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The recoil of atoms in dense ensembles during light matter interactions is studied using quantized vibrational

states for the atomic motion. The recoil resulting from the forces due to the near-field collective dipole interac-

tions and far-field laser and decay interactions are explored. The contributions to the recoil and the dependence

on the trap frequency of the different terms of the Hamiltonian and Lindbladian are studied. These calculations

are compared with previous results using the impulse model in the slow oscillation approximation. Calculations

in highly subradiant systems show enhanced recoil indicating that recoil effects cannot be ignored in such cases.

I. INTRODUCTION

The study of collective dipole-dipole interactions has pro-

gressed significantly since Dicke pioneered the idea in 1954

[1–12]. There have been many recent innovations using col-

lective interactions in coherent quantum control and quantum

information [13–20]. As an example, atom arrays which are

densely packed have been shown to have high reflectivity [21–

23]. But as the atoms get closer and denser, the forces due to

the collective interactions become larger causing the internal

states to become entangled with the vibrational motion of the

atom. This causes unwanted decoherences to arise in the sys-

tem. There is a need to better understand the forces involved

with the collective dipole interactions and the role that recoil

plays in the coherence of the system.

These questions motivated Refs. [24, 25], where we studied

the recoil in the atoms in light matter interactions in densely

packed ensembles and atom arrays. More specifically, in Ref

[25], we described a model to calculate the recoil in atoms

where the photon recoil is considered as an impulsive force.

This model will be referred to as the impulse model in this

paper. It was constructed under the slow oscillation, or equiv-

alently, the sudden approximation, where the timescales of the

atomic oscillations are much longer than the timescales of the

internal state dynamics. This implied that the trap frequencies

should be much smaller than the decay rate of the system.

Typically, the trap frequencies used are 10 to 100 kHz while

the decay rates of electronic excitations are often around 10s

of MHz. While these trap frequency ranges would normally

be within the sudden approximation, problems arise when the

system becomes subradiant and the collective decay rates ap-

proach the trap frequencies. The results from the impulse

model also indicated that the recoil is typically proportional to

the lifetime of the excitation in certain cases, leading to enor-

mous recoils in highly subradiant systems. While the sudden

approximation gives an intuitive understanding of how energy

is added to the center of mass motion and how decoherence

arises, the assumptions in the approximation are dubious for

some of the more interesting atomic arrangements. The goal

of this paper is to clarify such ambiguous results and to extend

the analysis beyond the approximations used in Ref. [25].
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The quantum harmonic oscillator model described in this

paper, calculates the recoil in collectively interacting systems

but removes the assumptions in the sudden approximation.

The N atoms are assumed to be trapped in harmonic potentials

having quantized vibrational energy states. Using the density

matrix formalism, we time evolve the combined-vibrational

and internal state density matrix, to calculate the momentum

and energy deposited in the system at a later time. This model

does not have the limitation of the sudden approximation and

can be used to simulate a wide range of trap frequencies and,

thus, can serve as an important test of the sudden approxima-

tion. It will also provide insight into how the different terms

of the Hamiltonian and the Lindblad operator contribute to the

recoil of the atoms. We focus on the transfer of energy in the

system rather than the vibrational population as the popula-

tion in the excited states trivially decrease as the frequency

increases for the same energy transfer.

To simplify the calculations, we will work in the low inten-

sity limit where there is only a single excitation in the system,

i.e., only one atom can be electronically excited at a time. This

will reduce the number of internal states from 2N to (N +1).
We also only investigate cases where the spread of the atomic

wavefunction is smaller than the distances of atom separation,

to reduce the overlap of wavefunctions. This is expected in

reasonable experimental arrangements because otherwise the

atom grid isn’t well defined.

This paper proceeds as follows. Section II discusses the

model and equations used. Section III A discusses the decay

and laser interaction for a single atom to illustrate the role of

recoil and Sec. III B extends the analysis to N atoms. We

discuss approximations to simulate a large number of atoms

in Sec. III C to calculate the recoil in arrays of atoms and

subradiant cavities. Section IV presents the conclusions and

summarises the results and future outlook.

