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ARTICLEINFO ABSTRACT

Keywords: High resolution and high accuracy distributed detection of fault creep deformation remains challenging given
Mobile laser scanning limited observations and associated change detection strategies. A mobile laser scanning-based change detection
Fault creen - method that is capable of measuring centimeter-level near-field (< 150 m from fault) deformation is described.
g’:N"::Cd'Sphcemem detection The methodology leverages the use of man-made features in the built environment as geodetic markers that can

be temporally tracked. The proposed framework consists of a RANSAC-based corresponding plane detector and a
combined least squares displacement estimator. Using repeat mobile laser scanning data collected in 2015 and
2017 on a 2 km segment of the Hayward fault, near-field fault creep displacement and non-linear creep defor-
mation are estimated. The detection results reveal 2.5 + 1.5 cm of accumulated fault parallel creep displacement
in the far-field. The laser scanning estimates of displacement match collocated alinement array observations at the
4 mm level in the near field. The proposed change detection framework is shown to be accurate and practical for
fault creep displacement detection in the near field and the detected non-linear creep displacement patterns will

Least squares adjustment
Geodetic markers

help elucidate the complex physics of surface faulting.

1. Introduction

Monitoring of aseismic fault creep is important for seismic hazard
assessment. Measurements of fault creep displacements can be used to
infer locked sections of a fault system which is thought to correspond to
the moment magnitude of a seismic event (Lienkaemper et al., 2014;
Field et al., 2014). Given the slow-moving characteristics of creep events,
surface fault creep monitoring requires the detection of small de-
formations of the ground surface. Measurements such as creepmeters and
static GPS observations over time are commonly used as they can resolve
centimeter-level creep rates over temporally spaced observations
(McFarland et al., 2016). However, the spatial coverage of these mea-
surements is limited due to the sparse observation network, and the
resulting inadequate number of geodetic observations preclude the use of
geomechanical models to accurately infer subsurface fault slip and
deformation near the Earth's surface (e.g. at infrastructure depths)
(Brooks et al.,, 2017; Nevitt et al, 2020). Mechanically-based modeling of
fault creep requires dense near-field observations of surface displace-
ments with broad spatial coverage and high accuracy.

* Corresponding author.

New high-definition photogrammetric and remote sensing surveying
techniques like light detection and ranging (lidar), interferometric syn-
thetic aperture radar (InSAR) and uninhabited aerial vehicle synthetic
aperture radar (UAVSAR) have recently made it possible to estimate
densely distributed ground displacements for the detection of fault dy-
namics. However, with increased resolution comes complex and irregular
formats and measurements with varying accuracy that bring new chal-
lenges for change detection, especially in the near field. As a common
method of measuring far-field fault displacement, InSAR provides
displacement observations with millimeter to centimeter-level accuracy
in the far field of the fault (> 1 km distance) (Cakir et al., 2003; Michel
et al., 1999; He et al., 2019; Jo etal., 2017; Pepe and Calo, 2017; Delong
et al, 2016). Phase interferometry is highly efficient for observing
temporally spaced estimates of deformation in the phase domain, and
thus changes can be detected at the millimeter level. However, in-
terferograms tend to decorrelate with spatial change larger than the
carrier wavelength and are therefore vulnerable to large displacements
and complex textures (e.g. vegetation) found within the near field. This
makes InSAR change detection reliable only in the far field (Ie et al,
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2019; Nissen et al., 2014; Michel et al., 1999).

Compared with InSAR, lidar has observational flexibility in the near
field even in urban or vegetated areas (Nissen et al., 2014; Scott et al.,
2019). Many applications use the iterative closest point method (ICP) and
its variants as change detection strategies to reveal fault-related ground
displacements (Barnhart et al., 2019; Zhang et al., 2015; Scott et al.,
2018, 2020). However, ICP is incapable of resolving gradual
centimeter-level changes (Ekhtari and Glennie, 2017) and suffers from
higher estimate uncertainties near the fault trace due to the assumption
of localized rigid movement (Zhang et al., 2015). These methods cannot
be used for estimating fault creep, unless the time horizon between the
temporal datasets is large enough to overcome the decimeter-level noise
(e.g. Scott et al. (2020)).

There is a paucity of techniques that can provide distributed high
accuracy near-field observations over shorter time scales. At the Hayward
fault, for example, the slowly creeping characteristics of the fault (a few
millimeters per year (McFarland et al, 2016)) have been recorded by
alinement array stations and reported annually for decades, but it has not
been captured with high spatial resolution. For InSAR, the complex
displacement leads to decorrelation that limits the ability to estimate
temporally spaced deformation in the phase domain. For lidar, even with
high point density, the irregular format of point clouds makes it hard to
identify and associate corresponding points that provide consistent es-
timates of displacement at the point cloud level. Unlike persistent scat-
terers within an interferogram (Hooper et al, 2004; Crosetto et al.,
2016), point cloud based change detection has the flexibility of sensing
near-field deformation but the method does not ensure a stable tracking
of corresponding features between epochs, and as a result, the applica-
tion suffers from a matching uncertainty in addition to the errors in the
point observations. Therefore, it would be advantageous to develop new
methodology for point clouds which include the identification and
tracking of geometric features analogous to InSAR persistent scatterers
such that reliable geodetic markers can be identified from point clouds
and used for change detection in the near field.

