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FAST DECENTRALIZED NONCONVEX FINITE-SUM
OPTIMIZATION WITH RECURSIVE VARIANCE REDUCTION*

RAN XINT, USMAN A. KHAN?, AND SOUMMYA KARf

Abstract. This paper considers decentralized minimization of N := nm smooth nonconvex cost
functions equally divided over a directed network of n nodes. Specifically, we describe a stochastic first-
order gradient method, called GT-SARAH, that employs a SARAH-type variance reduction technique and
gradient tracking (GT) to address the stochastic and decentralized nature of the problem. We show that
GT-SARAH, with appropriate algorithmic parameters, finds an e-accurate first-order stationary point
with O (max {N1/2,n(1-2)"2,n2/3m1/3(1-1)~1} Le~2) gradient complexity, where (1 — \) € (0, 1]
is the spectral gap of the network weight matrix and L is the smoothness parameter of the cost
functions. This gradient complexity outperforms that of the existing decentralized stochastic gradient
methods. In particular, in a big-data regime such that n = O(N'/2(1 — A)3), this gradient complexity
furthers reduces to O(N1/2Le’2), independent of the network topology, and matches that of the
centralized near-optimal variance-reduced methods. Moreover, in this regime GT-SARAH achieves a
nonasymptotic linear speedup in that the total number of gradient computations at each node is
reduced by a factor of 1/n compared to the centralized near-optimal algorithms that perform all
gradient computations at a single node. To the best of our knowledge, GT-SARAH is the first algorithm
that achieves this property. In addition, we show that appropriate choices of local minibatch size
balance the trade-offs between the gradient and communication complexity of GT-SARAH. Over infinite
time horizon, we establish that all nodes in GT-SARAH asymptotically achieve consensus and converge
to a first-order stationary point in the almost sure and mean-squared sense.
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1. Introduction. We consider decentralized finite-sum minimization of N := nm
cost functions that takes the following form:

(1.1) )Elelllkg F(x):= 13" fi(x), fi(x) ==+ Z;"ﬂ fii(x),
where each f; : RP — R, further decomposed as the average of m component costs
{fi;}7%y, is available only at the ith node in a network of n nodes. The network is
abstracted as a directed graph G := {V, £}, where V := {1,...,n} is the set of node
indices and & C V x V is the collection of ordered pairs (i,7),4,r € V, such that node r
sends information to node i. We adopt the convention that (i,3) € EVi € V. Each
node in the network is restricted to local computation and communication with its
neighbors. Throughout the paper, we focus on the case where each f; ; is differentiable,
not necessarily convex, and F' is bounded below. This formulation often appears in
decentralized empirical risk minimization, where each local cost f; can be considered
as an empirical risk computed over a finite number of m local data samples [48], and
lies at the heart of many modern machine learning problems [4, 22, 52]. Examples
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include nonconvex linear models and neural networks. When the local data size m is
large, evaluating the exact gradient V f; of each local cost at each iteration becomes
computationally expensive, and methods that efficiently sample each local data batch
are preferable. We are thus interested in designing fast stochastic gradient algorithms
to find an e-accurate first-order stationary point X € R? such that E[[|VF(%)[]?] < €2.

Towards problem (1.1), DSGD [7, 8, 33, 55], a decentralized version of stochas-
tic gradient descent (SGD) [4, 12, 24], is often used to address the large-scale and
decentralized nature of the data. DSGD is popular for several inference and learning
tasks due to its simplicity of implementation and speedup in comparison to its cen-
tralized counterparts [20]. DSGD and its variants have been been extensively studied
for different computation and communication needs, e.g., momentum [43], directed
graphs [3], escaping saddle-points [39, 41], zeroth-order schemes [44], swarming-based
implementations [29], and constrained problems [53].

1.1. Challenges with DSGD. The performance of DSGD for the nonconvex
problem (1.1), however, suffers from three major challenges: (i) the nondegenerate
variance of the stochastic gradients at each node, (ii) the dissimilarity among the local
functions across the nodes, and (iii) the transient time to reach the network topology
independent region. To elaborate these issues, we recap DSGD for problem (1.1) and
its convergence results as follows. Let x¥ € R? denote the iterate of DSGD at node i
and iteration k. At each node 4, DSGD performs [7, 33]

(1.2) x§+1 = z::«lzlﬂirxlrC —a- gé{)’ k=0,
where W = {w;,.} € R"*™ is a weight matrix that respects the network topology,
while gF € RP is a stochastic gradient such that E[gF|x¥] = Vf;(xF). Assuming

the bounded variance of each local stochastic gradient g¥, the bounded dissimilarity
between the local and the global gradient [20], i.e., for some v > 0 and ¢ > 0,

N n
(1.3) sup IE[Hgf — Vi) } <v*and sup 13°7 |V fi(x) — VF)|? < ¢2,
1€V,k>0 xERP

and L-smoothness of each f;, it is shown in [20] that, for small enough o > 0,

(1.4)

K-1 .
1 2] F(XO) —F*  alv? 2L a?L2¢?
KkZ_OE[HVF(X)M_O< oK 1o +(1—/\)2>’

where X* := L 3™ x¥ and (1 — \) € (0, 1] is the spectral gap of the weight matrix W.
It then follows that [20] for K large enough (see (iii) below) and with an appropriate
step-size v, DSGD finds an e-accurate first-order stationary point of F in O(v2Le™ %)
stochastic gradient computations across all nodes and therefore achieves asymptotic
linear speedup compared to the centralized SGD [4, 12] that executes at a single node.
Clearly, there are three issues with the convergence properties of DSGD:

(i) Due to the nondegenerate stochastic gradient variance, the gradient complexity
of DSGD does not match that of the centralized near-optimal variance-reduced methods
when minimizing a finite sum of smooth nonconvex functions [11, 28, 45].

(ii) The bounded dissimilarity assumption on the local and global gradients [3,
20, 41] or the coercivity of each local function [39] is essential for establishing the
convergence of DSGD. In fact, a counterexample has been shown in [6] that DSGD diverges
for any constant step-size when these types of assumptions are violated. Furthermore,
the practical performance of DSGD degrades significantly when the local and the global
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gradients are substantially different, i.e., when the data distributions across the nodes
are largely heterogeneous [40, 50, 54].

(iii) DSGD achieves linear speedup only asymptotically, i.e., after a finite number of
transient iterations that is a polynomial function of n,v,(, L, and (1 — A) [20, 31, 43].

1.2. Main contributions. This paper proposes GT-SARAH, a novel decentralized
stochastic variance-reduced gradient method that provably addresses the aforemen-
tioned challenges posed by DSGD. GT-SARAH is based on a local SARAH-type gradient
estimator [11, 28], which removes the variance incurred by the local stochastic gradients,
and global gradient tracking (GT) [10, 35, 51], which fuses the gradient estimators across
the nodes such that the bounded dissimilarity or the coercivity-type assumptions are
not required. Our main technical contributions are summarized in the following.

(i) We show that GT-SARAH, under appropriate algorithmic parameters, finds
an e-accurate first-order stationary point X of F' such that E[||VF(X)|]?] < €% in at
most Hp := O(max {N"/2,n(1—X\)=2,n*m'/*(1 — )~} Le~2) component gradient
computations across all nodes. The gradient complexity Hpg significantly outperforms
that of the existing decentralized stochastic gradient algorithms for problem (1.1);
see Table 1 for a formal comparison.

(ii) In a big-data regime such that n = O(N'/?(1 — \)?), the gradient complexity
Hpr of GT-SARAH reduces to 7-[R := O(N'?Le?). We emphasize that 7-lR is inde-
pendent of the network topology and matches that of the centralized near-optimal
variance-reduced methods [11, 28, 45] under a slightly stronger smoothness assumption;
see Remark 3.1 for details. Furthermore, since GT-SARAH computes n gradients in paral-
lel at each iteration, its per-node gradient complexity in this regime is O(N'/*n—1e=2),
demonstrating a nonasymptotic linear speedup compared with the aforementioned
centralized near-optimal methods [11, 28, 45] that perform all gradient computations
at a single node. To the best of our knowledge, GT-SARAH is the first decentralized
method that achieves this property for Problem (1.1).

(iii) We show that choosing the local minibatch size of GT-SARAH judiciously
balances the trade-offs between the gradient and communication complexity; see Corol-
lary 3.9 and subsection 3.3.1 for details.

(iv) We establish that all nodes in GT-SARAH asymptotically achieve consensus
and converge to a first-order stationary point of F' over infinite time horizon in the
almost sure and mean-squared sense.