II. METHODS

We shall consider N atoms, each trapped in a quantum har-

monic potential with each atom having two internal electronic

states. The center of each trap will form a spatial arrangement

required by the experiment, for example, a square array. Since

the atoms are in a harmonic trap potential, they will each have

an infinite Hilbert space of vibrational levels. We can limit
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the number of vibrationally excited states for each atom to be

states n < Nvib for calculation purposes. When the spread of

the atomic wavefunction is small, the effects on the harmonic

oscillator wavefunctions are separable across the different di-

rections. Hence, we can run the calculations by choosing one

oscillation direction at a time. The N atoms together will have

a combined vibrational Hilbert space of V = (Nvib)
N states.

Since we are working in the low intensity limit and only one

atom can be electronically excited at any time, the total num-

ber of internal states is N + 1. Hence, the total number of

states is (N + 1)(Nvib)
N .

The internal states will be represented by |j〉, the collective

vibrational states will be represented by |m〉 and the total state

will be denoted by |j,m〉. The internal state index goes from

0 to N, where j = 0 represent the electronic ground state (al-

ternatively |g〉) with no atom excited and j = 1 to N represent

only the jth atom being excited. The collective vibration state

|m〉 is the tensor product of all possible vibrational states, i.e,

|m〉 = |n1〉 ⊗ |n2〉 ⊗ . . . ⊗ |nN 〉 where |ni〉 is the vibra-

tional state of the ith atom. The index m goes from m = 0 to

(Nvib)
N − 1.

Hence, the density matrix will be represented by

ρ =
∑

j,j′

∑

m,m′

ρm,m′

j,j′ |j,m〉〈j′,m′| (1)

The density matrix evolves according to the equation given

by

dρ̂

dt
= − i

~
[Ĥ, ρ̂] + L(ρ̂) (2)

where ρ̂ is the density matrix of the system, Ĥ is the effective

Hamiltonian and L(ρ̂) is the Lindblad super-operator. The

effective Hamiltonian consists of three parts. (1) The trap po-

tential of the atoms, which is a quantum harmonic oscillator

Hamiltonian, (2) the laser Hamiltonian, and the (3) dipole-

dipole resonant interaction.

The Hamiltonian of the trap potential will be given by

Ht =
∑

j

~ωt(a
†
jaj +

1

2
) (3)

where ωt is the trap frequency of the harmonic oscillator and

a†j and aj are the harmonic oscillator ladder operators for the

jth atom in the chosen direction. The mean position of the

wavefunction or the fixed point positions of the atoms will

be given by Rj and the spread of the atom or the position of

the atom with respect to the mean will be given by rj . The

position operator along the chosen direction is given by sj =
√

~

2Mωt
(aj + a†j). We define the quantity κ = k

√

~

2Mωt

where the length-scale for the atoms’ motion and the spread

of the atomic wavefunction is described by κ/k. Here, k is

the wavenumber of the resonant light and M is the mass of a

single atom.

When the laser interacts with the atoms, it imparts a mo-

mentum of ~k which will manifest in the Hamiltonian through

the position operators sj The Hamiltonian due to the laser is

ĤL = ~

∑

j

[

−δσ̂+
j σ̂

−
j +

(

Ω

2
σ̂+
j e

ik0·(Rj+r̂j) + h.c.

)]

(4)

where Ω is the Rabi frequency, δ is the detuning and k0 = kẑ
as the initial wavevector of the incoming photons. σ̂+

j and σ̂−
j

are the raising and lowering operator of the electronic excita-

tion of the jth atom. If the laser is propagating in the chosen

direction of vibrational oscillation, the term k0 · rj can be re-

placed by κ(âj + â†j). Otherwise, the k0 · rj term will be

dropped and the laser will not cause any vibrational transi-

tions.

