, follows the formulation (11) with T = 0 and A=
PRA—KDc(P®A) is the delay-free closed-loop matrix. For
the Schur stability of the error dynamics (10) and (12), we
need p(A) < 1 and ,o(A) < 1, respectively. We first discuss
the condition for Schur stablhty of A and then extend the
results to Schur stability of A Following Kalman theorem and
justification in [17], [27], for stability of (12) the pair (P ®
A, D¢) needs to be observable (or detectable); this is known
as distributed observability [17], discussed next.

Lemma 1: Given a full-rank matrix A and output matrix C,
following Assumption 1 and Remark 1, the pair (P ® A, D¢)
is structurally observable’ if the matrix P is irreducible.

Proof: The proof follows the results in [26] on the (struc-
tural) observability of composite Kronecker-product networks.
Given a system digraph G; associated with full-rank system
A and measurement matrix C satisfying (A, C)-observability,
the observability of the Kronecker-product network (denoted
by G x Gj) is determined by G being strongly-connected
and self-damped (see [26, Th. 4]). Following the defini-
tion of consensus matrix P, we have p; # 0 (satisfying
the self-damped condition). The strong-connectivity of G,
equivalent with irreducibility of P, then ensures structural
(P ® A, Dc)-observability. This completes the proof. |

Note that, in contrast to Cartesian-product network observ-
ability [35], [36], Lemma 1 recalls on Kronecker-product
network observability, see the differences in [26, Fig. 1].

Corollary 1: For observable (P ® A, Dc¢), the gain matrix
K can be designed such that p(A4) < 1.

A. Constrained Feedback Gain Design

It is known that for an observable pair (P®A, D¢), the feed-
back gain K can be designed to ensure Schur stability of the
error dynamics (12) (Corollary 1), i.e., ,o(A) < 1. Typically,
such K is designed via solving the following LMI,

X—ATXA >0, (13)

3In this letter the results are based on structured systems theory, and in the
rest of this letter we consider structural observability, which holds for almost
all random entries of system, output, and consensus matrix.



DOOSTMOHAMMADIAN et al..: CONSENSUS-BASED DISTRIBUTED ESTIMATION IN PRESENCE

1601

for some X > 0 with > implying positive-definiteness. The
solution of (13) is, in general, a full matrix. However, for
distributed estimation, we need the state feedback to be further
localized, i.e., the gain matrix K needs to be block-diagonal so
every sensor uses its own state-feedback. Such a constrained
feedback gain design is proposed in [17], [27] based on cone-
complementarity LMI algorithms, which are known to be of
polynomial-order complexity for application in large scale.

B. Stability of the Delayed Estimator Dynamics

Following the Schur stability of the delay-free error dynam-
ics (12) (via LMI design of K), we extend the results to
stability of the delayed dynamics (10), i.e., to get ,o(A) <1
in the presence of delays.

Theorem I: Let conditions in Lemma 1 hold and the feed-
back gain K is designed such that p(A) < 1 from Corollary 1.
The networked estimator (4)-(5) successfully tracks the
system (1) (subject to delays satisfying Assumption 2 and pos-
sibly with p(A) > 1) with stable error for any T < T*, where
T* is the largest value of T satisfying,

p(PRATT —KDc(PRQA™)) < 1.

See the Appendix for the proof of this theorem. This the-
orem gives a sufficient condition for stable tracking in the
presence of heterogeneous, time-invariant delays 7;; = 7.

C. Convergence Rate

Note that, in general, the exact characterization of the
convergence rate/time of the linear systems is difficult. The
following lemma gives the order of convergence time.

Lemma 2: The convergence time of the error dynamics (10)
and (12) are of order* 8( ) and ®( i A)) respectively.

Proof: The proof follows from [28, Lemma 3]. |

Following Lemma 2 and 5, the geometric decay rate of (10)
(for T;; = T) is proportional to,

1= p(P@®A™! — KDe(P @ ATH1)) 7, (14)

which is positive from Theorem 1. For longer delays, the con-
sensus rate in (4) (and decay rate of (10)) is slower, e.g., for
any two T < Tp < T, Eq. (14) gives a larger value close to 1
and, thus, lower convergence rate for 7. The convergence rate
is lower-bounded by (14) (for time-invariant delays). For linear
feedback systems, one can adjust the closed-loop eigenvalues
and the convergence rate by desired feedback gain design,
where, in the decentralized case, gain K is further constrained
to be block-diagonal. Further, additional bound-constraint on
the closed-loop eigenvalues makes the LMI-design more com-
plex as it reduces the set of possible solutions; however, it is
solvable, for example, using MATLAB cVX.

