Atom recoil in collectively interacting dipoles using quantized vibrational states

Deepak A. Suresh! and F. Robicheaux!? *

'Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
2Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
(Dated: February 14, 2022)

The recoil of atoms in dense ensembles during light matter interactions is studied using quantized vibrational
states for the atomic motion. The recoil resulting from the forces due to the near-field collective dipole interac-
tions and far-field laser and decay interactions are explored. The contributions to the recoil and the dependence
on the trap frequency of the different terms of the Hamiltonian and Lindbladian are studied. These calculations
are compared with previous results using the impulse model in the slow oscillation approximation. Calculations
in highly subradiant systems show enhanced recoil indicating that recoil effects cannot be ignored in such cases.

I. INTRODUCTION

The study of collective dipole-dipole interactions has pro-
gressed significantly since Dicke pioneered the idea in 1954
[1-12]. There have been many recent innovations using col-
lective interactions in coherent quantum control and quantum
information [13-20]. As an example, atom arrays which are
densely packed have been shown to have high reflectivity [21—
23]. But as the atoms get closer and denser, the forces due to
the collective interactions become larger causing the internal
states to become entangled with the vibrational motion of the
atom. This causes unwanted decoherences to arise in the sys-
tem. There is a need to better understand the forces involved
with the collective dipole interactions and the role that recoil
plays in the coherence of the system.

These questions motivated Refs. [24, 25], where we studied
the recoil in the atoms in light matter interactions in densely
packed ensembles and atom arrays. More specifically, in Ref
[25], we described a model to calculate the recoil in atoms
where the photon recoil is considered as an impulsive force.
This model will be referred to as the impulse model in this
paper. It was constructed under the slow oscillation, or equiv-
alently, the sudden approximation, where the timescales of the
atomic oscillations are much longer than the timescales of the
internal state dynamics. This implied that the trap frequencies
should be much smaller than the decay rate of the system.

Typically, the trap frequencies used are 10 to 100 kHz while
the decay rates of electronic excitations are often around 10s
of MHz. While these trap frequency ranges would normally
be within the sudden approximation, problems arise when the
system becomes subradiant and the collective decay rates ap-
proach the trap frequencies. The results from the impulse
model also indicated that the recoil is typically proportional to
the lifetime of the excitation in certain cases, leading to enor-
mous recoils in highly subradiant systems. While the sudden
approximation gives an intuitive understanding of how energy
is added to the center of mass motion and how decoherence
arises, the assumptions in the approximation are dubious for
some of the more interesting atomic arrangements. The goal
of this paper is to clarify such ambiguous results and to extend
the analysis beyond the approximations used in Ref. [25].
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The quantum harmonic oscillator model described in this
paper, calculates the recoil in collectively interacting systems
but removes the assumptions in the sudden approximation.
The N atoms are assumed to be trapped in harmonic potentials
having quantized vibrational energy states. Using the density
matrix formalism, we time evolve the combined-vibrational
and internal state density matrix, to calculate the momentum
and energy deposited in the system at a later time. This model
does not have the limitation of the sudden approximation and
can be used to simulate a wide range of trap frequencies and,
thus, can serve as an important test of the sudden approxima-
tion. It will also provide insight into how the different terms
of the Hamiltonian and the Lindblad operator contribute to the
recoil of the atoms. We focus on the transfer of energy in the
system rather than the vibrational population as the popula-
tion in the excited states trivially decrease as the frequency
increases for the same energy transfer.

To simplify the calculations, we will work in the low inten-
sity limit where there is only a single excitation in the system,
i.e., only one atom can be electronically excited at a time. This
will reduce the number of internal states from 2%V to (N + 1).
We also only investigate cases where the spread of the atomic
wavefunction is smaller than the distances of atom separation,
to reduce the overlap of wavefunctions. This is expected in
reasonable experimental arrangements because otherwise the
atom grid isn’t well defined.

This paper proceeds as follows. Section II discusses the
model and equations used. Section III A discusses the decay
and laser interaction for a single atom to illustrate the role of
recoil and Sec. IIIB extends the analysis to N atoms. We
discuss approximations to simulate a large number of atoms
in Sec. IIC to calculate the recoil in arrays of atoms and
subradiant cavities. Section IV presents the conclusions and
summarises the results and future outlook.