In the following equations, the primed and unprimed co-

ordinates are used to signify either a right or left multiplica-

tion of the density operator respectively. For signifying differ-

ences, we will use the following convention

rij ≡ ri − rj ; r′ij ≡ ri − r′j ; r′′ij ≡ r′i − r′j (5)

The resonant dipole-dipole interactions are given by the imag-

inary part of the Lindblad term and is given by

Ĥdd = ~

∑

i 6=j

Im{g(Rij + rij)}σ̂+
i σ̂

−
j (6)

The real part of the Lindblad term describes the dynamics of

the decay and is given by

L(ρ̂) =
∑

i,j

[

2Re{g(Rij + r′ij)}σ̂−
i ρ̂σ̂

+
j

−Re{g(Rij + rij)}σ̂+
i σ̂

−
j ρ̂− ρ̂σ̂+

i σ̂
−
j Re{g∗(Rij + r′′ij)}

]

(7)

where the Green’s function g(R) is given by

g(R) =
Γ

2

[

h
(1)
0 (kR) +

3(R̂ · q̂)(R̂ · q̂∗)− 1

2
h
(1)
2 (kR)

]

(8)

where q̂ is the dipole orientation, R = |R| is the norm of

R, R̂ = R/R is the unit vector along R, Γ is the decay rate

of a single atom and h
(1)
l (x) are the outgoing spherical Han-

kel function of angular momentum l; h
(1)
0 (x) = eix/[ix] and

h
(1)
2 (x) = (−3i/x3 − 3/x2 + i/x)eix.

When we calculate the Green’s function, we take a Taylor

expansion up to second order which will be valid under the

condition that the spread of the wavefunction (κ/k) ≪ the

separation of atoms.

g(Rij + ǫ) = g(Rij) +
(g′(Rij)

k

)

kǫ+
(g′′(Rij)

k2
)k2ǫ2

2
+ ...

(9)

where the derivatives are taken in the chosen oscillation direc-

tion. Since the Hankel functions in g(R) are functions of kR,
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the k’s in the denominator make the expansion term, kǫ, more

explicit. The ǫ = si − sj is expanded into the correspond-

ing vibrational ladder operators. The zeroth order term does

not depend on the spread of the atoms and does not cause any

transitions in the vibrational state. The first and second order

terms depend on the spread of the wavefunction and will in-

duce single level and two level transitions in the vibrational

states respectively.

Since the Green’s function depends on both rj and r′j ,

which correspond to the left or right operation on the den-

sity matrix, we have sj and s′j respectively. While the last two

terms of the Lindblad expression only have left or right mul-

tiplication, the first term behaves differently. Upon expanding

the Harmonic vibrational wavefunctions, we see that the first

term acts on the combined density matrix as

Re{g(Rij + r′ij)}σ̂−
i ρ̂σ̂

+
j = Re{g(Rij)}σ̂−

i ρ̂σ̂
+
j

+Re{g
′(Rij)

k
}k(siσ̂−

i ρ̂σ̂
+
j − σ̂−

i ρ̂σ̂
+
j s

′
j)

+Re{g
′′(Rij)

k2
}k

2

2
(s2i σ̂

−
i ρ̂σ̂

+
j + σ̂−

i ρ̂σ̂
+
j s

′2
j − 2siσ̂

−
i ρ̂σ̂

+
j s

′
j)

(10)

where the ksi’s will be replaced by κ(ai + a†i ) notation when

solving the equations. The expectation values of the momen-

tum and energy in the vibrational state of atom j can then be

calculated from the density matrix,

pj =
i

2κ
Tr

[

(a†j − aj)ρ
]

~k (11)

Ej =
1

2κ2
Tr

[

(2a†jaj + 1)ρ
]

Er (12)

where ~k and Er = ~
2k2/(2M) are the recoil momentum and

energy deposited when one photon is absorbed or emitted by

an atom. Since the expression for the energy is divided by κ2,

only the terms of the order κ2 in the diagonal of the density

matrix will primarily contribute to a change in energy. The

contribution from the κ4 terms and beyond will be negligible

for small wavefunction spreads. The energy difference in the

vibrational levels will be given by 1/κ2. That is, if κ = 0.01,

the energy difference of consecutive vibrational levels will be

104Er.

III. RESULTS

The impulse model used in Ref. [25] calculates the kinetic

energy and momentum kick imparted in a collective dipole in-

teraction system interacting with a laser. Since the quantum

oscillator model discussed in this paper has a fundamental dif-

ference in the way the kinetic energy is imparted to the system,

the two models can be compared and tested for validity. To ac-

count for the spread of the wavefunction, the impulse model

can be spatially integrated over the wavefunction probability

density using Gaussian quadrature integration for small num-

ber of atoms. At low frequencies, the sudden approximation

is valid and both the models agree. The results match ex-

actly at low wavefunction spreads and with a small difference

for higher spreads. This difference can be shown to be due to

stopping at the second order when expanding g(R) in the Tay-

lor’s series, i.e., the error is mainly in the harmonic oscillator

model for low trap frequencies.

