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Abstract: Quantifying off-fault deformation in the near
field remains a challenge for earthquakemonitoring using
geodetic observations. We propose an automated change
detection strategy using geometric primitives generated
using a deep neural network, random sample consensus
and least squares adjustment. Using mobile laser scan-
ning point clouds of vineyards acquired after the mag-
nitude 6.0 2014 South Napa earthquake, our results re-
veal centimeter-level horizontal ground deformation over
three kilometers along a segment of the West Napa Fault.
A fault trace is detected from rows of vineyards modeled
as planar primitives from the accumulated coseismic re-
sponse, and the postseismic surface displacement field
is revealed by tracking displacements of vineyard posts
modeled as cylindrical primitives. Interpreted from the de-
tected changes, we summarized distributions of deforma-
tion versus off-fault distances and found evidence of off-
fault deformation. The proposed framework using geomet-
ric primitives is shown to be accurate and practical for de-
tection of near-field off-fault deformation.

Keywords: Near-field change detection, Mobile Laser
Scanning (MLS), point cloud segmentation, deep neural
network

1 Introduction
High-resolution mapping of surface deformation caused
by earthquakes is important for both earthquake hazard
mitigation and increased understanding of earthquake
fault dynamics [1]. Various geodetic observations and
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strategies for estimating change have been developed to
capture earthquake ground deformation. However, few
current techniques have the ability to deliver accurate
(cm-level) and high resolution (decimeter level spacing)
fields of distributed displacements for an earthquake in
the near field (i. e. closer than 200m to the fault trace).
Global navigation satellite system (GNSS) data is able to
estimate static [2] and dynamic [3, 4] seismic displace-
ment with subcentimeter precision. However, the spatial
coverage of GNSS data is restricted by the spatial dis-
tribution of the GNSS receivers which are generally too
sparse to monitor near-field fault deformation. Interfero-
metric synthetic-aperture radar (InSAR) is also capable of
delineating far-field earthquake deformation over a broad
area with centimeter-level precision [5]. However, interfer-
ograms tend to decorrelate with spatial change and are
vulnerable to large displacements and complex textures
(such as vegetation) on the ground. Earthquake ruptures
are characterized by complex deformation patterns, and
a dislocated ground surface makes InSAR phase unwrap-
ping near the surface deformation difficult [6, 7]. Optical
imagery datasets can also be used for deformation detec-
tion [8], but only provide horizontal motion, and in gen-
eral are unable to provide better than decimeter level ac-
curacy, evenwithhigh-resolution images [9]. Therefore, al-
though all these geodetic observations serve as important
products for post-earthquake analysis [10], none of them
are currently capable of capturing high accuracy and high-
resolution rupture deformation in the near field.

Two of the most commonly used strategies for near
field earthquake deformation detection are correlation-
based and registration-based change detection using ei-
ther optical imagery or lidar. For example, Milliner et al.
(2015) used an image correlation-based method to quan-
tify the horizontal displacement of the 1992 Mw 7.3 Lan-
ders, California earthquake [11]. The method produced
decimeter accuracy horizontally but does not provide ver-
tical motion. The resolution of the correlation-based al-
gorithm is also affected by the required size of the corre-
lation search window. Larger window sizes are required
for improved correlation but makes the technique insen-
sitive to subtle local changes. Smaller window sizes will
be more sensitive to subtle changes but in general lead to

https://doi.org/10.1515/jag-2021-0023
mailto:xzhu123@uh.edu
https://orcid.org/0000-0003-3126-8299
mailto:clglennie@uh.edu
https://orcid.org/0000-0003-1570-0889
mailto:bbrooks@usgs.gov


66 | X. Zhu et al., Near-field deformation detection

noisier correlation results. 3D-based earthquake deforma-
tion using the iterative closest point algorithm (ICP) has
been implementedusingboth lidar and structure frommo-
tion (SfM) point clouds, [12, 13, 14, 15], for example. Zhang
et al. (2015) used ICP to estimate earthquake deformation
for the 2010 Mw 7.2 EI Mayor-Cucapah earthquake [14],
Scott et al. (2018) estimated deformation for the Mw 7 2016
Kumamoto, Japan earthquake [13], and Scott et al. (2020)
used ICP to estimate the long term creep rate for a section
of the Central San Andreas and Calaveras faults [15]. The
ICP method using airborne laser scanning (ALS) observa-
tions works well when expected displacements are larger
than the decimeter-level uncertainty [9]. The spatial reso-
lution of ICP is also limited by the size of the correlation
window which is generally 20 to 100 meters [13, 14, 15, 16,
17, 18, 19]. ICP assumes uniform deformation within the
correlation windows (e. g. [20]) and therefore the method
may artificially smooth near-field deformation estimates.
Both image-based correlation and ICP implicitly assume
that spatial features within the search window are rigidly
transformed andnot deformedduring the earthquake. The
search window size has to be chosen wisely to balance de-
tection resolution (using a smaller window size) and ro-
bustness (using a larger window size). It is challenging to
keep this balance in the near field due to the complex ge-
ometry of the topography, the nonlinearity of the defor-
mation pattern, and possible incomplete representation of
the scene due to data occlusions.

