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Abstract

Process-based models of tree-ring width are used both for reconstructing past climates and for
projecting changes in growth due to climate change. Since soil moisture observations are
unavailable at appropriate spatial and temporal scales, these models generally rely on simple water
budgets driven in part by temperature-based potential evapotranspiration (PET) estimates, but the
choice of PET model could have large effects on simulated soil moisture, moisture stress, and radial
growth. Here, I use four different PET models to drive the VS-Lite model and evaluate the extent to
which they differ in both their ability to replicate observed growth variability and their simulated
responses to projected 21st century warming. Across more than 1200 tree-ring width chronologies
in the conterminous United States, there were no significant differences among the four PET
models in their ability to replicate observed radial growth, but the models differed in their
responses to 21st century warming. The temperature-driven empirical PET models (Thornthwaite
and Hargreaves) simulated much larger warming-induced increases in PET and decreases in soil
moisture than the more physically realistic PET models (Priestley—Taylor and Penman—Monteith).
In cooler and more mesic regions with relatively minimal moisture constraints to growth, the
models simulated similarly small reductions in growth with increased warming. However, in dry
regions, the Thornthwaite- and Hargreaves-driven VS-Lite models simulated an increase in
moisture stress roughly double that of the Priestley—Taylor and Penman—Monteith models, which
also translated to larger simulated declines in radial growth under warming. While the lack of
difference in the models’ ability to replicate observed radial growth variability is an encouraging
sign for some applications (e.g. attributing changes in growth to specific climatic drivers), the large
differences in model responses to warming suggest that caution is needed when applying the
temperature-driven PET models to climatic conditions with large trends in temperature.

1. Introduction

Tree-ring widths are used both to infer past climate
variability and change (Fritts 1976, Jones et al 2009)
and to detect climate influences on forest productiv-
ity (Williams et al 2013, Dannenberg et al 2019).
Doing so requires a model linking tree radial growth
to climate (Fritts 1976), with models ranging in
complexity from strictly empirical statistical mod-
els to mechanistic models of tree-ring formation via
known or hypothesized environmental limitations to
cell division and expansion in the vascular cambium
(e.g. Vaganov et al 2011, Anchukaitis et al 2020).

© 2021 The Author(s). Published by IOP Publishing Ltd

The process-based models generally simulate radial
growth responses to solar radiation, temperature, and
soil moisture, but direct soil moisture observations
are not usually available at appropriate spatial and
temporal scales for model simulations. They there-
fore rely on simple water budget estimates of root-
zone soil moisture, partitioning inputs of precipita-
tion (P) into losses of moisture by evapotranspiration
and runoff and infiltration of moisture into one or
more soil layers (Huang et al 1996, Tolwinski-Ward
etal 2011).

To drive the atmospheric demand side of the
water balance, water budget-based soil moisture
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models depend on reliable estimates of potential
evapotranspiration (PET), but there are several com-
mon methods for doing so, each with varying degrees
of complexity and physical realism resulting in dif-
ferent spatial patterns, mean conditions, seasonality,
and long-term trends (Fisher et al 2011, Sheffield
et al 2012, Trenberth et al 2013). However, the
extent to which the choice of PET model influ-
ences tree growth simulations and responses to cli-
matic forcing have not yet been established. The
semi-empirical VS-Lite model (Tolwinski-Ward et al
2011), for example, uses PET from the Thornthwaite
(Th) method (Thornthwaite 1948, Thornthwaite and
Mather 1955) to drive the atmospheric demand side
of the water budget. An empirical model based solely
on monthly mean air temperature, the Th model
assumes covariation of temperature with the phys-
ical drivers of evapotranspiration (net radiation, wind
speed, and vapor pressure deficit), which is reason-
able for spatial patterns and short-term variation of
PET but which is violated for long-term trend assess-
ment (Sheffield et al 2012). The Th model there-
fore tends to overestimate PET responses to warming
temperatures, leading to spurious trends in drought
indices and water balance-based soil moisture estim-
ates under warming (Sheffield et al 2012, Trenberth
et al 2013, Berg and Sheffield 2018). While the influ-
ence of PET models on drought indices has been well
established, it is not clear how these differences would
translate to the growth simulations of tree-ring mod-
els since they also depend on both the magnitude and
seasonality of PET change and are mediated by effects
of solar radiation and temperature on growth. Estab-
lishing how much the PET model choice influences
both accuracy and trends of ring-width simulations
is therefore a necessary step for interpreting modeled
growth responses to warming.

