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Abstract

Spatial scan methods are extremely popular for identifying disease clusters using disease count data.
The original circular scan method proposed by Kulldorff [1] is simple to implement, is computationally in-
expensive to apply, and has high power for detecting circular clusters; however, it can struggle to identify
non-circular clusters. Many extensions of the original method have been proposed to better detect irregularly-
shaped clusters. We briefly describe several popular spatial scan method extensions (e.g., Upper Level Set,
Flexibly-shaped, Dynamic Minimum Spanning Tree, Fast Subset, etc.). We then compare the performance
of the various methods using power, sensitivity, positive predictive value, and overall accuracy by applying
these methods to 126 publicly-available benchmark data sets based on 46 different cluster shapes. The com-
parisons go into more depth and include more methods than any previous studies of this topic; many of the
methods have never been directly compared. The comprehensiveness of our study allows us to draw reliable
conclusions and make concrete recommendations about the best performing methods. R packages and scripts
are provided to make results reproducible.

Keywords: spatial scan statistic, disease cluster identification, most likely cluster, likelihood ratio statis-
tics, power

1 Introduction

Data related to health, crime, and other events of interest are frequently reported as counts within pre-
specified enumeration regions such as counties or census tracts. This helps preserve the privacy of individuals
associated with the event of interest while allowing for pattern detection. Researchers are often interested
in identifying clusters, which are collections of (usually) contiguous regions where incidence rates are higher
than those of surrounding regions.

Statistical methods for cluster detection are frequently proposed in the context of disease outbreak. Waller
and Gotway [2], Tango [B], and Bivand et al. [4] provide helpful overviews of many of the popular methods
available for cluster detection. Some early, well-known methods for cluster detection include Moran’s I [H],
Geary’s C [B], and their subsequent extensions [, B, 9]. Exploratory methods for cluster detection that do not
make statistical inference include the Geographical Analysis Machine[l{] and a method based on overlapping
local incidence proportions [11]. Turnbull et al. [ITZ] and Besag and Newell [I3] proposed statistical tests
for cluster identification, each with a different approach for accounting for the variability in incidence rates
across regions. Tango [3] and Mclafferty [14] provide many examples of methodological development in disease
cluster identification since that time. In what follows, we focus our discussion toward a specific stream of
research in disease cluster detection, which are broadly known as spatial scan methods.

Two main weaknesses prevalent with early cluster detection techniques were that they (i) were global tests
that identified a general discrepancy between observed and expected incidence rates, but failed to identify a
specific set of regions having an unusually high incidence rate or (ii) did not satisfactorily address the problem
of multiple comparisons. Kulldorff and Nagarwalla [15] proposed the spatial scan method, which addressed
both of these issues in a well-defined statistical framework. The utility of this method was quickly recognized,



and the method became a popular choice for disease cluster identification. As of early December 2021, the
Kulldorff and Nagarwalla [I5] article had over 1,700 citations. Kulldorff [[] provided additional exposition
of the spatial scan method and had over 4,100 citations [T6] as of December 2021. Despite the fact that the
spatial scan method is over 20 years old, it continues to be widely applied even today.

The spatial scan method’s popularity stems from its simplicity, computational efficiency, the availability of
a free implementation of the methodology in SatScan [17], and its power to detect disease clusters. Naturally,
the popularity of the spatial scan method encouraged other researchers to propose extensions that addressed
different contexts or improved the accuracy of the method. These “scan methods" all seek to identify the
largest value of a likelihood ratio statistic by scanning over a set of candidate zones, but differ in their choice
of candidate zones.

We aim to provide a detailed comparison of numerous scan methods in this article [I&8, 19, 20, 21, 22, 23].
In this research, we make new and objective comparisons of the different well-known spatial scan methods
and provide specific recommendations on their performance. The substantial novelty of this research involves
comparing more scan methods than has ever been done before as well as utilizing a more extensive set of
benchmark data. Many of the methods have never had their performance directly compared, and previous
comparisons were based on smaller subsets of benchmark data sets generated by the method creators. With
the purpose of providing a fair, objective comparison, we generated 45 additional data sets that were not pre-
disposed to favor any of the methods described in this paper. Consequently, the evaluation and conclusions we
present are meant to be more comprehensive and unbiased. While some of the results and implementations
are available through previous research, no integrated software has been developed to allow researchers to
compare methodologies in a simple manner. We have created the smerc R package [24] to provide a free,
open-source implementation of the various benchmarked methods. This package enables researchers to repro-
duce the results and outputs of each spatial scan method. Making our research reproducible strengthens the
veracity of our results, and will also encourage continued investigation into new methods for cluster detection.