Compared with ICP and image correlation, geomet-
ric model-based change detection removes the constraint
of rigid deformation within a search window. Geomet-
ric model-based methods interpret the point clouds us-
ing models with simple geometry, i. e. geometric prim-
itives. Changes are derived by tracking primitive move-
ment between epochs. Kusari et al. (2015) showed that
sub-centimeter level changes can be estimated by match-
ing geometric models of building walls and roofs which
are estimated from point clouds captured on planar sur-
faces [21]. Their method shows the potential for high-
accuracy change detection using a sparse and redundant
representation of the point clouds with simple geomet-
ric primitives. However, this method cannot estimate fault
displacement from a single planar geometric primitive be-
cause it is only sensitive to motion along the plane nor-
mal; therefore several surfaces need to be amalgamated
to estimate 3D displacement. In contrast, DeLong et al.
(2015) usedmanually identified fence-posts and a cylindri-
cal model to directly show centimeter-level changes from
the 2014 Mw 6.0 South Napa earthquake [22]. The differ-
ence in pre- and post-event 3D cylinder locations was able
to directly provide estimates of surface displacement for

each post. Although these initial results were promising,
the fence posts had to be manually identified and mod-
eled.We propose an automatedmethod of geometric prim-
itive identification, matching, and displacement estima-
tion to provide a more widely distributed model of earth-
quake deformation.

Using mobile laser scanning (MLS), we acquired 3D
point clouds representing the geometry of fault-related
surface displacements with sub-centimeter accuracy for
the 2014 Mw 6.0 South Napa earthquake [23, 24]. Mini-
mal coseismic offset, including coseismic and early post-
seismic displacements 7 days after the earthquake,1 is
detected by monitoring deformation of planar primitives
representing the geometry of vineyard rows which were
straight prior to the earthquake. Cylindrical primitives are
generated with a workflow relying on PointNet [25], RAN-
dom SAmple Consensus (RANSAC) [26], and least squares
fitting. Postseismic surface displacements are detected
by tracking the cylindrical primitives between epochs of
MLS data collected 7 and 34 days after the earthquake,
and it is shown that this method has the ability to de-
tect centimeter-level ground displacement in the near
field at sub-centimeter level precision. The detection re-
sults provide new observations of fault-related surface
displacements with high-resolution and accuracy. Dis-
tributed ground displacements detected near the fault
trace are important for the study of rupture mechanisms
for active faults. The proposed semantic primitives can be
implemented in automated point cloud-based change de-
tection and automatic point cloud segmentation.

The rest of this paper is organized as follows: TheMLS
datasets from the 2014 Mw 6.0 South Napa earthquake are
briefly described. The change detection strategy is demon-
strated in the methodology section. Change detection re-
sults are presented for coseismic response, fault trace es-
timation, and postseismic deformation detection. Conti-
nuity of the rupture zone is interpreted and discussed
followed by analyses of off-fault deformation distribution
and uncertainties within the detection results.

2 MLS survey and dataset for the
2014 Mw 6.0 South Napa
earthquake

The Mw 6.0 South Napa earthquake of 24 August 2014 was
the largest earthquake in over 25 years for the San Fran-

1 For simplicity, we refer to the detected coseismic and early postseis-
mic displacements 7 days after the earthquake as coseismic offset for
the rest of the paper.
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Figure 1: Overview of MLS survey area (a). Mobile laser scanner and
images of vineyard rows (b, c).

cisco Bay Area, causing over half a billion dollars of eco-
nomic damage. The earthquake was nucleated on the ac-
tiveWest Napa Fault, a right-lateral strike-slip fault. In situ
measurementsweremade documenting the coseismic sur-
face displacements ranging from 5–50 cm largely confined
to the Great Valley Group – bedrock resulting from Meso-
zoic forearc basin sedimentation – in the northern part of
the rupture, whereas shallow afterslip occurred within a
Quaternary alluvial basin to the south [27, 28]. Two MLS
surveys [23] were conducted to document earthquake de-
formation using a RIEGL VZ-400 scanner; the first survey
was on September 1 and 2, 2014 and the second onSeptem-
ber 28–30, 2014. Laser point density was approximately
280 points per square meter at a distance of 50m from the
scanner.