The quantum oscillator model does not have any restric-

tions with respect to the trap frequency, and hence we can

investigate the validity of the sudden approximation, beyond

the low frequency regime. We can also study the separate con-

tributions from the different terms of the Hamiltonian and the

Lindblad equations. We are more interested in the cases with

higher trap frequencies where the vibrational energy spacing

is much larger than Er. Hence we do not need to include

many vibrational levels. This also implies that the spread of

the wavefunction will be small and we can limit the Taylor

series expansion, Eq. (9), to second order terms.

A. Single atom decay

To begin, we analyze the simple decay process of a single

atom trapped in a harmonic potential. The atom is initially ex-

cited and no laser interaction is present. The effective Hamil-

tonian becomes

Ht = ~ωt(a
†
1a1 + 1/2) (13)

Since the Ht is purely diagonal with respect to the vibrational

states, its contribution to the change in the density matrix,

ρ̇ =
−i

~
[Ht, ρ] (14)

has zero diagonal elements and only interacts with the off-

diagonal coherence terms of the density matrix. The Lindblad

term for a single atom is

L(1)(ρ) = 2Re{g(r′11)}σ−
1 ρσ

+
1

−Re{g(r11)}σ−
1 σ

+
1 ρ− ρσ−

1 σ
+
1 Re{g(r′′11)}

(15)

Since r11 = r′′11 = 0, Re{g(r11)} = Re{g(r′′11)} = Γ/2.

The last two terms do not contribute to change in the vibra-

tional states. Expanding the first term using r′11 = 0+s1−s′1
up to the second order gives

Re{g(r′11)} = g(0) +
g′′(0)

2
κ2(s1 − s′1)

2 (16)

since the first derivative g′(0) = 0. The next non-zero lead-

ing order term will be the fourth order, since the third deriva-

tive is again 0, but they will be of the order κ4 and will not

cause significant contributions when calculating the energy. If

we assume the atom is initially excited and in the vibrational

ground state, the first term of Eq. (15) becomes

L1(ρ) = |g〉〈g|ρ0,01,1

(

(

Γ + 2κ2g′′(0)
)

|0〉〈0|

− 2κ2g′′(0) |1〉〈1|

+κ2g′′(0)
√
2(|2〉〈0|+ |0〉〈2|)

)

(17)
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We can analytically solve the above equation to obtain the

change in the vibrational energy at infinite time when the de-

cay is complete. The change in vibrational energy is given

by

∆E = −2
g′′(0)

Γ
Er (18)

This result remains valid when the initial density matrix is

any incoherent combination of vibrational states. For an atom

initially excited and polarized in the e+ = −(x̂ + iŷ)/
√
2

direction, ∆Ez = 0.4Er and ∆Ex = ∆Ey = 0.3Er. The en-

ergy deposited due to the recoil from the emission of a single

photon is independent of the frequency of the harmonic oscil-

lator. This result is correct even if we go beyond the second

order approximation in Eq. (16).

1. Laser interaction

When the atoms absorbs a single photon from the laser,

there is a momentum of ~k added to the atoms. The con-

tribution to the change in vibrational state comes as eiks1 in

Eq. (4). Since κ is small, a Taylor expansion gives

eiks1 = 1 + iks1 −
k2s21
2

+ ...

= 1 + iκ(a†1 + a1)−
κ2

2
(a†1 + a1)

2 + ...

(19)

Since the laser interacts with the density matrix through the

coherence terms, the order of the transitions to the popula-

tion from the first order and second order terms are κ2 and

κ4 respectively. Hence, the energy deposited is primarily con-

tributed by the first order term.

When there is a continuous laser incident on the atoms, the

electronic internal states of the atoms reach a steady state.

Instead of the total recoil energy and momentum deposited,

we calculate the rate of recoil deposited in the atoms by time

evolving the density matrix using Eq. (2). Figure 1 shows the

energy deposited per incident photon in the direction of the

incident laser on a single atom as we vary the trap frequency.

