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Neutron star mergers are very violent events involving extreme physical processes: dynamic,
strong-field gravity, large magnetic field, very hot, dense matter, and the copious production of
neutrinos. Accurate modeling of such a system and its associated multi-messenger signals, such
as gravitational waves, short gamma ray bursts, and kilonovae, requires the inclusion of all these
processes, and is increasingly important in light of advancements in multi-messenger astronomy
generally, and in gravitational wave astronomy in particular (such as the development of third-
generation detectors). Several general relativistic codes have been incorporating some of these
elements with different levels of realism. Here, we extend our code MHDuet , which can perform
large eddy simulations of magnetohydrodynamics to help capture the magnetic field amplification
during the merger, and to allow for realistic equations of state and neutrino cooling via a leakage
scheme. We perform several tests involving isolated and binary neutron stars demonstrating the
accuracy of the code.

I. INTRODUCTION

An era of multi-messenger astronomy combining grav-
itational waves and electromagnetic observations started
with the event GW170817 [1, 2], consistent with the
merger of two neutron stars. The understanding of this
event arises not only from the gravitational wave signa-
ture, but also from observations across nearly every band
of the electromagnetic spectrum, some of which have con-
tinued years later [3]. Crucially much of the science ex-
tracted, such as constraints on the high density nuclear
equation of state (EoS), the association between short
gamma ray bursts and neutron star mergers, and the
connection between ejecta and kilonovae properties, de-
pends on comparisons to simulations (see, e.g., Refs. [4–7]
and references within). Development of third generation
gravitational wave detectors such as the Einstein Tele-
scope and Cosmic Explorer promises to extend the usable
bandwidth to observe the high frequency merger where
the detailed high density physics affecting the structure
of the stars may be better revealed [8, 9].

In order to interpret these observations, accurate nu-
merical simulations are necessary that incorporate gen-
eral relativistic effects with key physical ingredients such
as magnetic field, micro-physical, realistic equation of
state describing high-density matter, and neutrino emis-
sion and transport occurring during and after the merger.
In particular, the effects of magnetic field and neutrinos
are crucial to model the most important electromagnetic
counterparts. First, these two effects largely determine
the amount and composition of the material ejected long
after the merger (i.e., secular ejecta), which is responsible
for part of the kilonova emission. Second, a large-scale
magnetic field is believed to be necessary for the forma-
tion of a relativistic jet [10–12], associated with a short
gamma ray burst. In this scenario, neutrino annihilation
might play an important role by clearing the polluting

baryons near the spin axis (e.g., Ref. [13]).

The relativity community has created a number of fully
relativistic numerical codes that can evolve the coales-
cence of neutron stars, some of which adopt realistic
equations of state, magnetization, and an approximation
for neutrino transport, with notable recent advances (see
for example Refs. [14, 15]). Of these codes, only a few
can simulate the merger of magnetized neutron stars
with neutrinos and a realistic EoS. Those that can gener-
ally use a simplified approximate neutrino scheme called
leakage [16–19] (but more recently also with the M1
formalism [20], although with a simplified temperature-
dependent EoS). Here, we extend our code, MHDuet ,
to allow for tabulated EoS with a leakage scheme to
model the neutrinos. We also make this code publicly
available, which can be downloaded from the webpage
mhduet.liu.edu.

To this end, we report on simulations and tests of MH-
Duet , which can now evolve the merger of magnetized
neutron stars along with neutrino cooling using realistic,
temperature-dependent, tabulated equations of state. To
be more specific, this code leverages the recently devel-
oped large eddy simulation (LES) techniques [21–25] to
study the growth of the magnetic field during and after
the neutron star merger. A new method of computing
the optical depth, extending the method first introduced
in Ref. [16] (hereafter referred to as Paper I), is also pre-
sented.

We begin by describing the equations that are solved in
Section II, including the formalism of the Einstein equa-
tions, the general-relativistic magnetohydrodynamic sys-
tem, the neutrino leakage scheme, and the LES method-
ology. We follow this with details about how these equa-
tions are solved numerically in Section III. This section
also includes a description of the recovery of the primitive
fields for the tabulated equation of state and an explana-
tion of our novel method of solving for the optical depth.
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We present tests and results with the code in Section IV,
and conclude in Section V.

II. EVOLUTION SYSTEM

We present details of the latest version of the pub-
licly available MHDuet code, which has previously been
used to study phase transitions occurring in merging bi-
naries [26] and, separately, magnetized mergers using the
LES techniques [21–25]. Here we merge these efforts and
extend the code to adopt realistic, finite temperature,
tabulated equations of state along with neutrino cooling
via the leakage scheme previously implemented in our
other code, HAD [16, 17, 27]. We once again present
the Einstein and fluid equations for completeness and to
define our notation, and we follow this with the new de-
tails about the code extensions. Further details about
the code can be found in Refs. [28–30]. Other versions of
MHDuet have been used to study the coalescence of bo-
son stars [31–33], as well as neutron stars in alternative
gravity theories [34].

A. Covariant formulation

The covariant system of equations employed to model
a self-gravitating magnetized fluid includes the Einstein
equation, in which the space-time is fully described by
the Einstein tensor, Gab, coupled to the stress-energy
tensor of the matter, which can be separated into perfect
fluid Tab and neutrino radiation T rad

ab components.1 The
dynamics of the matter is described by conservation laws
for the stress-energy tensor of the matter, the baryonic
and lepton number, and the Maxwell equation for the
Faraday tensor ∗F ab (i.e.,the dual of the Maxwell tensor
in the ideal MHD case), namely

Gab = 8π(Tab + T rad
ab ) (1)

∇aT ab = Sb (2)

∇a(ρua) = 0 (3)

∇a(Yeρu
a) = ρR (4)

∇a∗F ab = 0. (5)

Here, ρ is the rest-mass density, ua the four-velocity of
the fluid, and Ye is the electron fraction, the ratio of
electrons to baryons. In the absence of lepton source
terms, Eq. (4) follows closely the conservation law for the
rest mass density, i.e. Ye is a mass scalar. The sources
Sa ≡ −∇cT rad

ca and R are the radiation four-force density
and lepton sources, which are determined here via the
leakage scheme. Note that we have adopted geometrized
units where G = c = M� = 1.

1. Einstein equations

We solve the Einstein equations by adopting a 3+1
decomposition in terms of a spacelike foliation. The hy-
persurfaces that constitute this foliation are labeled by a
time coordinate t with unit normal na and endowed with
spatial coordinates xi. We express the spacetime metric
as

ds2 = −α2 dt2 + γij
(
dxi + βi dt

) (
dxj + βj dt

)
, (6)

where α is the lapse function, βi the shift vector, γij
the induced 3-metric on each spatial slice, and

√
γ is the

square root of its determinant.

In this work, we use the covariant conformal Z4 for-
mulation of the evolution equations [31, 35]. Further de-
tails on the final set of evolution equations for the space-
time fields, together with the gauge conditions setting the
choice of coordinates, can be found in Ref. [28]. In sum-
mary, we perform a conformal decomposition and define
the following fields

γij ≡
1

χ
γ̃ij , Ãij ≡ χ

(
Kij −

1

3
γijtrK

)
, (7)

Γ̂i ≡ Γ̃i +
2

χ
Zi , K̂ ≡ K − 2 Θ (8)

with Γ̃i ≡ γ̃ij γ̃kl∂lγ̃jk. With these definitions, the evolu-
tion equations can be written as

1 It is standard to describe photons or neutrinos as radiation fields
because the components of the stress-energy tensor can be writ-

ten in terms of the radiation specific intensity, Ia, which follows
the Boltzmann equation for radiation transport.
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∂tγ̃ij = βk∂kγ̃ij + γ̃ik ∂jβ
k + γ̃kj∂iβ

k − 2

3
γ̃ij∂kβ

k − 2α
(
Ãij −

1

3
γ̃ij Ã

)
− α

3
κcγ̃ij ln γ̃ (9)

∂tÃij = βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − 2

3
Ãij∂kβ

k − α

3
κcγ̃ijÃ (10)

+ χ
[
α
(

(3)Rij +DiZj +DjZi − 8πGSij
)
−DiDjα

]TF

+ α
(
K̂ Ãij − 2ÃikÃ

k
j

)
∂tχ = βk∂kχ+

2

3
χ
[
α(K̂ + 2 Θ)− ∂kβk

]
(11)