Our study area is a subset of the MLS survey and
comprises several vineyards where the fault trace crossed
the vineyard rows approximately perpendicularly. Figure 1

shows the study area and representative pictures of vine-
yard rows. The average vine row length is approximately
250m with anchor posts at two ends spanning each row.
The average interval between rows is approximately 2.3m.
Vineyard rows were originally constructed to be straight
lines with constant intervals between plants to maximize
sunshine, therefore, any curvature, dislocation of tiles and
posts can be confidently attributed to the 2014 South Napa
earthquake [23]. Minimal coseismic offset is estimated in
the first MLS survey; postseismic surface displacements
are monitored between the two MLS surveys. Because of
the primarily dextral nature of the Napa earthquake, we
focus our method to examine only the horizontal compo-
nents of deformation.

3 Change detection methodology

The key concept of the proposed change detection strat-
egy is to represent MLS point clouds with geometric prim-
itives and derive changes by tracking these primitives be-
tween temporally spaced datasets. Geometric primitive is
a term from computer vision referring to simple geome-
try of an object that can be described by an equation with
a number of free parameters [29]. In this case, geomet-
ric data are unordered lists of MLS point returns in three-
dimensional Cartesian space and simple geometries are
planar and cylindrical primitives representing outlines of
objects scanned by the lidar scanner. With augmentation
by additional semantics, planar vineyard row primitives
and cylindrical fence post primitives are generated from
MLS point clouds. As sparse and redundant representa-
tions of point clouds, geometric primitives are highly ef-
fective geodetic markers that can be temporally tracked to
reveal ground displacement.

The total near-field displacement consists of on-fault
brittle deformation in the principal and secondary fault
zone, and off-fault deformation [30, 11]. Figure 2 is a
schematic drawing of planar features crossing the syn-
thetic surface ruptures of an earthquake, and the objec-
tives of the proposed change detection are to:
– Delineate fault trace locations.
– Quantify near-field displacements within approxi-

mately 200m of the fault trace.
– Summarize displacement distributions versus off-

fault distance.

Table 1 shows the basic change detection strategies with
detailed descriptions of the methodology given in the fol-
lowing sub-sections.
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3.1 Change detection using planar
primitives for coseismic response

Coseismic response is approximated using offsets from
planar primitivesmodeled from the toppart of the scanned
vine row. Each vine row is cropped using a bounding box
with a width of 3m and defined by the posts located at the
ends of each row, where post locations are manually dig-
itized from the MLS data. The top 20 cm portion of each
row is automatically extracted and analyzed using a mov-
ing window. Due to scanner occlusions for the lower part
of the vines, only the top part of the vine point clouds are
extracted to ensure complete spatial coverage. A 2D plane
is constructed spanning the post locations with the planar
normal parallel to the ground. Deviations from this plane
estimate vine row dislocation due to the Napa earthquake,
and normal distances from this plane are calculatedwhich
approximate total coseismic offsets.

Figure 2: Schematic (a) and geometric (b) drawing of planar features
crossing the surface rupture (grey zone). Total near-field displace-
ment is labeled as T . Given that the row length (about 250m) is
about 500 time larger than the displacement (about 50 cm) the an-
gle θ is small enough (1 − cosθ ≈ 2 × 10−6) that the deviation from
the reconstructed plane (AB) serves as a good approximation of the
minimum coseismic offset (BC). Note that the offset does not re-
flect the true estimates of accumulated deformation (AD or AD’) as
surface rupture was expressed as en echelon fractures. Figure (a)
adapted from a graphic given in [30].

With raw MLS data as input, point clouds within the
moving window are filtered to remove outliers based on
distances to nearest neighbors [31], and offsets from pla-
nar primitives are calculated as averaged point-to-plane
normal distances within a 1m window. Turning points are
detectedwhere the offsets change signs. A series of consis-
tent turning points are used for an estimation of a digital
fault trace.Given that the row length (about 250m) is about
500 times larger than the displacement amount (about
50 cm), the angle (θ in Figure 2) between the plane nor-
mal and dislocation direction is small enough (1 − cos θ ≈
2 × 10−6) that deviation from the reconstructed plane (de-
tected as minimal coseismic offset) serves as a good ap-
proximation of the coseismic response. Repeating this pro-
cess over all the extracted rows, distributed horizontal dis-
placements are derived estimating the minimum coseis-
mic offset along the fault trace. Note that we cannot guar-
antee that both (a) the vine rows were completely straight
before the earthquake and (b) the posts’ locations selected
as end points accurately depict the optimal plane location.
Therefore, the offsets from the planar primitive should not
be evaluated as true estimates of accumulated deforma-
tion (Figure 2(b) AD) but rather the minimum coseismic
offset (Figure 2(b) BC) approximated by the planar resid-
uals as (Figure 2(b) AB). However, these deviations from
the plane do enable an accurate estimation of the fault line
location and also allow the examination of displacement
curvature near the fault.