II. METHODS

We shall consider [V atoms, each trapped in a quantum har-
monic potential with each atom having two internal electronic
states. The center of each trap will form a spatial arrangement
required by the experiment, for example, a square array. Since
the atoms are in a harmonic trap potential, they will each have
an infinite Hilbert space of vibrational levels. We can limit



the number of vibrationally excited states for each atom to be
states n. < N, for calculation purposes. When the spread of
the atomic wavefunction is small, the effects on the harmonic
oscillator wavefunctions are separable across the different di-
rections. Hence, we can run the calculations by choosing one
oscillation direction at a time. The N atoms together will have
a combined vibrational Hilbert space of V' = (N,)" states.
Since we are working in the low intensity limit and only one
atom can be electronically excited at any time, the total num-
ber of internal states is N + 1. Hence, the total number of
states is (N + 1)(Nyip) V.

The internal states will be represented by |j), the collective
vibrational states will be represented by |m) and the total state
will be denoted by |j, m). The internal state index goes from
0 to N, where j = 0 represent the electronic ground state (al-
ternatively |¢)) with no atom excited and j = 1 to NV represent
only the jth atom being excited. The collective vibration state
|m) is the tensor product of all possible vibrational states, i.e,
|m) = |n1) @ |ng) ® ... ® |ny) where |n;) is the vibra-
tional state of the ith atom. The index m goes from m = 0 to
(Nyin)N — 1.

Hence, the density matrix will be represented by
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The density matrix evolves according to the equation given
by
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where p is the density matrix of the system, H is the effective
Hamiltonian and £(p) is the Lindblad super-operator. The
effective Hamiltonian consists of three parts. (1) The trap po-
tential of the atoms, which is a quantum harmonic oscillator
Hamiltonian, (2) the laser Hamiltonian, and the (3) dipole-
dipole resonant interaction.
The Hamiltonian of the trap potential will be given by

1
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where w; is the trap frequency of the harmonic oscillator and
a; and a; are the harmonic oscillator ladder operators for the
jth atom in the chosen direction. The mean position of the
wavefunction or the fixed point positions of the atoms will
be given by R; and the spread of the atom or the position of
the atom with respect to the mean will be given by r;. The
position operator along the chosen direction is given by s; =

M?M (a; + a;). We define the quantity xk = ky/ 21\;@

where the length-scale for the atoms’ motion and the spread
of the atomic wavefunction is described by x/k. Here, k is
the wavenumber of the resonant light and M is the mass of a
single atom.

When the laser interacts with the atoms, it imparts a mo-
mentum of Ak which will manifest in the Hamiltonian through

the position operators s; The Hamiltonian due to the laser is
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where €2 is the Rabi frequency, J is the detuning and kg = kZ
as the initial wavevector of the incoming photons. (};' and o
are the raising and lowering operator of the electronic excita-
tion of the jth atom. If the laser is propagating in the chosen
direction of vibrational oscillation, the term kg - r; can be re-
placed by x(a; + d;) Otherwise, the ko - r; term will be
dropped and the laser will not cause any vibrational transi-
tions.

In the following equations, the primed and unprimed co-
ordinates are used to signify either a right or left multiplica-
tion of the density operator respectively. For signifying differ-
ences, we will use the following convention

rij =r;—Tj; r; =1 — vl v, =1, -1, (5
The resonant dipole-dipole interactions are given by the imag-
inary part of the Lindblad term and is given by

Haa=hY_ Im{g(Rij +ri;)}6, 67 (6)
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The real part of the Lindblad term describes the dynamics of
the decay and is given by

L(p) = Z [2Re{g(Ri; +1);)}67 po
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where the Green’s function g(R)) is given by
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where ¢ is the dipole orientation, R = |R| is the norm of
R, R = R/R is the unit vector along R, T" is the decay rate
of a single atom and hl(l)(:z) are the outgoing spherical Han-

kel function of angular momentum [; hél)(x) = €' /[iz] and
WY (z) = (=3i/a3 — 3/a2 +i/x)e™.

When we calculate the Green’s function, we take a Taylor
expansion up to second order which will be valid under the
condition that the spread of the wavefunction (k/k) < the

separation of atoms.
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where the derivatives are taken in the chosen oscillation direc-
tion. Since the Hankel functions in g(R) are functions of kR,



the k’s in the denominator make the expansion term, ke, more
explicit. The ¢ = s; — s; is expanded into the correspond-
ing vibrational ladder operators. The zeroth order term does
not depend on the spread of the atoms and does not cause any
transitions in the vibrational state. The first and second order
terms depend on the spread of the wavefunction and will in-
duce single level and two level transitions in the vibrational
states respectively.