∂tK̂ = βk∂kK̂ −DiD
iα+ α

[1

3

(
K̂ + 2Θ

)2
+ ÃijÃ

ij + 4πG
(
τ + S

)
+ κzΘ

]
+ 2Zi∂iα (12)

∂tΘ = βk∂kΘ +
α

2

[
(3)R+ 2DiZ

i +
2

3
K̂2 +

2

3
Θ
(
K̂ − 2Θ

)
− ÃijÃij

]
− Zi∂iα− α

[
8πGτ + 2κz Θ

]
(13)

∂tΓ̂
i = βj∂jΓ̂

i − Γ̂j∂jβ
i +

2

3
Γ̂i∂jβ

j + γ̃jk∂j∂kβ
i +

1

3
γ̃ij∂j∂kβ

k − 2Ãij∂jα (14)

+ 2α
[
Γ̃ijkÃ

jk − 3

2χ
Ãij∂jχ−

2

3
γ̃ij∂jK̂ − 8πG γ̃ij Si

]
+ 2α

[
−γ̃ij

(1

3
∂jΘ +

Θ

α
∂jα

)
− 1

χ
Zi
(
κz +

2

3
(K̂ + 2Θ)

)]

where the expression [. . .]TF indicates the trace-less part
with respect to the metric γ̃ij and (κc, κz) are damping
parameters to dynamically control the conformal and the
physical constraints respectively. The Ricci terms and
the Laplacian operator can be written as

(3)Rij + 2D(iZj) = (3)R̂ij + R̂χij (15)

χR̂χij =
1

2
∂i∂jχ−

1

2
Γ̃kij∂kχ−

1

4χ
∂iχ∂jχ+

2

χ
Zkγ̃k(i∂j)χ

+
1

2
γ̃ij

[
γ̃km

(
∂k∂mχ−

3

2χ
∂kχ∂mχ

)
− Γ̂k∂kχ

]
(16)

R̂ij = −1

2
γ̃mn∂m∂nγ̃ij + γ̃k(i∂j)Γ̂

k + Γ̂kΓ̃(ij)k

+ γ̃mn
(

Γ̃kmiΓ̃jkn + Γ̃kmjΓ̃ikn + Γ̃kmiΓ̃knj

)
(17)

DiD
iα = χ γ̃ij∂i∂jα− χΓ̃k∂kα−

1

2
γ̃ij ∂iα∂jχ. (18)

The matter terms can be written in terms of the stress-
energy tensor and the conformal metric as

U = na nb T
ab , Si = −na T ai , Sij = Tij .

We use the Bona-Masso slicing conditions with a
simplified version of the Gamma-freezing shift condi-
tion [36, 37], namely

∂tα = βi∂iα− 2α fα(α) K̂ (19)

∂tβ
i = βj∂jβ

i +
3

4
fβ(α) Γ̂i − ηβi (20)

where η is a damping parameter for the shift and the
gauge functions fα(α), fβ(α) can be chosen freely. Cur-
rently, we use 1+log slicing with the standard shift func-
tion, namely fα = fβ = 1. Typical values of the damping
parameters are η ≈ 2/M and κc ≈ 1/M . For black holes,
κz ≈ 1/M , whereas neutron stars require smaller values
κz ≈ 0.1/M .

2. General Relativistic Magnetohydrodynamic equations

The state of a perfect fluid, in the ideal MHD limit,
can be described by the primitive fields (ρ, ε, Ye, p, v

i, Bi),
where we recall that ρ is the rest mass density, ε the in-
ternal energy, Ye the electron fraction, p the pressure
given by the EoS, vi the fluid velocity, and Bi the mag-
netic field. The evolution of this magnetized perfect
fluid follows a system of conservation laws for the en-
ergy and momentum densities, and for the total number
of baryons and leptons. In order to capture properly the
weak solutions of the non-linear equations in the pres-
ence of shocks, it is important to write this system in
local conservation law form.

Therefore, the GRMHD equations for a magnetized,
non-viscous and perfectly conducting fluid [17] provide
a set of evolution equations for the conserved variables√
γ
{
D,DY , τ, S

i, Bi
}

, which depend on the primitive
fields as follows

D = ρW (21)

DY = ρWYe (22)

Si = (hW 2 +B2)vi − (Bkvk)Bi (23)

τ = hW 2 − p+B2 − 1

2

[
(Bkvk)2 +

B2

W 2

]
− ρW, (24)

where we have defined τ ≡ U −D as the energy density
without the rest-mass contribution and h ≡ ρ(1+ε)+P as
the total enthalpy, and W ≡ (1−vivi)−1/2 as the Lorentz
factor. Notice that the magnetic field is simultaneously
a primitive and a conserved variable.

The evolution equations for these conserved fields can
be written as
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∂t(
√
γD) + ∂k[

√
γ(−βk + αvk)D] = 0 (25)

∂t(
√
γDY ) + ∂k[

√
γ(−βk + αvk)DY ] =

α

W

√
γDR (26)

∂t(
√
γτ) + ∂k[

√
γ
(
−βkτ + α(Sk −Dvk)

)
] =
√
γ[αSijKij − Sj∂jα] (27)

∂t(
√
γSi) + ∂k[

√
γ(−βkSi + αSki)] =

√
γ[αΓjikS

k
j + Sj∂iβ

j − (τ +D)∂iα]

∂t(
√
γBi) + ∂k[

√
γ{Bi(αvk − βk)−Bk(αvi − βi) + αγkiφ}] =

√
γφ[γik∂kα− αγjkΓijk]

∂t(
√
γφ) + ∂k[

√
γ(−βkφ+ αc2hB

k)] =
√
γ[c2hB

k∂kα− αφ trK − ακφ] (28)

where the fluxes of the momentum density are

Sij =
1

2
(viSj + vjSi) + γijp−

1

2W 2

[
2BiBj − γijB2

]
− 1

2
(Bkvk)

[
Bivj +Bjvi − γij(Bmvm)

]
. (29)

Following Paper I, we use hyperbolic divergence cleaning
with the supplemental scalar field φ. The EoS closes
this system of equations. Because the fluxes above are
functions of the primitive fields, one needs to calculate
them before computing the right-hand-sides above. In
Sec. III B we detail how we solve for the primitive fields
with a realistic equation of state p = p(ρ, T, Ye, ) along
with the definitions Eqs. 21-24.

B. Neutrino Cooling via Leakage

The violent merger of a neutron star in a binary leads
to high temperatures and various nuclear processes which
can produce copious neutrinos and affect the composi-
tion of the matter. We adopt a neutrino leakage scheme
which seeks to account for changes to the electron frac-
tion and energy losses due to the emission of neutri-
nos, following the implementation in HAD as described
in Paper I. This scheme was based on the open-source
neutrino leakage scheme from Ref. [38] and available at
www.stellarcollapse.org. Note that, since the dynamical
timescale for the post-merger of binary neutron star sys-
tems is relatively short, radiation momentum transport
and diffusion effects are expected to be sub-leading and
are neglected in this approach.

We introduce a term representing the loss of energy
in the fluid rest frame, Q, and another term which rep-
resents changes in lepton number, R. We express the
source term for the energy and momentum in an arbi-
trary frame as

Sa = Qua . (30)

Since R is the source term for a scalar quantity, it is the
same in all frames. These terms couple to the rest of the
system as shown above in Eqs. 1-5.