It also shows the contribution of the kick due to the coherent

laser interaction and the decoherent single atom decay term.

To ignore long term effects like shifts in position due to radi-

ation pressure, the expectation values are taken immediately

after reaching electronic steady state. It is important to note

that we are discussing the transfer of energy across different

trap frequencies and not the population in the excited states.

As the frequency goes up, the energy difference between the

vibrational states will increase. If the energy transfer remains

the same but the frequency goes up, there will necessarily be

less population in excited vibrational states.

The atom absorbs a photon and randomly emits it in an ar-

bitrary direction. At low trap frequencies, the absorption of

the photon results in Er recoil and the emission gives 0.4Er

in the laser direction. The recoil due to the emission agrees

with the result of Eq. (18), and is independent of the trap fre-

quency. But as we increase the frequency, the contribution for
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FIG. 1. The vibrational energy deposited, per incoming photon, at

steady state for a laser incident on a single atom. The red solid line

shows the total energy deposited while the blue dashed and orange

dashed lines show the contribution from the coherent laser transfer

and the decoherent decay. The calculations were run using Nvib = 5.

vibrational excitation from the laser becomes negligible. At

low trap frequencies (ωt ≪ Γ), the vibrational energy states

are close enough that the linewidth spread of the excited state

can allow vibrational transitions. On the other hand, at high

trap frequencies (ωt ≫ Γ), the vibrational energy states are

far enough apart that there is no vibrational transitions due to

the laser. Hence the kick from the laser reduces when the trap

frequency is higher than the decay rate of the system. Effects

such as side-band cooling can also be seen when the trap fre-

quencies are higher than the decay rate.

2. Coherent and decoherent transfers

There are two types of vibrational populations transfer oc-

curring in the system. When the population transfers through

the coherence terms (off-diagonal terms) of the density matrix

it is called coherent transfer. This is a two-step process where

the initial population terms couple to coherence terms which

then couple to population terms in different vibrational states

ultimately leading to a change in vibrational energy. Hence,

any coherent transfers of the order κ2 will lead to a popula-

tion change of the order κ4. The transfers due to the laser

Hamiltonian are an example.

If the population directly transfers between the diagonal

terms, without going through the coherence terms, they are

called decoherent transfers. This can be seen in the second

line of Eq. (17), where there is a direct single level transi-

tion from the |0〉〈0| to |1〉〈1| vibrational state. Since the trap

Hamiltonian only acts on the coherence terms, they do not

affect the dynamics of the decoherent transfers. Hence the de-

coherent energy transfers, such as the single atom decay term,

are unaffected by the trap frequency.
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FIG. 2. The excitation is exchanged between two atoms which are

very close to each other (d = 0.02λ) when one atom is initially

excited. Orange and blue dashed lines indicate the excitation prob-

ability of the two atoms. Red line shows the increase in the vi-

brational energy of the first atom. The calculation was done using

κ = 0.00001 and Nvib = 2 using the full density matrix.

B. Multi-atom decay

When there is more than one atom interacting, the Hdd

Hamiltonian [Eq. (6)] and the two atom Lindblad terms [i.e,

i 6= j terms of Eq. (7)] come into effect. Since the vibra-

tional raising and lowering operators in these terms act on dif-

ferent atoms, they cannot directly transfer vibrational popula-

tion. They go through the coherence terms and are coherent

population transfers, see Sec. III A 2.

For simplicity, we can look at the case of two atoms. When

there are two atoms very close to each other (d ≈ 0.02λ),
and one of the atoms is excited, the excitation rapidly hops

between the two atoms while decaying, as seen from Fig. 2.

This is the resonant dipole-dipole interaction arising from the

Hamiltonian term from Eq. (6). Even though the excita-

tion probability of the atom alternates, the recoil energy de-

posited on the atom increases continuously. All the recoil in

this timescale comes from the near-field dipole dipole inter-

actions, i.e., through the two atom dipole-dipole Hamiltonian

[Eq. (6)].