Since the Green’s function depends on both r; and r/;,
which correspond to the left or right operation on the den-
sity matrix, we have s; and s’; respectively. While the last two
terms of the Lindblad expression only have left or right mul-
tiplication, the first term behaves differently. Upon expanding
the Harmonic vibrational wavefunctions, we see that the first
term acts on the combined density matrix as

Re{g(Ri; +ri;)}o; po; = Re{g(Ri;)}o; po;
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where the ks;’s will be replaced by £ (a; + a!) notation when
solving the equations. The expectation values of the momen-
tum and energy in the vibrational state of atom j can then be
calculated from the density matrix,

i
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where hk and E,. = h?k?/(2M) are the recoil momentum and
energy deposited when one photon is absorbed or emitted by
an atom. Since the expression for the energy is divided by &2,
only the terms of the order 2 in the diagonal of the density
matrix will primarily contribute to a change in energy. The
contribution from the k% terms and beyond will be negligible
for small wavefunction spreads. The energy difference in the
vibrational levels will be given by 1/x2. That is, if x = 0.01,
the energy difference of consecutive vibrational levels will be
10*E,.

III. RESULTS

The impulse model used in Ref. [25] calculates the kinetic
energy and momentum kick imparted in a collective dipole in-
teraction system interacting with a laser. Since the quantum
oscillator model discussed in this paper has a fundamental dif-
ference in the way the kinetic energy is imparted to the system,
the two models can be compared and tested for validity. To ac-
count for the spread of the wavefunction, the impulse model
can be spatially integrated over the wavefunction probability
density using Gaussian quadrature integration for small num-
ber of atoms. At low frequencies, the sudden approximation

is valid and both the models agree. The results match ex-
actly at low wavefunction spreads and with a small difference
for higher spreads. This difference can be shown to be due to
stopping at the second order when expanding g(R) in the Tay-
lor’s series, i.e., the error is mainly in the harmonic oscillator
model for low trap frequencies.

The quantum oscillator model does not have any restric-
tions with respect to the trap frequency, and hence we can
investigate the validity of the sudden approximation, beyond
the low frequency regime. We can also study the separate con-
tributions from the different terms of the Hamiltonian and the
Lindblad equations. We are more interested in the cases with
higher trap frequencies where the vibrational energy spacing
is much larger than E,. Hence we do not need to include
many vibrational levels. This also implies that the spread of
the wavefunction will be small and we can limit the Taylor
series expansion, Eq. (9), to second order terms.

A. Single atom decay

To begin, we analyze the simple decay process of a single
atom trapped in a harmonic potential. The atom is initially ex-
cited and no laser interaction is present. The effective Hamil-
tonian becomes

H, = hwy(ala; +1/2) (13)

Since the H, is purely diagonal with respect to the vibrational
states, its contribution to the change in the density matrix,

.
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has zero diagonal elements and only interacts with the off-

diagonal coherence terms of the density matrix. The Lindblad
term for a single atom is

LM (p) = 2Re{g(r}1)}oy poi
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Since r1; = rfy, = 0, Re{g(r11)} = Re{g(r}})} = T'/2.
The last two terms do not contribute to change in the vibra-

tional states. Expanding the first term using 71, = 0+ s1 — 8}
up to the second order gives

[H, p] (14)

15)

1

Refg(rin)} = 9(0) + S22 (s0 — 1) (16)
since the first derivative ¢’(0) = 0. The next non-zero lead-
ing order term will be the fourth order, since the third deriva-
tive is again 0, but they will be of the order x* and will not
cause significant contributions when calculating the energy. If
we assume the atom is initially excited and in the vibrational
ground state, the first term of Eq. (15) becomes

£1(0) = lo)lglt ((r 217" (0)) [0)0
~2k2(0) 1)1 an
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We can analytically solve the above equation to obtain the
change in the vibrational energy at infinite time when the de-
cay is complete. The change in vibrational energy is given
by

1
Ap= 29 0p (18)
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This result remains valid when the initial density matrix is
any incoherent combination of vibrational states. For an atom
initially excited and polarized in the e, = —(%X + iy)/v/2
direction, AE, = 0.4E, and AE, = AE, = 0.3E,. The en-
ergy deposited due to the recoil from the emission of a single
photon is independent of the frequency of the harmonic oscil-
lator. This result is correct even if we go beyond the second
order approximation in Eq. (16).