In this paper, we propose a change detection strategy using mobile
laser scanning (MLS) point clouds that takes advantage of both the steady
and gradual movement patterns of the fault creep and the presence of
geodetic markers in an urban environment. The method is able to detect
distributed fault creep in the near field within approximately 300 m of
the fault trace. Fault creep is detected with meter-level resolution and
sub-centimeter level accuracy. The proposed method consists of two
major parts: (1) a random sample consensus (RANSAC)-based corre-
sponding plane detector, and (2) a combined least squares displacement
estimator. The proposed RANSAC-based corresponding plane detector is
designed to seek corresponding planar primitives as stable geodetic
markers from repeated and temporally spaced MLS scans such that the
point clouds representing the same planar objects are segmented together
in each epoch of the MLS scan. The nature of the slowly creeping
deformation isleveraged for the detector to assign robust correspondence
of planar primitives in each MLS dataset. The method is designed to
compensate for the incomplete geometrical representation of point
clouds due to scan occlusions (¥ia et al., 2020), and multiple model
fitting problems (Magri and Fusiello, 2016) within point cloud-based
change detection.

A combined least squares-based displacement estimator is imple-
mented using the temporally spaced groups of corresponding planar
primitives. The adjustment is inspired by the airborne laser scanning
(ALS) bore-sight self-calibration model proposed by Skaloud and Lichti
(2006). Our previous study (Zhu et al., in press: 11/04/2021) shows that
geometric primitive-based change detection using MLS data has the
ability to capture centimeter-scale deformation in the fault near field.
This work highlights the potential and advantages of augmenting MLS
point clouds as geometric primitives for accurate change detection. Point
clouds modeled as primitives provide a localization accuracy that is
better than the individual lidar point noise (Zhu et al, in press:
11/04/2021). A similar combined least squares adjustment was also
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implemented by Kusari et al. (2019) where they showed the method
works on large blocks of lidar data. However, the method they proposed
is not flexible and robust enough to recover subtle deformation at a
resolution finer than the block scale; this makes it insensitive to near-field
nonlinear shear displacement patterns (e.g. Chinnery (1961)). In this
paper, the use of planar primitives (as geodetic markers) captured from
temporally spaced MLS surveys is presented to estimate high accuracy
and resolution near-field deformation. Compared with previous work,
rather than estimating primitive geometry and ground change separately,
the proposed least squares adjustment combines the estimates of dis-
placements with the estimates of primitive geometry, leveraging the
additional geometric constraints for estimation of the displacements. The
method is able to accurately capture centimeter-level ground deforma-
tion and simultaneously estimate primitive geometry thanks to the high
degrees of freedom created using planar primitives. The methods are
tested on MLS data collected along a 2 km segment of the Hayward fault
in 2015 and 2017. The accuracy of the results are validated by the
collocated alinement array measurements and fault creep patterns are
revealed as displacement fields in the near field of the fault.

The rest of this paper is organized as follows: first the MLS surveys
conducted at the Hayward fault are described; then the two-module
change detection method is introduced and how the method takes
advantage of the characteristics of slow-moving fault creep is demon-
strated. Change detection results are then shown and validated with
theodolite surveys on collocated alinement arrays. The strength of the
regression solutions is then discussed followed by assessments of the
change detection strategy.

2. MLS data collection and the Hayward fault

The Hayward fault is known for its active aseismic surface creep and
long-timescale geodetic records. Long-term creep rates have been
recorded using theodolite surveys since 2001 by the USGS in collabora-
tion with the Geosciences department at SFSU (SFSU creep project
homepage, accessed: 10/15/2021). According to their report (McFarland
et al., 2016), steady creep rates have been recorded within the MLS
surveyed area (Fig. 1). The creep rate at alinement array station HCAM
located at Camellia Drive has averaged ~7 mm per year over the past 10
years. Similar creep rates have been recorded at adjacent stations HPMD,
HSGR, HONO and HPIN (380 m, 720 m, 980 m and 1000 m from HCAM
respectively). Although HPIN and HONO are located outside the survey
area, they provide a reliable bound of the creep rates for the MLS survey
area. These alinement array measurements outline a steady and gradual
dextral slip pattern for the monitored fault creep. Fig. 2 shows accumu-
lated creep observed since 2010 as dextral displacement at these aline-
ment array stations.

The MLS surveys were conducted in July of 2015 and again in June of
2017 near Fremont, CA, along a 2 km segment of the Hayward fault. The
survey area is shown in Fig. 1. Two RIEGL VZ-1000 scanners mounted on
a pickup truck were used to collect the MLS data with a point density of
approximately 300 points/m? at a distance of 20 m from the scanner.
Multiple global navigation satellite system (GNSS) base stations were
used for data acquisition and all GNSS, inertial navigation system (INS)
and laser scanning data was time-tagged and recorded for post-mission
analysis with the same survey platform described in Brooks et al.
(2017). GNSS/INS data was post processed using Grafnav software in
tightly coupled mode. The survey area was primarily devoid of signifi-
cant vegetation and therefore there was minimal loss of GNSS lock and a
comparison of independent forward and reverse GNSS solutions agreed
at the centimeter level. Each roadway in the survey area was driven
multiple times to minimize occlusions, enable precise boresighting of the
laser scanners and provide an internal consistency check for the MLS
point clouds. The boresighting was undertaken using a methodology
similar to that presented in Skaloud and Lichti (2006). Planar residuals
from the boresighting process were examined to ensure that there were
no systematic errors present in the MILS trajectory — in general the
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Fig. 1. Maps of the study area. The white polygon outlines the MLS survey extents. The Hayward fault trace is highlighted by the red line and the green dots indicates
the alinement stations. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 2. Accumulated displacement at alinement array stations since 2010. (For
interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