Since the effect of neutrino pressure is small in the
conditions relevant for NS mergers and difficult to accu-
rately capture with a neutrino leakage scheme, we ignore

its contribution in the fluid rest frame. For instance,
Ref. [39] found that, although at rest-mass densities of
ρ ≈ 1012 gcm−3 and temperatures T ≈ 10 MeV the con-
tribution of the neutrino pressure could be roughly 10%
of the fluid pressure, the neutrino pressure for densities
close to nuclear saturation density (i.e., such as found in
the remnant) becomes less than 1%, smaller than the typ-
ical uncertainties of the nuclear EOSs at such densities.
Now, by computing the normal and perpendicular pro-
jections with respect to the unit normal na we obtain S ≡
naSa = −QW and ⊥bc Sc = (gbc + nbnc)Sc = QWvb, in
terms of which the modified GRMHD equations become

∂t(
√
γDY ) + ... = α

√
γρR (31)

∂t(
√
γτ) + ... = ...+ α

√
γQW (32)

∂t(
√
γSi) + ... = ...+ α

√
γQWvi. (33)

Neutrino interaction rates depend sensitively on the
matter temperature and composition. Therefore, in or-
der to model the effect of neutrinos with reasonable ac-
curacy, we require an equation of state beyond that of
a polytrope or an ideal gas. We use publicly avail-
able EoS tables from www.stellarcollapse.org described
in O’Connor and Ott (2010) [38]. We have rewritten
some of the library routines for searching the table to
make them faster and more robust. In this paper we use
the Lattimer-Swesty (LS) [40] EoS with K = 220 MeV
and the H. Shen (HS) [41] for the single neutron star
simulations, and the HS EoS for the neutron star binary.
These are chosen to match those used in Paper I for com-
parison, not for any particular physical relevance.

We consider three species of neutrinos, represented
here by: νe for electron neutrinos, ν̄e for electron anti-
neutrinos, and νx for both tau and muon neutrinos and
their respective anti-neutrinos. Our aim will be to com-
pute, for each neutrino species, the neutrino emission rate
per baryon, Rν , and the neutrino luminosity per baryon,
Qν . The net emission and luminosity rates can be com-
puted as

R = Rν̄e −Rνe , Q = −(Qνe +Qν̄e +Qνx). (34)

As discussed in Refs. [42, 43], the dominant emission
processes are those that

• produce electron flavor neutrinos and anti-
neutrinos: charged-current, electron and positron
capture reactions
e+ + n→ p+ ν̄e , e− + p→ n+ νe .
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• produce all flavors of neutrinos: electron-positron
pair-annihilation
e+ + e− → ν̄i + νi

and plasmon decay
γ → ν̄i + νi.

In order to compute the emission coefficients, we as-
sume that the neutrinos are in thermal equilibrium with
the surrounding matter, such that their energy spec-
trum is described by a Fermi-Dirac distribution for ultra-
relativistic particles at the temperature of the matter.

At large optical depths, the equilibrium time scales are
much shorter than either the neutrino diffusion or hydro-
dynamic time scales. Therefore, neutrinos are assumed
to be at their equilibrium abundances and the rates of
energy loss and lepton loss are taken to proceed at the
diffusion timescale. In particular, in the optically thick
regime, we set the energy loss rate as Qν = Qdiff

ν while the
lepton loss rate becomes R = Rdiff

ν . While the equilib-
rium abundances can be calculated easily, the calculation
of the diffusion timescale is more involved as it requires
the knowledge of non-local optical depths. The computa-
tion of these optical depths lies at the core of the leakage
strategy and, because our problems of interest generally
lack specific symmetries, we refine the method introduced
in Ref. [16] as discussed in Section III C. We refer the
reader to Ref. [38] for full details about the calculation
of the local opacity and diffusion time scale.

At small optical depths, the leakage scheme relies on
calculating the emission rate of energy (Qfree

ν ) and lep-
ton number (Rfree

ν ) directly from the rates of relevant
processes. To achieve an efficient incorporation of neu-
trino effects in all optical depths, we interpolate between
the treatments described above for optically thin and
optically thick regimes. In our implementation, we in-
terpolate the energy and lepton number emission rates
between these two regimes via the following formula

Xeff =
XdiffXfree

Xdiff +Xfree
, (35)

where X is either Qν or Rν .

C. Large Eddy Simulation

Large Eddy Simulation (LES) is a popular approach
to modeling turbulent flows that has been adopted in nu-
merical relativity specifically for resolving the magnetic
field growth via the Kelvin-Helmholtz instability (and
possibly other MHD processes) during the merger of a
binary neutron star system. The general idea is that the
numerical simulation resolves large scale features whereas
the effect of the smaller scales can be captured by a sub-
grid scale (SGS) model.

The concept and the mathematical foundations be-
hind the explicit LES techniques with a gradient SGS
model have been extensively discussed in our previous

papers (and references within) in the context of Newto-
nian [44] and relativistic MHD [21, 22], to which we refer
for details and further references. In brief, the space dis-
cretization in any numerical simulation can be seen as a
filtering of the continuous solution, with an implicit ker-
nel (numerical-method-dependent) having the size of the
numerical grid ∆x. The evolved numerical values of the
fields can be then be interpreted formally as weighted av-
erages (or filtered) over the numerical cell. Seen in this
way, the subgrid deviations of the field values from their
averages causes a loss of information at small scales, for
those terms which are nonlinear functions of the evolved
variables. SGS terms obtained from the gradient model
are added to the equations in order to partially compen-
sate such loss.

Beginning with the equations of motion for the MHD
quantities expressed in Eqs. (25–28), one would normally
adopt a new notion for the corresponding filtered values
of these conserved values. However, here we retain the
same letters for each quantity where each implicitly rep-
resents the corresponding filtered value (i.e., simply re-
solved by the discretized equations, as in any simulation)
within the LES approach. We also introduce here the
contributions, τkN , τ

k
Ny
, τkiT , τ

ki
M , to the equations of mo-

tion from the SGS model, which represent the effects of
the small and unresolved scales.

The filtered GRMHD equations can be written as fol-
lows

∂t(
√
γD) + ∂k[−βk√γD + α

√
γ(Dvk − τkN )] = 0 ,

∂t(
√
γDY ) + ∂k[−βk√γDY + α

√
γ(DY v

k − τkNY
)] = ...

∂t(
√
γSi) + ∂k[−βk√γSi + α

√
γ(Ski − γijτ jkT )] = ...

∂t(
√
γτ) + ∂k[−βk√γτ + α

√
γ(Sk −Dvk + τkN )] = ...

∂t(
√
γBi) + ∂k[

√
γ(−βkBi + βiBk)

+α
√
γ(γkiφ+Bivk −Bkvi − τkiM )] = ...

∂t(
√
γφ) + ∂k[−βk√γφ+ α c2h

√
γBk] = ... (36)

where the fluxes and sources can be read easily from the
standard GRMHD equations Eqs. (25–28). The filtering
procedure introduces additional (sub-filtered-scale) flux
terms, which can be computed using the gradient SGS
model, namely

τkN = − CN ξ Hk
N , τkNY

= − CN ξ Hk
NY

,

τkiT = − CT ξ Hki
T , τkiM = − CM ξ Hki

M . (37)

The expressions of the H-tensors have been obtained ex-
plicitly for the special [21] and general relativistic [22]
cases, considering an EoS depending on p = p(ρ, ε). Here
we have extended the equations to include the additional
variables Ye and DY and a general EoS p = p(ρ, ε, Ye).
Details of the derivation can be found in Appendix A.

The coefficient ξ = γ1/3∆x2/24 has the proportional-
ity to the spatial grid squared, which is typical of SGS
models and ensures by construction the convergence to
the continuous limit (vanishing SGS terms for an infi-
nite resolution). Importantly, for each equation there is
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a coefficient Ci, which is meant to be of order one for
a low-dissipation numerical scheme having a mathemat-
ically ideal Gaussian filter kernel and neglecting higher-
order corrections. However, finite-difference numerical
methods dealing with shocks are usually more dissipa-
tive (and dispersive), and so larger values of Ci might be

required [22, 23].