1. Laser interaction

When the atoms absorbs a single photon from the laser,
there is a momentum of 7k added to the atoms. The con-
tribution to the change in vibrational state comes as e**! in
Eq. (4). Since & is small, a Taylor expansion gives

} 242
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Since the laser interacts with the density matrix through the
coherence terms, the order of the transitions to the popula-
tion from the first order and second order terms are x? and
k% respectively. Hence, the energy deposited is primarily con-
tributed by the first order term.

When there is a continuous laser incident on the atoms, the
electronic internal states of the atoms reach a steady state.
Instead of the total recoil energy and momentum deposited,
we calculate the rate of recoil deposited in the atoms by time
evolving the density matrix using Eq. (2). Figure 1 shows the
energy deposited per incident photon in the direction of the
incident laser on a single atom as we vary the trap frequency.
It also shows the contribution of the kick due to the coherent
laser interaction and the decoherent single atom decay term.
To ignore long term effects like shifts in position due to radi-
ation pressure, the expectation values are taken immediately
after reaching electronic steady state. It is important to note
that we are discussing the transfer of energy across different
trap frequencies and not the population in the excited states.
As the frequency goes up, the energy difference between the
vibrational states will increase. If the energy transfer remains
the same but the frequency goes up, there will necessarily be
less population in excited vibrational states.

The atom absorbs a photon and randomly emits it in an ar-
bitrary direction. At low trap frequencies, the absorption of
the photon results in F, recoil and the emission gives 0.4E,
in the laser direction. The recoil due to the emission agrees
with the result of Eq. (18), and is independent of the trap fre-
quency. But as we increase the frequency, the contribution for
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FIG. 1. The vibrational energy deposited, per incoming photon, at
steady state for a laser incident on a single atom. The red solid line
shows the total energy deposited while the blue dashed and orange
dashed lines show the contribution from the coherent laser transfer
and the decoherent decay. The calculations were run using Ny, = 5.

vibrational excitation from the laser becomes negligible. At
low trap frequencies (w; < I'), the vibrational energy states
are close enough that the linewidth spread of the excited state
can allow vibrational transitions. On the other hand, at high
trap frequencies (w; > I), the vibrational energy states are
far enough apart that there is no vibrational transitions due to
the laser. Hence the kick from the laser reduces when the trap
frequency is higher than the decay rate of the system. Effects
such as side-band cooling can also be seen when the trap fre-
quencies are higher than the decay rate.

2. Coherent and decoherent transfers

There are two types of vibrational populations transfer oc-
curring in the system. When the population transfers through
the coherence terms (off-diagonal terms) of the density matrix
it is called coherent transfer. This is a two-step process where
the initial population terms couple to coherence terms which
then couple to population terms in different vibrational states
ultimately leading to a change in vibrational energy. Hence,
any coherent transfers of the order x? will lead to a popula-
tion change of the order x*. The transfers due to the laser

Hamiltonian are an example.

If the population directly transfers between the diagonal
terms, without going through the coherence terms, they are
called decoherent transfers. This can be seen in the second
line of Eq. (17), where there is a direct single level transi-
tion from the |0)(0| to |1)(1| vibrational state. Since the trap
Hamiltonian only acts on the coherence terms, they do not
affect the dynamics of the decoherent transfers. Hence the de-
coherent energy transfers, such as the single atom decay term,
are unaffected by the trap frequency.
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FIG. 2. The excitation is exchanged between two atoms which are
very close to each other (d = 0.02)\) when one atom is initially
excited. Orange and blue dashed lines indicate the excitation prob-
ability of the two atoms. Red line shows the increase in the vi-
brational energy of the first atom. The calculation was done using
x = 0.00001 and N,;» = 2 using the full density matrix.

B. Multi-atom decay

When there is more than one atom interacting, the Hgq
Hamiltonian [Eq. (6)] and the two atom Lindblad terms [i.e,
i # j terms of Eq. (7)] come into effect. Since the vibra-
tional raising and lowering operators in these terms act on dif-
ferent atoms, they cannot directly transfer vibrational popula-
tion. They go through the coherence terms and are coherent
population transfers, see Sec. IIT A 2.

