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of these mechanisms in determining ANPP stability under extreme drought.

3. We found that extreme drought decreased ANPP stability, species richness, spe-
cies asynchrony and species stability across the six grasslands. However, struc-
tural equation modelling revealed that species asynchrony, not species richness or
species stability, was the most important mechanism promoting stability of ANPP,
regardless of drought across the six grasslands.

4. Synthesis. Our results suggest that species asynchrony, not species richness and
species stability, consistently buffers ecosystem stability against extreme drought
across and within grasslands spanning a broad precipitation gradient. Thus, spe-
cies asynchrony may be a more general mechanism for promoting stability of

ANPP in grasslands in the face of intensified drought.
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1 | INTRODUCTION

The temporal stability of ecosystems is important for sustaining
ecosystem functioning and services (Oliver, Heard, et al., 2015). As
global change intensifies its impacts on ecosystems, understand-
ing mechanisms underlying ecosystem stability has emerged as a
pressing issue (Ma et al., 2017). Several mechanisms could contrib-
ute to the maintenance of temporal ecosystem stability (measured
as the ratio of temporal mean of ANPP to its temporal standard
deviation; Tilman, 1999). First, ecosystems with high species rich-
ness (i.e. number of species) tend to have high stability because a
greater number of species increases the potential and magnitude
of asynchronous dynamics among species (Hautier et al., 2014;
Zhang et al., 2018). When communities are comprised of a small
number of species, reduction in the stability of dominant species
in response to any environmental fluctuations could erode stability
(Xu et al., 2015). Second, species asynchrony—dissimilar responses
among species to environmental variability—can increase temporal
ecosystem stability through shifts in relative abundances of spe-
cies with different ecological niches (Hector et al., 2010; Loreau
& de Mazancourt, 2013; Wilcox et al., 2017; Xu et al., 2015) such
that an increase in the abundance of some species compensates
for decline in others as a result of environmental changes (Hautier
et al., 2014). Third, theoretical and empirical studies also suggest
that high species stability (stability of individual species averaged
across all species in a community) results in high temporal ecosys-
tem stability (Hautier et al., 2020; Wang & Loreau, 2014, 2016;
Yang et al., 2012; Zhang, Feng, et al., 2019). However, the relative
contribution of species richness, species asynchrony and species
stability to temporal ecosystem stability remains unclear.
Naturally high climatic variability is a key determinant of grass-
land structure and function globally (Huxman et al., 2004; Knapp
et al., 2008; Knapp & Smith, 2001; Weltzin et al., 2003). However,
forecast climate-change-induced increases in this variability have
the potential to negatively impact ecological processes in grassland
ecosystems (Godfree et al., 2011; Hautier et al., 2015; Kerr, 2007a,
2007b; Lepetz et al., 2009; Vogel et al., 2012) and trigger biodiver-
sity loss (Oliver, Isaac, et al., 2015; Wagg et al., 2017). Ongoing loss
of species, shifts in species abundances (species re-ordering; Smith
et al., 2009) and alteration of species asynchrony in response to
extreme climate events could weaken or erode stability (Cardinale
et al., 2012; Hautier et al., 2014; Ives & Carpenter, 2007). Thus, there
has been renewed interest, at global, regional and local scales, in
understanding how ecosystem stability could be impacted by ex-
treme climatic events. For example, a recent global-scale study re-
vealed eutrophication decreased ecosystem stability via an increase
in temporal variation of productivity along with reduction in species
asynchrony (Hautier et al., 2014). Zhang et al. (2018) also reported
that, in Northern China, 33 years of variability of mean temperature
decreased species richness, species asynchrony and ecosystem stabil-
ity while variability of total precipitation reduced species asynchrony
and temporal ecosystem stability. Likewise, in an alpine grassland,