root-mean-square error (RMSE) for all planes after boresight adjustment
were less than 10 mm. Finally, after boresight adjustment, the areas of
overlap in the MLS point cloud were examined to identify any areas with
remaining systematic errors by examining vertical profile differences, as
the vertical is the weakest component of a GNSS/INS solution. Fig. 3
shows a representative profile (10 cm wide by 90 m) along a flat road
approximately 10 m from the scanner. Variations in the point cloud
profile show an RMSE of the point cloud (including multiple passes) of
less than 10 mm. The careful post-processing and analysis of both the
2015 and 2017 datasets allow us to confidently conclude that the relative

- Detrended ﬁoll'n clouds
=Local variation within 5 m (1 #)

Detrended elevation (m)

o 10 20 20 40 50 60 70 80 90
Dist. along profile {m)

Fig. 3. Vertical profile of the point cloud (10 em by 90 m) along a roadway.
Elevation variation (1o) is plotted as a solid line using a 5 m moving window.

noise levels of each of the point clouds are below the expected magnitude
of the displacement signal due to fault creep.

3. Methodology

The proposed change detection is executed in two steps. First, a
RANSAC-like scheme is developed to find corresponding planar primi-
tives pre- and post-deformation. Second, a combined least squares
displacement estimator is used to calculate fault creep displacements
constrained by the geometry of the corresponding planar primitives.
Details of each process are elaborated below.
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3.1. Corr-planar primitives detection

Herein, a planar primitive pre-deformation and its counterpart post-
deformation are referred to as the reference and secondary correspond-
ing planar primitives or corr-planar primitives. To find as many corr-
planar primitives as possible from repeated MLS observations, we
modified the classic RANSAC algorithm (Fischler and Bolles, 1981;
Schnabel et al., 2007) that is widely used to extract planar primitives
from point clouds. The classic RANSAC detection is improved to run in
“parallel” on two or more point clouds collected at the same location with
a slightly relaxed consensus threshold for the secondary dataset to
compensate for the dislocation induced by motion, in this case, the fault
creep. As a result of the creep, a dislocated post-deformation plane is
expected to be in a vicinity of the original pre-deformation plane, where
the difference between the two is bounded by a relaxed local creep rate
estimated from the alinement arrays.

Generally, RANSAC detection of plane features requires four steps: (1)
randomly sampling a minimum number of points required to determine
the plane, (2) solving for plane parameters given the point samples, (3)
calculating the number of inliers for the solved plane with an artificial
threshold, and (4) determining if the number of inliers is large enough to
justify an update for the plane estimate. To detect corr-planar primitives,
the proposed method follows the same steps (1) and (2) performed on the
reference point clouds. The improvement lies in the third step where
inliers for both the reference and secondary datasets are calculated with a
slightly relaxed threshold for the secondary datasets; the plane parame-
ters are only updated when better consensus sets are found in both the
reference and secondary sets.

For the modified RANSAC plane detection, both point-to-plane dis-
tance and angular deviation to the estimated planes are used as thresh-
olds to calculate the number of inliers. Point-to-plane distances are
straightforward to compute, where the normal of each point is estimated
by eigendecomposition of its 8-nearest neighbor points as described in
the point data abstraction library (PDAL Butler et al. (2021)). For the
reference set, point-to-plane distances closer than 3 cm with normal
deviations smaller than 7" are counted as inliers; for secondary sets,
point-to-plane distances closer than 4 cm with normal deviations smaller
than 10" are counted as inliers. These thresholds were calculated by
considering the beamwidth of the laser footprint (Glennie, 2007) and the
precision of the plane observations. The VZ-1000 scanner has a beam
divergence of 0.3 mrad (i.e. laser footprint has a diameter of 3 cm at 100
m), and the precision of the lidar observed planar surfaces are estimated
from the ground profile shown in Fig. 3. As shownin Fig. 4, the threshold
for a plane |BC| is bounded by the laser point noise estimates of 3 cm for a
close range scan (in general < 10 m); distance threshold |CD| is bounded
by the creep displacement observed at the alinement array stations,

on beam divergence.png
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Fig. 4. Ilustration of MLS point doud noise and selection of RANSAC threshold
(displacements are not drawn proportionally in this schematic plot).
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estimated as 1 cm. The normal vector angular threshold (¢;, #5) is
bounded by the smallest plane to be considered such that plane size |AB|
larger than (2, 22L) can be detected by the RANSAC detector.

In addition to the RANSAC detector, a sequential searching strategy is
also implemented such that the detector is embedded in a moving win-
dow looping multiple times through the point clouds. This sequential
RANSAC is necessary because multiple planes can be present within a
search window, and as a result, a single point may be detected as an inlier
on multiple planes. This problem is known as multiple models geometric
fitting in computer vision (Magri and Fusiello, 2016).