We introduce auxiliary variables Ψ̃, in terms of which
we write the H-tensors. The explicit relations are given
by:

Ψk
v =

2

Φ

{
∇(v ·B) · ∇Bk −∇Φ · ∇vk +

Bk

E
[
Φ∇Bj · ∇vj +Bj∇Bj · ∇(v ·B)−Bj∇vj · ∇Φ

]}
,

Ψki
M =

4

Φ

[
Φ∇B[i · ∇vk] +B[i∇Bk] · ∇(v ·B)−B[i∇vk] · ∇Φ

]
,

ΨΦ =
Φ

Φ− E2

{
∇Bj · ∇Bj −∇Ej · ∇Ej −B[ivk] Ψki

M

}
, ΨA = W 2

(
p
dp

dε
+ ρ2 dp

dρ

)
,

Hp =
EW 2(Φ− E2)

(ρ E −ΨA)(Φ− E2)W 2 + ΨA Φ

{
ρ

(
∇dp
dρ
· ∇ρ+∇dp

dε
· ∇ε

)
− 2

dp

dε
∇ρ · ∇ε

−
(
E dp
dε
−ΨA

)[
W 2

4
∇W−2 · ∇W−2 +∇W−2 · ∇(ln ρ)

]
− 2

W 2

dp

dε

[
∇Bj · ∇Bj −W 4∇W−2 · ∇h

]
(38)

−
(
E dp
dε

+ ΨA

)[
vjΨ

j
v +∇vj · ∇vj +W 2∇W−2 · ∇W−2

]
+

ΨΦ

EΦ

[(
E dp
dε

+ ΨA

)
(Φ− E2)− ΨA Φ

W 2

]}
+ ∇ dp

dYe
· ∇Ye −

2

D

dp

dYe
∇Ye · ∇D

HΦ = ΨΦ +
Φ

Φ− E2
Hp , Hk

v := Ψk
v −

(
vk +

v ·B
E Bk

)
HΦ

Φ
, (39)

Hk
N = 2∇D · ∇vk +DHk

v , Hk
NY

= 2∇DY · ∇vk +DY H
k
v , (40)

Hki
M = 2B[iHk]

v + 4∇B[i · ∇vk] → Hi
E =

1

2
εijkH

jk
M , (41)

Hki
T = 2

[
∇E · ∇(vkvi) + E

(
v(kHi)

v +∇vk · ∇vi
)

+ vkviHp

]
− 2

[
∇Bk · ∇Bi +∇Ek · ∇Ei + E(kH

i)
E

]
+ (γki − vkvi)

[
Hp +∇Bj · ∇Bj +∇Ej · ∇Ej + EjH

j
E

]
. (42)

where E = hW 2, Φ = E + B2, and Ei = −εijkvjBk.
The two gradients ∇ (on each term) symbolize spatial
partial derivatives ∂i (and ∂j), with “·” indicating con-
traction among them with the spatial metric γij . Note
that, in order to compute the gradient SGS terms, we
need values of the following derivatives of the pressure
(dp/dρ, dp/dε, dp/dYe). These derivatives can be com-
puted analytically for a hybrid EoS, but only numerically
for tabulated EoSs (see the discussion in Appendix A).

III. NUMERICAL IMPLEMENTATION

A. Evolution Scheme

The publicly available code MHDuet is generated by
the open-source platform Simflowny [45–47] to run un-
der the SAMRAI infrastructure [48, 49], which provides
parallelization and adaptive mesh refinement. The code
has been extensively tested for different scenarios [22, 28–

30], including basic tests of MHD and GR with sev-
eral numerical schemes. As a default, we use fourth-
order-accurate operators for the spatial derivatives in
the SGS terms and in the Einstein equations (the latter
are supplemented with sixth-order Kreiss-Oliger dissipa-
tion); a high-resolution shock-capturing (HRSC) method
for the fluid, based on the Lax-Friedrich flux splitting for-
mula [50] and the fifth-order reconstruction method MP5
[51]; a fourth-order Runge-Kutta (RK) scheme satisfying
the Courant time restriction ∆t ≤ 0.4 ∆x (where ∆x
is the grid spacing); and an efficient and accurate treat-
ment of the refinement boundaries when sub-cycling in
time [52, 53]. A description of the numerical methods
implemented can be found in Appendix B, with further
details on the AMR techniques in Refs. [28, 29]. With-
out extensive testing, we note that when calculating the
leakage quantities in our problems, the code only runs
about 7% slower than without leakage. The addition of
LES slows the code only about 5% more.
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B. Realistic, temperature-dependent Equation of
State

High-resolution shock-capturing schemes integrate the
fluid equations in conservation form for the conserva-
tive fields {D,DY , τ, Si, B

i}, while the fluid equations are
written in a mixture of conserved and primitive variables
{ρ, ε, Ye, p, vi, Bi} (i.e., the magnetic field is both a con-
served and primitive field). It is well known that the cal-
culation of primitive variables from conserved variables
for relativistic fluids requires solving a transcendental set
of equations, which are only closed once an equation of
state (EoS) is provided. Realistic EoS are usually de-
rived from nuclear physics numerical calculations, such
that the pressure is commonly given as p = p(ρ, T, Ye)
in tabulated form. Note that, since the internal energy
appears in our evolution equations, it needs to be cal-
culated separately from the pressure also using the EoS
table, namely ε = ε(ρ, T, Ye).

The dominant energy condition places constraints on
the allowed values of the conserved variables

D ≥ 0, S2 ≤ (D + τ)2, DY ≥ 0 . (43)

These constraints may be violated during the evolution
due to numerical error, and they are enforced before solv-
ing for the primitive variables. A minimum allowable
value of the conserved density, Dvac, is chosen, and, if
D falls below this value, we set vi = 0 and D → Dvac

at that point. We choose Dvac as low as possible for
the magnetized neutron star binary, which is about 9 or-
ders of magnitude smaller than the initial central density
of the stars. If the second inequality is violated, then
the magnitude of Si is rescaled to satisfy the inequality.
Finally, DY is required to satisfy the constraint on D,
and the computed value of Ye must be in the equation of
state table. We try to invert the equations using a fast
3D solver [54]. If it fails, we use instead the more robust
1D solver described in Ref. [17]. We summarize these
two solvers below, and further details can be found, for
instance, in Ref. [55].

1. Fast 3D solver

Solvers for 2 or 3 variables can be faster in general
than solving for only one, since there are fewer implicit
calls to the table. We use the 3D solver for the field
z ≡ hW 2,2 as described in Refs. [54, 55], given by the
following equations (i.e., the definition of τ , S2, and z)

2 Note that here h is the total enthalpy and not the specific one
used in many works, as for instance in Ref. [55].

to be satisfied for the variables {W, z, T}, namely[
τ +D − z −B2 +

(BiSi)
2

2z2
+ P

]
W 2 − B2

2
= 0(44)[

(z +B2)2 − S2 − (2z +B2)

z2
(BiSi)

2

]
W 2

−(z +B2)2 = 0 (45)

z −DW − PW 2

DW
− ε(ρ, T, Ye) = 0. (46)

Note that ρ = D/W , Ye = DY /D (see Eqs. 21 and 22),
and that p and ε(ρ, T, Ye) are computed using the EoS.
A multi-dimensional Newton-Raphson solver requires the
Jacobian of these equations, which can be computed an-
alytically or numerically. Since this scheme also employs
the temperature directly as an unknown, it does not re-
quire any inversions with the EoS. Once the system has
been solved with a 3D NR scheme, one recovers the final
primitives as

vi =
γijSj
z +B2

+
(BjSj)B

i

z(z +B2)
(47)

ε = ε(ρ, T, Ye). (48)

Because of numerical error, a solution to these equa-
tions may either fall outside the physical range for the
primitive variables, or a real solution for z may not exist.
The solutions for ρ, T , and Ye are, at a minimum, re-
stricted to values in the table, and they are reset to new
values (the minimum allowed value plus ten percent) if
necessary. A failure of the recovery is reported when a
real solution for the primitive variables is not found (or it
does not exist). Such a failure occurs very rarely and may
be remedied by slightly increasing the density floor Dvac,
or trying the more robust 1D solved described below.

2. Robust 1D solver

We write the transcendental equations in terms of the
rescaled variable x ≡ hW 2/(ρW ) where h is the total
enthalpy and Ye is calculated from the conserved fields
DY /D. Following Ref. [39], we rescale the conserved
fields in order to get order-unity quantities, namely

q ≡ τ/D, r ≡ S2/D2, s ≡ B2/D, t ≡ BiSi/D3/2.
(49)

Using data from the previous time step to calculate an
initial guess for x, we iteratively solve these equations for
x within the bounds

1 + q − s < x < 2 + 2q − s , (50)

so that the final procedure can be written as

1. From the equation for SiSi, calculate an approxi-
mate Lorentz factor W , namely

W−2 = 1− x2r + (2x+ s) t2

x2 (x+ s)
2 .
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2. From the definition of D, calculate ρ = D/W .