climate warming reduced the temporal stability of ANPP via reduced

species asynchrony (Ma et al., 2017), whereas a reduction in species
stability due to nitrogen enrichment led to reduction in temporal sta-
bility of ANPP in a temperate steppe (Zhang, Feng, et al., 2019). These
findings emphasise that altered climate conditions may disrupt stabil-
ity of ecosystems through the erosion of species richness, weakened
species asynchrony and reduced species stability (Grman et al., 2010;
Hautier et al., 2014; Zhang, Feng, et al., 2019; Zhang et al., 2018).
Increasing precipitation variability and multi-year extreme drought
have been predicted for many ecosystems globally (IPCC, 2013);
however, the response of ecosystem stability to this climate change
remains unresolved (Smith et al., 2017). Thus, it is important to study
how extreme drought may impact temporal stability of ANPP by af-
fecting species richness, species asynchrony and species stability.
Grassland ecosystems are naturally complex with different bi-
otic (e.g. species assemblage) and abiotic (e.g. soil, precipitation,
temperature) components and processes; and their responses to
environmental perturbations may greatly differ among communi-
ties and sites (Grimm et al., 2013; Heisler-White et al., 2009; Knapp
et al., 2016). Previous studies showed that drought effects on tem-
poral stability of ANPP, species asynchrony and species richness var-
ied among ecosystems, with negative effects in some systems (Wagg
et al., 2017; Zhang, Quan, et al., 2019) or no impacts in others (Ma
et al., 2017; Zhang, Quan, et al., 2019). These differential responses
of temporal stability of ANPP, species asynchrony and species rich-
ness increases uncertainty regarding how grassland ecosystems that
vary in composition and abiotic factors will be affected by extreme
drought. Coordinated drought experiments with identical treat-
ments, encompassing wide geographical scales or regions (Fraser
et al., 2013; Knapp et al., 2015, 2016) make it possible to compare
responses across different grassland types and to identify mecha-
nisms underlying temporal ecosystem stability (Knapp et al., 2016).
Here we conducted identical experiments across six grasslands
in Northern China that imposed extreme growing season drought
over a 4-year period. This allowed us to examine the impact of ex-
treme drought on temporal ecosystem stability, species richness,
species asynchrony, species stability and their relationships, and
whether these relationships differ among grasslands spanning a
broad precipitation gradient. We addressed two questions: (a) Does
extreme drought affect temporal stability of ANPP and the under-
lying mechanisms (species richness, species asynchrony and species
stability)? (b) Does extreme drought change the relative importance

of these mechanisms in determining temporal stability of ANPP?

2 | MATERIALS AND METHODS
2.1 | Study sites

This study was conducted in the context of the Extreme Drought
in Grasslands Experiment (EDGE; http://edge.biology.colostate.
edu/) spanning six grassland sites across Northern China (Table 1).
These sites are representatives of the major grassland (steppe) types

in Northern China and were distributed along a broad precipitation
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TABLE 1 Description of the six EDGE study sites in Northern China
Site Colour Steppe MAP, MAP,

Site name label code Latitude Longitude type Habitat (mm) (mm)
Sher Tara A 49°21'00"N 120°06'00"E Meadow Semi-arid 363 297.8
Erguna B [ 50°10'46"N 119°22'56"E Meadow Semi-arid 354 307.8
Xilinhot-Leymus C 43°33'6"N 116°40'20"E Typical Semi-arid 323 311.6
Xilinhot-Stipa D [ 43°32'25"N 116°33'18"E Typical Semi-arid 323 311.6
Sheila Muren E 41°47'00"N 111°53'00"E Desert Arid 236 233.5
Urat F 41°25'00"N 106°58'00"E Desert Arid 175 137.5

Note: Colour codes and site labels correspond with those in Figures 1-6. MAP_ (mm) represents mean annual precipitations from 1972 to 2018 while
MAP, represents mean annual precipitations during the study period (2015-2018) measured adjacent to each site. Sites were grouped into ‘habitat’

and ‘steppe type’ following the classification of Kang et al. (2007).

gradient in Inner Mongolia (Table 1). Mean annual precipitation
(MAP) ranged from 175 to 363 mm (Table 1; see Figure S1; Luo, Xu,
et al., 2018; Luo, Zuo, et al., 2018 for further description of the sites).