For each round of RANSAC detection, a subsample of reference
dataset query points for the search window is selected where the minimal
query point spacing is set to be 0.5 m. The window size is chosen to be 20
m (diameter) which is slightly larger than the biggest planar surface
detected within the surveyed neighborhood. As the moving window
passes over the dataset, at every query position, the largest corr-planar
primitives are detected using the corr-planar RANSAC detector while
the affiliation of a point (which plane it belongs to), can be reassigned
such that the detection is independent of the query sequence. After
looping over all query points, point clouds belonging to the largest planes
detected at all query locations are removed and a new round of detection
is started to identify and remove point clouds for the second-largest corr-
planar primitives. The iterations terminate when there are no corr-planar
primitives detected.

A flow chart of the modified RANSAC process can be found in Fig. 5.
In this generalized RANSAC detection, the consensus set of a plane
consists of all points that are detected as inliers; dually, the preference set
of a point consists of all planes that this point potentially belongs to. The
reassignment ensures that the point is assigned to the largest consensus
set detected within a single round such thatlarge planar objects like walls
and roofs will not be broken into patches due to the moving window
search; multiple rounds of detection ensure that multiple corr-planes can
be captured as long as they are significant enough to contain a minimum
amount of points. For this study the minimum point threshold is set to
150 points. The detector captures approximately 60% of the corr-planar
primitives within the first iteration using about 40% of the overall pro-
cessing time and completes detection in an average of 8 iterations.

Fig. 6 demonstrates the detection results of the sequential corr-plane
detection where corr-planes are color coded. The method robustly de-
tects corr-planar features. The RANSAC scheme overcomes the incom-
plete representation of planar geometry in point clouds due to scanning
occlusions. In addition, planar primitives are only extracted when
counterpart planes exist in the paired dataset.

3.2. Combined least squares adjustment

Given corr-planar primitives extracted from the MLS data, creep
deformation can be estimated by re-aligning the corresponding planes
using a least squares framework. For fault creep, the deformation is
detected as a relative displacement, i.e. how one side of the fault has
moved relative to the other side; therefore, precise absolute georefer-
encing of the two datasets is unnecessary as long as a relative post-
registration is performed.

The temporal displacements are estimated based on a least squares
adjustment of rigid body transformations conditioned on the planar
shape of the corresponding primitives, which is similar to the boresight
self-calibration model presented in Skaloud and Lichti (2006). This least
squares adjustment estimates the rigid transformation parameters and
the plane parameters simultaneously, which is why it is referred to as a
combined least squares adjustment. A description of the methods is given
below.

For any detected corr-planes, given reference point clouds and
transformed secondary point clouds, the geometry of the corr-planes are
estimated as:
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Fig. 5. Flow chart of the RANSAC corr-plane detection.
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where < - > represents the dot product of two vectors, and [X, Y, Z] are
the coordinates of either the reference or transformed secondary point
cloud. Note that both datasets are pre-processed with a constant trans-
lation such that the reference point cloud centroid is at the origin.

For secondary point clouds, the rigid transformation assuming small
angles (< 1°) is defined as:

X 1 —a ﬁ X:+1:
¥|=le 9 SlRas @
Z '-',8 Y 1 Zi+t;

Corr-planes are constrained by geometry:

gn)=n’+n’+n’-1=0 (3)

In the above equations:

e The observations are I = [I; L]
~ reference point clouds I, = [X;, ¥r.Z]%,
- secondary point clouds [, = [X;, ¥s, Zy| %
e The unknowns are n and x
- normal directions of corr-planes n = (1, ny, 1;)
— secondary points rigid transformation parameters (3 translations
and 3 rotations) x = (ty, t;, &, @, f5, 1)

Given only a single observed plane, the adjustment defined above will
be ill-posed because a planar surface is only sensitive to displacement
along its normal. To regularize the regression, a group of planes (; where
i represents plane indices) with varying normal vectors are selected
within a query window so that they share a single rigid transformation x
in the least squares adjustment. One can visualize this process as the
adjustment being implemented on not a single pair of corr-planes but an
ensemble consisting of several pairs such that a shared transformation
can be estimated and constrained by the geometry of each corr-planar
primitive. As long as the augmented planes are not parallel, the geome-
try of the ensemble is unique enough to ensure a robust regression. By
choosing planes randomly within a search radius, the solution's geometry

i
plii

Fig. 6. A sample corr-planar RANSAC detection showing MLS point clouds of a house captured in 2015 (left) and 2017 (right). Points are color coded by index of the
corr-planar primitives. Grey points indicate unclassified points which represent either inconsistent objects detected due to MLS scan occlusions or planar primitives
that are too small (under 150 pts) to be identified. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)
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is unique enough to reliably estimate displacement in any direction. The
number of planes used for each rigid transformation and the search
radius of the query window are empirical parameters that must be chosen
based on the density of planar surfaces and their variations in geometry;
both of these will be dataset specific. Metrics for selecting the search
radius and the number of ensemble planes are discussed in Section 3.3.