For simplicity, we can look at the case of two atoms. When
there are two atoms very close to each other (d ~ 0.02)),
and one of the atoms is excited, the excitation rapidly hops
between the two atoms while decaying, as seen from Fig. 2.
This is the resonant dipole-dipole interaction arising from the
Hamiltonian term from Eq. (6). Even though the excita-
tion probability of the atom alternates, the recoil energy de-
posited on the atom increases continuously. All the recoil in
this timescale comes from the near-field dipole dipole inter-
actions, i.e., through the two atom dipole-dipole Hamiltonian
[Eq. (6)].

When two atoms interact, the direction along the line con-
necting the atoms and the directions perpendicular have con-
siderably different physics. Let the atoms be separated in the
x-direction by a distance d < A. In the directions along the
separation, ie, in the x-direction, there are interatom forces
that arise due to the collective interactions. These forces act
only along the line joining the two atoms. In the directions
perpendicular to the separation, i.e., y and z-direction, there
are no interatom forces and only the kick from the photon
emitted contributes to the recoil.

In the figures in this section (Figs. 3 and 4), & is held con-
stant while altering the trap frequency. Since x depends on
M and w;, we assume that the mass also varies accordingly
to compensate. While this is not a physical assumption, it is
done in order to study and isolate the effects of the change in

trap frequency while ignoring the more trivial effects of alter-
ing the spread of the wavefunction.

1. Transverse Oscillation

For two atoms, when the chosen direction of vibrational
quantization is perpendicular to the separation of the atoms,
there are no inter-atom forces. While taking the Taylor ex-
pansion, the first derivative of the Green’s function ¢’'(R;;)
in the direction perpendicular to the separation is zero. This
results in the equations being similar to the equations for the
single atom case, where only zero and second order terms re-
main. But since the two atom Lindblad terms are coherent
transfers, the second order term of 2 will contribute to only
a k* order of vibrational population transfer. Hence we see
that in the perpendicular direction, only the contribution from
the single atom Lindblad terms contribute to the change in vi-
brational energy to the lowest order in x. The single atom
terms being decoherent transfers also implies that the energy
deposited in the perpendicular direction is independent of the
trap frequency. Thus, the impulse model is valid even beyond
the sudden approximation in the directions where there are no
inter-atom interactions i.e., perpendicular to the atom array.

Figure 3 shows that the recoil in the perpendicular direction
is independent of the frequency and agrees with the impulse
model calculations. In Figs. 3 and 4, the atoms are initially
excited to a singly excited state with the amplitude of the elec-
tronic excitation distributed uniformly or to an eigenstate of
the complex Green’s function matrix of the system. There is
no laser interaction and the recoil is measured after the system
is allowed to decay into the electronic ground state. Further
details are included in Sec. III A of Ref. [25].

Another inference is that the rate of energy deposited into
the system is only dependent on the single atom terms and is
not directly dependent on the collective decay dynamics. The
single atom term results in the rate of increase of the elec-
tronic ground state, and indirectly the rate of accumulation of
vibrational excitation, to be proportional to the excitation in
the system. However, the collective decay dynamics is what
determines the lifetime of the excitation. If we integrate the
vibrational excitation accumulation over the entire decay pro-
cess, the energy deposited in such a collective decay will be
proportional to the lifetime of the collective excitation. This
was also discussed in Sec. III A of Ref. [25].

2. Longitudinal Oscillation

In the case of the oscillations in the direction of the separa-
tion, the first derivative ¢’(R;;) in Eq. (9) is no longer non-
zero. These first order coherent transfers contribute to a x2
order of population transfer. Hence there are two sources of
vibrational excitation. Single atom decoherent transfers and
first order two atom Lindblad coherent transfers. While the
former is unaffected by the trap Hamiltonian, the latter in-
teracts and develops a complicated dependence with the trap
Hamiltonian. Figure 3 shows that the recoil in the direction of
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FIG. 3. The energy deposited during the decay of two atoms uni-
formly excited, separated by d = 0.4\ in the x-direction, versus
the trap frequency. The blue circles and orange squares indicate the
quantum harmonic oscillator model results in the z and x-direction
respectively. The thin solid lines indicate the respective impulse
model result. The black vertical line denotes the collective decay
rate of the system. The calculations are done using full density ma-
trix with k = 0.001. & To isolate the effects of the trap frequency,
K 18 kept constant and the mass M is assumed to vary accordingly to
compensate for changing w;.

separation is dependent on the trap frequency and the impulse
model is not valid beyond the sudden approximation.