2.2 | Experimental design

All six EDGE sites have identical control (ambient) and extreme
drought treatments. The experiments were set up in 2014, and the
data were collected from 2015 through 2018. Extreme drought was
achieved through the installation of rainout shelters designed to inter-
cept 66% of ambient precipitation (Griffin-Nolan et al., 2019; Yahdjian
& Sala, 2002) during the growing season (May-August) at all sites. The
experiment was a randomised complete block design with six repli-
cates of each treatment at each site. All plots were arranged in blocks,
with each treatment randomly allotted within each block, to control
for possible differences in environmental and soil gradients. Each plot
was 6 x 6 min size, with at least 2 m spacing between plots. Every plot
had a 1-m buffer perimeter that minimised edge effects associated
with the rainout shelter. At the onset of each growing season (May-
August) of each year, the rainout shelter roofs were installed and then
removed at the end of the growing season (see Knapp et al., 2015;
Luo, Zuo, et al., 2018 for further details on the rain-out shelter). Each
6 x 6 m plot was hydrologically isolated by installing aluminium flash-
ing to a depth of 1 m around the perimeter to reduce surface and
subsurface water flow (Luo et al., 2019). The effects of rainout shel-
ters on the light environment were small, permitting more than 90%

penetration of photosynthetically active radiation (Luo et al., 2019).

2.3 | Sampling protocol and metrics

All EDGE sites have unified and standardised data collection protocols
for comparing drought effects across the sites. ANPP was annually
harvested at peak biomass by clipping all plants at ground level within
asingle 1 m? quadrat in each replicate 6 m x 6 m plot. All constituent
species were identified, their biomass separated and ANPP per spe-
cies per plot was used to estimate species asynchrony. Species rich-

ness was annually recorded as the total number of constituent plant

species within the 1 m? quadrat in which ANPP was measured (Zhang
et al., 2018). Average species richness was calculated as the mean spe-
cies richness over four consecutive growing seasons per 1 m? plot.
Temporal stability of ANPP in each grassland site was calculated
at plot level as /6, where p and ¢ are the temporal mean and temporal
standard deviation of total ANPP in a plot, respectively, over the 4-year
period (Hautier et al., 2014). The temporal stability of individual species
in each plot was also calculated as y/6, where ;i and o are the temporal
mean and standard deviation (6) of ANPP of each species over the 4-
year period. Species stability was the average value of the temporal
stability of all species within a plot (Zhang, Feng, et al., 2019). Following
the metric of Loreau and de Mazancourt (2008) and as described and
measured by Hautier et al. (2014), species asynchrony was calculated
for each plotas1 - g, =1-02/(X " lai)z. @y is species synchrony,
and it was derived from the estimation of 62 the temporal inter-annual
variance in community ANPP; and o, the inter-annual standard devia-
tion in ANPP of a particular species iin a plot with n species over the
4 years. Species asynchrony metrics range from O (perfect synchro-
nisation or fluctuations of the species in a community) to 1 (perfect

asynchrony).

2.4 | Statistical analyses

All analyses were conducted in R (version 3.4.0; R Core Team, 2017).
To test both the across site and within-site drought treatment ef-
fects on temporal stability of ANPP, average species richness,
species asynchrony and species stability, we constructed mixed-
effects ANOVA models using the Ime function from the nime library
(Pinheiro et al., 2018). Across site tests included ‘site and treatment’
fixed effects and ‘block’ as a random effect (model 1; Table S1). The
within-site ANOVA models (model 2; Table S1) differed from across

sites models by not including ‘site’ as a fixed effect.

y ~ site x treatment + (1|block) (model 1)

y ~ treatment + (1|block) (model 2)

Next, we constructed linear mixed-effects models with the Ime func-

tion to examine the bivariate relationships between temporal stability
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of ANPP and its potential underlying mechanisms (average species
richness, species asynchrony and species stability). To assess rela-
tionships across sites, ‘a continuous explanatory variable, x’ and ‘site’
were considered as fixed and random effects, respectively, and ‘y’ was
the continuous response variable (model 3; Table S1). The within-site
models only differed from the across site models in the specification
of ‘block’ as a random effect (model 4; Table S1). Where necessary, the
response variables were natural log-transformed to improve normality
before the regression analyses.