The structure of this paper is as follows. In Section B, we describe the original spatial scan method in
further detail. We then describe many of the subsequent extensions proposed for identifying disease clusters
using regional count data. In Section B, we summarize the results when applying the scan methods to 81
benchmark data sets made available by Kulldorff et al. [28] and Duzmal et al. [26], as well as the 45 ad-
ditional benchmark data specifically generated for this study. In Section B, we discuss our findings, making
specific recommendations based on our comprehensive analysis. In the Supplementary Information Section,
the complete benchmark results are available in a series of tables and graphics.

2 Methodology

Consider a study area A that is partitioned into N disjoint regions R1,Rg,...,Ry, with A ={R1,R9,...,RN}.
The at-risk populations of the regions are denoted ni,ng,...,ny, respectively, with n4 = Zﬁ\i 1 i denoting the
total population across the study area. The observed number of disease cases for the regions are denoted
Y1,¥2,...,YN, With ya = Zf\ilyi denoting the total case count across the study area, and y = (y1,9,...,yn) de-
noting the vector of observed cases. Let s1,s9,...,85 denote representative locations within regions R1,Rg,...,Ry,
where s; :=(s;1,8;2) is the vector of coordinates in spatial dimensions 1 and 2, respectively. We refer to s; as
the centroid of region R;.

Case counts are most commonly modeled using a Binomial or Poisson distribution. Let 6; represent disease
risk in region R; which refers to the risk of an individual being affected in region R;. If the case counts are
modeled by a Binomial random variable, then

y; PP Binomial(n;,0;), i=1,2,...,N. 1)
If the case counts are modeled by a Poisson random variable, then
ind.

y; "<P Poisson(n;0;), i=1,2,...,N. 2)

We intend to test whether a subset Z c A has elevated risk compared to regions in Z¢, where Z°¢ is the
complement of Z. Let 67 denote the risk of disease for regions in Z and 6y denote the risk of disease for regions



in Z¢. Formally, we wish to test Hy: 0z = 6y against H, : 07 > 0. Define

yz= Y yi and nz= )Y n,.
iRz iRz

Assuming the case counts have the Binomial distribution in Equation (), Kulldorff and Nagarwalla [[15]
derived a likelihood ratio statistic as

92 \Z (nz=y2\"2 7Y% ( ya-yz \YATVZ (np-nz—(ya-yz) na-nz—(ya-yz)
nz nz na-nz npa-nz
a)PA(a—ya)"A7YA
(ng)*A

T = I(y_Z>M), @)

nz np—-nz

and 1 otherwise, where I(-) is the indicator function (cf., Duczmal and Assuncéo [27]). Alternatively, assuming
the case counts have the Poisson distribution in Equation (B), Kulldorff [1] derived a likelihood ratio statistic
as

vz Yz YA—YZ YA—YZ
nzg na-nz

ya YA
(%)

and 1 otherwise. We note that an alternate form of Equation (@) based on expected counts (cf., Waller and

Gotway [P] and Tango and Takahashi [2T]) is frequently used because it allows the researcher to estimate the

expected value of each region using relevant covariate information. Kulldorff [1] proposed that the scan test
be implemented using the test statistic

T =

I(y_z>yA—yz)’ @)
nz nap-—ng

T=supTZ, %)
ZeZ

where TIZ) is the likelihood ratio statistic of zone Z derived from the assumed response distribution (typically
Tg or TIZJ ) and Z is the set of candidate zones under consideration. The candidate zone associated with the
largest likelihood ratio statistic is referred to as the most likely cluster, and we denote the most likely cluster
by:zmk-

Monte Carlo methods are typically used to assess the significance of the most likely cluster. B data sets
are simulated independently under the null hypothesis that 8; = 0y for i € {1,2,...,N}. Typically, the number
of cases in each simulated data set is fixed at y4. Thus, the ith simulated set of cases, 7!, has a Multinomial
distribution with y, trials and the probability of a trial being assigned to region R; is nj/na,i=1,2,...,N. For
each simulated data set 7', Equation (8) is used to determine the largest test statistic, which we denote T';.
The p-value for the test is computed as

1+ Y2 KT >T)

B+1 (6)

p

If the p-value associated with T is less than the significance level a, then we believe that Z,,;. is an actual
cluster of regions with higher risk than regions outside the cluster. If T'z refers to the test statistic associated
with a particular candidate zone Z, then secondary clusters are identified by replacing T' in Equation (B) with
Tz, computing the associated p-value, and determining the candidate zones with sufficiently small p-values.