3. From the definition of τ in Eq. 22 and the total
enthalpy, calculate

ε = −1 +
x

W

(
1−W 2

)
+W

[
1 + q − s+

t2

2x2
+

s

2W 2

]
.

4. Using this expression for ε, find the corresponding
temperature by looking up in the EoS table T =
T (ρ, ε, Ye) and then the pressure P = P (ρ, T, Ye).

5. Update the guess for x by solving the equation
f(x) = 0 using Brent’s method, where f(x) arises
from the definition of the unknown x

f(x) = x−
(

1 + ε+
P (ρ, T, Ye)

ρ

)
W.

The root of f(x) = 0 from Step 5 becomes the new guess
for x, and this process is repeated iteratively until the
solution for x converges to a specified tolerance, which is
ensured if there is a physical solution within the bounds.
Once the solution has been found, the velocity compo-
nents are obtained from Eq.(47) by setting z = xρW .
One advantage of this algorithm is that f(x) is a func-
tion of a single variable, and, in contrast to a multiple
variable search for a root, robust methods can be used to
find any root that can be bracketed.

C. Solving the eikonal equation

The usual approach to calculating the optical depth at
a given point is to consider some small number of pos-
sible directions in which to integrate the opacity of the
fluid, usually considering radial rays. In general, the ex-
istent algorithms necessarily involve global integrations
that bring with them complexities due to multiple reso-
lutions (from the AMR) and patches (from the domain
decomposition).

In Ref. [16], we introduced a more local approach that
is independent of the particular symmetries of the prob-
lem, where the optical depth at any given point is simply
the sum of the depth incurred to get to a neighboring
point plus the minimum depth among its neighbors. One
can justify such an approach by arguing that neutrinos
will explore all pathways out of the star, not just straight
paths. This approach is also iterative since changes else-
where do not immediately affect other areas, as would
happen with a global integration. Physically one expects
changes at the surface to take some time to propagate
throughout the star. However, as noted in Ref. [38],
because the depth depends on the opacity which itself
depends on the depth, one expects to iterate in any case.

Alternatively, the shortest distance from any point to
the zero distance curve can be computed by solving the

eikonal equation describing the motion of wave-fronts in
optics, namely

|∇τν | = κν (51)

where τν is the optical depth for some species of neutrino
and κν its corresponding opacity. In Minkowski space-
time, the eikonal equation takes the form

|∇u(~x)|flat =
√

(∂xu)2 + (∂yu)2 + (∂zu)2 = f(~x) (52)

for scalar functions u(~x) and f(~x), and gives the minimal
path line integral from the point ~x to the zero level set,
which can be located at infinity, namely

u(~x) = min
over different paths

[∫ ∞
~x

f(~l) dl

]
. (53)

The simple algorithm from Ref. [16] explained above
can be expressed as

Un+1 = min(dUni±1,j±1,k±1) + ∆xF (54)

where U = Ui,j,k ≈ u(~x) and F = Fi,j,k ≈ f(~x) at the
grid point, where d is the normalized distance from the
point xi,j,k to the minimum neighbor xi±1,j±1,k±1 (i.e., d

takes values among 1,
√

2, or
√

3, depending on whether
the point is immediately adjacent, diagonally along a
plane parallel to a coordinate axis, or diagonally along
a plane at 45◦ from a coordinate axis, respectively).

Here we instead adopt a more formal approach, fol-
lowing Refs. [56, 57]. Adopting a first-order approxima-
tion to the partial derivatives, we write Eq. 52 in N -
dimensions as

N∑
S=1

(
U − US

∆x

)2

= F 2 (55)

using again that U ≈ u(~x) and F ≈ f(~x) at the grid
point and with US the minimum value of u of the two
neighboring values in the xS direction. In particular, US
ranges over the following quantities

UX ≡ min(Ui+1,j,k, Ui−1,j,k) (56)

UY ≡ min(Ui,j+1,k, Ui,j−1,k) (57)

UZ ≡ min(Ui,j,k+1, Ui,j,k−1) . (58)

The solution of this quadratic equation is given by

U =
1

N

N∑
S=1

US+
1

N

√√√√( N∑
S=1

US

)2

−N
(

N∑
S=1

U2
S −∆x2 F 2

)
.

(59)
If the discriminant in the square root is negative, then
the various permutations of the lower-dimensional val-
ues (UXY , UY Z , UZX) are computed, and the solution for
Un+1 is then chosen as the minimum of these as detailed
in the following algorithm:
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1. Calculate the minimums (UX , UY , UZ).

2. Calculate the discriminant for the 3D problem

DXY Z = (UX + UY + UZ)2 (60)

− 3(U2
X + U2

Y + U2
Z −∆x2 F 2).

3. Calculate the solution

Un+1 =


(UX + UY + UZ)

3
+

√
DXY Z

3
if DXY Z ≥ 0

min(UXY , UY Z , UZX) otherwise

where the 2-dimensional values are computed as
follows

UXY =


(UX + UY )

2
+

√
DXY

2
if |UX − UY | ≤ ∆xF

min(UX , UY ) + ∆xF otherwise

UY Z =


(UY + UZ)

2
+

√
DY Z

2
if |UY − UZ | ≤ ∆xF

min(UY , UZ) + ∆xF otherwise

UZX =


(UZ + UX)

2
+

√
DZX

2
if |UZ − UX | ≤ ∆xF

min(UZ , UX) + ∆xF otherwise

where

DXY = (UX + UY )2 − 2(U2
X + U2

Y −∆x2 F 2)

DY Z = (UY + UZ)2 − 2(U2
Y + U2

Z −∆x2 F 2)

DZX = (UZ + UX)2 − 2(U2
Z + U2

X −∆x2 F 2).

The generalization to a curved background can be per-
formed easily considering the generalized eikonal equa-
tion

|∇u(~x)| =
√
γij(∇iu)(∇ju) = f(~x) (61)

which can be solved by assuming a conformally flat met-
ric γij = χηij , namely

|∇u(~x)|flat = χ−1/2f(~x) = (
√
γ)1/3f(~x) (62)

Notice that the same factor can be obtained when com-
puting the minimal distance Eq.(53), by using the line
element ds2 = γijdx

idxj ≈ χ−1dx2.

IV. RESULTS

Here we present a few tests of the code in various
scenarios, followed by a study of a binary neutron star
merger.

A. Tests of the Optical Depth

We present here a test of our new method for solving
the eikonal equation, Eq. 52, as described in Section III C.
In particular, we choose an analytic form of the solution,
u(x, y, z), so that we know in closed form the analytic
source, f(~x). In terms of real constants a and b, these
two functions are

u(x, y, z) = exp (−r2) , r2 =
x2

a
+
y2

b
+
z2

b
(63)

f(x, y, z) =
2

ab
exp (−r2)

√
b2x2 + a2y2 + a2z2. (64)

Given this function f(x, y, z), we test the algorithm by
comparing the numerical solution, obtained by relaxation
after approximately 20 iterations, with the closed form
of Eq. 63.

We set a domain [−2, 2]3 with one refinement level and
a minimum resolution ∆xmin = 0.04. In Fig. 1, we make
such a comparison for a spherical case with a = b = 0.25
and an ellipsoidal case with a = 0.25 and b = 0.05. As
is clear from the figure, we find very good agreement be-
tween the numerical and the exact solutions. We also
show with dashed contours at u = (0.3, 0.6, 0.9) the solu-
tion obtained with the algorithm Eq. 54, which was the
one used by HAD in Paper I. Although both of them be-
have similarly near the coordinate axes, the new method
preserves the symmetries of the problem much better.

B. Magnetized, neutron star (cold)

We evolve an isolated, magnetized star using the LS220
EoS and compare the dominant oscillation frequencies
with previous work. In particular, we construct a star
of (gravitational) mass 1.72M� with temperature T =
0.01 MeV and assume beta-equilibrium to set Ye. We per-
turb the star by adding a purely poloidal magnetic field
with maximum magnitude 8× 1014 G and evolve with a
constant initial temperature of T = 0.05 MeV, slightly
higher than that at which it was constructed (but still
much smaller than its Fermi energy). The star is evolved
within a coarse-level domain spanning [−150km, 150km]3

with four total levels of refinement achieving a finest level
covering the entire star with a gridspacing of ∆xmin =
144 m.