Here, I examine how choice of PET model affects
moisture stress and growth simulations in the VS-Lite
model using more than 1200 tree-ring chronolo-
gies in the conterminous United States. I specific-
ally compare Th-driven water balance estimates to
those derived from three other PET models of vary-
ing complexity: the Hargreaves (Hg), Priestley—Taylor
(PT), and Penman—Monteith (PM) models. I exam-
ine two aspects of VS-Lite performance with each PET
model: (a) the ability to replicate interannual vari-
ability in observed ring widths, and (b) the sensitiv-
ity of VS-Lite moisture stress and growth simulations
to warming. I hypothesize that growth simulations
based on more physically realistic PET models (e.g.
Penman—Monteith) will outperform simpler empir-
ical models in their ability to capture the variability
of observed ring widths. I also hypothesize that mois-
ture stress responses to warming will differ among the
PET models, with Th-driven radial growth decreas-
ing most strongly with increased warming and radial
growth simulations driven by the more physically
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realistic PET models (PM and PT) decreasing the
least.

2. Data and methods

2.1. VS-Lite model

The VS-Lite model, a semi-empirical simplifica-
tion of the process-based Vaganov—Shashkin model
(Vaganov et al 2011, Anchukaitis et al 2020), sim-
ulates monthly growth responses to temperature
(gr), soil moisture (gmv), and solar radiation (gg)
(Tolwinski-Ward et al 2011). The main model inputs
are site latitude, monthly mean temperature, and
monthly total precipitation, from which soil moisture
is estimated using a simple single-layer ‘leaky’ bucket
water balance model (Huang et al 1996). Growth
responses to temperature and soil moisture are then
defined as piecewise linear functions ranging from 0
to 1 (figure 1):

07 Tmean < Tl
8&r = (Tmean - Tl)/(TZ - T1)7 T) < Thmean < T2
17 Tmean 2 TZ
(1)
0, M < M,
gu=1q (M=M)/(My—M;), M <M<M,
1, M= M,
(2)

where Tean and M are monthly mean temperature
and soil moisture (respectively), T} and M, are tem-
perature and soil moisture thresholds below which
growth cannot occur, and T, and M, are thresholds
beyond which temperature and soil moisture are
no longer limiting and do not stimulate additional
growth. Consistent with the Principle of Limiting
Factors and Liebig’s Law of the Minimum (Fritts
1976), a monthly overall growth response (g) for a
given site is calculated as the minimum of gr and
g, scaled by incoming solar radiation (g, the ratio
of monthly mean daylength to daylength at summer
solstice):

g=gr X min (gr,gm) - (3)

The growth index, g, is then annually integrated over a
fixed growing season, by default starting in September
of the prior year (reflecting dependence of growth on
conditions late in the prior growing season) through
December of the growth year, and standardized to a
mean of zero and unit variance over the simulation
period.

2.2. PET models

2.2.1. Thornthwaite (Th) model

Originally designed for climate classification
(Thornthwaite 1948), the Th model is based on
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Figure 1. Hypothetical VS-Lite temperature (a) and soil moisture (b) response functions (gr and gu, respectively). T1 and M,
represent lower temperature and soil moisture thresholds (respectively) below which growth cannot occur, while T; and M,
represent upper thresholds beyond which no additional growth is stimulated (i.e. where temperature or soil moisture conditions

are optimal for growth).

empirical relationships between PET, daylength (L),
and monthly mean temperatures ( Tinean):

L N 10T mean \ &
PETy, =16 — | [ — | [ —==2 4

where PETy, is Thornthwaite PET in mm month™!,
N is number of days in the month, I is a heat index
based on a sum of scaled climatological monthly
mean temperatures (T;), and « is an empirical con-
stant based on the heat index, I:

12 TI 1.514
=y (5) . (5)

i=1

2.2.2. Hargreaves (Hg) model

The Hg model (Hargreaves and Samani 1985,
Hargreaves and Allen 2003) estimates PET from
potential solar radiation at the top of the atmosphere
(R,) (estimated daily and summed over each month)
scaled by monthly mean (Tpesn), mean minimum
(Tmin)> and mean maximum (Ty,.x) temperatures, all
in degrees Celsius:

Toin) .
(6)

PETgg = 0.0023R, (Timean + 17.8) (Tomax —

The difference between T, and Ty, implicitly
accounts for reduction of solar radiation due to
clouds since the diurnal temperature range tends to
decrease with increasing cloud cover (Hargreaves and
Allen 2003). The model estimates potential latent heat
flux in the same units as R, (MJ m~2 month™!),
which I converted to mm month™! of PET based on
the latent heat of vaporization.