A combined adjustment (Gauss-Helmert) model (Mullen, 2004) is
used to estimate the solutions. Linearization of Equation (1) and
constraint 3 takes the form:

G& +w, = v, 6]

where A; = % and Az = % are the partial derivative of function f with
respect to the unknown transformation and plane parameters, B = % is
the partial derivative of function f with respect to the observations (laser
points), v are the residuals, and w is the misclosure vector, i.e. the value of
function f estimated with the estimated parameters and observations.
G= % is the partial derivative of the constraint g with respect to the
unknowns, v, is the constraint residual vector and w; is the misclosure
vector of the constraints. The adjustment iteratively improves the esti-
mated parameters by the corrections represented by each 5, which are the
correction vectors for the transformation (1) and plane parameters (2).

Using Lagrange multipliers (4 and y), Equation (4) can be solved with
the constraints provided by Equation (5). The Lagrange function takes
the form:

@ = VIPY + Ve tPV, + 201(A18y + Asbs + BY +w) + 24 (G2 + we — v)
(6)

here, P and P; are the corresponding weight matrices, where the diagonal
terms are the inverse variance of the observations and constraints,
respectively.

Setting the derivatives of the Lagrange function (Equation (6)) equal
to zero yields the normal equations given as:

AI(BP'BT)'A, AI(BP'BT)'A, [31 ]
AL(BP'BT)'A; AI(BP'B") A+ G'P.G | L%

AT(BP'B")
1( 9 ) W e [g] (7’}
AL (BP'B") w+ G"Pw.

The regression results using Equation (7) lead to simultaneous esti-
mates of displacement (creep) together with corr-planar geometry
(planar normals).

3.3. Distribution of corr-planar primitives and strength of least squares
solution

Given that displacement is estimated based on the combination of a
group of corr-planes within a defined search window, it is meaningful to
explore the impact of the ensemble geometry on the regression results. As
mentioned previously, a single pair of corr-planes can only be used to
detect a displacement in the direction of the plane normal; to capture
displacements in all directions a number of closely located corr-planes
must be aggregated such that various normal directions are combined.
For this aggregation process, the two hyper-parameters to consider,
namely the number of corr-planes and the search radius, are actually
correlated as they both reflect a general distribution of corr-planes found
within the MLS data. An ideal aggregation should take in as many corr-
planes as possible to ensure robust solution geometry but within an
area as small as possible to have optimal detection resolution. To opti-
mize aggregation geometry while obtaining the highest resolution, an
independent measure of the strength of the least squares solution could
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be considered. Herein we use an examination of the covariance matrix,
similar to the positional dilution of precision (PDOP) metric used in
satellite navigation and geomatics engineering (Langley et al., 1999,
Santerre et al., 2017) to examine the relative geometric strength of the
estimated translation.

To calculate the geometric strength of the translation (GSTR), the
trace of the unscaled covariance matrix Gy of the translation parameters
is used:

C, = (ATA)™" 8
GSTR = t(C,) ©)

where A is the Jacobian matrix of Equation (1) with respect to estimated
translation [t 5,t]". GSTR represents the relative strength of the
aggregated corr-planes’ geometry and is equivalent to PDOP from GNSS
processing that evaluates receiver-satellite geometric strength. A larger
GSTR corresponds to larger regression uncertainties due to poor geom-
etry (i.e. not a good distribution of planar normals). For example, closely
spaced parallel walls and/or roofs could result in large GSTR values
indicating weak regression geometry.

Fig. 7 illustrates the distribution of GSTR versus the number of corr-
planes for a selection of the Hayward fault MLS data. In this figure, the
curve flattens beyond 10 planes as GSTR falls under 10. A conservative
minimum of 12 planes is chosen for the proposed combined least squares
adjustment. The associated GSTR value (GSTR = 2) is used to filter out
regression results with weak geometry.

4. Results and interpretations

4.1. Detected fault creep displacement fields

Fig. 8 shows the fault creep displacement field calculated from MLS
point clouds acquired in 2015 and 2017. The head of the pin-shaped
vector represents where the displacement is detected, and the length
and orientation of the pin represent the offset and direction of
displacement. Away from the fault, dextral motions are oriented parallel
to the fault trace. The average displacement is 1.78 + 0.8 cm which re-
flects an average creep magnitude, regardless of orientation, over the
entire survey area. However, the amount and direction of the creep
displacements vary and show spatial correlation with distance to the fault
trace. Note that in the figure we have highlighted those solutions with a
GSTR > 2 in red. It is quite clear that the solutions with higher GSTR
values contain some outliers as evidenced by their anomalous
orientations.

The fault trace presented in Fig. 8 and in subsequent plots is inter-
polated based on the survey of alinement arrays as documented by
McFarland et al. (2016) and SFSU creep project homepage (accessed:
10/15/2021). According to the alinement array surveys, road and curb
cracks are used as evidence of the fault location. A connection of these
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planes. Error bars show the variation of the distribution calculated over the
entire MLS surveyed area.
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documented cracks over the region is then used as an estimate of the local
fault trace. In this study, local crack measurements at alinement array
stations HPIN, HCAM, HPMD, HSGR and HONO are considered as they
span the MLS survey area, and the fault trace is estimated as a
non-parametric linear local regression (Cleveland, 1979) of the aline-
ment array estimated fault locations. Compared with other records, e.g.
Quaternary faults (U.S. Geological Survey and California Geological
Survey, accessed: 10/15/2021), this fault trace estimate has better
spatial resolution and therefore enhances examination of off-fault creep
displacement distributions.