1.3. Related work. Several algorithms have been proposed to improve certain
aspects of DSGD. For example, a stochastic variant of EXTRA [36], Exact Diffusion [54],
and NIDS [19], called D2 [40], removes the bounded dissimilarity assumption in DSGD
based on a bias-correction principle. DSGT [50], introduced in [30] for smooth and
strongly convex problems, achieves a similar theoretical performance as D2 via gradient
tracking [10, 23, 32, 42] but with more general choices of weight matrices. Refer-
ence [17] establishes asymptotic properties of a decentralized stochastic primal-dual
algorithm for smooth convex problems. Reference [16] develops decentralized primal-
dual communication sliding algorithms that achieve communication efficiency for
convex and possibly nonsmooth problems. These methods, however, are subject to the
nondegenerate variance of the stochastic gradients. Inspired by the variance reduction
techniques for centralized stochastic optimization [1, 5, 9, 11, 26, 27, 28, 34, 45, 47, 58],
decentralized variance-reduced methods for smooth and strongly convex problems
have been proposed recently, e.g., in [18, 21, 48, 49, 56]; in particular, the integration
of gradient tracking and variance reduction described in this paper was introduced
in [48, 49] to obtain linear convergence.
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A recent paper [38] proposes D-GET for problem (1.1), which also considers lo-
cal SARAH-type variance reduction and gradient tracking. In the following, we compare
our work to [38] from a few major technical aspects.! First, the gradient complex-
ity Hpr of GT-SARAH improves that of D-GET in terms of the dependence on n and m;
see Table 1. In particular, in a big-data regime, n = O(N'/?(1 — \)?), Hr matches the
gradient complexity of the centralized near-optimal methods [11, 28, 45]; in contrast,
the gradient complexity of D-GET is worse than that of the centralized near-optimal
methods by a factor of n'/? even if the network is fully connected. Second, the complex-
ity results of D-GET are attained with a specific local minibatch size m'/2. Conversely,
we establish general complexity bounds of GT-SARAH with arbitrary local minibatch
size and characterize the computation-communication trade-offs induced by different
choices of the minibatch size. Third, the Lyapunov function based convergence analysis
of D-GET does not show explicit dependence of several important problem parameters,
such as (1 — \) and L, while the analysis in this work reveals explicitly the dependence
of all problem related parameters and sheds light on their implications. Fourth, we
note that both GT-SARAH and D-GET achieve a worst case communication complexity
of the form O((1 —\)~L¢~2), independent of m and n, for some a,b € R*. Since the
dependence of a and b in D-GET is not explicit, it is unclear which algorithm achieves
a lower communication complexity. Finally, [38] presents a variant of D-GET that is
applicable to a more general online setting such as expected risk minimization.

TABLE 1

A comparison of the gradient complezities of the state-of-the-art decentralized stochastic gradient
methods to minimize a sum of N = nm smooth nonconvez functions equally divided among n nodes.
The gradient complexity is in terms of the total number of component gradient computations across
all nodes to find a first-order stationary point X € RP such that E[||VF(X)||?] < €2. In the table, v?
denotes the bounded variance of the stochastic gradients described in (1.3), (1 — A) € (0,1] is the
spectral gap of the network weight matriz, and L is the smoothness parameter of the cost functions.
We note that the complexities of DSGD, D2, and DSGT in the table are established in the setting of
stochastic first-order oracles, which is more general than the finite-sum formulation considered in this
paper. Moreover, the complexities of DSGD, D2, and DSGT in the table are stated in the regime that €
is small enough for simplicity; see [20, 40, 50] for their precise expressions. Finally, we note that
only the best possible gradient complexity of GT-SARAH, in the sense of Theorem 3.6, is presented in
the table for conciseness; see Corollary 3.9 and subsection 3.3.1 for detailed discussion on balancing
the trade-offs between the gradient and communication complezity of GT-SARAH.

Algorithm Gradient complexity Remarks
V2L Bounded variance,
DSGD [20] © ( 4 ) bounded dissimilarity
V2L
D2 [40] o (—4) Bounded variance
€
V2L
DSGT [50] O ( T ) Bounded variance
€
D-GET [38] n'ZNV2LP a,b € RT are not
(1= N)*e2 explicitly shown in [38]
GT-SARAH | N2 n n*AmlA L See Theorem 3.6 and
this work max T(1—=XN)2" 1-—2)\ €2 Corollary 3.9
(1=X

INote that [38] uses E[||VEF(X)||?] < € as the performance metric, while we use E[||VF(X)||?] < €2
in this paper. We state the complexities of D-GET established in [38] under our metric for consistency.
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1.4. Paper outline and notation. The proposed GT-SARAH algorithm is de-
veloped in section 2. We present the convergence results of GT-SARAH and discuss
their implications in section 3. Section 4 presents the convergence analysis. Section 5
presents numerical experiments, while section 6 concludes the paper.

The set of positive integers and real numbers are denoted by Z* and R, respec-
tively. For any a € R, |a] denotes the largest integer ¢ such that ¢ < a; similarly,
[a] denotes the smallest integer ¢ such that ¢ > a; We use lowercase bold letters to
denote column vectors and uppercase bold letters to denote matrices. The matrix, I,
represents the d x d identity; 14 and 04 are the d-dimensional column vectors of all ones
and zeros, respectively. The Kronecker product of two matrices A and B is denoted
by A @ B. We use || - || to denote the Euclidean norm of a vector or the spectral norm
of a matrix. For a matrix X, we use p(X) to denote its spectral radius, A2(X) to
denote its second largest singular value, and det(X) to denote its determinant. Matrix
inequalities are interpreted in the entrywise sense. We use o(+) to denote the o-algebra
generated by the random variables and/or sets in its argument. The empty set is
denoted by ¢.

2. Algorithm development: GT-SARAH. We now systematically build the pro-
posed algorithm GT-SARAH and provide the basic intuition. We recall that the per-
formance (1.4) of DSGD, in addition to the first term which is similar to that of the
centralized batch gradient descent, has three additional bias terms. The second and
third bias terms in (1.4) depend on the variance v? of local stochastic gradients.
A variance-reduced gradient estimation procedure of SARAH-type [11, 28], employed
locally at each node i in GT-SARAH, removes v2. The last bias term in (1.4) is due to
the dissimilarity (? between the local gradients {V f;}_; and the global gradient VF.
A dynamic fusion mechanism, called gradient tracking [10, 15, 23, 32, 51], removes (2
by tracking the average of the local gradient estimators in GT-SARAH to learn the global
gradient at each node. The resulting algorithm is illustrated in Figure 1.

2.1. Detailed implementation. The complete implementation of GT-SARAH is
summarized in Algorithm 2.1, where we assume that all nodes start from the same
point X! € RP. GT-SARAH can be interpreted as a double loop method with an
outer loop, indexed by s, and an inner loop, indexed by ¢t. At the beginning of each
outer loop s, GT-SARAH computes the local batch gradient v?’s =V fi(x?’s) at each
node i. These batch gradients are then used to compute the first iteration of the global
gradient tracker y,”* and the state update x,"*. The three quantities, v_'*, y1* x}*,
set up the subsequent inner loop iterations. At each inner loop iteration ¢ > 1, each
node ¢ samples two minibatch stochastic gradients from its local data that are used

+

‘ SARAH-based VR
Node

Global GT
Network

A 4 A 4
VHi = % S Vi | VF =& Tna Vi

Fic. 1. Each node i samples a minibatch of stochastic gradients {Vfiﬂ}f;l at each iteration
from its local data batch and computes an estimator v; of its local batch gradient V f; via a SARAH-
type variance reduction (VR) procedure. These local gradient estimators v;’s are then fused over
the network via a gradient tracking (GT) technique to obtain y;’s that approximate the global
gradient VF'.
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to construct the gradient estimator v . We note that the gradient estimator is of
i1 and the minibatch stochastic gradients
be t=1:5 " The next step is to
t+1,s

recursive nature, i.e., it depends on v;
evaluated at the current and the past states x,”” and x;
update yf— ® based on the gradient tracking protocol Flnally, the state x; at
each node 7 is computed as a convex combination of the states of the nmghboring
nodes followed by a descent in the dlrectlon of the gradient tracker yt+1 *. The
latest updates x7"* y?T* "and v®* then set up the next inner-outer loop cycle

of GT-SARAH.

Algorithm 2.1 GT-SARAH at each node ¢
Require: x,"' =X ¢ RP, a € RT, g € ZT, S € Zt, B € Zt, {w;, }7_1, V' = 0,,

viil—g,.

1: for s=1, 2 ,S do

2: VQ =V (XQ’S) =21 v gy Vi (x¥%); > batch gradient computation
3: =3 Mzryz * 4+ V?’S — Vfl’s; > gradient tracking
4: 1 T =3 w, X0t — ay,’; > state update
5: fort—1,2,...,qdo

6: for I 'in {1,..., B}, choose T;’ls uniformly at random from {1,...,m};
7 > sampling
8: vi'= g Zﬁl (Vfi, o (x;7) = vfi,rf;f (X?LS)) +vi > SARAH
9: yirhs =S w ytt vt vl > gradient tracking
10: xTH =5, xbs — ayl T > state update
11: end for

12: Set x)*Hh = x0TLs yOstl _ patls, yolstl _ g5 > next cycle
13: end for

3. Main results. In this section, we present the main convergence results of
GT-SARAH and discuss their implications.

3.1. Assumptions. We make the following assumptions to establish the conver-
gence properties of GT-SARAH in this paper.

Assumption 3.1. Each local component cost f; ; is differentiable, and {f; ;}72,
satisfies a mean-squared smoothness property, i.e., for some L > 0,

(3.1) il (%) = ViIIP < LPlx—y|* VieV, Vxy€RP

In addition, the global cost F' is bounded below, i.e., F™* := infxecpe F(x) > —o00.