2.2.3. Priestley—Taylor (PT) model

The PT model (Priestley and Taylor 1972) represents
the thermodynamic drivers of PET based on the slope
of the saturation vapor pressure curve (A) at mean

3

monthly air temperature and the monthly net radi-
ation, R,,, available to drive evapotranspiration:

A

PETpr = amRm (7)
where v is the psychrometric constant (estimated
from mean expected surface air pressure at a given
elevation) and a is an empirical constant. I estimated
R, as the sum of net solar radiation (R;) and net long-
wave radiation (R;) at the surface. Following Allen
et al (1998), R, was estimated as:

Ry = (1 — ) kg, Ra(Timax — Tmin)o'sv (8)

where « is surface albedo of a well-watered reference
crop (set at 0.23 following Allen et al 1998), and kg is
an empirical constant (0.19 for coastal locations and
0.16 for continental locations). Net longwave radi-
ation was estimated from Tiax and Tin using Stefan—
Boltzman’s Law, with surface and atmospheric emit-
tances estimated from surface vapor pressure (using
Teten’s formula and monthly mean dewpoint temper-
ature, T4 mean) and the ratio of Ry to potential clear-
sky solar radiation (Allen et al 1998, Campbell and
Norman 1998). Like the Hg model, the PT model
estimates latent heat flux, which I converted to PET
in mm month .

2.2.4. Penman—Monteith (PM) model

The PM model represents both thermodynamic and
aerodynamic drivers of evapotranspiration, includ-
ing net radiation, temperature, vapor pressure defi-
cit (VPD), and aerodynamic and stomatal resistance
to vapor transport (Penman 1948, Monteith 1965).
Here, I used the simplified FAO-56 PM reference
evapotranspiration model (Allen et al 1998):

0.408A(R, — G) + 7% (es — ea) s

A+ (140.34u) ’
)

PETpm =
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Figure 2. Level I EPA ecoregions and locations of the 1279 ITRDB chronologies (black dots) used in this study.

where e; and e, are monthly mean saturation and
actual vapor pressure (in kPa), G is ground heat flux
(in W m~2), and u, is monthly mean wind speed
two meters above the surface (in m s™!). I estimated
Ry, v, and A using the same approaches described
in section 2.2.3. Monthly mean e, was estimated
from Teten’s formula as the average of saturation
vapor pressures at monthly mean maximum and
minimum air temperatures (Campbell and Norman
1998). Actual vapor pressure (e,) was calculated from
monthly mean dewpoint temperature using Teten’s
formula. I estimated mean ground heat flux for each
month based on the difference between mean air tem-
peratures of the preceding and following months:
G; = 0.07 (Timean,i+1 — Tmean,i—1) (Allen et al 1998).
Wind speed is not widely available from gridded met-
eorological products, including the climate data used
here (section 2.4 below), but PET estimates using
the PM model are not particularly sensitive to this
term (Allen et al 1998). I therefore estimated PETpy
assuming 1 m s~! average wind speed.

2.3. Tree-ring data

To calibrate and evaluate the VS-Lite model, I
obtained measured tree-ring widths from the
International Tree Ring Data Bank (ITRDB) for all
sites in the conterminous US with elevation estimates
provided in the site metadata (required for the PT and
PM models) and with complete measurements from
1895 to 1980, resulting in a total of 1279 tree-ring
width chronologies covering more than 70 species
(figure 2). Raw ring widths were detrended using a
stiff 2/3 smoothing spline and averaged to site-level
chronologies using Tukey’s biweight robust mean in
the dpIR library (Bunn 2008) of the R statistical pro-
gramming environment (R Core Team 2021).