In Fig. 2 we plot changes to the central pressure and
magnetic field along with the associated Fourier power
spectral densities. Despite some initial transient stage,
these central quantities maintain a steady average values
avoiding excessive drift. The three dominant oscillation
frequencies agree well with those obtained in Paper I and
other works using non-linear perturbation theory.
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FIG. 1. Tests of the eikonal equation. By adopting an
explicitly spherical (top) or ellipsoidal (bottom) source, we
compare the numerically obtained solution with an analytic
solution on the z = 0 plane. Shown in colormap is the analytic
function u(x, y, 0) of Eq. 63 while the solid contours represent
the numerical solution obtained from solving the flat eikonal
equation Eq. 52. The numerical solution agrees very well with
the analytic solution and maintains the same symmetry. For
comparison, we also include the contours (dashed) obtained
with the scheme implemented in HAD from Paper I, which
is largely in agreement despite some irregularities along the
diagonals.

C. Rotating, magnetized neutron star (hot)

We construct a hot, rotating, magnetized star and
evolve with and without neutrino cooling. In particu-
lar, we construct a 2.1M� star spinning at 730 Hz with
an initial temperature of 12 MeV described by the HShen
EoS in beta equilibrium. The initial strength of the mag-
netic field at the center of the star is |B◦| = 1.8×1017 G.
The computational grid is identical to that described in
the previous section for the cold star.

In Fig. 3, we plot the maximum density and tempera-

1 2 3 4 5
t [ms]

0.99
1.00
1.01
1.02 (t)/ (0)

|B (t)|/|B (0)|

2 4 6 8 10
f [khz]

10 7
10 5
10 3
10 1

|P
SD

|

FIG. 2. Perturbed, cold star with the LS220 EoS. The top
panel shows the variations in central density, ρ0(t)/ρ0(0),
and in central magnetic field magnitude, |B0(t)|/|B0(0)|.
The bottom panel shows the (normalized) power-spectral-
density of the quantities in the top panel. The domain of
this evolution spans [−150km, 150km]3 with finest resolution
∆xmin = 144 m. The reference frequencies noted in Table I
of Paper 1 are shown with vertical, dashed, gray lines. Com-
paring to Fig. 4 of Paper I, the peak frequencies agree quite
well.

ture versus time for evolutions of this star. Included in
the plot is the result of the standard, unmagnetized evo-
lution along with those of evolutions including leakage
and both leakage and an initially poloidal magnetic field.
As expected the maximum density (generally occurring
at the center of the star) hardly depends on effects from
the magnetic field and neutrino cooling. In contrast, the
maximum temperature decreases faster for those runs in-
cluding neutrino cooling as would be expected. However,
this cooling is happening far from the central region of
the star where the temperatures for the different runs
are nearly identical. The optical depth decreases toward
the surface (snapshots of the optical depths are shown in
Fig. 4), allowing the neutrinos to escape. The magneti-
zation, even at this high level, has essentially no effect on
the total neutrino luminosity.

We display snapshots along the equatorial plane at
t = 5.3 ms of the star in Fig. 4. The optical depth and
vertical component of the magnetic field are very circular,
retaining the initial, axisymmetric structure of the star.
The emission rates of the different species of neutrinos
are also shown, with most of the emission occurring near
the surface. These results show that the code maintains
the stable, rotating star with neutrino cooling and mag-
netization present.

D. Binary neutron star merger

We conclude these results with a study of the coales-
cence of a binary neutron star system. In particular, we
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FIG. 3. Hot, rapidly rotating star. A 2.1M� (baryonic) star
spinning at 730 Hz with an initial temperature of 12 MeV.
The maximum density and maximum temperature are shown
for all evolutions in the top two panels. The total neutrino
luminosity for all species and central magnetic field strength
are shown for the evolutions using leakage and with a mag-
netic field, respectively. With the leakage active, the star cools
faster, as expected. An initial magnetization, even very large,
has only a very small effect, also as expected. Snapshots of
this star at t = 5.26 ms are shown in Fig. 4.

choose the same binary studied in Paper I, which uses
the SH tabulated equation of state to enable easy com-
parison. We also investigate possible differences in the
neutrino dynamics induced by the strong magnetic field
produced during the merger, whose amplification is bet-
ter captured by the LES.

The initial data for the binary is constructed using the
LORENE library, such that each star has baryonic mass
MB = 1.49M� with a cold temperature of T = 0.01 MeV.
The binary has initial separation 45 km, total ADM
mass MADM = 2.74M�, and orbital angular velocity
Ω = 1796 rad s−1. The electron fraction is set so that
the stars are initially in β-equilibrium.

An old neutron star binary like what we model here
is expected to be cold with, at most, a modest magnetic
field. Our choice to set the stars at an initial tempera-
ture of 0.01 MeV is consistent with this expectation and
near the minimum temperature present in the EoS tables.

Despite beginning cold, the stars reach much higher tem-
peratures during merger due to shock heating and other
processes. Similarly, the magnetic field, unless extraordi-
narily large, has essentially no effect during the early in-
spiral. During merger however, the magnetic field grows
and can have significant dynamical effects, particularly
on ejecta.

Our binary simulations are evolved in a domain span-
ning [−768km, 768km]3, using adaptive mesh refinement
with the finest grid spacing ∆xmin = 187m covering
the regions with density ρ ≥ 1013g/cm3. The other re-
finement meshes have increasingly larger sizes, but with
coarser resolutions (i.e., by a factor of either 4 or 2, cho-
sen with parameters). The inspiral proceeds as expected,
performing approximately 3.5 orbits before merger, as
shown in the density snapshots on the equatorial plane
displayed in Fig. 5.

Although we compare our results to those obtained in
Paper I, the MHDuet code incorporates LES techniques
with the gradient SGS model (i.e., with all the coefficients
set to zero except the one corresponding to the magnetic
field CM = 1/2) to faithfully capture the amplification
of the magnetic field during the merger with moderately
high grid resolutions, which our previous HAD code did
not. We note again that this comparison will allow us
to estimate the effect of magnetic fields on the neutrino-
driven dynamics during the first milliseconds after the
merger.

The dynamics of the magnetic field evolution can be
observed in Fig. 6, where the field intensity and iso-
density contours are displayed in the orbital plane for
the standard simulation (top row) and the one with LES
(bottom row). A thin, rotating shear layer arises at the
time of the merger between the stars, prone to develop
vortices at small scales induced by the Kelvin-Helmholtz
instability. The LES case is able to capture more faith-
fully the amplification of the magnetic field, as observed
qualitatively in Fig. 6. A more quantitative analysis is
performed in Fig. 7, which displays the average magnetic
field in the star, defined as

<B> =

∫
|B| dV∫
dV

, (65)

where the integration is restricted to regions where the
mass density is above 1013 g/cm3. Clearly in the LES
simulation, the magnetic field gets amplified by almost 2
orders of magnitude with respect to the standard simula-
tion during the first milliseconds after the merger. Notice
that this large difference is reduced at late times, a result
that has been observed previously when using medium-
low resolutions like the ones considered here [23, 24].

The neutrino emission and transport are dominated by
the matter density, temperature, and electron fraction.
Fig. 8 displays the temperature (in MeV) and the elec-
tron fraction, together with the resulting emission rates
(in erg/s/cm3) at the final time of our simulations. We
observe no qualitative differences between the standard
simulation in the top row and the case with LES at the
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FIG. 4. Hot, rapidly rotating star at late time (t = 5.26 ms). From left to right are shown: Top: Optical depths for νe, ν̄e,
and νx, Middle: The neutrino luminosities Qe, Qa, and Qx, and Bottom: The magnetic field components, Bx, By, and Bz.
all along the equatorial plane. The time evolution for this magnetized star with leakage is shown in (red, dotted line) Fig. 3.
The contour lines display constant density surfaces at log(ρ) = (10.5, 11, 12, 13)g/cm3.

bottom, indicating that the magnetic field is not affecting
significantly the dynamics of the neutrinos, except maybe
by some small de-phasing. Again, a more quantitative
analysis can be performed by computing the luminosity
for each neutrino species, displayed in Fig. 9. These lumi-
nosities similarly show no significant difference between
the standard and the LES cases.