It is clear that under Assumption 3.1, each f; and F' are L-smooth. We note that
Assumption 3.1 is weaker than requiring each f; ; to be L-smooth.

Remark 3.1. The local mean-squared smoothness assumption (3.1), which is also
used in the existing work [38], is slightly stronger than the smoothness assumption
required by the existing lower bound Q(N'/2Le~2) [11, 57] and the centralized near-
optimal methods [11, 28, 45] for finite-sum problems in the following sense. If we view
problem (1.1) as a centralized optimization problem, that is, all f; ;’s are available
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Downloaded 06/14/22 to 130.64.22.2 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

DECENTRALIZED NONCONVEX FINITE-SUM OPTIMIZATION 7

at a single node, then the aforementioned lower bound and the convergence of the
centralized near-optimal methods are established under the following assumption:

(32) XLV () = V(IP < LPx—yl* vx,y € RP.

Clearly, (3.2) is implied by (3.1) but not vice versa. Due to this subtle difference, it is
unclear whether the existing lower bound Q(N'/2Le~2) [11, 57] established under (3.2)
remains valid under (3.1). Finally, we note that a lower bound result for decentralized
deterministic first-order algorithms in the case of m =1 can be found in [37].

Assumption 3.2. The family {Tf”f :te[l,ql,s >1,i€V,l€l,B]} of random
variables is independent.

Assumption 3.2 is standard in the stochastic optimization literature, e.g., [4, 11].

Assumption 3.3. The nonnegative weight matrix W := {w;,.} € R"*™ associated
with the network G = (V, £) has positive diagonals and is primitive. Moreover, W is
doubly stochastic, i.e., W1, =1, and 1] W =1].

An important consequence of Assumption 3.3 is that [32]
(3.3) A=W — 21,17 = X2 (W) € [0,1),

where A\y(W) denotes the second largest singular value of W.2 We term (1 — ) as
the spectral gap of W that characterizes the connectivity of the network [22].

Remark 3.2. Weight matrices satisfying Assumption 3.3 may be designed for the
family of strongly connected directed graphs that admit doubly stochastic weights:
(i) towards the primitivity requirement in Assumption 3.3, we note that if a graph
is strongly connected, then its associated weight matrix W is irreducible [14, Theo-
rem 6.2.14, 6.2.24] and W is further primitive since it is nonnegative with positive
diagonals [14, Lemma 8.5.4]; (ii) towards the doubly stochastic requirement in As-
sumption 3.3, we refer the readers to [13] for necessary and sufficient conditions under
which a strongly connected directed graph admits doubly stochastic weights.

An important special case of this family is undirected connected graphs where
doubly stochastic weights always exist and can be constructed in an efficient and decen-
tralized manner, for instance, by the lazy Metropolis rule [22]. Hence, Assumption 3.3
is more general than the one required by EXTRA-based algorithms for decentralized
optimization. For example, the weight matrix of D2 needs to be symmetric and meet
certain spectral properties [40] and is therefore not applicable to directed graphs.

In the rest of the paper, we fix a rich enough probability space (Z, F,P) where all
random variables generated by GT-SARAH are properly defined. We formally state the
convergence results of GT-SARAH next, the proofs of which are deferred to subsection 4.2.

3.2. Asymptotic almost sure and mean-squared convergence. The follow-
ing theorem shows the asymptotic convergence of GT-SARAH.

THEOREM 3.3. Let Assumptions 3.1-3.3 hold. Suppose that the step-size o, mini-
batch size B, and the inner loop length q of GT-SARAH follow

0 < a < min 7(1_)\2)2 nB " inB DS 1
- 4/42 7 \ 6q " \7TnB + 24q 6 2L’

2We note that the relation in (3.3) may be established by following the definition of the spectral
norm with the help of the primitivity and doubly stochasticity of W and W T W, the Perron—Frobenius
theorem, and the spectral decomposition of W T W [14, 32].
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where B € [1,m]. Then we have, Vt € [0,q], Vi € V,

P(lim [VAx)=0) =1 and  lim E[[VFE]*] =0,

§—00 §—00

(hm Hx it’SH = 0) =1 and lim E[th s xt’SHQ} =0,

S—» 00 S§—00

where X% := L 371 [ x®

In addition to the mean-squared convergence that is standard in the stochastic
optimization literature, the almost sure convergence in Theorem 3.3 guarantees that
all nodes in GT-SARAH asymptotically achieve consensus and converge to a first-order
stationary point of F' on almost every sample path.

3.3. Complexities of GT-SARAH for finding first-order stationary points.
We measure the outer loop complexity of GT-SARAH in the following sense.

DEFINITION 3.4. Consider the sequence of random state vectors {Xf’s} generated
by GT-SARAH at each node i. We say that GT-SARAH finds an e-accurate first-order
stationary point of F' in S outer loop iterations if

S q n
(3.4) mZZ%ZE“V}? ts || —|—L2|‘X§’S—it’5“2}§62.

s=1t=0 i=1

This is a standard metric that is concerned with the minimum of the stationary gaps
and consensus errors over iterations in the mean-squared sense at each node [11, 20,
28, 40, 45]. In particular, if (3.4) holds and the output X of GT-SARAH is chosen
uniformly at random from the set {XE’S :0<t<gql<s<8ieV} then we
have E[|[VF(X)|?] < €2. In the following, we first provide the outer loop iteration
complexity of GT-SARAH.

THEOREM 3.5. Let Assumptions 3.1-3.3 hold. Suppose that the step-size o, mini-
batch size B, and the inner loop length q of GT-SARAH follow

0 ocmin ] L=X) (B e mB  \71-A2 1
min —_— —_— —_—
“= 442 7\ 6q " \TnB + 24q 6 2L’

where B € [1,m]. Then the number of the outer loop iterations S required by GT-SARAH
to find an e-accurate stationary point of F' is at most

1

— o e o2
W(‘M (P =) + 22 IVAED )

With Theorem 3.5 at hand, the gradient and communication complexities of
GT-SARAH can be readily established.

THEOREM 3.6. Let Assumptions 3.1-3.3 hold. Suppose that the step-size o and
the length q of the inner loop of GT-SARAH are chosen as’

n'?B n1/3BZ/3(1—)\)} 1)
L )

m :
(3.5) q:O(E) and a:O(mln{(l—)\)Q, i s

3The O notation only hides universal constants that are independent of problem parameters.
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where B € [1,m]. Then GT-SARAH finds an e-accurate stationary point of F in

nB e mPREBYAY A
=0 Py, 2 L2
fs (max{(l)\)2’ 1o e

component gradient computations across all nodes and

1 mi” m/3 A
Kg:= (’)(maX{(l — /\)2> n/’2B’ n1/332/3(1 — /\)}62>

rounds of communication, where A := L (F(X*') — F*) + L 3" |V f; X% |%.

Remark 3.7. Theorem 3.6 holds for an arbitrary minibatch size B € [1,m)].
Remark 3.8. The gradient complexity at each node of GT-SARAH is Hp/n.

In view of Theorem 3.6, as the minibatch size B increases, the gradient complexity
Hp (resp., the communication complexity Kp) of GT-SARAH is nondecreasing (resp.,
nonincreasing). The following corollary may be obtained from Theorem 3.6 by standard
algebraic manipulations and shows that choosing the minibatch size B appropriately
leads to favorable computation and communication trade-offs.

COROLLARY 3.9. Let Assumptions 3.1-3.3 hold. Suppose that the step-size «
and the inner loop length q of GT-SARAH are chosen according to (3.5). We have the
following complexity results.

(i) If B € [1, | R]], where R := max {m'/*n="/*(1 — X)?,1}, then GT-SARAH attains
the best possible, in the sense of Theorem 3.6, gradient complexity

n o mARtAY A
. = — N/ 1T ),
(3.6) Hr (’)(max{(lA)Q, ST }€2>,

moreover, when B = | R], the corresponding communication complexity of GT-SARAH is

(3.7) . .
= 0 { g min {5 (g b L s )

(i) If B € [[CT,m], where C := max {m'?n="2(1 — X\)*/?,1}, then GT-SARAH at-
tains the best possible, in the sense of Theorem 3.6, communication complexity

o) e o2,

moreover, when B = [C'], the corresponding gradient complexity of GT-SARAH is

n N'/2 m1/3n2/3}A)

(3.9) HC::(’)(max{(l)\)g, (1-=XN7" 1-X [e

Comparing (3.6) and (3.7) with (3.9) and (3.8), we clearly have Hr < H¢
and Kr > K¢.