2.4. Climate data and model projections
I used 1/24° (~4 km) monthly mean Tpin, Tmaxs
and Tgmewn from the Parameter Regression on

Independent Slopes Model (PRISM) (Daly et al 2008)
to estimate PET with each of the four models for the
period 1895-2020, along with monthly total precipit-
ation (P) for water balance estimates of root zone soil
moisture. The 4 km spatial resolution of the PRISM
product makes it particularly well suited for applica-
tion to forest growth models, where processes occur
at much finer scales than typically represented in
coarser resolution gridded meteorological products
(Bontemps and Bouriaud 2014). Accuracy of the grid-
ded PRISM product generally compares favorably to
other gridded products (McEvoy et al 2014, Gao et al
2017) and performs well in hydrologic simulations
(Gao et al 2017), though it does have known errors
in topographically complex terrain (Oyler et al 2015,
Strachan and Daly 2017) and in some arid and semi-
arid regions (McEvoy et al 2014).

For comparison to VS-Lite’s leaky bucket
soil moisture simulations, I also obtained daily
(at 0:00 UTC), 9 km root zone (0—100 cm) soil mois-
ture estimates from the Soil Moisture Active Passive
(SMAP) Level 4 product for its operational period
April 2015-December 2020, which I averaged to
monthly scale (a total of 69 months). The SMAP
Level 4 product assimilates satellite L-band pass-
ive microwave brightness temperature observations,
which are sensitive to moisture content in the upper
layers of the soil and vegetation, into a detailed land
surface model forced with instrumental precipitation
observations (Reichle et al 2019). The land surface
model used by the SMAP Level 4 product is much
more sophisticated than the leaky bucket model
used by VS-Lite, and the assimilation of satellite-
based radiometric brightness temperatures improves
spatial representation of soil moisture compared
to a model forced solely with station observations
(Reichle et al 2017, Dong et al 2019), especially in
regions with sparse meteorological data (Dong et al
2019). The combination of more sophisticated land
surface model and satellite data assimilation makes
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the SMAP soil moisture a good benchmark for the
leaky bucket soil moisture estimates driven by the
different PET models.

To test the sensitivity of VS-Lite to temperature
change when driven by the different PET models,
I obtained an ensemble of 1/8°, statistically down-
scaled CMIP5 historical model runs (1951-2005) and
RCP4.5 and RCP8.5 model projections (2006—-2099)
of monthly Tiin, Tmax, and P from the bias cor-
rection and spatial disaggregation (BCSD) dataset
(table S1 (available online at stacks.iop.org/ERL/16/
084017/mmedia)) (Maurer et al 2007). To avoid
overrepresenting models with large ensembles, I only
used a single ensemble member (rlilpl) per model
(Diffenbaugh et al 2018). I did not use the IPSL mod-
els because they included projections where monthly
Tmin slightly exceeded Tiax, which produced com-
plex numbers when used in equations (6) and (8) at
many of the sites. The CMCC-CM model had a sim-
ilar issue, but only at a small handful of sites in Wash-
ington, so I used the real component of the complex
number at these few sites.

I extracted climate and soil moisture data from
the PRISM, SMAP, and BCSD grid cells nearest to the
geographic coordinates of each tree-ring site. From
both PRISM and BCSD, I estimated monthly Tean
as the average of Ty, and Tix. Since the BCSD
archive does not provide projections of humidity,
VPD, or dewpoint temperature, 1 calculated site-
specific empirical adjustment factors from the PRISM
data to estimate Tgmean from T, (with the con-
straint that Tgmean cannot exceed Tin), and then
used this relationship to estimate projected change in
T4,mean Dased on projected change in Tryin-

2.5. Model calibration and evaluation

For each tree-ring chronology (figure 2), I calibrated
each of the four versions of the VS-Lite model (i.e.
one version per PET model) using Bayesian para-
meter estimation (Tolwinski-Ward et al 2013) based
on observed, detrended ring-width indices during the
period 1895-1960. To test the ability of the differ-
ent PET-driven VS-Lite models to represent observed
growth variation, the calibrated models were then
used to simulate growth over the period 1961-2016
and validated using the coefficient of determination
(R?) between the simulated growth and the overlap-
ping tree-ring width observations at each site during
this independent validation period. In addition to the
site-level validation, I also calculated the median R?
(with bootstrapped 95% confidence intervals) within
each Level I EPA Ecoregion of the conterminous US
(figure 2) (Omernik 1987).