y~x+(1|site) (model 3)

y~x+(1|block) (model 4)

Third, we used ANCOVA to test for homogeneity of slopes for any kind
of bivariate relationship that was separately detected (p < 0.05) under
ambient and drought conditions (Quinn & Keough, 2002; Zhang, Feng,
et al.,, 2019). The across- (model 5) and within-site (model 6) mixed-
effects ANCOVA models only differed from the across- (model 3) and
within-site (model 4) bivariate regressions in the addition of ‘a categor-
ical variable, treatment’ as fixed effects.

y~Xxxtreatment + (1|site) (model 5)

y ~ X xtreatment + (1|block) (model 6)

A significant interaction between X’ and ‘treatment’ was inter-
preted to imply a difference between the slopes of a particular
relationship separately obtained from the two treatment condi-
tions (ambient and drought). A non-significant interaction implies
that the slopes are similar (Borich, 1972; Huitema, 2011; Quinn &
Keough, 2002).

Finally, we conducted structural equation modelling (SEM)
analysis to further assess how drought impacts stability of ANPP
through the contributions of the three mechanisms (species rich-
ness, species stability and species asynchrony) to stability of ANPP.
The SEM model was primarily built from previous theoretical and

empirical findings (Grace et al., 2016) on how the three drivers could

promote stability of ANPP. The SEM construction and analyses were
performed using IBM® SPSS® AMOS 22.0.0 (Build 1384; Amos
Development Corporation). The endogenous variables (species rich-
ness, species asynchrony, species stability and stability of ANPP)
were natural log-transformed to improve normality and homosce-
dasticity before the SEM analysis. Data were fitted to the model
using the maximum likelihood estimation method and the goodness
of fit of the model was determined by non-significant Chi-square
(% p > 0.05; Fan et al., 2016).

3 | RESULTS

3.1 | Effects of extreme drought on temporal
stability of ANPP, species richness, species
asynchrony and species stability

Extreme drought decreased temporal stability of ANPP by 25%
across the six sites (control = 1.22; drought = 0.91; Figure 1a;
Table S2). Within sites, extreme drought increased temporal sta-
bility of ANPP (Figure 1a; Table S2) for site B (control = 1.04,
drought=1.46),decreased forsites C(control=1.11,drought=0.49)
and D (control = 0.98, drought = 0.16); and had no effect at other
three sites (A, E and F). Extreme drought reduced species richness
by an average of 20% across the six sites (control = ~11 species;
drought = ~9 species; Figure 1b; Table S2). Extreme drought re-
duced species richness (Figure 1b; Table S2) for the wettest sites,
A (17% loss; control = ~16 species; drought = ~13 species) and B
(29% loss; control = ~16 species; drought = 11 species), as well as
the driest sites, E (~25% loss; control = ~14 species; drought = 11
species) and F (~35% loss; control = 5 species; drought = 3 spe-
cies). The sites with intermediate precipitation, C (control = ~9 spe-
cies; drought = 8 species) and D (control = 6 species; drought = ~7
species), showed no significant effect of extreme drought on spe-
cies richness. Across the six sites, species asynchrony declined by
~9% under drought (0.76) relative to the control (0.84; Figure 1c;
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Table S2). Drought had no effect on species asynchrony (Figure 1c;
Table S2) in four sites (A, D, E and F), but increased (~12%; con-
trol = 0.76; drought = 0.86) and reduced (~26%; control = 0.81;
drought = 0.60) species asynchrony for sites B and C, respectively.
Drought reduced species stability by 5% across the sites (Figure 1d;
Table S2), but this change was only significant at site D (Figure 1d;
Table S2; control = 0.82; drought = 0.61).