Here, we initialize the stellar field with realistic values
B ≤ 1012G, which might increase during the merger due
to different MHD processes. On the other hand, in Pa-
per I (and most work by other authors) a much larger
magnetic field was set B ≥ 1015G. Here, the magnetic
field grows to large values, but this growth takes time. In
addition, the magnetic field that develops a few millisec-
onds after merger differs significantly. The field of Pa-
per I retains large scale structure even after merger, but
the growth of the magnetic field here develops via small
scale turbulence with equipartition between toroidal and

poloidal components. Its lack of significant large scale
structure minimizes many MHD processes such as the
magneto-rotational instability (MRI).

Finally, we compare the resulting gravitational waves
in Fig.10. The gravitational radiation is described in
terms of the Newman-Penrose scalar Ψ4, which can be
expanded in terms of spin-weighted s = −2 spherical
harmonics [58, 59], namely

rΨ4(t, r, θ, φ) =
∑
l,m

Cl,m(t, r)Y −2
l,m(θ, φ). (66)

The coefficients Cl,m are extracted from spherical sur-
faces at a radius rext = 300 km. Only a small de-phasing
at late times between the two simulations can be ob-
served, which might suggest some non-negligible effects
of the magnetic field braking the remnant.

Because of the importance of the gravitational wave-
form and its global nature, we study the convergence of
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FIG. 5. Binary neutron star with SH EoS. Snapshots of the density at various times t =
(0, 1.92, 3.84, 5.76, 7.68, 9.6, 11.52, 13.44, 18.24)ms during the coalescence. Notice that the variations due both to the
neutrino dynamics and by the magnetic field occur only from the merger onward. The contours display constant density
surfaces at log ρ = (10.5, 11, 12, 13)g/cm3. The stars first make contact around the time t = 9.5ms (i.e., close to the middle-right
panel), and the remnant fluid has largely circularized by the latest time shown (almost 9 ms after merger).

this signal for three different resolutions. We consider
the standard run discussed above, and run it with a finer
grid and a less resolved grid such that the resolution is
decreased by a factor of 1.25 with each step down in reso-
lution. We show the dominant mode C2,2 in Fig. 11 along
with the differences between successive resolutions. We
also display the differences in the phase of the signals. By
rescaling the finer difference by the factor expected for
third order convergence, we see that the differences indi-
cate at least third order convergence, as expected from
previous versions of this code.

V. CONCLUSIONS

Here, we present the results of our extension of the
MHDuet code, an independent implementation of the
fully relativistic magnetohydrodynamics equations [60].
The code is generated by the open-source software SIM-
FLOWNY, and runs under the mature SAMRAI in-
frastructure, which has been shown to reach exascale for
simple problems. We have added both large eddy simu-
lation (LES) methods developed to study the magnetic
field amplification that occurs in the turbulent merger
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FIG. 6. Binary neutron star with SH EoS. Snapshots of the magnetic field strength, and the same constant density iso-surfaces
as in Fig. 5, after the merger at times t = (11.52, 13.44, 18.24)ms. The top row corresponds to the standard simulation while
the bottom row shows the one with LES. Both simulations incorporate the leakage scheme.

regime and a simplified neutrino transport via a leakage
scheme. We present details about the adopted methods
as well as tests of the code. Although simplified, the
leakage scheme will soon be followed by more advanced
approximations to model the neutrinos in combination
with LES techniques.

For the sake of completeness, we have summarized the
evolution equations that are solved for the space-time,
the fluid, and the neutrinos, as well as the modifica-
tions needed for the LES with the sub-grid-scale gra-
dient model. We have explained in detail the required
steps to extend our formalism to microphysical, tabu-
lated equations of state. Finally, we have reviewed the
leakage scheme and how to calculate efficiently the op-
tical depth of the neutrinos. In particular, we present
two novel additions in this paper: (i) the extension of
the gradient SGS model to realistic EoS and (ii) a more
formal approximation to resolve the eikonal equation for
the optical depth, which preserves well the symmetries
of the problem.

We have performed several tests of the code, focusing
on the new additions. We have found that the new solver
for the eikonal equation is more accurate along diagonals
than the original naive method. We have reproduced the
oscillation modes of both cold and hot stars with realistic
EoS, and also computed the luminosity of the neutrinos

in such case. Finally, we have repeated a binary coales-
cence from Paper I, including both LES and leakage. Our
findings indicate that the magnetic field does not affect
significantly the dynamics of the neutrinos. Overall, we
assess that the code is correct and agrees with previous
results from other codes. The core of MHDuet , in-
cluding its treatment of adaptive mesh boundaries, finite
difference methods, and general approach to solving hy-
perbolic problems, is quite flexible and has already been
applied to other problems such as boson star mergers [33]
and an alternative theory of gravity [34].

As previously mentioned, we plan to extend MH-
Duet to account for neutrinos in a more realistic way,
using the M1 truncated-moments formalism with the
Minerbo closure. Such an approach provides for neutrino
absorption which has been shown to be important for a
proper characterization of the secular ejecta from neu-
tron star mergers. In addition, moment methods go much
further than the leakage scheme with actual directional
transport and scattering, which become increasingly im-
portant with longer evolutions of the post-merger.

Further studies with higher resolutions and with a re-
alistic EoS chosen consistent with the latest observations
from LIGO and Virgo [61] and NICER [62] are needed
to study the subtle effects of the magnetic field and neu-
trino dynamics on multi-messenger observables. In par-
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FIG. 7. Binary neutron star with SH EoS. Average magnetic
field strength as a function of time, starting approximately at
the merger, for the standard simulation and the LES. Clearly,
the magnetic field grows faster and reaches higher values with
the LES, even though these simulations employ only medium
resolution (see for instance Fig. 5 in Ref.[24] to see the effect
of the resolution on LES).

ticular, with initial data consistent with GW170817, we
plan to examine effects from the magnetic amplification
during merger on angular momentum transfer and secu-
lar ejecta during the post-merger. Although GW170817
was a “golden” event and perhaps unique, we can hope
that similar, close neutron star merger events will be ob-
served in gravitational and electromagnetic bands, espe-
cially once third generation detectors come online.

Appendix A: Extending SGS model to generic EoS

Here we extend the gradient SGS tensors from
Refs. [21, 22], valid for EoS of the form p = p(ρ, ε), in
order to accommodate the additional variables Ye and
DY (primitive and conserved, respectively) required for
a general EoS p = p(ρ, ε, Ye). We follow the same no-
tation as in Ref. [21], where Ca denotes the set of con-
served evolved variables and P a is the set of primitive
fields. Besides the new SGS tensor Hk

NY
, the only other

modification of the previous results arises in the term
Hp ≡ ∇ dp

dCa ·∇Ca from the new dependence on the pres-
sure, i.e., p(ρ, ε, Ye)

dp

dCa
=
dp

dρ

dρ

dCa
+
dp

dε

dε

dCa
+

dp

dYe

dYe
dCa

. (A1)

The only non-zero additional elements of the Jaco-
bian (conserved-to-primitive) dCa/dP b and its inverse3

3 This inversion is the only non-trivial new calculation, performed
essentially using Mathematica.

dP a/dCb are, respectively,

dDY

dYe
= D ,

dDY

dP a′
= Ye

dD

dP a′

dYe
dDY

=
1

D
,

dYe
dD

= −Ye
D
,

where P a
′

denote the “old” set of primitive variables
(i.e., excluding Ye) and Ca

′
the “old” set of conserved

variables (i.e., excluding DY ). Hence, we note that
the new variables are only partially coupled to the sys-
tem through the field D. In particular, we note that
dρ/dDY = dε/dDY = 0. We can now compute (A1) and,
therefore, obtain the following new expression for Hp

Hp = ∇
(
dp

dρ

dρ

dCa′
+
dp

dε

dε

dCa′

)
· ∇Ca′ +∇

(
dp

dYe

dYe
dCa

)
· ∇Ca

= Hold
p +∇

(
1

D

dp

dYe

)
· ∇DY −∇

(
Ye
D

dp

dYe

)
· ∇D

= Hold
p +∇ dp

dYe
· ∇Ye −

2

D

dp

dYe
∇Ye · ∇D. (A2)

where Hold was the expression obtained for the EoS p =
p(ρ, ε).