To test the sensitivity of VS-Lite-simulated soil
moisture, soil moisture stress, and ring width to
warming-induced changes in PET, I ran each of the
four calibrated VS-Lite models at each site using pro-
jected changes in Trin, Tmax> and T4 mean under both

M P Dannenberg

the RCP4.5 and RCP8.5 scenarios over the period
1951-2099. To isolate just the PET effect, monthly
precipitation and monthly growth responses to tem-
perature (gr) were held constant at their mean his-
torical (1981-2010) monthly values, preserving their
seasonality but not allowing long-term change. Thus,
the only influence on simulated soil moisture, soil
moisture stress, and growth is temperature-induced
change in PET. I then calculated percent change (rel-
ative to a 1981-2010 baseline) in PET (APET), soil
moisture (AM), and soil moisture stress (Agy) for
each ITRDB chronology using the CMIP5 model
ensemble. I also calculated projected relative ring
widths for each ITRDB chronology under all models
and scenarios by summing the monthly growth index,
g (equation (3)), over a fixed growing season each year
(from the previous September through December in
the year of growth) and then dividing the annual sim-
ulated radial growth index by its 1981-2010 mean
growth index.

3. Results

3.1. Model performance during the historical
period

Across the US, the ability of VS-Lite to replicate
observed variation in growth was not strongly influ-
enced by the choice of PET model (figure 3; table 1).
Among the 1279 tree-ring chronologies, R* ranged
from roughly 0-0.8 (figures 3(a)—(d)), with median
values across the US ranging from 0.14 for the Th
model to 0.16 for the PM model but with overlap-
ping 95% confidence intervals indicating no signific-
ant difference in model performance across the US
(table 1). This similarity in performance likely res-
ulted from two sources: similar seasonal and inter-
annual variabilities in the simulated soil moisture
regardless of PET model (figures S1 and S2) and
adjustments in the M1 and M2 parameters that
accounted for the small differences in baseline soil
moisture among the PET models (figures S3 and
S4). While the Th model simulated higher baseline
soil moisture than the other three PET models due
to its lower baseline PET, the seasonality and inter-
annual variability of simulated soil moisture were
similar across all four PET models (figure S1), and
they were nearly identically correlated with monthly
SMAP soil moisture (figure S2, table S2). That sim-
ilarity resulted in similar M1 and M2 parameters
across the four models (figures S3 and S4), though
the Th-driven M2 parameter tended to be higher than
the others in some regions to adjust for the higher
baseline soil moisture simulated with the Th model
(figure S4).

VS-Lite model performance also did not differ
significantly among the four PET models at the eco-
region scale (table 1): in all nine ecoregions, the
median R? across the four models did not differ
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Figure 3. Variance explained (R?) by the calibrated VS-Lite models during an independent validation period when driven by (a)
Thornthwaite, (b) Hargreaves, (c) Priestley-Taylor, and (d) Penman—Monteith PET estimates. Boxplots show validation R? for all
sites within each Level I Ecoregion: (e) 5.0 Northern Forests, (f) 6.0 Northwestern Forested Mountains, (g) 7.0 Marine West Coast
Forests, (h) 8.0 Eastern Temperate Forests, (i) 9.0 Great Plains, (j) 10.0 North American Deserts, (k) 11.0 Mediterranean
California, (1) 12.0 Southern Semi-Arid Highlands, and (m) 13.0 Temperate Sierras.

significantly. Regardless of which PET model was
used, VS-Lite performed best in dry ecoregions and
worst in wet and/or cool ecoregions. All models
performed best in Mediterranean California (median
R? = 0.46; figure 3(k)) and the Temperate Sier-
ras (median R?> = 0.41; figure 3(m)), with no stat-
istically distinguishable differences among the PET
models (table 1). The models performed worst in
the Marine West Coast Forests (figure 3(g)), fol-
lowed by Northern Forests (figure 3(e)), Northwest-
ern Forested Mountains (figure 3(f)), and Eastern
Temperate Forests (figure 3(h)). However, model per-
formance varied substantially across the Northwest-
ern Forested Mountains, with very poor performance
in the northern Rockies and Cascades but relatively

good performance in the southern Rockies and Sierra
Nevadas (figures 3(a)—(d)).