3.2 Change detection using cylindrical
primitives for postseismic surface
displacement estimation

Postseismic surface displacement is estimated using the
displacement of cylindrical primitives between two tempo-
rally spaced MLS surveys. To model the cylindrical prim-
itives, which represent scanned posts at the end of each
vine row (Figure 4), the point clouds first need to be seg-
mented. Inpreviouswork, the segmentationwasmanually

Table 1:MLS change detection strategies.

Process Change detection for minimal coseismic offsets Change detection for postseismic surface displacements

Input data Point clouds of the top of vine rows Point clouds representing vineyard posts
Primitive type Planar primitives defined by vinerow end posts Cylindrical primitives extracted using PointNet [25], filtered

using RANSAC and modeled using a least squares adjustment
Detection methods Measure point to plane distances Cylindrical primitive locations observed at two epochs
Output instances Total deformation of 1300 vine rows 7 days post

earthquake, and estimation of the fault trace
Displacements of 2600 posts between 7 and 34 days post
earthquake
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Figure 3: Schematic Structure of PointNet [25]. Feature learning network on top, and segmentation network on bottom.

performed [22]. To automate this process, we implement a
deep neural network – PointNet [25] to automatically seg-
ment the MLS point clouds. The segmented datasets are
later filtered using RANSAC [26] and modeled as primi-
tives using a least squares adjustment. Displacements are
derived by tracking the relative motion of the cylindrical
primitives between the two epochs of MLS data.

3.2.1 PointNet: Automated point cloud segmentation

PointNet, proposed by [25] is a unique deep neural net-
work that directly works on 3D point clouds. The method
and its variants have been applied as a common strategy
for lidar point cloud semantic segmentation (e. g. [32, 33,
34, 35]). The network learns a set of optimization func-
tions selecting informative points and aggregates the op-
timization results as global descriptors. Fully connected
layers and symmetric max-pooling functions are imple-
mented to handle the irregular format of point clouds. Fig-
ure 3 shows the basic structure of PointNet for point cloud
segmentation. The network consists of two major parts: a
feature learning network that learns with fully connected
layer structures ended with a max-pooling layer and a seg-
mentationnetwork that augments learned local andglobal
features and outputs per point labels as segmentation re-
sults.

For supervised learning on point clouds, we set up
a vine row training set where 120 scanned vineyard row
point clouds are manually labeled, consisting of 9 mil-
lion total labeled points. Every point within this set falls

Figure 4: Segmentation example for a portion of a single vine row.
MLS point clouds were automatically segmented into four categories
using PointNet.

into one of four categories – (1) posts, (2) vegetation, (3)
guide wire and (4) ground. Random sampling from this
training set generates over 40 thousand training samples,
where each sample consists of 2048 points in a single vine
row. The train-validation-test split is 7:1:2. Figure 4 shows a
segmentation example where point clouds were automat-
ically segmented into the four categories. After training,
the network is capable of processing all 2600 scanned sec-
tions of vineyard posts, which consist of over 300 million
MLS laser returns. The point clouds were automatically
segmented into the four categories and the postswere then
extracted for cylindrical primitives modeling. Herein, only
the end posts are analyzed because the middle posts were
often occluded by the vine row vegetation.
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3.2.2 Cylindrical primitives modeling

The segmented posts were modeled as cylindrical primi-
tives and then pre- and post-deformation primitives were
clustered by their locations. A Gauss-Helmertmodel [36] is
used for least squares fitting of the cylindrical primitives:

g(l + e, p) = X2 + Y2 − r2 = 0, (1)

where [[
[

X
Y
Z

]]

]

= R2(ϕ)R1(ω)
[[

[

xobs.
yobs.

zobs. − zobs.

]]

]

, (2)

R1(ω) =
[[

[

1 0 0
0 cosω sinω
0 − sinω cosω

]]

]

, (3)

R2(ϕ) =
[[

[

cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ

]]

]

, (4)

where the inputs are MLS laser returns for a single post
[xobs., yobs., zobs.]T with measurement uncertainties e. The
point clouds are shifted and rotated so that a cylinder can
be estimated at the center of each cloud with a vertical
axis. The estimated parameters p are shift components
(X,Y), and rotation angles (ω,ϕ) for the x- and y-axis. The
radius r of the cylinder is fixed at 5 inches (12.7 cm) for the
observed anchor posts.

The top face of a scanned post is usually missing or
occluded by vegetation due to the sideways field of view
of the mobile scanner. As a consequence, the height of
each cylinder (shift component Z) is left as a free parame-
ter and the horizontal location of the model is estimated
at the mean height of every point cloud to reduce shift-
rotation correlations. Because of uncertainties in the lidar
measurements and mis-segmented points from PointNet,
we embed a RANSAC algorithm to improve the robustness
of the least squares fitting. The RANSAC function is initial-
izedwithmeanandprincipal directionsof thepoint clouds
for shift and rotational components. Final modeling re-
sults are estimated through a least squares adjustment us-
ing the optimumRANSAC parameters and estimated inlier
points. Figure 5 shows an example of the adjustment re-
sults.