3.3.1. Two regimes of practical significance. We now discuss the implica-
tions of the complexity results in Corollary 3.9 and the corresponding computation-
communication trade-offs in the following regimes of practical significance.

e Big-data regime: n = O(N'/?(1 — X)3). In this regime, typical of large-scale
machine learning, i.e., the total number of data samples NN is very large, it can be verified
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that Hp reduces to Hp := O(N'2Ae¢2) and K reduces to K := O((1 — \)"3Ae~2).
It is worth noting that Hp is independent of the network topology and matches
the gradient complexity of the centralized near-optimal variance-reduced methods
[11, 28, 45] for this problem class up to constant factors, under a slightly stronger
smoothness assumption; see Remark 3.1. Moreover, H r demonstrates a nonasymptotic
linear speedup in that the number of component gradient computations required at
each node to achieve an e-accurate stationary point of F' is reduced by a factor of 1/n,
compared to the aforementioned centralized near-optimal algorithms [11, 28, 45] that
perform all gradient computations at a single node. B

On the other hand, it is straightforward to verify that Ho reduces to He =
O(N'2(1 = X\)~'2Ae™2). In other words, in this big-data regime, choosing a large
minibatch size B = [C] improves the communication complexity from Kr to K¢ while
deteriorating the gradient complexity from H r to ﬁc, demonstrating an interesting
trade-off between computation and communication.

e Large-scale network regime: n = Q(N'/2(1 — X)*/?). In this regime, typ-
ical of ad hoc Internet of Things networks, i.e., the number of the nodes n and the
network spectral gap inverse (1 — \)~! are large compared with the total number of
samples NV, it can be verified that R = C = 1 and consequently Hpr = H¢ reduce to
O(n(1 —X)"2Ae?), while Kg = K¢ reduce to O((1 — X\)~2Ae2). In other words,
in this large-scale network regime, the minibatch size B = O(1) is preferred since it
attains the best possible gradient and communication complexity simultaneously, in
the sense of Theorem 3.6.

Remark 3.10 (characterization of the big-data regime). We note that the number
of nodes n may be interpreted as the intrinsic minibatch size of GT-SARAH. We recall
that the centralized near-optimal variance-reduced algorithms [11, 28, 45] for this
problem class retain their best possible gradient complexity if their minibatch size does
not exceed N'/? [28]. Thus, the aforementioned big-data regime n = O(N'/2(1 — \)?)
approaches the centralized one as the network connectivity improves and matches the
centralized one when the network is fully connected, i.e., A = 0.

4. Convergence analysis. In this section, we present the proof pipeline for
Theorems 3.3, 3.5, and 3.6. The analysis framework is novel and general and may be
applied to other decentralized algorithms built around variance reduction and gradient
tracking. To proceed, we first write GT-SARAH in a matrix form. Recall that GT-SARAH is
a double loop method, where the outer loop index is s € {1,...,5} and the inner
loop index is t € {0,...,q}. It is straightforward to verify that GT-SARAH can be
equivalently written as, Vs > 1 and ¢ € [0, ¢],

(413) yt+178 — Wyt,s + Vt73 _ Vt_l’s7
(4.1b) LS Wixhs gyt

with vt x5* and y**, in R", that concatenate local gradient estimators {vi*}7,,
states {x"°}7_, and gradient trackers {y\*}7_,, respectively, and W := W @ I,,. We

recall that x0:5T1 = xa+ls y0stl = yatls y=lstl — yisys > 1 and v 1! =0,
from Algorithm 2.1 under the vector notation. Under Assumption 3.3, we have [14]

3= lim W= (11,17 o1,

k—o0

i.e., the power limit of the network weight matrix W is the exact averaging matrix J.
We also introduce the following notation for convenience:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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VE") = [VAES)T, . V)T, VEEE) = 11 @ L) Vi),
X = L1, @L)x", =01, 9Ly, V=11, @)V

In particular, we note that | VE(x%1)[|2 := Y1 | [|[V£;(X%)||. In the rest of the paper,
we assume that Assumptions 3.1, 3.2, and 3.3 hold without explicitly stating them.

4.1. Auxiliary relationships. First, as a consequence of the gradient tracking
update (4.1b), it is straightforward to show by induction the following result.

LEMMA 4.1. 15 =955 Vs > 1 and t € [0, q].
Proof. See Appendix A.1. ]
The above lemma states that the average of gradient trackers preserves the average

of local gradient estimators. Under Assumption 3.3, we obtain that the weight
matrix W is a contraction operator [32].

LEMMA 4.2. |[Wx —Jx|| < A||x — Ix]|| Vx € R™ for X\ € [0,1) defined in (3.3).

Lemmas 4.1 and 4.2 are standard in decentralized optimization and gradient
tracking [23, 32]. The L-smoothness of F' leads to the following quadratic upper
bound [25]:

(4.2) F(y) S F(x) +(VF(x),y - x) + 5 [y - x[|”  Vx,y € R,

Consequently, the following descent-type lemma on the iterates generated by GT-SARAH
may be established by setting y = X*1* and x = X"* in (4.2) and taking a telescoping
sum across all iterations of GT-SARAH with the help of Lemma 4.1 and the L-smoothness
of each f;.

LEMMA 4.3. If the step-size follows 0 < a < then we have

2L’

BIP(9)] < PR - 23 SE[IVAE)] - 2 3 S B[

s=1 t=0 s=1 t=0
S q L ) S g ||Xt,s _ th,snz
+ay ZE[||Vt’S— VE")| } +alL? ZZE{} :
s=1t=0 s=1t=0 n
Proof. See Appendix B. ]

In light of Lemma 4.3, our analysis approach is to derive the range of the step-size «
of GT-SARAH such that

S q S q 7€ L 2 25 q |Xt,e ths”
SN B[] - SB[t - TR ] — £ ZZE[ }

s=1t=0 s=1t=0 s=1t=0

> =

is nonnegative and therefore establishes the convergence of GT-SARAH to a first-order
stationary point following the standard arguments in batch gradient descent for
nonconvex problems [4, 25]. To this aim, we need to derive upper bounds for two
error terms in the above expression: (i) ||*t § — Vf(x"*)||?, the gradient estimation
error; and (i) [|x%* — Jx%#||?, the state consensus error. We quantify these two errors
next and then return to Lemma 4.3. The following lemma is obtained with similar
probabilistic arguments for SARAH-type [11, 28, 45] estimators, however, with subtle
modifications due to the decentralized network effect.
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LEMMA 4.4. We have, Vs > 1,

q 2 94—

t,5|2
ZE[HVLS_W(XLS)Hq 3qa Z (19 1] 6qL Z]E{Hx —Jx }

t=0 =0
Proof. See Appendix C. ]

Note that Lemma 4.4 shows that the accumulated gradient estimation error over
one inner loop may be bounded by the accumulated state consensus error and the norm
of the gradient estimators. Lemma 4.4 thus may be used to simplify the right-hand
side of the descent inequality in Lemma 4.3. Naturally, what is left is to seek an upper
bound for the state consensus error in terms of E[[|v"**||?]. This result is presented in
the following lemma.

(1-2%)?
LEMMA 4.5. If the step-size follows 0 < o < SV then

S q 2 2 0,1\12 4712 q
[xts — th79|| 64a” || VEDY)| 1536a L _
ZZE[ < §jﬂz [I%5)12].
t—0

1—A2)3 n — A2t
s=1 s=1t=0

Proof. See Appendix D. ]

Establishing Lemma 4.5 requires a careful analysis; here, we provide a brief sketch.
Recall the GT-SARAH algorithm in (4.1a)—(4.1b), and note that the state vector x** is
coupled with the gradient tracker y**. Thus, in order to quantify the state consensus
error ||xb* — Jx»*||2, we need to establish its relationship with the gradient tracking
error ||y"* — Jy»*||2. In fact, we show that these coupled errors jointly formulate a
linear time-invariant (LTI) system dynamics whose system matrix is stable under a
certain range of the step-size a. Solving this LTI yields Lemma 4.5.

Finally, it is straightforward to use Lemmas 4.4 and 4.5 to refine the descent
inequality in Lemma 4.3 to obtain the following result.

= e i A=2»? (nB\'/2 4nB Y412
LEMMA 4.6. If0<a§a— mln{ WD ,(@) ,(m) G } 5L then

2 A JXf’gH 1 < SR t,s\ |2
B e e w3 (L

s=11t=0 s
- 4(F (") = Fr) N 7 6g\ 2560°L* || VE(x 01)||2
« nB ) (1 —)\2)3 n

Proof. See Appendix E. O

We note that the descent inequality in Lemma 4.6 that characterizes the conver-
gence of GT-SARAH is independent of the variance of local gradient estimators and of
the difference between the local and the global gradient. In fact, it has similarities to
that of the centralized batch gradient descent [4, 25]; see also the discussion on DSGD
in section 1. This is a consequence of the joint use of the local variance reduction
and the global gradient tracking. This is essentially why we are able to match the
gradient complexity of the centralized near-optimal methods for finite-sum problems
and obtain the almost sure convergence guarantee of GT-SARAH to a stationary point.