When two atoms interact, the direction along the line con-

necting the atoms and the directions perpendicular have con-

siderably different physics. Let the atoms be separated in the

x-direction by a distance d < λ. In the directions along the

separation, ie, in the x-direction, there are interatom forces

that arise due to the collective interactions. These forces act

only along the line joining the two atoms. In the directions

perpendicular to the separation, i.e., y and z-direction, there

are no interatom forces and only the kick from the photon

emitted contributes to the recoil.

In the figures in this section (Figs. 3 and 4), κ is held con-

stant while altering the trap frequency. Since κ depends on

M and ωt, we assume that the mass also varies accordingly

to compensate. While this is not a physical assumption, it is

done in order to study and isolate the effects of the change in

trap frequency while ignoring the more trivial effects of alter-

ing the spread of the wavefunction.

1. Transverse Oscillation

For two atoms, when the chosen direction of vibrational

quantization is perpendicular to the separation of the atoms,

there are no inter-atom forces. While taking the Taylor ex-

pansion, the first derivative of the Green’s function g′(Rij)
in the direction perpendicular to the separation is zero. This

results in the equations being similar to the equations for the

single atom case, where only zero and second order terms re-

main. But since the two atom Lindblad terms are coherent

transfers, the second order term of κ2 will contribute to only

a κ4 order of vibrational population transfer. Hence we see

that in the perpendicular direction, only the contribution from

the single atom Lindblad terms contribute to the change in vi-

brational energy to the lowest order in κ. The single atom

terms being decoherent transfers also implies that the energy

deposited in the perpendicular direction is independent of the

trap frequency. Thus, the impulse model is valid even beyond

the sudden approximation in the directions where there are no

inter-atom interactions i.e., perpendicular to the atom array.

Figure 3 shows that the recoil in the perpendicular direction

is independent of the frequency and agrees with the impulse

model calculations. In Figs. 3 and 4, the atoms are initially

excited to a singly excited state with the amplitude of the elec-

tronic excitation distributed uniformly or to an eigenstate of

the complex Green’s function matrix of the system. There is

no laser interaction and the recoil is measured after the system

is allowed to decay into the electronic ground state. Further

details are included in Sec. III A of Ref. [25].

Another inference is that the rate of energy deposited into

the system is only dependent on the single atom terms and is

not directly dependent on the collective decay dynamics. The

single atom term results in the rate of increase of the elec-

tronic ground state, and indirectly the rate of accumulation of

vibrational excitation, to be proportional to the excitation in

the system. However, the collective decay dynamics is what

determines the lifetime of the excitation. If we integrate the

vibrational excitation accumulation over the entire decay pro-

cess, the energy deposited in such a collective decay will be

proportional to the lifetime of the collective excitation. This

was also discussed in Sec. III A of Ref. [25].

2. Longitudinal Oscillation

In the case of the oscillations in the direction of the separa-

tion, the first derivative g′(Rij) in Eq. (9) is no longer non-

zero. These first order coherent transfers contribute to a κ2

order of population transfer. Hence there are two sources of

vibrational excitation. Single atom decoherent transfers and

first order two atom Lindblad coherent transfers. While the

former is unaffected by the trap Hamiltonian, the latter in-

teracts and develops a complicated dependence with the trap

Hamiltonian. Figure 3 shows that the recoil in the direction of
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FIG. 3. The energy deposited during the decay of two atoms uni-

formly excited, separated by d = 0.4λ in the x-direction, versus

the trap frequency. The blue circles and orange squares indicate the

quantum harmonic oscillator model results in the z and x-direction

respectively. The thin solid lines indicate the respective impulse

model result. The black vertical line denotes the collective decay

rate of the system. The calculations are done using full density ma-

trix with κ = 0.001. ♠ To isolate the effects of the trap frequency,

κ is kept constant and the mass M is assumed to vary accordingly to

compensate for changing wt.

separation is dependent on the trap frequency and the impulse

model is not valid beyond the sudden approximation.

Figure 4 shows an example of the energy deposited in the

direction of separation varying with ωt when the atoms are ini-

tially excited in different distributions. The contributions from

the coherent and decoherent transfers are also shown. The de-

coherent transfers are independent of the trap frequency and

only depends on the excitation probability of that atom and the

decay rate of the system. The coherent transfers, on the other

hand, change with the trap frequency and is highly dependent

on the way the excitation is distributed among the atoms and

can be either negative or positive. The threshold of what deter-

mines high trap frequency is set by the collective decay rate of

the system and not the individual decay rate of the atom (Γ).