3.2 | Effects of extreme drought on relationships
between temporal stability of ANPP, species richness,
species asynchrony and species stability

We found that species richness (Figure 2a) and species stabil-
ity (Figure 2b) were not related to stability of ANPP across the
six grasslands (Table S3). Instead, we found strong positive rela-
tionships between species asynchrony and temporal stability of
ANPP across both ambient (Figure 2c; Table S3; slopes and 95%
confidence intervals: 2.47[1.68-3.26]) and drought treatments

(Figure 2c; 2.56[1.87-3.25]). ANCOVA revealed that the slope of the
asynchrony-stability relationship across the six sites was not signifi-
cantly affected by extreme drought (Figure 2c; Table S4). Moreover,
we found no significant richness-asynchrony (Figure S1) relation-
ships across the six grasslands (Table S3).

Temporal stability of ANPP was not related to species richness
nor species stability in ambient and drought treatments for any site
(Table S3). A strong positive relationship between species asyn-
chrony and temporal stability of ANPP was found in the ambient
treatments within four sites, but not at sites D and F; as well as in
drought treatments at all sites except for site C (Figure 3; Table S3).
ANCOVA results (Figure 3; Table S4) showed that drought did not
affect the asynchrony-stability relationship in any site. Moreover,
we did not find significant richness-asynchrony relationships in ei-
ther the ambient or drought communities within any site (Table S3).

Our SEM analysis confirmed the strong, direct contribution of
species asynchrony to the temporal stability of ANPP (standardised

path coefficient 0.77) compared to species stability (0.20;

Figure 4). SEM also revealed that species richness contributed to
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FIGURE 5 Effects of drought on the relationship between species
asynchrony and mean and standard deviation of ANPP across six
grasslands. Blue dashed lines and open circles denote asynchrony-
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Blue filled circles represent asynchrony-mean ANPP relationships in
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and are not shown. n = 6 per treatment in each site. Each colour
represents each site as shown in Table 1. Response variables were
natural log-transformed prior to analysis. Slopes and ANCOVA results
are presented in Tables S5 and Sé, respectively

stability of ANPP via species asynchrony and not via species stabil-
ity; and that drought reduced the stability of ANPP by diminishing

the contribution of species richness to species asynchrony.

3.3 | Species asynchrony predicts temporal
variability of ANPP

Across the sites, species asynchrony was negatively related with
the standard deviation (SD) of ANPP in both the ambient (Figure 5;
Table S5; slopes and 95% confidence intervals: -3.04[-4.20 to
-1.88]) and drought (Figure 5; Table S5; -2.75[-3.77 to -1.73]) treat-
ments. ANCOVA showed that the two slopes were not significantly
different (Table S6). However, no significant relationship was found
between asynchrony and mean of ANPP across the ambient and
drought communities (Figure 5; Table S5).

At the site level (Figure 6; Table S5), the relationship between
asynchrony and the SD of ANPP was significant for the ambient treat-
ments at sites C (slopes and 95% confidence intervals: -3.54[-4.99
to -2.08]) and E (-6.11[-9.57 to -2.65]); and in the drought treat-
ments for sites A (-2.55[-4.81 to -0.28]), B (-3.17[-5.55 to -0.79]),
D (-2.65[-4.53 to -0.77]) and E (-6.33[-12.09 to -0.57]). However,
ANCOVA revealed that there was no significant drought effect on
the slope of the relationship between asynchrony and SD of ANPP
within each site. A significant asynchrony-mean ANPP relationship
(Figure 6; Table S5) was found for the ambient treatments for sites A
(2.17[0.28-4.05]), D (-0.78[-1.53 to -0.03]) and E (2.06[0.25 to 0.89]),
and for drought treatments only for site D (-1.29[-2.30 to -0.29]).

4 | DISCUSSION

We examined how extreme drought impacts temporal stabil-
ity of ANPP and evaluated three potential mechanisms that may
explain ANPP responses: species richness, species asynchrony
and species stability. We expected drought to decrease stabil-
ity of ANPP and its potential drivers in all the six sites, however
with higher decrease in xeric compared to the more mesic sites
(Knapp et al., 2015). Contrary to our expectation, we found an un-
expected pattern of diverse effects of extreme drought on ANPP
stability across the six grasslands. Stability of ANPP either did not
change or increased in the moist meadow grasslands (A and B),
and declined in the two sites (C and D) with intermediate levels of
precipitation. Thus, the two intermediate sites appear to be more
sensitive to extreme drought than the moist grasslands. However,
the stability of ANPP did not change in the driest grasslands, per-
haps because plants in dry sites possess drought tolerance mecha-
nisms (Grime et al., 2000; Tielborger et al., 2014). Species richness
declined with drought in four of six sites, but surprisingly did not
decline at the two intermediate sites where temporal stability of
ANPP decreased. Similar drought impacts on diversity in grassland
ecosystems have been reported from previous drought studies
(Kreyling et al., 2017; Tielborger et al., 2014), and in response to
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respectively