4.2. Proofs of the main theorems. With the refined descent inequality in
Lemma 4.6 at hand, Theorems 3.3, 3.5, and 3.6 are now straightforward to prove.

Proof of Theorem 3.3. We observe from Lemma 4.6 that if 0 < a < @, then
S I L E[IVF(x*)|? + L2?||x;® — %"*||?] < coVi € V, which implies all nodes
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achieve consensus and converge to a stationary point in the mean-squared sense. Fur-
ther, by the monotone convergence theorem [46], we exchange the order of the expecta-
tion and the series to obtain E[ 350 | 39 (|[VF(x1®) |2+ L2||x;* —x"*||?)] < oo Vi €
V, which leads to P(3200, 30 (IVE(x;*)||? + L2||x;° — %"*|?) < 00) =1Vi € V,

i.e., the consensus and convergence to a stationary point in the almost sure sense. O

Proof of Theorem 3.5. We recall the metric of the outer loop complexity in Defi-
nition 3.4, and we divide the descent inequality in Lemma 4.6 by S(¢ + 1) from both
sides. It is then clear that to find an e-accurate stationary point of F', it suffices to
choose the total number of the outer loop iterations S such that

4 (FEY) - F*) (7 6q> 25602 L2 [ VE(x%1)[]2 <2
S(g+1a '

(43) St DA-Np =

4 nB

The proof follows by the fact that if 0 < a < (m?}’nifzzu;) PN e (I+ 7%) 2(?6_03\22[)/? <

—L_and by solving for the lower bound on S such that (4.3) holds. d

Proof of Theorem 3.6. During each inner loop, GT-SARAH incurs n(m + 2¢B) com-
ponent gradient computations across all nodes and ¢ rounds of communication of
the network. Hence, to find an e-accurate stationary point of F', GT-SARAH requires,
according to Theorem 3.5, at most

T R ||Vf<>;°’1>||2>

component gradient computations across all nodes and

=0 (L (e - ) IR

n

rounds of communication of the network. The proof follows by setting the step-size «
m

as its upper bound in Theorem 3.5 and the length of the inner loop as ¢ = O(’5). 0O

5. Numerical experiments. In this section, we illustrate, by numerical experi-
ments, our main theoretical claim that GT-SARAH finds a first-order stationary point
of problem (1.1) with a significantly improved gradient complexity compared to the
existing decentralized stochastic gradient methods.

5.1. Setup. We consider a nonconver logistic regression model [2] for binary
classification over a decentralized network of n nodes with m data samples at each node:
minyepe F(x) 1= £ 30 - 3" (fij(x) + 7(x)) such that the logistic loss f; ;(x)
and the nonconvex regularization r(x) are given by

(5:1) fig(x) = log [L+exp {~ (x"0;5)¢,;}| and r(x) i= REG_[xI3(1+ [x2) 7,
where [x]q denotes the dth coordinate of x. In (5.1), note that 8; ; € R? is the jth data
sample at the ¢th node and §; ; € {—1,+1} is the corresponding binary label. The
details of the datasets under consideration are provided in Table 2. We normalize each
data sample such that [|@; ;|| = 1 for all ¢, j and set the regularization parameter as R =
1073, The primitive doubly stochastic weight matrices associated with the networks
are generated by the lazy Metropolis rule [22]. We characterize the performance of
the algorithms in comparison in terms of the decrease of the network stationary gap
versus epochs, where the stationary gap is defined as [|[VF(X)|| + + >0 | [[x; — X,
where x; is the estimate of the stationary point of F' at node ¢ and X := % S X,
and each epoch represents m component gradient computations at each node.
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TABLE 2
Datasets used in numerical experiments, available at https://www.openml.org/.

Dataset Number of samples (N = nm) | Dimension (p)
covertype 100,000 54
MiniBooNE 100,000 51
KDD98 82,000 AT7
w8a 60,000 300
a9a 48,800 124
Fashion-MNIST (T-shirt versus dress) 10,000 784
covertype 100 MiniBooNE 100 KDD98
—— DSGT —— DSGT —— DSGT
10 D-GET 1ot D-GET D-GET
—e— GT-SARAH —e— GT-SARAH 10 —e— GT-SARAH
or | Wy A g A \

Stationary gap
=
2

H

5]

&

Stationary gap
-

Stationary gap

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Epoch Epoch Epoch

FiG. 2. Performance comparison of GT-SARAH, DSGT, and D-GET over a 10-node exponential graph
on the covertype, MiniBooNE, and KDD98 datasets.

5.2. Performance comparisons. We compare the performance of GT-SARAH
with DSGT [50] and D-GET [38]; we note that D2 [40] and DSGD [20] are not presented
here for conciseness, since in general the former achieves a similar performance with
DSGT and the latter underperforms DSGT and D2 [6, 40, 48]. Towards the parameter
selection of each algorithm, we use the following setup: (i) for GT-SARAH, we choose its
minibatch size as B = 1 and its inner loop length as ¢ = m in light of Corollary 3.9; (ii)
for D-GET, we choose its minibatch size and inner loop length as |m'/?| under which
its convergence is established; see Theorem 1 in [38]; and (iii) we manually optimize
the step-sizes for GT-SARAH, D-GET, and DSGT across all experiments.

We first compare the performances of GT-SARAH, DSGT, and D-GET in the big-data
regime, that is, the number of samples m at each node is relatively large. To this
aim, we distribute the covertype, MiniBooNE, and KDD98 datasets over a 10-node
exponential graph [22] whose associated second largest singular value A ~ 0.71. The
experimental results are presented in Figure 2, where GT-SARAH outperforms DSGT and
D-GET. We also observe that D-GET outperforms DSGT in this case since the performance
of the latter is deteriorated by the large variance of the stochastic gradients as the
number of the samples m at each node is large.

We next consider the large-scale network regime, where the network spectral gap
inverse (1 —\)~! and the number of the nodes n are relatively large compared with the
local sample size m. We distribute the w8a, a9a, and Fashion-MNIST datasets over
the n = 10 x 10 grid graph whose associated second largest eigenvalue A ~ 0.99. The
performance comparison of the algorithms is shown in Figure 3, where we observe that
GT-SARAH still outperforms DSGT and D-GET. Besides, it is worth noting that D-GET
underperforms DSGT in this case. We provide an explanation about this phenomenon in
the following. In the regime where m is relatively small, the variance of the stochastic
gradients is relatively small, and as a consequence DSGT performs well. On the other
hand, the minibatch size |m'/?] of D-GET is too large in this regime to achieve a
satisfactory performance; see the related discussion in subsection 3.3.1.

6. Conclusions. In this paper, we propose GT-SARAH to minimize a finite sum
of N smooth nonconvex functions, equally distributed over a decentralized network
of n nodes. With appropriate algorithmic parameters, GT-SARAH achieves significantly
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FiG. 3. Performance comparison of GT-SARAH, DSGT, and D-GET over the 10 X 10 grid graph on
the w8a, a9a, and Fashion-MNIST datasets.

improved gradient complexity compared with the existing decentralized stochastic
gradient methods. In particular, in a big-data regime n = O(N'/?(1 — A)?), the gradient
complexity of GT-SARAH reduces to O(N'/?Le~2) which matches that of the centralized
near-optimal variance-reduced methods such as SPIDER [11, 45] and SARAH [28] for
problem (1.1), where L is the smoothness parameter and (1 — A) is the spectral gap of
the network weight matrix. Moreover, GT-SARAH in this regime achieves nonasymptotic
linear speedup compared with the centralized near-optimal approaches that perform all
gradient computations at a single node. Compared with the minibatch implementations
of SPIDER and SARAH over server-worker architectures [5], the decentralized GT-SARAH
enjoys the same nonasymptotic linear speedup in terms of the gradient complexity
but admits sparser and more flexible communication topology.

Appendix A. Preliminaries of the convergence analysis. In this section,
we present the preliminaries for the proofs of the technical Lemmas 4.1, 4.3, 4.4, 4.5,
and 4.6. We first define the natural filtration associated with the probability space, an
increasing family of sub-o-algebras of F, as

Fs =g (a(T;;LS i€V, le[l,B)), vaS) L tel2,q+1], s> 1,

where F1:5 1= F05 .= Faths=l > 9 and Fbl = FO! .= {¢ =}. It can be verified
by induction that x%*, y** are F**-measurable and v%* is F**15-measurable Vs > 1
and t € [0, q]. We assume that the starting point X*'! of GT-SARAH is a constant vector.
We next present some standard results in the context of decentralized optimization
and gradient tracking methods. The following lemma provides an upper bound on the
difference between the exact global gradient and the average of local batch gradients
in terms of the state consensus error, as a result of the L-smoothness of each f;.