4.2. Distributions of off-fault creep displacements

Using the displacement field and the fault trace estimate, displace-
ments parallel and perpendicular to the fault can be calculated by pro-
jecting the displacement vectors along and across the nearest fault trace
direction. Fig. 9 shows the spatial distribution of the fault parallel creep
displacement; the amount of displacement varies gradually even near the
fault trace. This is consistent with the gradual and steady fault creep
displacement characteristics reported by field measurements such as
McFarland et al. (2016).

Given that the centimeter-level creep displacements along the fault
show little variation, it is beneficial to examine displacement profiles
across the fault to highlight any off-fault displacement patterns such as
fault asymmetry and nonlinear displacements. Fig. 10 shows stacked
displacement profiles over the entire MLS surveyed area. These profiles
highlight the off-fault variation of fault creep displacements and curva-
ture of the displacement profile that can potentially assist with inferring
fault slip at depth (Brooks et al., 2017). In Fig. 10 (a), the fault parallel
displacement profile shows curvature within 150 m off-fault and reflects
the nonlinear variations of displacement detected in the near field. In the
far field, beyond 150 m off-fault, displacements are more uniform, and
the overall off-fault dextral displacement is calculated as 2.5 + 1.5 cm
(16). In Fig. 10 (b) minor fault perpendicular creep is present in the far
field with a magnitude of —0.5 & 1.3 cm (16). The scattered displacement
records are color coded by GSTR, with inliers colored in blue. The blue
dots are clustered around the trend with the remaining colored dots
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Fig. 9. Fault parallel creep displacement field. Dots show centroids of search
window locations for creep colored by the amount of fault parallel displacement.
The dark red line indicates the fault trace estimated from the alinement array
survey. Basemap from NAIP Digital Georectified Image courtesy of the U.S.
Geological Survey (USDA-FSA-APFO et al, 2019). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version
of this article.)

spread out with a larger variance within the change detection results.
This clustering suggests that GSTR is a good indicator of the strength of
the least squares solution and can be used as a filter for robust creep
displacement estimates. Only the filtered data (blue dots) contribute to
the displacement trend line and error bars shown in both figures; they are
computed by binning displacement estimates in 50 m wide bins.

One has to be cautious when interpreting the resultsin Figs. 9 and 10
because projection accuracy is highly correlated to the definition of the
fault trace, which is interpolated based on the field survey of alinement
arrays. Although consistent cracks on roads and curbs should be treated
as promising evidence of the fault trace, there are limited observations of
the ground rupture. Fault slip at depth does not necessarily migrate to the
ground surface and deterioration and thermal changes may also lead to
scattered cracks that are not necessarily along the strike. Therefore, the
fault trace in between surface observations can only be estimated by
interpolation and regression. As shown by the distribution in Fig. 9 and
the trend in Fig. 10, the ‘offset’ and the ‘plateau’ are not perfectly
centered on the assumed fault trace (where off-fault distance equals
zero). This is also confirmed by some sections of the displacement field in
Fig. 8 where the transition zones for the displacement arrows are not
centered at the fault trace. Given the discrepancies between these
displacement fields and the interpolated fault trace, a more accurate fault
trace definition would most likely result in a better estimation of true off-
fault creep deformation.

The profiles in Fig. 10 enable investigations of fault displacement in
the off-fault principle direction; however, the along fault variation of
displacements are not evident because the profiles are stacked. Off-fault
profiles can be generated at different locations along the fault such that
along-fault variations in creep rates can be revealed. Referring to the
north end of the MLS survey area as the starting point of the fault trace,
along-fault distances are measured and a cascade of off-fault displace-
ment profiles are calculated by sliding a 100 m search window along the
fault trace. Fig. 11 shows each profile as a local regression (Cleveland,
1979) of the detected displacements within a window 100 m along and
400 m across the fault. The span of the regression is set at 10% which is
equivalent to a 50 m moving average along the displacement profile. In
this figure, a minor reduction of fault parallel displacements can be found
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from North to South; thisis consistent with the regional trend detected by
the alinement arrays (Fig. 3) that spans the area surrounding the MLS
survey.

4.3. Validation of the MLS estimates of creep

The Hayward fault is well known for the comprehensive alinement
array stations maintained by McFarland et al. (2016). Details of how the
alinement array data are collected and processed can be found at the
SFSU creep project homepage (accessed: 10/15/2021). The alinement
arrays are surveyed with a theodolite such that any fault parallel
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movement greater than 1-2 mm can be confidently detected. Here, we
use the theodolite surveys of the alinement station HCAM to validate our
creep estimates. The location of HCAM can be found in Fig. 1. Although
the fault trace is determined by multiple alinement array stations, sta-
tions other than HCAM are not compared because they are not covered by
persistent MLS observations.