3.2. Model responses to projected warming

As hypothesized, the Th-modeled PET increased the
most under projected warming across all ecoregions,
followed by Hg-modeled PET, and then PM- and
PT-modeled PET (figures 4 and S5). By 2099, the
Th model projected roughly 25%-30% increases in
PET relative to the 1981-2010 baseline across most
ecoregions under RCP8.5, while in most cases the
Hg model projected roughly 15%—25% increases and
the PM and PT models projected roughly 10%—20%
increases (figure 4). Under RCP4.5, the simulated
increases in PET were much lower (roughly 5%-15%)
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Table 1. Median validation-period coefficient of determination (R?) within each ecoregion, with bootstrapped 95% confidence interval,
between measured ring widths and VS-Lite-simulated ring widths based on each PET model. N: number of tree-ring chronologies in
each ecoregion.

Priestley— Penman-—
Code Name N Thornthwaite Hargreaves Taylor Monteith
50  Northern Forests 56 0.04 [0.03,0.08]  0.05[0.04,0.09] 0.05 [0.03,0.10]  0.05 [0.03, 0.10]
6.0 Northwestern 533 0.09 [0.07,0.11]  0.09 [0.08,0.11] 0.10[0.08,0.11]  0.09 [0.08, 0.11]
Forested
Mountains
7.0  Marine West Coast 11 0.01 [0.01,0.05]  0.02 [0.01,0.06]  0.02 [0, 0.04] 0.02 [0, 0.05]
Forest
8.0  Eastern 296 0.11 [0.08,0.13]  0.12[0.09,0.16]  0.12 [0.09, 0.15]  0.12 [0.09, 0.15]
Temperate Forests
9.0 Great Plains 100 0.26 [0.22,0.30]  0.25[0.21,0.31] 0.26 [0.22,0.31]  0.26 [0.23, 0.32]
100 North American 117 0.35[0.30,0.42]  0.31[0.26,0.37]  0.31[0.25,0.37]  0.31[0.27,0.39]
Deserts
11.0  Mediterranean 58 0.46 [0.40,0.51]  0.46 [0.41,0.49]  0.46 [0.41,0.49]  0.46 [0.41, 0.48]
California
12.0  Southern 54 0.31[0.19,0.38]  0.34[0.23,0.40] 0.34[0.21,0.38]  0.35[0.25, 0.42]
Semi-Arid Highlands
13.0  Temperate 54 0.41 [0.35,0.50] 0.41[0.36,0.50]  0.41 [0.34, 0.47]  0.41 [0.36, 0.50]
Sierras
All 1279 0.14[0.13,0.16]  0.16 [0.14,0.18]  0.15[0.13,0.17]  0.16 [0.14, 0.17]
404 a 1b 1C Th
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Figure 4. Mean percentage change in annual PET (APET) for each PET model and ecoregion based on historical and projected
temperature change in the downscaled CMIP5 model ensemble under RCP8.5. Percentage change was calculated for each
individual site and ensemble member relative to its 1981-2010 mean value and then averaged across all sites and ensemble
members in each Level I Ecoregion: (a) 5.0 Northern Forests, (b) 6.0 Northwestern Forested Mountains, (c) 7.0 Marine West
Coast Forests, (d) 8.0 Eastern Temperate Forests, (e) 9.0 Great Plains, (f) 10.0 North American Deserts, (g) 11.0 Mediterranean
California, (h) 12.0 Southern Semi-Arid Highlands, and (i) 13.0 Temperate Sierras.

but with similar differences among the four models

(figure S5).

While the Th model projected consistently larger
increases in PET than the other three models, they all
started from different baseline PET conditions (also
shown in Fisher e al 2011) and the seasonality of their

projected increases differed, so their projected effects

on soil moisture were not as consistent as the changes

in PET would suggest (figures S6 and S7). Averaged
across all sites and CMIP5 ensemble members, the Th
and Hg models projected similarly large declines in
soil moisture across all ecoregions (roughly 5%-10%
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Figure 5. Mean relative ring width for each PET model and ecoregion based on historical and projected temperature change in the
downscaled CMIP5 model ensemble under RCP8.5. Relative ring width was calculated by summing the monthly growth index,

g (equation (3)), over a fixed growing season each year, dividing the annual simulated growth by the mean 1981-2010 simulated
growth for the same site and model, and then averaging across all sites and ensemble members in each Level I Ecoregion: (a) 5.0
Northern Forests, (b) 6.0 Northwestern Forested Mountains, (c) 7.0 Marine West Coast Forests, (d) 8.0 Eastern Temperate
Forests, (e) 9.0 Great Plains, (f) 10.0 North American Deserts, (g) 11.0 Mediterranean California, (h) 12.0 Southern Semi-Arid
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Highlands, and (i) 13.0 Temperate Sierras.

lower than baseline historical conditions by 2100 in
RCP8.5) while the PM and PT models generally pro-
jected smaller declines under RCP8.5 (figure S6).
Magnitudes of simulated soil moisture loss were lower
under RCP4.5, but also with larger decreases in the
Th and Hg models than in the PT and PM models
(figure S7).