LEMMA AL [[VE(xb) — VEE)|]” < £ [|xt — Ixt=||%, Vs > 1 and t € [0, q).
Proof. Observe that, Vs > 1 and ¢ € [0, ¢,

I = SIS, (Vi (x) = Vi) ||
= I VA ) - VEAES) |

L2 n t,s —t.s||2
< St ==

|[VE(x"*) — VF(x"*)

where the last line is due to the L-smoothness of each f;. The proof is complete. O
The following are some standard inequalities on the state consensus error.
LEMMA A.2. The following inequalities hold: Vs > 1 and t € [0, ¢],

(A1) th+1,s . th+1,s||2 < #th,s . th,s||2 + %Hyﬂrl,s . Jyt+1,sH2’

(A.2) th+17s . th+1,s||2 < ZHXt,s . th,sH? + 2a2||yt+1,s . Jyt+1,s||2.
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Proof. Using (4.1b) and the fact that JW = J, we have, Vs > 1 and V¢ € [0, ¢],
HXt+1,s _ th-s-l,sH2 _ HWXt,s —ayttls - J(Wxt,s _ ayt+1,s)|’2
(A.3) — [[Wxb* — IxP — aytthe — Jytthe) |

We apply Young’s inequality, ||a + b||?> < (1 + n)|lal|?> + (1 + 77 1)||b||?> Va,b € R"?,
Vn > 0, and Lemma 4.2 to (A.3) to obtain, Vs > 1 and V¢t € [0, ¢],

th+1,s _th+1,sH2 < (1 ‘|'77) /\QHXt,s _th,sHQ + (1 +7I_1) azuyt-s-l,s _Jyt+1,s||2.

2)\22 and 1, respectively, yields (A.1) and (A.2). |

A.1. Proof of Lemma 4.1. Recall from Assumption 3.3 that 1] W =1]. We
multiply (4.1a) by + (1T ®1,) to obtain, Vs > 1 and t € [0, q],

Setting 7 as

yt+1,s _ yt,s _’_vt,s -V

yt 1,s + Vt,s o Vt72,s

t—1,s

— yO,s _’_vt,s _ V—l,s

yq+1 ,s—1 _|_Vts Vq,sfl

_y01+v vfll Vts

where the above series of equalities follows directly from the updates of GT-SARAH.

Appendix B. Proof of Lemma 4.3. We multiply (4.1b) by 2(1, ®1,) and
then use Lemma 4.1 to obtain the recursion of the mean state X"* as follows

xiths —xbs _aytths =xb% — v Vs>1andt € [0,q].
Setting y = X'"1* and x = X"* in (4.2), we have, Vs > 1 and t € [0, ¢,
= s =t =1,5\ <t,s Q2L ||<t,s |2
(B.1) FETY) < F(RM) — o VF ("), v5%) 4+ SE[[v98])7

Applying (a,b) = 0.5 (||lal|* + ||b[|* — [|la — b||?) Va,b € R? to (B.1), we obtain an
inequality that characterizes the descent of the network mean state over one inner
loop iteration: Vs > 1 and ¢ € [0, ¢],

F(itJrl’s) < F(it’s) o %HVF(it,s)HQ . a(lfaL) H—t,s“2 a H—t ,8 VF(it’s)Hz’
< P - VR - g5 + oot - TR

(B2) +al[VEG) = VE)|
< F("*) = §|VEE)||* - 4[[v"*|* + afo"* - VE)||?
(B.3) el |t gyt ||

where (B.2) is due to 0 < a < 5= and (B.3) is due to Lemma A.1. We then take the
telescoping sum of (B.3) over t from 0 to g to obtain, Vs > 1,

(B4)  FE™M) < FE™) = § T IVAE)? - § 1o [v]
a7 = VRGP 2 g e — x|

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/22 to 130.64.22.2 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

DECENTRALIZED NONCONVEX FINITE-SUM OPTIMIZATION 17
The proof then follows by taking the telescoping sum of (B.4) over s from 1 to S and
taking the expectation of the resulting inequality.

Appendix C. Proof of Lemma 4.4. We first provide a useful result.
LEMMA C.1. The following inequality holds: Vs > 1,Vt € [1,q|, Vi € V, VI € [1, B],

EMVﬂd;@?>VLﬁ;@Em)ﬁf“]éLWéﬁxﬁLw?

Proof. In the following, we denote 1{A} as the indicator function of an event A € F.
Observe that, Vs > 1, Vt € [1,q|, Vi € V, VIl € [1, B],

MVﬂf () 91,56 ]
m 2

= Z ]1{7'” =j} (Vfi,j (xf’s) — Vi, (Xﬁ—l,s)> ‘]_-t,s
Jj=1

ZE[” = ) = T 7]

3

_ IE{IL{TZ = 3}17+] i

ivaw ts me( t— 13) 2

j=1

‘me' (x7*) = Vi (xi70°)

<.
I

)

U

where the last line uses that 7; ls is independent of F%*, i.e. E[]].{T S = gHF] =

1
The proof follows by using Assumptlon 3.1. WIL:I

Next, we derive an upper bound on the estimation error of the average of local
SARAH gradient estimators across the nodes at each inner loop iteration.

LEMMA C.2. The following inequality holds: Vs > 1 and t € [1,q],

el St < 5 el i e 9w

Proof. For the ease of exposition, we denote, ¥Vt € [1,q], Vs > 1,Vi € V, VI € [1, B],

~

(C1) V= Ve (0°) = Ve (70, V= 502,V

t—1,s

. t
Since x;* and x; are Ft*-measurable, we have

(C.2) B[V = E[VEF] = Vhi(x) = VAx).

With the notations in (C.1), the local recursive update of the gradient estimator vf-’s
described in Algorithm 2.1 may be written as

v =R VT viel,q), Vs> 1, Vie V.
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In the light of (C.2), we have the following: Vs > 1 and t € [1, ¢],

:

I 2
—E 72( bV ”)+Vfl(t“)+vf‘1’s—w¢(x§‘1’5)) ]-‘t’sl

E {Hvt,s ~VE(xH) ||2 |]_—t,s]

[ 1 . ot,s —1,s s ?
—E EZ(VZ" VT -V ()

B 2
—E fz Vi Vi “)+sz(“s)) J-‘“S]

/\

2

R (v
=E Hjj_;(v ~ V) + V(T) 2#8]

(C.3) + [0 = VEx19)|,

where the third equality is due to (C.2) and the fact that > ( VAT
is Fs-measurable. To proceed from (C.3), we note that since the collectlon of
random variables {Tf”ls :4 € V,l € [1,B]} are independent of each other and of the
filtration F%*, by (C.2), we have, Vt € [1,q] and s > 1,

(C.4)

B[(T0 = V() + VA(T), T = VA7) + VA () )| ] =0
whenever i, € V such that i # r. Similarly, we have, Vt € [1,¢] and s > 1, Vi € V,
(C.5)

IEKV — V() VAT,V - V) + Vi (x 15)>‘f“] =0

whenever [, h € [1,m] such that | # h. With the help of (C.4) and (C.5), we may
simplify (C.3) in the following: Vs > 1 and ¢ € [1, ¢/,

[H—t s _VE(x) H2 ’]:t,s:|

LS [ [o ) + T
i=1

) 2 ]_-t,s] + Hvt—l,s _ﬁ(xt—m)w

1 & 1 B . S ) , S
= 2|5 3 (V1 - VA 4 O ) \ﬂ’]
+ Hvt 1s ﬁ(xt—l,s)HQ
(C.6)
! -y vt t RINIT
~ (nB)? ZE[Hvl; = V(%) + Vi) ‘ ’}—hs}
i=1 I=1

Fwte - TR
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where the first line is due to (C.4) and the last line is due to (C.5). To proceed
from (C.6), we observe that V¢t € [1,q], Vs > 1, Vi € V, VIl € [1, B],

B[94 - o) + Vo] = 9 - Eo57] 1]
< E[va’;‘ 2|]—'t’5}
(C.7) < LZHX?S _ Xﬁ—l,s’ 27

where the last line uses Lemma C.1. Applying (C.7) to (C.6) yields, Vs > 1,¢ € [1,¢],

(©8) |7t~ TR 17 < s x4 [0 TF )

We next bound the first term on the right-hand side of (C.8). Observe that Vs > 1
and t € [1,q+ 1],

th,s . Xt—l,sH2 _ th,s _ xS 4 Ixbt — Jxt L 4 Jxt e Xt—l,sHQ
< 3th,s . th,s||2 + 3n||it,s . it71,3||2 + 3||Xt71,s . ‘]XFLSHz
(C.9) = 3]lxt* — Ixt|” + 3na2|[F 1?4 31 — Ixt L,

Applying (C.9) to (C.8) and taking the expectation of the resulting inequality leads
to, Vs > 1 and t € [1,¢],

E[||v = VE(e)|[*] < B[[[¢ 1 = VEGe0) | + 2 o]

(C.10) + SR [x — 3] + %E[”Xm - x|,

We recall the initialization of each inner loop that v%* = Vf(x"*)Vs > 1 and take the
telescoping sum of (C.10) over ¢ from 1 to z to obtain, Vs > 1 and Vz € [1,¢],

E[[[v5* = V)] < 222 i B[00 |*] + S5 i B [t - x| ]

(C.11) vl P )

The proof follows by merging the last two terms on the right-hand side of (C.11). 0O

Proof of Lemma 4.4. Summing up Lemma C.2 over ¢ from 1 to ¢ gives, Vs > 1,

q t—1
ZE{ 48 W(x“)”z] 3a?L? ZZE -
t=1 t=1 u=0
2 49 't
(C.12) - %ZZE[HX“’S ,un,st]
t=1 u=0

The proof follows by relaxing the right-hand side of (C.12) on the summations and
the initialization of each inner loop that ¥*:* = Vf(x%*) Vs > 1. O

Appendix D. Proof of Lemma 4.5.