other global change factors (Ma et al., 2017; Soons et al., 2017).
Although it was not clear why species richness was unaffected by
drought in the two sites experiencing similar climate but with dif-
ferent dominant species, the results suggest that the response of
species richness to drought varies across sites. Extreme drought
increased species asynchrony in a moist site (B), and only reduced
species asynchrony and species stability in intermediate precipita-
tion sites C and D, respectively. The decline in species asynchrony
and species stability appear as the likely causes of the reduction
in stability of ANPP in sites C and D, respectively. This thus sug-
gests that different mechanisms determine the response of differ-
ent grasslands to environmental variability, as previously noted by
Hallett et al. (2014). Additionally, most of our results differ from
the previously reported weakening effects of climate warming
(Ma et al.,, 2017) and fertilisation (Hautier et al., 2014) on species
asynchrony and species stability (Yang et al., 2012; Zhang, Feng,
et al, 2019) in natural grasslands. Instead, our results indicate that
extreme drought effects on species asynchrony and species stabil-
ity differ from other global change factors.

We assessed the widely reported role of species richness on
temporal stability of ANPP. Contrary to our expectations, we found
no significant relationship between temporal stability of ANPP
and species richness across and within the six natural semi-arid
and arid grasslands under ambient conditions in Northern China.
This finding contradicts most previous reports from single-site
manipulative experiments (Isbell et al., 2009; Proulx et al., 2010;
Tilman et al., 2006), meta-analyses (Craven et al., 2018; Isbell
et al.,, 2015), globally distributed natural grasslands studies

(Hautier et al., 2014, 2020), as well as a 33-year study in Inner
Mongolia, China (Zhang et al., 2018). Thus, species richness might
not have a direct mechanistic effect on ANPP stability in these
grasslands because richness and stability could respond differ-
ently to environmental fluctuations (Ma et al., 2010). Moreover,
our finding suggests that the strength of stability of ANPP in nat-
ural grasslands may not be universally or directly dependent on
species richness (Wilcox et al., 2017).

Theoretical developments have demonstrated that the tempo-
ral stability of ANPP can be fully decomposed into two key under-
lying mechanisms: species asynchrony and species stability (Wang
& Loreau, 2014, 2016). Thus, we investigated the direct role of
species asynchrony and species stability as mechanisms main-
taining stability in these natural grasslands under ambient condi-
tion (Hautier et al., 2014; Zhang, Feng, et al., 2019). In contrast to
the lack of relationship between richness and temporal stability,
we found consistent positive asynchrony-stability relationships
across and within the six natural grasslands. This is in agreement
with empirical (Loreau & de Mazancourt, 2008), single-site (Zhang
et al., 2018) and global-scale (Hautier et al., 2014, 2020) studies
that reported similar relationships. However, we did not find sig-
nificant relationships between species stability and ANPP stability,
suggesting that species stability does not contribute to ecosystem
stability but species asynchrony does, at least in our study sites in
Inner Mongolia. Following the positive relationship between sta-
bility of ANPP and species asynchrony, we tested for a probable
dependency of asynchrony on species richness. We found no spe-

cies richness-asynchrony relationship, and this further revealed
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the disconnect between richness and stability in the six natural
grasslands.