These projected PET-driven decreases in soil
moisture across all models led to increases in moisture
stress (figures S8 and S9) and decreases in simulated
radial growth (figures 5 and S10) over the 21st cen-
tury in all regions, but especially in the driest regions.
The projected declines in simulated radial growth
resulted from both an extension of the period dur-
ing which growth was primarily water-limited (rather
than temperature-limited) and from increases in the
intensity of moisture stress (i.e. a decrease in mean gy
during the water-limited part of the year) (figures 6
and S11). However, projected soil moisture stress and
radial growth among the different PET-driven models
increasingly diverged as warming intensified during
the 21st century, especially under RCP8.5 (figures 5
and S8). This divergence among the models was rel-
atively minimal in the wettest and coolest ecoregions
(Northern Forests, Marine West Coast Forests, and
Eastern Temperate Forests). In the driest ecoregions,
however, the Th and Hg models projected increases
in soil moisture stress roughly double those of the

PT and PM models by 2099 (figures S8(e)—(i)), with
the differences among the models increasing towards
the end of the century. This translated to large dif-
ferences among the four PET models in projected
growth trends (figure 5), with the Hg model typically
projecting the greatest decreases in growth, followed
by the Th model, and then the PT and PM models.

4, Discussion and conclusions

Models of tree ring formation, such as VS-Lite, are
often used for attributing growth variation to cli-
matic drivers (Lavergne et al 2015, Mina et al 2016,
Chen et al 2017, Tumajer et al 2017, Bjérklund et al
2019), for projecting growth under climate change
(Pompa-Garcia et al 2017, Zeng et al 2019), and
for reconstructing past climate (Evans et al 2013,
Tolwinski-Ward et al 2014). These models simulate
temporal variability in ring width based on know-
ledge of environmental limitations to cell division
and expansion in the vascular cambium, includ-
ing limitations arising from non-optimal temperat-
ures and inadequate soil moisture. For the latter,
models must rely on water balance estimates of soil
moisture based on moisture supply (precipitation),
demand (evapotranspiration), and infiltration into
and runoff from the soil profile. Tree ring mod-
els typically use temperature-based PET models to
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Figure 6. Mean projected change in the number of months per year where growth is limited by water availability (i.e. where

gm < gr) and average gv during those water-limited months from 1981-2010 (dots) to 2071-2099 (arrows) under RCP8.5.
Average time and magnitude of water stress were calculated for each individual site and ensemble member for both 1981-2010
and 2071-2099 and then averaged across all sites and ensemble members in each Level I Ecoregion: (a) 5.0 Northern Forests,

(b) 6.0 Northwestern Forested Mountains, (¢) 7.0 Marine West Coast Forests, (d) 8.0 Eastern Temperate Forests, (e) 9.0 Great
Plains, (f) 10.0 North American Deserts, (g) 11.0 Mediterranean California, (h) 12.0 Southern Semi-Arid Highlands, and (i) 13.0

Temperate Sierras.

represent atmospheric demand for moisture, but the
extent to which the PET model influences the accur-
acy and trends of ring width simulations, especially
when there are strong secular trends in temperature,
remains unclear. Here, I examined how four differ-
ent PET models—varying in complexity and physical
realism—affect both the ability of VS-Lite to replic-
ate observed variation of growth and the simulated
responses of soil moisture, moisture stress, and radial
growth to warming.