D.1. Gradient tracking error. We first provide some useful bounds on the
gradient estimator tracking errors. These bounds will later be coupled with (A.1)
to formulate a dynamical system to characterize the error evolution of GT-SARAH.
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The following lemma establishes an upper bound on the sum of the local gradient
estimation errors across the nodes. Its proof is similar to that of Lemma C.2.

LEMMA D.1. The following inequality holds Vs > 1 and t € [1,¢]:

E[[[v - ve()|*] < 3”0§L2 tg_:;xa[uvwﬂ + % Ei:OE[qu,s - ax|?].

Proof. See Appendix F. 1]

We note that Lemma D.1 does not follow directly from the results of Lemma 4.4
because v ® is not a conditionally unbiased estimator of V f;(x ’S) with respect to F*°.
With Lemma D.1 at hand, we now quantify the gradient tracking errors.

LEMMA D.2. We have the following three statements.
(i) It holds that ||y1 Lo gy < || vE0Y) |1
(i) Ifo<a< the followzng inequality holds: Vs > 1 and t € [1,¢],

4fL’

E ||yt+1,s _Jyt+1,s||2 < 3+)\2]E ||yt,s _Jyt,s||2
nlL? - 4 nlL?

18 ||Xt—1,s _th—l,sHQ _ .
+1—)\2E[ n } 1_>\2 {Htl}”

the following inequality holds: Vs > 2,

(i) If 0 < a <

E [yhs — Jybs|2
nl?

4fL’

2 q+1,s—1 __ q+1,s—1|2
BTy Jyrtte|
- 4 nlL?

18 x5t — Jx®s—1)2 1202 < 112
+1—A2E[ n ]+1—A2ZE[W 1”}

t=0
||Xt ,s—1 th,sfl||2
Tz )\2 ZE{ n '

Proof. (i) Recall that v= 1! = 0, y*! = 0,,, and v®! = Vf(x%!). Using the
gradient tracking update at iteration (1,1) and ||L,, — J|| = 1, we have

[y 3y = g = 9) (W 301 v 11) | < [

which proves the first statement in the lemma. In the following, we prove the second
and the third statements. We have, Vs > 1 and Vt € [0, q],

Hyt+1,s _ Jyt+1,s||2 _ HWyt,s 4yt _yttls g (Wyt,s +vbs Vtﬂ,s) H2
0.1) =Wy g (L, - ) (v v

We apply the inequality that ||a+ b||? < (1 +n)|la/|> + (1 + l)||b||2 Va,b € R" with
n =13 2* and that I, — J|| =1 to (D.1) to obtain, Vs > 1 and V¢t € [0, q],

22
HytJrl,s _ Jyt+1,s|| < 1;—)\)5 HWyt ,5 Jyt’SH 4 }i—iz ||Vt,s o V1571,\9”2
(D-2) < LNyt Jyt’SH2 + 22| v - vt’l""’||27

where the last line is due to Lemma 4.2. Next, we derive upper bounds for the last
term in (D.2) under different ranges of ¢ and s.
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2
‘]_—t,s]

Ft,s:|

(ii) Vt € [1,q] and Vs > 1. By the update of each local v{**, we have that

n B
E[Hvt’s — vt_1’5||2\.7-"t’8] = ZE H; Z (Vf“;’,ls (XE’S) - vfiva,’f (x?il’s))
i=1 =1

< L3 SB[y ) - g )

=1 1=1
(D.3) < LP||xh — x|

2

9

where the last line is due to Lemma C.1. To proceed, we further use (C.9) and (A.2)
to refine (D.3) as follows: Vs > 1 and V¢ € [1, ¢],

E[[[vhe vt ]
< 3L% ||x* — IxP*||* + 3na?L? 9017 4+ 3L2 | — Ixt |
(DA) < 3na?L? [+ 9L2 ||xi~1 — Ix70 || 4 60 L2 [yt — Ty
We take the expectation of (D.4) and use it in (D.2) to obtain, Vs > 1 and Vt € [L,q],
B[yt =yt P < (55 4 B Byt - 3yt

4 18L2 E[th—l,s B th71,5||2:| n 6na2L2E{||Vt71,sH2}.

1-)2 1-X2

The second statement in the lemma follows by the fact that 1+2)‘2 4 122707 o 3407

-2 = 1
: 1-)2
1f0<a§4\/§L.

(iii) ¢ = 0 and Vs > 2. By the update of GT-SARAH, we observe that, Vs > 2,

Hvo,s _ v*1’5||2 _ va(xqﬂ,sq) _ vq,sfl||2
— || VExITE) - VE(x ) 4 VE(x 85 — vt
< 2L2 ||xq+1,571 _ Xq,slez +9 va(xq,sq) _ vq,871||2’
< 612 ||xq+1,s—1 _ qu+1,s—1H2 + 6na2L? qu7s—1||2
L2 = 3t 2 D) — v
< 18L2 [|xo+s1 — Ix® P 4 6na?L? s |
(D.5) +1202L2 [yt = gyttt P o | ve(xe ) — vt

where the first inequality uses the L-smoothness of each f;, the second inequality
uses (C.9), and the last inequality uses (A.2). Taking the expectation of (D.5) and
then using Lemma D.1 gives, Vs > 2,

E[[[v0* = v |*] < 18L2E [|xt 1 — 3x* 1) + 6na? L2l B[]

+ 12a2L2E[||yq+1,s—1 _ quﬂ,s,le}

(D.6) + 12250 R [[xte - Ixte ).
We recall from (D.2) that Vs > 2,

(D.7) ||y1,s _Jyl,sH? < 1+T)\2 ||yq+17571 _ qu+1,sfl||2 + 1_2/\2 Hvo,s _ V71,3||2.
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We finally apply (D.6) to (D.7) to obtain, Vs > 2,
eyt < (154 g ) wfyrt ayee ]

L[ttt - a4 2 B[]

2412 q ts—1 t,s—1[|2
+ By [HXS —JIx® M
We note that 1+2A2 + 2‘1132)\%2 < 32)‘2 fo<a< i\_/g‘z and then the third statement in
the lemma follows. 0

D.2. GT-SARAH as an LTI system. With the help of (A.1) and Lemma D.2, we
now abstract GT-SARAH with an LTT system to quantify jointly the state consensus
and the gradient tracking error.

then we have

LEMMA D.3. If the step-size a follows 0 < o < 4fL’

(D.8) u'* < Gu'™h* 4+ pihE Vse[1,5] and t € [1,q],

q

(D.9) u’* < Gut* ' 4b? 4y (bt’s_l + Hut’s_l) Vs € [2, 5],
t=0
where, Vs > 1 and Vt € [0, q],
—_— _
7E{th,s _ th,sH?] 0
ut=| " a0 b= 12a2 |, D" {H*tsH }
E[Hyt—i-l,s _Jyt+1,sH } T
[1+X2 2a%L7 _
2 1— )2 0 0
G .= , 42
18 3+ A2 — 0
R 1 AZ
[1— X2 4 o

Proof. The proof of Lemma D.3 follows by writing the inequalities in (A.1)

and Lemma D.2 jointly in a matrix form.

d

We next derive the range of the step-size o such that p(G) < 1, i.e., the LTI
system does not diverge, with the help of the following lemma.

LEMMA D.4 (see [14]). Let X € R4 be (entrywise) nonnegative and x € R? be
(entrywise) positive. If Xx < x (entrywise), then p(X) < 1.

LEMMA D.5. If the step-size a follows 0 < a < A2 then p(G) < 1, and

8\/L’

therefore > p-  G* is convergent such that ;o GF = (I, — G)~!.

Proof. In the light of Lemma D.4, we solve the range of o and a positive vector € =
[e1,e2]" such that Ge < e, which is equivalent to the following two inequalities:

1422 20212 2 1-2%)% ¢
e + 25y <ey, a <(4L2) =
(D.10)
8 a o (1— ,\2)2_

1 3422
T—x2f1+ + g9 < €9,

€2 72

According to the second inequality of (D.10), we set £1/e2 = (1 — A2)2/80, and the
proof of Lemma D.5 follows by using it in the first inequality of (D.10) to solve for

the range of a.

d
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Based on Lemma D.5, the LTI system is stable under an appropriate step-size «,
and therefore we can solve the LTI system to obtain the following lemma, the proof of
which is deferred to Appendix G for ease of exposition.