D. Discussion

1) Each sensor processes the a-priori estimates of its in-
neighbors as they arrive. The messages are time-stamped
and the sensor knows the time-step (and hence the delay)
of the received information. The proposed solution
works for both heterogeneous and homogeneous delays.
In case of homogeneous known delays (t; = T, Vi, )

4Given functions f(-) and g(-), say f = O(g) if sup, |f(" | <ooand f =
Q(g) if g = O(f). If both f = O(g) and f = Q(g) holds, then f=0() [28].

only the term Zje N PiAT 52;( Z|k—7 appears in (4). For
unknown delays bounded by T, followmg the strategy
in [2], state-updates and communications at all sensors
take place every T+1 steps of system dynamics, i.e., over
a longer time-scale k = | =-< . In this scenario, all sen-
sors wait to receive all the possibly delayed information
from the neighbors and then update their state as,

<i _ r+]/\l
Xek—1 = Z PATTXE iy (13)
jE{NU{l}}
i T
Xep = Xgi T KG (yk CX) X k- 1) (16)

The above models a non-delayed LTI distributed esti-
mator as in [17] with system matrix AT where the
stability analysis follows similar to Theorem 1.

2) The structural observability results are, in general,
hold for almost all choices of numerical entries of
system parameters as long as its structure (the sensor
network) is fixed/time-invariant [37], [38]. The observ-
ability can be checked for different random consensus
weights for stochastic P. For constrained cases, e.g., lazy
Metropolis [32] or simply WII? [2], it may not neces-
sarily hold. The structure of P, however, may affect the
LMI-based gain design, the bound in Eq. (26), p(4),
and the convergence rate (14). Note from Lemma 3
that p(P ® A) = p(A) since p(P) = 1 for any
row-stochastic P.

3) The cost-optimal network design and sensor place-
ment [21], [22] can be considered to reduce the
communication-related and/or sensing-related costs.

4) In case of sensor failure, the concept of observational
equivalence in both centralized [37] and distributed [38]
scenarios can recover the loss of observability.

5) To design a distributed estimator to tolerate time-delays
bounded by T, one can redesign the LMI gain matrix K
by replacing A = P AT ! —KDc(P®AT'H!) in (13).
Clegrly, from Theorem 1 and (26), such K results in
pA) < 1 for T < T (simply replace T = T;). Such
LMI gain design for the delay-free closed-loop matrix
A of size nN instead of the delayed matrix A of size
nN(T + 1), significantly reduces the complexity order
with no need of using the augmented matrix P.

6) On a different setup, [1, Th. 1] claims that for weakly
diagonally dominant matrix P, the off-diagonal delays
are harmless for stability. This is not applicable to error
dynamics (10), as the entries of A (and weak/strong diag-
onal dominance of the closed-loop system) depend on
the feedback gain K and cannot be evaluated only based
on the open-loop matrices A and P.

IV. SIMULATION

For MATLAB simulation, we consider a linear structurally-
cyclic system of n = 6 states with 4 irreducible sub-systems
and N = 4 sensors each taking one system output (from
each irreducible block) satisfying Assumption 1. The system
is full-rank and unstable with p(A) = 1.04. System and output
noise are considered as A(0, 0.004). The network of sen-
sors G is a simple directed self-damped cycle 1 — 2 —
3 — 4 — 1, over which the system is not observable in the
neighborhood of any sensor (Remark 1). Consensus weights
are considered random while satisfying row-stochasticity of
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- ey e M7= o ReT=8 HeT=19 where N-by-N matrix A; is located at the ith block (and the
e - — only non-zero block) in the first block-row of A, ;. Let p(})
5 and g(X) represent the characterlstlc ?olynomlals of A; and
= A,..;, respectively. Then, g(A) = p(A).
g Proof: Consider,
5 — - E F
= )\InN_An,iZ (G H)’ (18)
, ! , ‘ where block-matrix E is N(i — 1)-by-N(i — 1), F is N(i — 1)-
0 60 erations. b 40 300 by-N(n —i+ 1), G is N(n — i 4+ 1)-by-N(i — 1), and H is
, N(n — i+ 1)-by-N(n — i + 1) defined as,
F|g 1. MSEs are bounded steady-state stable for T = 0, 3, 8. For

7T =19 > T = 10 the MSE is marginally unstable for the homoge-
neous case, while it is stable for the heterogeneous case. Note that
Theorem 1 gives the a sufficient (and not a necessary) condition on
T for convergence.