Among the US tree-ring chronologies, there were
no statistically significant differences in validation-
period R? among the models within any ecoregion,
and thus no evidence of significant differences in the
ability of VS-Lite to accurately simulate interannual
variation of ring widths when driven by different PET
models as long as the model is calibrated specifically
for each PET formulation. These similarities in VS-
Lite model skill across all PET models are an encour-
aging sign for many applications, particularly for
data assimilation-based climate reconstructions, for
which model inversion benefits from simple model

structures with minimal, widely available input data
(Tolwinski-Ward et al 2011, 2014, Evans et al 2013).
However, while much of the similarity in simulated
ring widths can likely be traced to similar interannual
variabilities in soil moisture regardless of PET method
(figure S1), the similarities across different PET for-
mulations could also suggest that VS-Lite’s flexible
parameterization and semi-empirical (rather than
process-based) formulation may make it susceptible
to overfitting.

Regardless of PET model choice, VS-Lite per-
formed best in dry ecoregions where moisture is
strongly limiting to growth, consistent with the prin-
ciple of limiting factors, one of the integrating the-
ories of dendrochronology (Fritts 1976), and with
higher observed sensitivities of tree growth to dry
extremes than to wet extremes across much of the US,
especially in dry regions (Dannenberg et al 2019, Wise
and Dannenberg 2019). In cooler and more mesic
ecoregions of the eastern and northern US, where
climatic constraints to growth are less pronounced,
the climate-driven VS-Lite model performed much
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worse. Poor performance in these regions could
also partly result from lack of snow accumulation
and melt dynamics in the leaky bucket hydrology
model.

Despite the similar interannual variabilities in
simulated ring widths regardless of PET method,
the diverging warming responses of the different
PET-driven VS-Lite models suggest caution when
using tree-ring models in a nonstationary climate,
as secular trends in temperature could lead to spuri-
ous trends in PET, moisture stress, and growth.
In regions where solar radiation and temperature
are the primary limiting factors for growth (e.g. in
high latitude or high elevation forests), the influ-
ence of PET model choice is likely quite small even
in extreme warming scenarios (e.g. figures 5(a), (c)
and (d)), as the Liebig’s Law formulation of VS-Lite
(equation (3)) dictates that growth is limited only by
the most limiting factor, which in cold or very wet
regions would almost always be temperature or solar
radiation, not soil moisture. However, in persistently
moisture-limited regions (e.g. figures 5(e)—(i)), the
choice of PET model could exert a large influence on
growth simulations in a warming climate, with the
Th and Hg model simulating much larger increases
in soil moisture stress and decreases in growth than
the PM or PT models. These differences among the
models likely reflect how they interpret temperature
change. Both the Th and Hg models include direct
responses to temperature, but the PM and PT mod-
els respond more indirectly via effects of warming on
net radiation (R,) and the slope of the temperature—
saturation vapor pressure curve (A), as well as VPD
in the PM model (which may partly explain the small
differences between the PT- and PM-modeled warm-
ing responses). However, the modeled responses of
Ry, A, and VPD to warming are smaller than the dir-
ect temperature effects included in the Th and Hg
models.

For climate reconstructions that rely on inverting
radial growth models, it is possible that the Th PET
model could potentially result in significant over- or
under-estimation of the target climate fields for peri-
ods when temperatures are systematically warmer or
cooler than the calibration period, as moisture stress
in the Th-based forward model simulations in dry
regions may be oversensitive to temperature change.
However, since these approaches depend on hav-
ing a simple and easily invertible model of growth,
this is an understandable and perhaps necessary
tradeoff. However, using temperature-driven PET
methods in radial growth models to project poten-
tial changes in forest growth due to climate change
could be especially problematic. Both the Th and
Hg models are very sensitive to temperature change,
and this sensitivity may not reflect the actual phys-
ical mechanisms driving evapotranspiration, which is
driven by both thermodynamic (net radiation) and
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aerodynamic (vapor concentration gradient and res-
istances to vapor transport) processes (Campbell and
Norman 1998, Bonan 2016). In a rapidly warming cli-
mate, the empirical, temperature-driven PET mod-
els will thus likely overestimate change in PET, and
thus overestimate loss of soil moisture and mois-
ture stress, leading to potentially spurious changes in
model-simulated radial growth. Most climate model
ensembles (e.g. CMIP5 and CMIP6) include most or
all of the necessary variables for more physical repres-
entation of PET. While the additional driver datasets
required for the physical PET models may add some
additional uncertainties (Berg and Sheffield 2018),
forward modeling of growth responses to climate
change should likely be performed with physically
realistic PET models rather than the temperature-
driven empirical PET models, which are likely ill-
suited (and not originally intended) for this purpose.
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