Another distinguishing feature of the coherent and decoher-

ent transfers is the directionality. The coherent transfers are

facilitated by the near field dipole-dipole interaction between

the two atoms and the recoil in this process is strictly in the

direction of separation. The laser interaction is also coherent

and has a strict directionality with respect to the direction of

the incident light. On the other hand, the decoherent transfer is

from spontaneous decay where the direction of photon emis-

sion is random and the probability distribution of the direction

is governed by the dipole orientation.
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FIG. 4. The vibrational energy deposited during the decay of the

excitation. We look at the energy deposited in the x-direction on

the center atom when there are three atoms in a line in x-direction

separated by d = 0.4λ. The red solid line shows the total energy

deposited while the blue circles and orange squares show the contri-

bution from the coherent and decoherent transfers respectively. The

initial excitation is different for the 4 cases. (a) has uniform excita-

tion, (b)-(d) have the 3 eigenstates as excitation. The increase or de-

crease in energy is dependent on the excitation pattern in the higher

ωt region. (c) has zero decoherent transfers because the center atom

has zero excitation probability in this particular eigenstate. The cal-

culations are done using full density matrix with κ = 0.001. ♠ To

isolate the effects of the trap frequency, κ is kept constant and the

mass M is assumed to vary accordingly to compensate for changing

wt.

C. Large ensemble of atoms

From Sec. II, the number of states required for calculations

increases exponentially with increasing number of atoms. All

the atoms having Nvib vibrational states would result in all

the possible permutation of vibrational state ensembles, i.e.,

(Nvib)
N states.

While the internal state dynamics of absorption, decay, and

exchange in excitation are the driving factors of the dynamics

of the vibrational states, in the approximation that the spread

of the wavefunction is much smaller than the distance separat-

ing the atoms, we see that the vibrational state dynamics have

little to no effect on the internal state dynamics. Hence we can

approximate the calculation so that only one atom is allowed

to have quantized vibrational states while the rest are fixed

in space. This reduces the total available vibrational states to

just Nvib. We calculated the vibrational energy acquired when

four atoms in a square are initially excited and decay into the

ground state. The error when using this approximation is only

0.2% when the wavefunction spread is as high as 25% of the

separation.

We also see from Sec. III B that the second order transfers

in the vibrational state are of the order of κ4. When taking

the expectation of energy, they hardly contribute when κ is

small. The same reasoning applies to the lasers (as seen in

Sec. III A). Hence we can limit Nvib to two without losing

generality in this case. For small enough κ = 0.01, the max-
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imum vibrational energy in the atom can reach up to 104Er

which will be within the expected recoil limits. To verify this,

the results were tested for convergence using different Nvib in

a small number of atoms.

With these two approximations, we can limit the number of

states to Nvib × (N + 1) that is, 2(N + 1) which brings it

within the realm of computation for up to 250 atoms.

1. Arrays of atoms

If there is a constant laser incident perpendicular to an ar-

ray of closely packed atoms, the recoil in the two different di-

rections have different behavior. Since the laser Hamiltonian

does not have two atom interactions, the recoil of the atoms in

the direction perpendicular to the array is similar to the single

atom laser interaction seen in Sec. III A 1. The recoil within

the plane of the array is due to the in-plane collective decay

effects as seen in Sec. III B and is dependent on the distribu-

tion of the excitation. Figure 5 shows the trend of the recoil

in the different directions as a function of the trap frequency.

The calculations from the impulse model are also included as

a solid line.

Typically, the trap frequencies in the in-plane (x and y) di-

rections are higher and are about 100kHz, while the perpen-

dicular trap frequencies are often an order of magnitude lower

at about 10kHz. These trap frequencies will give a spread of

κ/k = 0.08λ and 0.025λ respectively for a Cs atom. When in

steady state, such frequency ranges will be within the slow

oscillation approximation and the results from the impulse

model can be reproduced with the current model.

When there is a perfect reflection of a photon from an atom

array, there is a momentum of 2~k imparted on the atoms.