As shown in Fig. 12, the alinement array surveys measure the angular
changes of permanent survey monuments located at an alinement station.
Dextral fault-parallel creep displacements are then derived from the
angular changes. At station HCAM, relative fault parallel displacements
are reported at survey monuments IS and ES located 44 m off-fault, and
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Fig. 11. Off-fault fault parallel displacement profiles stacked along the fault strike. Each profile represents a 50 m binned average of the displacements at various off-
fault distances. The cascade of profiles are generated by sliding a 100 m search window along the fault trace with an increment of 5 m. Displacements profiles are

colored by the amount of fault parallel creep.
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Fig. 12. Displacement field across the fault at alinement station HCAM. The
fault trace is shown as the dark red line. The fault crossing at HCAM is marked as
acircde and the associated survey monuments IS and ES are marked as triangles.
Displacement vectors detected within 20 m of the survey monuments IS and ES
are outlined and colored (red-east, yellow-west). Basemap from NAIP Digital
Georectified Image courtesy of the U.S. Geological Survey (USDA-FSA-APFO
et al., 2019). (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)

the fault trace is interpolated from adjacent alinement array stations. The
equivalent MLS measurement is the relative fault parallel displacements
detected around the survey monuments. Fig. 12 displays 20 m wide
displacement fields along the line between survey monuments. The
corresponding displacement estimates are highlighted with circles and
average displacements along the fault are calculated and compared with
the theodolite estimates.

The validation results are shown in Fig. 13. In (a), the displacement
vectors and the locations of alinement stations are re-plotted with the
fault trace centered at the origin and y-axis along the fault trace. The off-
fault distributions of fault parallel and fault perpendicular displacements
are shown in (b) and (c) and the coincident alignment array measure-
ments are overlaid on (b). Displacement trends are estimated using a
robust local linear regression (Cleveland, 1979). Relative dextral
displacement is estimated from displacement fields detected 20 m from
the survey monuments IS and ES where averaged displacement pro-
jections along the fault trace are calculated. At station HCAM, the MLS
estimate is 1.1 &+ 0.7 cm (1¢) relative dextral displacement from survey
monuments IS to ES from July 2015 to June 2017 while the alinement
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array survey reports 1.5 + 0.7 cm displacement from Oct. 2015 to Oct.
2017. Note that the 4 mm difference between MLS and the alinement
array estimates is within the measurementuncertainties of both methods.
The difference may be caused by the slightly different observation pe-
riods for each. As shown in the long term records for HCAM and adjacent
stations (Fig. 2), the creep rate along the Hayward fault is not constant
and can vary by several millimeter per year.

It also appears, based on the profiles in Fig. 13 that the HCAM
alinement array stations are within the fault zone of deformation and
therefore may not completely capture the off-fault creep deformation. A
localized rotation of the MLS displacement vectors can be found between
—10 m and 50 m off-fault. The orientation of the vectors is almost
perpendicular to the fault trace. The rotation is also captured in the fault
perpendicular displacement profile in Fig. 13 (c). A second profile
minima is observed between 130 m and 170 m off-fault from a similar
rotational pattern. This second local minimum suggests that the aline-
ment array monument IS is located within the deformation zone while
the ES-IS baseline does not span the entire creeping zone. To confirm that
these detected rotational patterns are not a consequence of the smoothing
induced by the moving window employed, a synthetic test was con-
ducted, with details presented in Section 4.4.

4.4. Detection of synthetic creep

To better understand the uncertainties of the proposed change
detection strategy, a synthetic test was undertaken with a synthesized
fault creep. In the synthetic configuration, reference and secondary
datasets were generated by randomly drawing two point clouds from the
2015 MLS data, and adding a 4 cm rigid dextral displacement with
dislocation at the fault trace to one of the point clouds. This offset
matches the scale of the expected far-field displacement. The displace-
ment configuration also ensures an upper bound of the fault creep as the
near-field displacement accommodates all the far-field fault slip instantly
at the fault trace.

Figs. 14 and 15, show example profiles near HCAM with the 4 cm
synthetic dislocation. The synthetic results show a 0.2 cm variation
represented by the thickness of the displacement profile. A smoothing
effect induced by the moving window can be found +10 m off-fault
where the simulated stair-like displacement is detected as a linear tran-
sition off-fault. No bias in the direction of the detected displacements are
shown in Fig. 16, and the angular variation of the vectorsis only 10" (16).

The synthetic results show that the selection window for the planes
has only a minimal smoothing effect on the estimate of displacement as it
crosses the simulated fault location. The window size does not seem to
affect the estimated displacement direction significantly. It is, therefore,
highly unlikely that the transition width displayed in Fig. 13, which

= . Fig. 13. Displacement profiles estimated by MLS at
alinement station HCAM. (a) Detected displacement
fields viewed from an off-fault perspective (centered
at the fault trace and rotated by the strike direction).
Corresponding displacement vectors for survey
monuments IS and ES are circled. Labels for HCAM,
IS and ES are the same as Fig. 12. (b) Profile of the
P fault parallel displacement overlaid with coincident
A4 Alinement array
. alinement array measurements. Y-offset of survey
monuments represents the dextral displacements

L
North 1 cm disp—

* Fault para. disp.

T g detected by the alinement array over the same
y . approximate time period. (c) Profile of the fault
- Faultperp.disp.  perpendicular displacement.
=—Reg. Iing
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Fig. 14. Synthetic displacement field at alinement station HCAM. Basemap
from NAIP Digital Georectified Image courtesy of the U.S. Geological Survey
(USDA-FSA-APFO et al., 2019),

appears to be at least 50 m wide with a noticeable systematic rotation
pattern, is caused by the size of the selection window.