Results from RANSAC and the least squares adjust-
ments are cylindrical primitives of the fence posts with ge-
ometry characterized by the posts central locations and
orientations. Propagation along the cylinder axis gives in-
tersections of the posts with the ground. Using ground
points segmented from PointNet, intersections are ex-
tracted. Corresponding intersections before and after the
deformation are clustered and differenced to estimate
ground displacement between the two MLS surveys.

Figure 5: Example of a cylinder primitive. Red dots are segmented
MLS points, and the green cylinder shows the optimal fit modeled
primitive.

4 Detection of earthquake-related
surface displacements

Using the planar and cylindrical primitives, the surface
displacement field of the fault is determined. Minimal co-
seismic offset is estimated by quantifying the vine row de-
formation from the first MLS survey by calculating devi-
ations from a planar primitive. Postseismic deformation
is estimated by tracking cylindrical primitives and their
ground intersections between the two MLS surveys.

4.1 Coseismic response detection

Figure 6 displays minimal coseismic offset detected us-
ing planar primitives. Dextral displacement magnitude is
color-coded as the deviation from each planar primitive.
Right-lateral motion of the fault is characterized by the
consistent red to blue color change across the fault. The
fault trace is estimated by mapping the transition from
red to blue for every planar primitive where a consistent
strike, expanding north-south, can be modeled by con-
necting adjacent transitions throughout the surveyedarea.
This fault trace approximates the surface projection of the
fault. Given the intersections where the fault trace tra-
verses planar primitives, a digital fault trace (black line in
Figure 6) is estimated using robust local linear regression
(LOWESS) [40]. This fault trace is piecewise linear due to
the regression model. Employing this derived digital fault
trace, statistics for off-fault directions can be calculated.

Modeling the digital fault trace serves as a good sup-
plement for field reconnaissance of the fault ground rup-
ture given that (a) on site surveys of ground ruptures can
be localized and inconsistent over kilometer scales. An
earthquake and its induced geo-hazards may limit the ac-
cess to zones of deformation along the surface faulting,
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Figure 6:Minimal coseismic offsets approximated by the deviations
from planar primitives. Offsets are color-coded and the estimated
fault trace is given as the black line. Relief base map is generated
from airborne laser scanning (ALS) data [3]. Field measurements
of coseismic displacements are available at the fault crossing of
Henry Road [37, 38]; alignment array measurements of postseismic
surface displacements are available at station NHNR [39].

and important displacement signatures could be missed
by a field survey if the displacement is not associated with
significant cultural feature damage [38, 41, 42]. (b) the
slip front of the fault can be buried without reaching the
surface and expressed by insignificant ground displace-
ment or scattered ground cracks insteadof obvious ground
ruptures [23, 24]. This method estimates the fault trace
from redundant primitive measurements throughout the

Figure 7: Postseismic surface displacement fields detected using
cylindrical primitives. Orange solid line shows the fault trace. Sur-
veyed area is subdivided with numbers indicating areas of study for
upcoming analyses. The pin arrowhead depicts the location of de-
tection where the length and orientation of each arrow represents
the amount and direction of postseismic surface displacement.

area; therefore, the estimated fault trace is less vulnera-
ble to local anomalies and more consistent spatially. The
automated process also has the potential for delivering
a ground rupture map in a timely manner post earth-
quake.

4.2 Postseismic surface displacement
detection

Figure 7 shows the horizontal displacement of cylindrical
primitives in between the two MLS surveys. Each line on
the map represents the path of displacement for a single
post tracked at its ground intersection. Trackingmore than
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Figure 8: Overlap of planar residuals and postseismic change detection results (a, b) for study areas 3 and 4 in Figure 7. Planar residuals
are color-coded by magnitude of minimal coseismic offsets; the symbol of strike-slip indicates the location of the fault trace. The pin arrows
depict the postseismic displacements detected using cylindrical primitives where the length and orientation of each arrow represents the
amount and direction of postseismic surface displacement. (a) The red-blue margin delineates the coseismic fault trace; the distributed
arrows localize the postseismic fault crossing. Inflection points from the detected minimal coseismic offset are collocated with the change
in arrow directions where adjacent arrows change direction dramatically. This confirms the consistency of the change detection results as
the transition in both coseismic and postseismic displacements are colocated.

2600 cylindrical primitives’ displacements, postseismic
surface displacement fields in the near field are revealed.
The detected displacement field quantifies the surface dis-
placement between Sep 1st and Sep 30th, 2014 which are
7 and 34 days after the mainshock. Local shear patterns
are found where the fault trace crosses between succes-
sive posts (Figure 8, Figure 9(a–d)). Colocated with the
planar residual approximation to coseismic response, Fig-
ure 8 shows the consistency of the detection results using
two kinds of geometric primitives. Planar primitives track-
ing coseismic response and cylindrical primitives estimat-
ing postseismic surface displacements are colocated at the
fault trace, which validates the location of the ground rup-
ture. While the planar primitives can only provide 1D dis-
placement as deviations from straight vine rows, the cylin-
drical primitives provide 2Ddisplacement vectors showing
local deformation in the near field.