Appendix B: Numerical schemes

Here we present an overview of the numerical schemes
(i.e., the time integrator and the spatial discretization
for smooth and for non-smooth solutions) available in
Simflowny and their implementation in the SAMRAI
infrastructure.

We employ the Method of Lines to separate the time
from the space discretization. Within this approach, the
time integration of the equations is performed with the
standard fourth order Runge-Kutta (RK), that is written
in the standard Butcher form in Table I.

TABLE I. Butcher tableau for the standard explicit fourth-
order RK (with four sub-steps).

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 2/6 2/6 1/6

The spatial discretization of the Einstein equations is
performed using fourth-order, centered, finite differences.
For some quantity Ui,j,k defined at a gridpoint (xi, yj , zk),
we present the operators used to compute derivatives
along the x-axis with similar expressions for derivatives
along the y- and z-axes. The first order derivative oper-
ators can be written as

∂xUi,j,k =
1

12∆x
(Ui−2,j,k − 8Ui−1,j,k

+ 8Ui+1,j,k − Ui+2,j,k) +O(∆x4). (B1)
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FIG. 8. Binary neutron star with SH EoS. Snapshots of the temperature (left), electron fraction (middle) and neutrino emission
rates (right) at the final time of the simulation t = 18.24 ms, approximately 9 ms after the merger. The top row corresponds to
the standard simulation, while the bottom row shows the LES case. Both of them include magnetic field, although with LES
it is much stronger. Notice that the main difference is a small de-phasing between these two simulations, possibly due to the
stronger magnetic field.
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FIG. 9. Binary neutron star with SH EoS. Luminosities
of the different neutrino species as functions of time, starting
approximately at the merger for both the standard simulation
and the LES. Again, both of them are for stars with magnetic
field. The much stronger magnetic field (roughly two orders of
magnitude larger) of the LES simulation arising from its am-
plification during the turbulent phase of the merger produces
only small deviations in the neutrino dynamics compared to
the standard, magnetized simulation.

The second order derivative is

∂xxUi,j,k =
1

12∆x2
(−Ui−2,j,k + 16Ui−1,j,k − 30Ui,j,k

+ 16Ui+1,j,k − Ui+2,j,k) +O(∆x4). (B2)

The second order, mixed derivatives are obtained by ap-
plying the first order derivative operator twice. For in-
stance, the xy-derivative would be just

∂xyUi,j,k = ∂x (∂yUi,j,k) = ∂y (∂xUi,j,k) . (B3)

We use centered derivative operators for all the deriva-
tive terms except for the advection terms, which are
generically proportional to the shift vector βi. In those
cases, we use one-sided derivative schemes depending on
the sign of the shift, namely

∂xUi,j,k =



1

12∆x
(−Ui−3,j,k + 6Ui−2,j,k − 18Ui−1,j,k

+ 10Ui,j,k + 3Ui+1,j,k) if βx < 0

1

12∆x
(Ui+3,j,k − 6Ui+2,j,k + 18Ui+1,j,k

− 10Ui,j,k − 3Ui−1,j,k) if βx ≥ 0.

A small amount of artificial dissipation is applied to
the spacetime fields in order to filter the high frequency
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FIG. 10. Binary neutron star with SH EoS. Main mode of
the gravitational waveform as a function of the retarded time
(i.e., subtracting the traveling time of the wave to the surface
where it is computed), starting approximately at the merger,
for the standard simulation and the LES. Again, no signif-
icant differences are observed due to the presence of strong
magnetic fields.

modes of the solution which are not truly represented
in our numerical grid (i.e., their wavelength is smaller
than the grid size ∆x). We use the Kreiss-Oliger dissi-
pation operator [63] that preserves the accuracy of our
fourth-order operators and takes the form (i.e., for in-
stance along the x-direction) (again, written in terms of
the x-direction)

QxdUi,j,k = σ(∆x)5
(
Dx

+

)3 (
Dx
−
)3
Ui,j,k (B4)

=
σ

64∆x
(Ui−3,j,k − 6Ui−2,j,k + 15Ui−1,j,k

− 20Ui,j,k + 15Ui+1,j,k − 6Ui+2,j,k + Ui+3,j,k)

where σ ≥ 0 is the dissipation parameter.
The MHD equations are written in conservation law

form

∂tU + ∂kF
k(U) = S(U) (B5)

where U is the vector of evolved fields and F k(U), S(U)
their corresponding fluxes and sources, which might be
non-linear but depend only on the fields and not on their
derivatives. This form of the equation allows us to use
High-Resolution-Shock-Capturing (HRSC) methods [64]
to deal with the possible appearance of shocks and to
take advantage of the existence of weak solutions in the
equations.

A discrete conservative scheme of Eq. (B5) (i.e., the
change of the cell average is given by the difference in
fluxes across the boundary of the cell) can be obtained by
approximating the derivatives of the fluxes, for instance
along the x-direction, as follows

∂xF ≈
1

∆x
(F̂i+1/2 − F̂i−1/2) (B6)
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FIG. 11. Convergence test of the binary GW signal. The
primary mode C2,2 for three different resolutions of the bi-
nary evolution (top). The medium and low resolutions differ
from the high resolution by factors of 1.25 and (1.25)2. The
differences in the phase of the signals (middle) and the ab-
solute differences in the signals (bottom), both measures of
the error, are shown, as is the rescaled difference expected
between the higher two resolutions if the code converges to
third order. The phase appears to converge better than third
order while the simple differences in C2,2 appear convergent
at third order. The medium resolution shown here is the run
whose results are presented in the previous figures.

where the problem consists of finding a non-oscillatory,
high-order approximation to the interface values of
F̂i+1/2. Thus one can set F̂i+1/2 = R(F[s]), where R()
is a highly accurate reconstruction scheme providing a
stable interface flux value from point-wise neighboring
values, while the index [s] spans through the interpola-
tion stencil. The crucial issue in HRSC methods is how
to approximate the solution of the Riemann problem, by
reconstructing the fluxes at the interfaces with informa-
tion from the left(L) and the right(R) states such that
no spurious oscillations appear in the solutions.

We consider the following combination of the fluxes
and the fields, at each gridpoint xi,

F±i =
1

2
(Fi ± λUi) (B7)

where λ is the maximum propagation speed of the system
in the neighboring points. Then, from the neighboring
nodes {xi−n, .., xi+1+n} (i.e., where n is the width of the
stencil), we reconstruct the fluxes at the left and right of
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each interface as

FLi+1/2 = R({F+}) , FRi+1/2 = R({F−}). (B8)

The number 2(n + 1) of such neighbors used in
the reconstruction procedure depends on the or-
der of the method. Simflowny already incor-
porates some commonly used reconstructions, such
as Piecewise Parabolic Method (PPM) [65], the
Weighted-Essentially-Non-Oscillatory (WENO) recon-
struction methods [66, 67], and the fifth order Monotonic-
Preserving scheme (MP5) [51], as well as other im-
plementations such as the Finite-Difference Osher-
Chakravarthy (FDOC) families [68]. We typically use
the MP5 scheme in our code MHDuet .

We use a flux formula to compute the final flux at each
interface as

F̂i+1/2 = FLi+1/2 + FRi+1/2. (B9)

Note that this reconstruction method does not require
the characteristic decomposition of the system of equa-
tions (i.e., the full spectrum of characteristic velocities).
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C. Bona, and J. Massó, “A Simflowny-based
high-performance 3D code for the generalized induction
equation,” arXiv:1811.08198 [astro-ph.IM].

[30] S. L. Liebling, C. Palenzuela, and L. Lehner, “Toward
fidelity and scalability in non-vacuum mergers,” Class.
Quant. Grav. 37 no. 13, (2020) 135006,
arXiv:2002.07554 [gr-qc].

[31] M. Bezares, C. Palenzuela, and C. Bona, “Final fate of
compact boson star mergers,” Phys. Rev. D95 no. 12,
(2017) 124005, arXiv:1705.01071 [gr-qc].

[32] M. Bezares and C. Palenzuela, “Gravitational Waves
from Dark Boson Star binary mergers,” Class. Quant.
Grav. 35 no. 23, (2018) 234002, arXiv:1808.10732
[gr-qc].
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