LEmMMA D6. If0< a< (E}L , then the following inequality holds:

S S
(12—(12—G)_1H)Ziu“< (I, — G)"'u®! +2(I, - G 1Zibt»3.

s=1 t=0 s=1 t=0

Proof. See Appendix G. ]
In the following lemma, we compute (I, — G)~! and (I, — G) " 'b.

LEMMA D.7. If0<a < (2% , then the following entrywise inequality holds:

24L
_4 320717 %
1 1-A2 (1—-X2)3 1 1—
— < — <
IL,-G) " < 988 N , (I.—G)"'b< 060
(1—X2)3 1-)\2 (1—A2)2

Proof. We first derive a lower bound for det(I, — G). Note that if 0 < a < UZ3)°
then det(I, — G) = (1-22)2 _ 8607 5 (- ’\ )* and therefore

R C S v
1-)2 2a2L2 4 32a%L%
1-22 2 (1—-X2)3 1-)\2
and the proof follows by the definition of b in Lemma D.3. ]
D.3. Proof of Lemma 4.5. Using Lemma D.7, we have the following: if 0 <
o< 7t
o212 1
A7) T-A%)?

Finally, we apply (D.11) and Lemma D.7 to Lemma D.6 to obtain
S q 2
1 32a
%ZZE[HX” x| < o) E|fy"" - 3y’

q

(D.12) 7680‘ L4 ZZE[H*” i

s=1t=0

V)
Il
-
~
H

The proof follows by applying the first statement in Lemma D.2 to (D.12).
Appendix E. Proof of Lemma 4.6. We have, Vs > 1 and V¢t € [0, ¢],

£ E([[VEE) ] < SB[ VR - vEES)|] + E[|vEE)|]
(B.1) < ZE|||x - 3xt|*] + B[|VFE)|],

where the second line is due to the L-smoothness of F. Since F' is bounded below

by F*, we may apply (E.1) to Lemma 4.3 to obtain the following: if 0 < o < 2L7
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Fr < FRM) -4 ) Py [HVF( sl } Dy MvtsH }
(E2) +aX? Y% E {H*ts VE(x") }Jr 8oL Zs:lzZ:oE[w].
We then apply Lemma 4.4 to (E.2) to obtain the following: if 0 < a < 5,

P P~ S S [I9P 6 - S R ]

o () L T
B3 -5 (-2 She I

fo<ac< Q\ﬁWQL, then 1 — 24°:12§L2 > 0, and thus the last term in (E.3) may be

dropped. We finally apply Lemma 4.5 to (E.3) to obtain the following: if 0 < a <
min { (14_)‘\/412)2 ) \/@} 21L»
F* < FR) = 50 S DB |V () [] + (7 + 3f) flegy Lorelr
— oy S [
—e (1- (G + 8 et o8 s R ][9]

We observe that if 0 < a < (7n4B"+BQ4q) /4112L , then 1 — (2 + s%)% > 0, and

thus the last term in the above inequality may be dropped; the proof follows.

Appendix F. Proof of Lemma D.1. In the following, we use the notation
n (C.1). Using the update of each local recursive gradient estimator vi**, we have
that, Vi € V,Vs > 1 and t € [1, 4],

E{va’s - Vfi(xf’S)Hﬂ]_—t,s}
:E|:H§: vfl( ts)+v.fz( t 1S)+V§_Ls_vfi(xf_l7s

I

— [H El 1( _sz( ts)—l—Vf,( t— 13 )H ‘]_-fq:|+Hvt 1,8 sz( t— 13)“

2

b

B[94 - VA 4 VA

‘]_‘t,s:| n Hvltfl,s _ VS (XTLSH

<é2ﬁ@“Wﬁﬁﬂﬁ? fo«?ls}vm]iwt“—Vﬁ<t“w?

S T R e A C I

The above derivations follow a similar line of arguments as in the proof of Lemma C.2,
and hence we omit the details here. Summing up the last inequality above over i
from 1 to n and taking the expectation, we have, Vs > 1 and ¢ € [1, q],

(F1) E[[[vi = VE)[P] < B[ |[xt = x 70| 4 vt = vt (x|
Recall from (C.9) that Vs > 1 and t € [1, ¢,

(F.2) th,s . thl,s||2 < 3HXt,s . th,sH? + 3na2||vt71,s||2 + 3||Xt71,s . thfl,sHZ.
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Applying (F.2) to (F.1) obtains, Vs > 1 and ¢ € [1, ¢,
E[|lv- = ViG] < B[ vt - G| 4 2R 9]
(F.3) + R [xt - x4 ] + 2EE [ - 3w

Recall that v0* = Vf(x%%) Vs > 1, and we take the telescoping sum of (F.3) over ¢ to
obtain, Vs > 1 and ¢t € [1, 4],

B[lv - e[| < 25t B [vete )] + 55 B [l - 3xe] ]
+ AT - 3,

The proof follows by merging the last two terms on the right-hand side of the inequality

above.

Appendix G. Proof of Lemma D.6.

G.1. Step 1: A loopless dynamical system. For the ease of calculations, we
first write the LTI system in Lemma D.3 in a equivalent loopless form. To do this, we
unroll the original double loop sequences {u**} and {b"**}, where t € [0,q] and s € [1, 5],
respectively, as loopless sequences {u*} and {b*}, where k € [0,S(q + 1) — 1], as
follows:

(G.1) u”:=u"*,  bF:=bh" where k =t+ (s —1)(¢g+ 1)

for t € [0,q] and s € [1,5]. Reversely, given u* and b* for k € [0,S(q+ 1) — 1], we
can find their positions in the original double loop sequence, u* and b%*, by

(G2) t=mod(k,g+1)ands=[k/(g+1)]+1 forke[0,S(g+1)—-1]

This one-on-one correspondence is visualized in Table 3.
With (G.1) and (G.2) at hand, it can be verified that the following single loop sys-
tem is equivalent to the double loop system in (D.8) and (D.9). For k € [1,S(q + 1) — 1],

(G.3) uf <GufF!4bF! if mod(k,q + 1) # 0,

z z — z — z 1)—1 r
(G.4) ulet) < GuAlatD—1 4 prlath—1 4 ng(t—)l)(q-i-l)h Vz e [1,S —1],

where h* := b* + Hu*Vk € [0, S(q + 1) — 1]. The system in (G.3) and (G.4) can be
further written equivalently as the following: Vk € [1,S5(q¢ + 1) — 1],

(G.5) u* < GuF! +dF,

where d* := b* 1+ 1{mod(k,g+1) = 0} Y02, 1,
of an event, and Zf;;_(qﬂ) h" :=0 for k € [1,q].

yh", 1{-} is the indicator function

TABLE 3
The one-on-one mapping between the single loop sequences {u*}, {b*} for k € [0,S(q¢+1) — 1]
and the double loop sequences {u>*}, {b"*} for s € [1,5] and t € [0, q].

0,...,q (o, (g, 1)
g+1,...,2¢+1 (0, (q,2)

k (t,s)

(S=D(@+1,...,Sa+1) =1 | (0,8),...,(a,9)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/22 to 130.64.22.2 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

26 RAN XIN, USMAN A. KHAN, AND SOUMMYA KAR

G.2. Step 2: Analyzing the recursion. We recursively apply (G.5) over k to
obtain, Vk € [1,S(¢+ 1) — 1],

(GG) uk < Gkuo + ZI:ZIkardr.
Summing up (G.6) over k from 0 to S(¢g+1) —1 gives the following: if 0 < o < %,

Zfiqurl)*luk < ZS(qul) lGku 0+Z q+1 Zr 1Gk rdr

< (Lr,Gh)u’ + ZS“'“H (272 G,.) d
(G.7) = (L-G) 'u+ (I, -G)” Ek (g+1)—

To proceed, we recall the definition of d* and h”* in Appendix G.1 and observe that
S(g+1)-1 S(g+1)—2 S(g+1)—1
k(:q1+ b = Zk(:qo )72pk 4 Zk(:ql ) (l{mod( q+1) = O}ZT—k (g+1) )

S 1) z 1)—1 r
= a2k | 5 (ng(t—)l)(q—i-l)h )

S(g+1)—2 S—1)(g+1)—1
_ k(:qo+) bk‘i‘Z;(f:o e+ =1y k

(G.8) < QZgqu+l)_1bk + Z’({:i?)l)(q+1)_lHuk,

where the first line and the last line are due to the definition of d* and h*, respectively.

Finally, we use (G.8) in (G.7) to obtain the following: if 0 < a < (18}22 then

ZS(Q'H) Lk < (I, - G)71u0—|—2(12 G)~ ZS(q+1
+(127 ) IHZS(Q+1) 1 k,

which is the same as
(12 — (I, - G)~ 1H) S5t ((Z+1) 14k <(I—G) M’ +2(I, — G)~ ZS(Q-H) 1

We conclude the proof of Lemma D.6 by rewriting the above inequality in the original
double loop form.
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