5. Discussion
5.1. Generality of the proposed change detection strategy

The structure of the proposed two-step strategy leads to a general
framework for change detection not limited by the type of fault, the
deformation rate or the primitive geometry. The method detects changes
in 3D; vertical changes can also be estimated for a non strike-slip fault. In
the first step, implementation of the RANSAC corr-planar detector le-
verages the slow deformation characteristics of the fault creep where the
secondary point clouds are expected to be nearly adjacent to the refer-
ence point clouds. The method would still be feasible without the
assumption of slow deformation as alternatively, a coarse alignment (like
ICP) could first be applied either globally or locally. The RANSAC de-
tector could then be implemented with the consensus threshold adjusted
accordingly based on the estimated accuracy of the ICP solution. The
selection of geodetic marker type can also be adapted to other geometric
primitive besides planar surfaces. The ’parallel’ consensus threshold and

ISPRS Open Journal of Photogr ry and R Sensing 2 (2021) 100009
Polar histogram of the simulated disp.
90 [ Response
150 30
180 0
210 330

240 300

270

Fig. 16. Angular histogram of the detected displacement vector orientation.
Actual displacement directions are plotted as the red line representing the
average strike of the fault trace. The angular histogram of the detected
displacement directions shows no bias from the actual directions as the bins are
centered on the red line. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

the sequential RANSAC strategy can be applied to other types of corre-
sponding geometric primitives such as concentric cylinders and spheres.

In the second step, the combined least squares adjustment framework
can also be augmented to incorporate different types of primitives.
Equation (1) can be generalized to combined primitives of various types
conditioned by their own geometry as shown in Equation (3), and the
estimate on the rigid transformation remains as shown in Equation (2).
By using a wider variety of geometric primitives, the geometry of the
geodetic markers will be more distinctive and should improve the
regression geometry GSTR and accuracy. The smoothing effect induced
by the moving window search would also be suppressed as a smaller
search window can be used with a wider selection of candidate primitive
types. This type of generalized geometric primitive framework is already
planned to augment the approach presented.

The proposed two-module strategy can be extended to estimate
change for faulting outside of urban neighborhoods. The detection using
corr-planar primitives is practical and feasible as planar surfaces are
abundant in urban areas. However, the environment demonstrated in this
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project is relatively simple as repeated houses in the same neighborhood
contribute most of the planar features for change detection. As planar
surfaces can be extracted from buildings or other types of constructions at
various sizes with different scan uncertainties, static thresholds imple-
mented by this project may not be optimized for different anthropogenic
environments. Besides scan uncertainties, construction materials on fa-
cades and roofs of a building may also introduce additional roughness or
curvature that needs to be considered for the RANSAC corr-planar
detection. Further parameter tuning and adjustment is necessary to
implement this method in different environments. Generalizing the
method to be scene invariant will require the examination of more
datasets collected in differing environments.

The dense measurements of fault creep clearly highlight the benefit of
MLS high-resolution change detection. The mobile platform provides a
side-looking scan that enables better point-cloud definition of vertical
features which is ideal for measuring horizontal deformation. Other
techniques, such as structure from motion digital imaging could also
potentially be used to provide the input point clouds for change detection
(e.g. Ekhtari and Glennie (2017)). If the images were acquired from
airbomne platforms (e.g. UAS platform) then they may provide more
uniform coverage as their acquisition is not limited to the roadways,
although potential occlusions by vegetation may limit their use in some
areas. There may also be some issues because the structure from
motion/multiview stereo photogrammetry (SfM-SVS) process tends to
round sharp edges (Slocum and Parrish, 2017) which may deform the
planar surfaces being used for estimating deformation.

6. Conclusion and future work

Herein, an MLS-based change detection framework to monitor the
slow deformation of aseismic fault creep along a segment of the Hayward
fault has been described. The fault deformation was elucidated as
displacement vectors with meter-level resolution and sub-centimeter
accuracy. The detected displacement vectors show nonlinear deforma-
tion patterns in the near field and 2.5 &+ 1.5 cm dextral displacement in
the far field (> 150 m off-fault). Rotational patterns are detected within
the nonlinear deformation zone close to the fault. The magnitude of creep
displacement estimated was validated using a collocated alinement array
station with millimeter-level agreement. The detected displacement
fields can be used to elucidate the complex physics of faulting near the
Earth's surface and the nonlinear deformation pattern and the scale of off-
fault displacement can be used as a reference to set up future geodetic
and geophysical networks for monitoring fault dynamics.

The two-step change detection strategy was shown to be practical and
feasible. The RANSAC-based corresponding planes detector seeks corre-
sponding temporally spaced geodetic markers by leveraging the slow
deformation characteristics of fault creep, and the combined least
squares displacement estimator is used to quantify both the relative fault
creep displacement and the regression of the primitive geometry
simultaneously.

The change detection method was assessed from the perspective of
the reliability of the geodetic markers, the smoothing effect of the
moving window detection, and the potential generalization of the
framework. GSTR was shown to be a practical metric to quantify the
robustness of the regression geometry. A conservative test using a syn-
thetic fault displacement shows approximately 2 mm detection un-
certainties for dextral slip, 10" angular uncertainties in displacement
orientation, and +10 m off-fault smoothing caused by the size of the
planar selection window.

For future work, we plan to generalize the choice of geodetic markers
such that non-planar primitives can also be used to track deformation.
We also plan to use multiple temporally spaced MLS surveys in a
simultaneous adjustment network to further improve the accuracy and
reliability of the creep estimates.
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