Subtle postseismic surface displacement fields are re-
vealed from changes detected using cylindrical primitives.
Figure 9 shows six local displacement patterns. Subplots
a–d show local shear patternswhere the fault trace crosses
a line of successive posts. The lines represent vine rowpost
displacements from Sep 1st to Sep 30th. To track how lin-

ear features on the ground are deformed by the fault, ad-
jacent posts are connected by local regression lines. Each
node of the line represents a post’s location at that epoch
and the curvature of the line represents nonlinear local
deformation induced by shear. Local shear patterns are
found in those cases characterized by the transition of sur-
face displacement directions and entangled pre- and post-
deformation regression lines. Spinning patterns are found
where the fault trace traverses lines of posts.

Constant strike-slip displacements are observed at
posts located on either side of the fault, shown in cases
5 and 6 in Figure 9(e) and (f). The displacements show lit-
tle variation in direction and scale. The isotropic displace-
ment patterns for cases 5 and 6 indicate little or no off-fault
deformation at these locations.

5 Interpretations and discussion

Compared with previous geodetic change detection re-
sults, the proposed strategy successfully reveals the 2D
near field horizontal deformation for the 2014 South Napa
earthquake. Though focused on sensing horizontal com-
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Figure 9: Postseismic surface displacement patterns for the six study areas numbered in Figure 7 (case 1–6 as a–f). The pin arrows show the
detected postseismic surface displacements; the arrow head depicts the location of the detection where the length and orientation of each
arrow represents the amount and direction of postseismic surface displacement. Regression lines show how linear features are deformed at
the fault crossing due to postseismic deformation. Red and green lines represent vineyard post locations captured by MLS surveys 7 and 35
days after the Napa earthquake.
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ponents, cylindrical primitive-based change detection can
also reveal 3D deformation where vertical components
are derived by differencing the intersections of the prim-
itives with the ground. However, the estimated vertical
component does not benefit from the redundancy of the
cylindrical model, and thus the uncertainty of the verti-
cal component directly depends upon the vertical point
cloud accuracy. It is challenging to model the top and bot-
tom face of a cylindrical post given poor data coverage
from the sideways field of view of a mobile platform. Con-
sidering the dextral displacement pattern, we only pro-
vided horizontal components of our change detection re-
sults.

Figure 10: Zoomed-in plot of planar residuals which approximate
minimal coseismic offset at the fault trace. Color changes smoothly
over the fault trace.

5.1 Continuity analysis of the rupture zone

Continuous vine row curvature over the region indi-
cates that the principle rupture remains buried under
the ground, whereas a constant dislocation discontinuity
at the surface would indicate that either the fault front
reached the ground surface or a secondary fault zone ex-
ists. Figure 10 shows a zoomed-in map of the planar ex-
pression of coseismic response with color-coded planar
residual magnitude. The color at the fault trace changes
smoothly, indicating no discrete fault patches exist. Such
a continuous displacement pattern is found throughout
the surveyed area and is consistent with the analyses that
the fault rupture remained buried. The smooth intersec-
tion reflects the characteristics of a fault trace where sur-
face displacements are comprised of en echelon sheared
extensional fractures and linear ‘mole tracks’. This pat-
tern is consistent with in situ measurements from [27],
and [28], and shallow fault slip modeling presented in [23]
and [24].

5.2 Distributions of deformation versus
off-fault distance

Postseismic surface displacement distribution versus off-
fault distance provides evidence highlighting non-brittle
deformation within the detected changes. The metric for
off-fault distance is calculated as the perpendicular dis-
tance from observation locations to the closest linear fault

Figure 11: Off-fault distributions of postseismic surface displacements. Components of postseismic fault parallel displacements (a) and
displacement directions (b) are plotted versus off-fault distance. Fault parallel component is determined from the strike of the nearest fault
section. Robust local linear regression trends are provided to highlight the off-fault distribution pattern.
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Figure 12: Off-fault distributions of postseismic displacements for the six study areas in Figure 7 (case 1–6 as a–f). For each case, two distri-
butions are provided: distribution of fault parallel displacements (top) and displacement angle (bottom) plotted versus off-fault distances.
The fault parallel component is determined from the strike of the nearest fault section. An ≈10m transition zone is estimated visually at the
fault crossing for areas 1–4.

trace segment estimated using the planar primitives. Be-
cause the posts are anchored at various distances from
the fault trace, off-fault distances are spread out uniformly
across the rupture zone. Postseismic surface displace-
ments are projected along the fault trace direction as fault
parallel displacements. Off-fault deformation is expressed
as the profile of fault parallel displacements.