Hence, the momentum change of the atoms describe the re-

flectivity of the atom array. This can also be used to study

the effects of higher vibrational excited states on the reflectiv-

ity. At 10 kHz frequency in the z-direction, the momentum

imparted on the central atom of an array reduces by approxi-

mately 8% when the atom is in the first vibrational excite state

instead of in the ground state. However, at 100 kHz frequency

in the z-direction, there is only a decrease of 0.6%. This re-

inforces that atomic mirror experiments would need to have

high trap frequencies to have a reflection probabilities close

to 1.

2. Cavity

In Ref [25], we calculated the kinetic energy kick on a cav-

ity, when it decays from a highly subradiant eigenmode. This

follows the design of the cavity used in Ref. [13] to perform

quantum information processing. Under the slow oscillation

approximation, the central atom experienced a kick of up to

926Er in the duration of the decay in the direction perpen-

dicular to the plane. The results were thought to be purely

qualitative because of the large lifetimes violating the slow

oscillation approximation.
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FIG. 5. The vibrational energy deposited in the center atom of a 11×

11 atom array with d = 0.8λ separation when in steady state with

an incident laser in the z-direction. The orange squares represent

the recoil energy in the z-direction, while the blue circles denote the

recoil energy in the x-direction, per photon incident on the center

atom. The orange and blue thin lines denote the comparison with

the impulse model. This data is calculated using the approximations

discussed in Sec III C.

The results from the Sec. III B imply that those calcula-

tions were more accurate than suggested in Ref. [25] for the

direction perpendicular to the array. In the perpendicular di-

rection, since there are no or negligible inter-atom forces, the

trap frequency does not play a significant role in determining

the vibrational energy deposited. The recoil due the decoher-

ent transfers accumulate over an extended duration due to the

subradiant decay resulting in large recoil energies deposited.

Another way to interpret this is the large quality factor caus-

ing there to be multiple reflections of the photon on the array

faces.

Calculations for the same cavity as that in Ref. [25], us-

ing the harmonic oscillator model resulted in the center atom

experiencing similar vibrational energy deposited, approx-

imately 922Er in the direction perpendicular to the array.

This recoil was unaffected when the trap frequencies were in-

creased beyond the decay rate of the system. On the other

hand, the energy deposited in the in-plane direction at high

frequencies decreased to 15.0Er as compared to 16.6Er at

low frequencies. These results show that the recoil of the

atoms due to collective decay, especially in highly subradiant

systems, should not be ignored.

IV. CONCLUSION

We presented a model to describe and calculate the recoil

in light-matter collective interaction using quantum harmonic

oscillator trap potentials. We compare the results of the im-

pulse model used in Ref. [25] under the slow oscillation ap-

proximation and explored the regime beyond. We studied the
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contribution to recoil from the different terms of the Hamil-

tonian and Lindblad equation. In essence, the single-atom

Lindblad term causes a recoil in a random direction and the

energy deposited is independent of the trap frequency used.

The laser Hamiltonian causes a recoil in the direction of the

laser propagation and recoil energy deposited falls off to zero

when the trap frequency goes beyond the collective decay rate

of the system. The two-atom Lindblad terms induce a recoil

in the direction of the separation between the atoms and it is

dependent on both the trap frequency and the distribution of

the excitation in the system.

In atom arrays, in the directions where there are no inter-

atom forces or lasers, the recoil is independent of trap fre-

quency and the impulse model can be used even beyond the

slow oscillation approximation. If the atoms are excited by

a laser or for those directions in the plane of the atom array,

the impulse model is no longer valid when the trap frequency

approaches or is higher than the decay rate of the system.

This model was used to verify the extremely high recoil

calculated in a cavity with high subradiance. This shows that

recoil effects have to be considered seriously when working

with highly subradiant systems. The effects of vibrational ex-

citation in the reflectivity of arrays were also studied.

References [26, 27] have worked on the opposite regime of

the sudden approximation, where the focus lies on the slow

center of mass motion rather than the fast internal state dy-

namics. Studying this regime, especially the collective modes

of vibration of the atoms using the quantum harmonic oscil-

lator model could lead to better understanding and control of

atom arrays.

Data for the figures used in this publication is available at

[28].
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