irreducible P matrix (satisfying Lemma 1). Therefore, solving
the LMI in [17], [27] via MATLAB cvx, the block-diagonal
gain matrix K is designed such that p(A) = 0.64 < 1 and
7* = 10, implying stable error dynamics for any T < 10
(sufficiency from Theorem 1). Next, following Assumption 2,
we consider both heterogeneous delays (uniformly distributed
between 0 and T for different links [2]) and homogeneous
delays (equal to T at all links). Fig. 1 shows the Monte-
Carlo simulation (100 trials) of mean-squared-error (MSE)
over the network G for (i) no time-delay and (ii) homoge-
neous/heterogeneous delays with T = 3,8,19 and bounds
in (26) as p(A) <0.74,0.94, 1.45. For fixed homogeneous
delays T = 19, we have p(A) = 1. From Fig. 1 and Eq. (14),
longer delays decrease the MSE decay rate for T < 7* (with
7* = 10 for this example), while for T > T* the error may

not necessarily converge.

V. CONCLUSION AND FUTURE DIRECTIONS

This letter extends the recent literature on distributed esti-
mation over linear networks to time-delayed ones. For a given
bound on the delays, we design distributed estimators over
delayed communication networks. Our ongoing research is
focused on (i) rank-deficient systems (with more complexity
in terms of system outputs, network connectivity, and data-
sharing [20], [29]), (ii) detecting faults/attacks [39], [40] on the
distributed estimation networks with latency, (iii) time-varying
delays, and (iv) network pruning to improve observability and
convergence [23], [41].

APPENDIX

Some of the following lemmas can be found in standard
matrix theory books, e.g., in [42].

Lemma 3: Consider two square matrices P and A of size N
and n, respectively, with the set of eigenvalues {Af, ..., Ay}

and {1, ..., uy}. Then, the set of eigenvalues of P ® A is
{Aipjli=1,...,N, j=1,...,n}.
Lemma 4: Define the following nN-by-nN block matrix,
Oy . A; ... Oy
In Oy ... ... Oy
A (17)

Ani=| Oy Iy oo ow ).

ON ON e IN ON

My Oy ... . Oy
—Iy My ... . Oy
E = On —Iy Oy (19)
On On —Iy Ay
—-A; Oy ... Oy Oy ... Oy -—Iy
On Oy ... Oy Oy ... Oy Oy
F = G =
Oy Oy ... Oy Oy Oy ... Oy
(20)
XIN Oy e ... Oy
—Iy Ay ... - Oy
H = Oy —Iy Oy (2])
ON ON —IN XIN
Recall that p(A) = |Aly — A;|, and
q0) = M — Anil = |E||H — GE™'F|. (22)
We have,
b oy Oy
/Xﬂ Iy 0
-1 * x N
E~ = ] ) , (23)
A R P
71 7z 2 x
and H — GE~'F is equal to,
)JN — AA On - o On
—Iy Ay ... ... Oy
On —Iy . o Oy 24
Oy Oy —Iy XIN
Then, [E] = 2"V, |H - GE-'F| = 2" |21y — i), and

substituting these in (22),

N(n i) 7 —N(n—i) ~—i

qg(1) = p(L).

The proof is complete. _
Lemma 5: Given matrix A with p(A) < 1, we have p(A4) <

,o(A)# < 1 with A as the augmented form of A via Eq. (2).

My — Al =X 25)
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Proof: The characteristic polynomial of A can be defined
based on Lemma 4. Let p(A) and g(X) respectively repre-
sent the characteristic polynomial of A and A. For t;; = T

for all i,j and A7 = A. Therefore, q(X) = p(X?Jr ) arlld

p(A) = p(A)?%l < 1. We know that the function p(A)7+T
is an increasing function of 7 (given p(A) < 1), then, for

7 =r <7 foralli,jand A, = A, we have p(A) = p(A)T <

,o(A)?%r1 < 1. This can be generalized for any choice of
bounded time-delay and associated augmented matrix in the
form of (2). This completes the proof. |

Proof of Theorem 1: For the proof, from Lemma 5, we show
that p(A) < 1 for T < T*, implying Schur stable error dynam-
ics (10). Recall that p(A) < 1 implies that the networked
estimator (4)-(5) successfully tracks system (1) for the delay-
free case. From (9) and Lemma 5, for the closed-loop matrix
A (as modified augmented version of A) and p(A) > 1,

1

p@) < p(PRAT™ —KDc(PQATH)™1, (26

which implies that p(g) < lforany 7 < 7% Incase p(A) < 1,
since p(A)fi] < p(A), Schur stability of A also ensures the
stability of A (for all 7). This completes the proof.
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