Figure 4 shows an example of the energy deposited in the
direction of separation varying with w; when the atoms are ini-
tially excited in different distributions. The contributions from
the coherent and decoherent transfers are also shown. The de-
coherent transfers are independent of the trap frequency and
only depends on the excitation probability of that atom and the
decay rate of the system. The coherent transfers, on the other
hand, change with the trap frequency and is highly dependent
on the way the excitation is distributed among the atoms and
can be either negative or positive. The threshold of what deter-
mines high trap frequency is set by the collective decay rate of
the system and not the individual decay rate of the atom (I).

Another distinguishing feature of the coherent and decoher-
ent transfers is the directionality. The coherent transfers are
facilitated by the near field dipole-dipole interaction between
the two atoms and the recoil in this process is strictly in the
direction of separation. The laser interaction is also coherent
and has a strict directionality with respect to the direction of
the incident light. On the other hand, the decoherent transfer is
from spontaneous decay where the direction of photon emis-
sion is random and the probability distribution of the direction
is governed by the dipole orientation.
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FIG. 4. The vibrational energy deposited during the decay of the
excitation. We look at the energy deposited in the x-direction on
the center atom when there are three atoms in a line in x-direction
separated by d = 0.4\. The red solid line shows the total energy
deposited while the blue circles and orange squares show the contri-
bution from the coherent and decoherent transfers respectively. The
initial excitation is different for the 4 cases. (a) has uniform excita-
tion, (b)-(d) have the 3 eigenstates as excitation. The increase or de-
crease in energy is dependent on the excitation pattern in the higher
wy region. (c) has zero decoherent transfers because the center atom
has zero excitation probability in this particular eigenstate. The cal-
culations are done using full density matrix with k = 0.001. & To
isolate the effects of the trap frequency, « is kept constant and the
mass M is assumed to vary accordingly to compensate for changing
Wt.

C. Large ensemble of atoms

From Sec. II, the number of states required for calculations
increases exponentially with increasing number of atoms. All
the atoms having N,;;, vibrational states would result in all
the possible permutation of vibrational state ensembles, i.e.,
(Nyip)VN states.

While the internal state dynamics of absorption, decay, and
exchange in excitation are the driving factors of the dynamics
of the vibrational states, in the approximation that the spread
of the wavefunction is much smaller than the distance separat-
ing the atoms, we see that the vibrational state dynamics have
little to no effect on the internal state dynamics. Hence we can
approximate the calculation so that only one atom is allowed
to have quantized vibrational states while the rest are fixed
in space. This reduces the total available vibrational states to
just N,;,. We calculated the vibrational energy acquired when
four atoms in a square are initially excited and decay into the
ground state. The error when using this approximation is only
0.2% when the wavefunction spread is as high as 25% of the
separation.

We also see from Sec. III B that the second order transfers
in the vibrational state are of the order of x*. When taking
the expectation of energy, they hardly contribute when & is
small. The same reasoning applies to the lasers (as seen in
Sec. IITA). Hence we can limit NV,;; to two without losing
generality in this case. For small enough x = 0.01, the max-



imum vibrational energy in the atom can reach up to 10*E,
which will be within the expected recoil limits. To verify this,
the results were tested for convergence using different NV, in
a small number of atoms.

With these two approximations, we can limit the number of
states to N, X (N + 1) that is, 2(N + 1) which brings it
within the realm of computation for up to 250 atoms.

1. Arrays of atoms

If there is a constant laser incident perpendicular to an ar-
ray of closely packed atoms, the recoil in the two different di-
rections have different behavior. Since the laser Hamiltonian
does not have two atom interactions, the recoil of the atoms in
the direction perpendicular to the array is similar to the single
atom laser interaction seen in Sec. III A 1. The recoil within
the plane of the array is due to the in-plane collective decay
effects as seen in Sec. III B and is dependent on the distribu-
tion of the excitation. Figure 5 shows the trend of the recoil
in the different directions as a function of the trap frequency.
The calculations from the impulse model are also included as
a solid line.

Typically, the trap frequencies in the in-plane (x and y) di-
rections are higher and are about 100kHz, while the perpen-
dicular trap frequencies are often an order of magnitude lower
at about 10kHz. These trap frequencies will give a spread of
k/k = 0.08\ and 0.025) respectively for a Cs atom. When in
steady state, such frequency ranges will be within the slow
oscillation approximation and the results from the impulse
model can be reproduced with the current model.