We also investigated how extreme drought impacted ANPP
stability through species richness, species asynchrony, and species
stability in the six natural grasslands. As found in the grasslands
under ambient conditions, our bivariate regressions showed spe-
cies richness did not directly contribute to ANPP stability under ex-
treme drought, both across and within the sites, which is contrary to
previous report of the ANPP stability-species richness relationship
(Wagg et al., 2017). Even in relatively high diversity site B, species
richness declined while species asynchrony and stability of ANPP
increased under drought. This suggests that species richness is
not directly responsible for stability as found in most of the previ-
ous studies (Hautier et al., 2014; Zhang et al., 2018). The bivariate
regressions showed species asynchrony positively contributed to
stability of ANPP independent of species richness under drought.
Additional regression analyses were conducted using data combined
from both ambient and drought conditions to determine whether
the results from the decomposed data were driven by low sample
size. These analyses yielded similar bivariate relationships. Instead,
SEM analysis revealed species richness contributions to stability
of ANPP were indirect through species asynchrony under drought.
This SEM finding thus confirms the existing theoretical (Loreau &
de Mazancourt, 2013; Wang & Loreau, 2014, 2016) and empirical
(Hautier et al., 2014, 2020; Hector et al., 2010; Wilcox et al., 2017)
studies that linked the stabilising role of species richness to asyn-
chrony in response to environmental variability.

Consistent with theoretical predictions (Wang & Loreau, 2014,
2016) and experimental findings (Hautier et al., 2020; Zhang, Feng,
et al., 2019), our SEM results further revealed that species stability
promoted stability of ANPP under drought, though independent of
species richness. More importantly, SEM revealed that drought nei-
ther directly nor indirectly reduced stability of ANPP through species
stability, rather it reduced stability of ANPP by diminishing the con-
tribution of species richness to asynchrony. Thus, by linking the SEM
and ANOVA results, we can conclude that the overall 5% reduction in
species stability due to drought was not enough to directly or indirectly
trigger a negative impact on stability of ANPP, whereas the 9% reduc-
tion in species asynchrony due to 25% reduction in species richness
did. However, the contrasting bivariate relationships and SEM results
could be attributed to low explanatory power of bivariate regressions
compared to SEM in understanding complex interdependent ecologi-
cal mechanisms (Fan et al., 2016; Grace et al., 2016).

Nevertheless, our consistent finding of positive impact of
species asynchrony on stability of ANPP under ambient and
drought conditions indicates that extreme drought did not erode
asynchrony-stability relationships across or within the six natu-
ral grasslands. This finding is similar to how asynchrony positively
drives ANPP stability under other global changes, like warming or
eutrophication (Hautier et al., 2014, 2020; Ma et al., 2017). Despite
that the SEM analysis showed that extreme drought indirectly re-
duced species asynchrony by reducing species richness, species

asynchrony was nearly fourfold more important to stability of

ANPP than species stability. This result, unlike the previously re-
ported prevalence of species stability under nutrient enrichment
(Hautier et al., 2020; Zhang, Feng, et al., 2019), indicates that
species asynchrony is the main mechanism that stabilises ANPP
under extreme drought. Our within-site bivariate relationships
between asynchrony and stability of ANPP, and that of other vari-
ables in this study, should be treated with caution because their
regressions were based on a relatively small sample size (Jenkins &
Quintana-Ascencio, 2020).

Given that the stability of productivity is a ratio of the temporal
mean to the temporal variation (Hautier et al., 2015; Tilman, 1999),
there is the possibility that species asynchrony maintained the sta-
bility of ANPP under extreme drought via a decrease in temporal
standard deviation of ANPP (Hautier et al., 2014), or increase in the
temporal mean of ANPP (Hautier et al., 2015; Hector et al., 2010;
Tilman et al., 2006). Here we consistently found a negative relation-
ship of asynchrony with temporal variation of ANPP both across and
within sites. Overall, our results suggest that different mechanisms
determine the response of different grasslands to extreme drought,
but species asynchrony, not species richness or species stability,
consistently buffers ecosystem stability against extreme drought
across and within grasslands spanning a broad precipitation gradient.
Species asynchrony promoted and maintained ecosystem stability
by decreasing the temporal variability of ANPP under drought. Thus,
species asynchrony may be a more general mechanism for promoting
stability of ANPP in grasslands in the face of intensified drought.
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