Figure 11 shows the results where fault parallel
displacements and postseismic displacement directions
are distributed over a range of off-fault distances. Non-
parametric robust local linear regression trends was used
to highlight the displacement distribution pattern without
introducing assumptions for local fault mechanics. The
dextral pattern is obvious in the displacement angle plot
where two dominant sliding directions are identified as

−51.33° and 145.51° from the East. Angular variances are
larger close to the estimated fault trace and smaller fur-
ther away. The dextral pattern is also confirmed by the dis-
placement magnitude transition at the fault trace.

Figure 12 shows the same off-fault displacement plots
for the six study areas corresponding to Figure 7. Areas
1–4 (Figure 12 a–d) show about 3 cm of off-fault deforma-
tionwithin approximately 10mof the fault trace. This 10m
transition zone is estimated visually andhighlighted in the
figure for the area 1–4 fault crossings. The corresponding
angular profiles show transition of displacement angles as
a result of crossing the fault. Cases 5 and 6 (Figure 12(e, f))
show no sign of off-fault deformation as these profiles do
not cross the fault trace and show little variation in dis-
placementmagnitude and angle comparedwith cases 1–4.
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Table 2: Average postseismic fault parallel displacements for the
six study areas in Figure 9, in centimeters (standard deviation in
brackets). Displacements for each side of fault do not include 10m
transition zone.

Study area West of fault East of fault Difference

1 0.79 (1.27) −3.09 (1.00) 3.88 (1.62)
2 1.71 (1.27) −2.32 (1.34) 4.03 (1.84)
3 0.51 (1.06) −3.29 (1.22) 3.79 (1.61)
4 2.65 (0.83) −1.28 (0.74) 3.93 (1.11)
5 – (−) – (−) 3.29 (0.70)
6 – (−) – (−) −3.47 (0.76)

Table 2 shows the corresponding postseismic fault parallel
displacement for each side of the fault outside the transi-
tion zone.

5.3 Potential errors within the change
detection results

Because both coseismic and postseismic surface displace-
ments are calculated as relative changes, the majority of
residual systematic errors for the MLS and any geodetic
datum biases will not affect the calculated relative defor-
mation. Given that coseismic and postseismic surface dis-
placements are resolved from unique data collections af-
ter the earthquake, there are no repeat observations of the
same event for estimating uncertainty. However, the accu-
racy of the detection results can be evaluated by (a) com-
paring coseismic and postseismic surface displacements
with field observed coseismic ground displacements and
measurements of postseismic surface displacements at
alignment array stations, and (b) by checking the inter-
nal consistency of displacements in areas that are believed
to share similar deformation patterns. For example, spa-
tially close vineyard rows crossing the fault at a similar
angle should show coherent coseismic displacements dis-
tributed off fault; areas far away from the fault trace should
show regional dextral postseismic displacements that are
uniform for either side of the fault.

5.3.1 Validation with field observations and alignment
array measurements

We can validate the accuracy of the detection results with
field and alignment array observations collected near the
fault crossing at Henry Road (Figure 6). Brocher et al.
(2015) [37] recorded 40 cm right-lateral offset, rounded to
the nearest centimeter, in the field north of Henry Road

Figure 13: Planar residual estimate of minimal coseismic offset av-
eraged over 1300 vine rows. Error bar indicates local displacement
variation within 10 meter bins of off-fault distance.

within twodays after the earthquake. Thefield rupturewas
observed as a zone of en echelon left-stepping fractures,
and approximate uncertainties for measured offsets are
around 5 cm. Ponti et al. (2019) [38] recorded 40.9–46 cm
strike-slip displacements at the same location using an es-
timated fault azimuth. They also point out that most of
the surface rupture was expressed as disconnected left-
stepping en echelon fractures several meters or more in
length with measurable dextral displacements. Hudnut
et al. (2014) [3], using alignment array postseismic dis-
placement measurements and AFTER models inferred a
14 cm coseismic displacement at alignment array station
NHNR. Our estimate of the minimal coseismic offset from
the planar primitives is about 25 cm shown in Figure 13
which agrees with field measurements at the decimeter
level. Our estimation is smaller than [37, 38] because (a)
the detected minimal offset could underestimate the true
accumulated displacement as explained in Section 3.1
(Figure 2), (b) estimating fault azimuth in the field might
lead to an overestimate of the surface displacement, and
(c) we are comparing localized in situ measurements near
the fault crossing at Henry Road with a regional average
estimated from all vine rows; the field measurement cap-
tures themost obvious displacements that canbe accessed
by an observer, but they are sparse and discontinuous and
do not span the MLS survey area. The average may lead to
smaller estimates of displacements from the MLS survey
compared with localized field measurements which high-
light expressions of displacement at single points.