When there is a perfect reflection of a photon from an atom
array, there is a momentum of 2ik imparted on the atoms.
Hence, the momentum change of the atoms describe the re-
flectivity of the atom array. This can also be used to study
the effects of higher vibrational excited states on the reflectiv-
ity. At 10 kHz frequency in the z-direction, the momentum
imparted on the central atom of an array reduces by approxi-
mately 8% when the atom is in the first vibrational excite state
instead of in the ground state. However, at 100 kHz frequency
in the z-direction, there is only a decrease of 0.6%. This re-
inforces that atomic mirror experiments would need to have
high trap frequencies to have a reflection probabilities close
to 1.

2. Cavity

In Ref [25], we calculated the kinetic energy kick on a cav-
ity, when it decays from a highly subradiant eigenmode. This
follows the design of the cavity used in Ref. [13] to perform
quantum information processing. Under the slow oscillation
approximation, the central atom experienced a kick of up to
926 F, in the duration of the decay in the direction perpen-
dicular to the plane. The results were thought to be purely
qualitative because of the large lifetimes violating the slow
oscillation approximation.
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FIG. 5. The vibrational energy deposited in the center atom of a 11 x
11 atom array with d = 0.8\ separation when in steady state with
an incident laser in the z-direction. The orange squares represent
the recoil energy in the z-direction, while the blue circles denote the
recoil energy in the x-direction, per photon incident on the center
atom. The orange and blue thin lines denote the comparison with
the impulse model. This data is calculated using the approximations
discussed in Sec III C.

The results from the Sec. IIIB imply that those calcula-
tions were more accurate than suggested in Ref. [25] for the
direction perpendicular to the array. In the perpendicular di-
rection, since there are no or negligible inter-atom forces, the
trap frequency does not play a significant role in determining
the vibrational energy deposited. The recoil due the decoher-
ent transfers accumulate over an extended duration due to the
subradiant decay resulting in large recoil energies deposited.
Another way to interpret this is the large quality factor caus-
ing there to be multiple reflections of the photon on the array
faces.

Calculations for the same cavity as that in Ref. [25], us-
ing the harmonic oscillator model resulted in the center atom
experiencing similar vibrational energy deposited, approx-
imately 922F, in the direction perpendicular to the array.
This recoil was unaffected when the trap frequencies were in-
creased beyond the decay rate of the system. On the other
hand, the energy deposited in the in-plane direction at high
frequencies decreased to 15.0F, as compared to 16.6L), at
low frequencies. These results show that the recoil of the
atoms due to collective decay, especially in highly subradiant
systems, should not be ignored.

IV. CONCLUSION

We presented a model to describe and calculate the recoil
in light-matter collective interaction using quantum harmonic
oscillator trap potentials. We compare the results of the im-
pulse model used in Ref. [25] under the slow oscillation ap-
proximation and explored the regime beyond. We studied the



contribution to recoil from the different terms of the Hamil-
tonian and Lindblad equation. In essence, the single-atom
Lindblad term causes a recoil in a random direction and the
energy deposited is independent of the trap frequency used.
The laser Hamiltonian causes a recoil in the direction of the
laser propagation and recoil energy deposited falls off to zero
when the trap frequency goes beyond the collective decay rate
of the system. The two-atom Lindblad terms induce a recoil
in the direction of the separation between the atoms and it is
dependent on both the trap frequency and the distribution of
the excitation in the system.

In atom arrays, in the directions where there are no inter-
atom forces or lasers, the recoil is independent of trap fre-
quency and the impulse model can be used even beyond the
slow oscillation approximation. If the atoms are excited by
a laser or for those directions in the plane of the atom array,
the impulse model is no longer valid when the trap frequency
approaches or is higher than the decay rate of the system.

This model was used to verify the extremely high recoil
calculated in a cavity with high subradiance. This shows that
recoil effects have to be considered seriously when working

with highly subradiant systems. The effects of vibrational ex-
citation in the reflectivity of arrays were also studied.

References [26, 27] have worked on the opposite regime of
the sudden approximation, where the focus lies on the slow
center of mass motion rather than the fast internal state dy-
namics. Studying this regime, especially the collective modes
of vibration of the atoms using the quantum harmonic oscil-
lator model could lead to better understanding and control of
atom arrays.

Data for the figures used in this publication is available at
[28].
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