After the earthquake, alignment arrays were installed
to monitor the afterslip [39]. We validated our estimated
postseismic surface displacement by comparing the to
alignment array stationNHNR located onHenry Road (Fig-
ure 6). Observed accumulated displacement at NHNR was
18.7±0.22mmonSeptember 1; 57.1±0.26mmonSeptember



X. Zhu et al., Near-field deformation detection | 77

19 and 76.1mm on October 23 (error not available). Align-
ment array station NHNR is bounded by study areas 1 and
2 shown in Figure 7. Referring to Table 2, we estimated
3.88± 1.62 cm and 4.03± 1.84 cm postseismic surface accu-
mulated displacement between September 1 and Septem-
ber 28. For the same time span, the estimated displace-
ment at NHNR is 4.39 cm using alignment array observa-
tions and the AFTER program [43, 44, 45], which agrees at
the level of 4–5mm with our MLS estimate.

5.3.2 Change detection precision

Theprecisionof the changedetection results is determined
by checking the internal consistency of the estimates.Min-
imal coseismic offsetwas estimated bymodeling vine rows
as planar primitives. The consistency of the planar devia-
tions can be estimated by checking the coherence of the
off-fault distributed deformation pattern. Given that the
vine rows cross the fault trace at a similar angle, coseis-
mic deformation from each vine row should show similar
patterns distributed off fault forming a coherent deforma-
tion pattern across all vine rows. Figure 13 shows themini-
mal coseismic offset averaged over 1300 vine rows. The er-
ror bars represent the variation of the displacement mag-
nitude within 10 meter windows. The overall scale of the
error bar is relatively uniform and slightly decreases off
the fault center which indicates a consistent pattern exists
across all vine rows and complex deformation patterns ex-
ist near the fault trace. The error bars vary in size from 2 to
5 cm across the region. Note that variation of this pattern
across different vine rows could also be due to partial oc-
clusions in the lidar point clouds. The uneven vegetation
growth along each vine rowmay bias the planar primitives
and the occlusions of a lidar scan may result in incom-
plete planar primitives extracted frompoint clouds. There-
fore, further field reconnaissancemeasurements would be
helpful to determineprobable sources of this variation and
better quantify the accuracy of the coseismic offsets from
MLS.

The uncertainties in the estimated postseismic surface
displacements are evaluated by checking the consistency
of observations located off the fault trace. Given the as-
sumption that displacements further from the trace should
be smoother and more locally coherent, the variation of
the displacement detected in the far-field can serve as a
good estimate of consistency. Referring to Figure 9(e and f)
and Table 2, detected displacements for areas 5 and 6,with
vine row posts on only one side of the fault, show a stan-
dard deviation of about 7mm. Given that themethodology

is consistent for all posts, we expect a similar level of pre-
cision (subcentimeter) for changes detected using cylinder
primitives. The other cases (area 1–4) have larger displace-
ment variation due to more complex deformation patterns
captured near field, but still only show 10 to 15mm of vari-
ation.

Coseismic and postseismic surface displacement de-
tection results using planar and cylindrical primitives
show internal consistency. Their off-fault displacement
distribution also indicates a consistent ground deforma-
tion zone. Although the observed minimal coseismic off-
set has a larger magnitude in comparison with postseis-
mic displacements observed between 7 and 34 days after
the earthquake, they both show amaximumdisplacement
approximately 25m off the estimated fault trace (Figure 13
and Figure 11(a)). These coherent detection results con-
firm the consistency of the deformation estimates after the
earthquake.

6 Conclusion and future work

In this paper, we developed a method of using automat-
ically extracted geometric primitives to detect changes
in the near field of an earthquake. Geometric primitives
are shown to be an efficient representation of MLS point
clouds for subtle change detection. A change detection
workflow was developed relying on PointNet, RANSAC,
and least squares cylinder fitting for geometric primitives
modeling.

The methodology described successfully recovers the
dextral deformation field of the 2014 Mw 6.0 South Napa
earthquake. 25 cm coseismic offsets and 3–4 cm postseis-
mic displacements are revealed with decimeter and cen-
timeter level precision respectively over a study site three
kilometers long. The fault trace is revealed using planar
primitives, and local shear patterns are found from the
postseismic displacement distribution detected using the
cylindrical primitives. Dextral deformation distributions
versus off-fault distances are summarized and off-fault de-
formation is detected. Results are validated comparing
to field and alignment array observations, which show
decimeter level agreement with field observations of co-
seismic offset, and sub-centimeter level agreement with
postseismic displacement at an alignment array station.

The proposed primitive-based change detection strat-
egy can be generalized as a framework for geological
change detection. A project on aseismic fault creep de-
tection using persistent urban geodeteic markers is in
progress. For future work, we plan to augment our change
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detection strategyusingmore generic geometric primitives
and consider the addition of other high definition survey-
ing observations into the methodological framework.
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