The substantive difference between different scan methods is the approach for constructing Z, the set of
candidate zones under consideration. For even moderately large N, determining all possible combinations
of zones (typically connected) is computationally infeasible. Thus, researchers have proposed many different
approaches for strategically choosing candidate zones to make computation feasible, but flexible enough to
identify clusters of many different shapes.

We next outline the basic details of the scan methods we will compare. In general, each method will
sequentially increase the size of candidate zones by starting with a single region as a candidate zone and
then augmenting that candidate zone with new regions until some constraint is violated. The most common
constraint is that no more than 50% of the total population may be in a candidate zone. Other common
constraints are that the candidate zones are subsets of the k2 nearest neighbors of each starting centroid or
that the intercentroid distance between any two regions in the candidate zone is no more than some maximum



geographic size. Regardless, we let 2; denote the maximum number of regions that can be added to a candidate
zone starting with region R; (in the context of a specific scan method). For simplicity, we assume a population
constraint is being used, but the principles apply to any similar constraint the researcher chooses to use. In
general, we will let I refer to the index of a region or centroid. In order to prevent notation for indices from
becoming overly complex, the notation for indices is slightly redefined between subsections, i.e., the specific
notation for indices in one subsection is likely not the same as the notation in the next section.

2.1 The circular scan test

Kulldorff and Nagarwalla [T5] and Kulldorff [I] proposed the original spatial scan test. It is frequently referred
to as the circular scan test, as the candidate zones in Z are circular in shape. The candidate zones used in
the circular scan test are determined by sequentially adding the nearest neighbors of each starting region
to construct new candidate zones, with the constraint that no more than 50% of the total population is in a
candidate zone.

We briefly describe the set of candidate zones for the circular scan method in more detail. Let I;(j) denote
the index of the jth nearest region to region R; in terms of intercentroid distance. By definition, I;(;) = i, since
the starting region has a distance of zero with itself. For each starting centroid s;, i = 1,2,...,N, we construct
the sequence of candidate zones {Ry,,},{R1,),BI1,p}-- -, {B1;q), BI;0)5 ’Rli(ki)}’ where I;(,) denotes the final
index for which the population constraint is satisfied by the sequence of candidate zones extending from region
R;. The complete set of candidate zones for the circular scan method is

N k;
Z= LJI Ul{Rli(n’RIi(Z)"“’Rli(j)}'
1=1;=

The circular scan test is still an extremely popular method for cluster detection. It is relatively simple to
understand, is very fast to implement due to the special structure of the candidate zones, and is available as
part of the free, publicly-available SaTScan software [14].

2.2 The elliptic scan test

Kulldorff et al. [25] showed that the circular spatial scan method has high power to detect circular clusters,
but it may struggle in detecting irregularly-shaped clusters. Kulldorff et al. [18] proposed supplementing the
circular candidate zones of the circular scan method with elliptic candidate zones. While the circular scan
method is direction free, the regions included in an elliptic candidate zone may vary considerably if the ellipse
is rotated around its center.

An ellipse can be characterized by three parameters: its origin, s, its shape, ¢, and its angle, ¢. The origin
is the center of the ellipse. The shape of the ellipse is defined as the ratio between the lengths of its major axis,
b, and its minor axis, a, i.e., ¢ = b/a. The smallest value of ¢ is 1, which represents a circular shape. Increasing
the value of ¢ results in a narrower ellipse. The angle ¢ is the angle between the major axis and the horizontal
axis. Figure 0 depicts a representative ellipse.

We now describe how candidate zones are constructed using an ellipse. Let s; be the origin of the ellipse,
and fix the shape and angle parameters, ¢ and ¢. Note that this implies the major axis b = a/c. The ellipse is
enlarged by increasing the lengths of its major and minor axes while maintaining the shape ¢. A region R; is
“included” in the ellipse if its centroid s; lies within the ellipse, i.e., if it satisfies the constraint

[cos(¢p)(s;1 —si1) +sin(p)(s2 — si2)]? , [cos(0)(s;1 —si1) — sin(¢)s2 — si2)]?

> @02 <1 @)

The ellipse is increased in size until the combined population of all regions with centroids inside the ellipse
exceeds 50% of the total population. Let af}.d) denote the minimum length of the minor axis needed for s;
(%
i(7)
denote the jth largest length af}(’j and [ f(ﬁ denote the index of the region associated with af(ﬁ We define the
sequence of candidate zones starting from centroid s; with shape ¢ and angle ¢ by

to satisfy the constraints of Equation (@) when the ellipse originates from centroid s;. Additionally, let a

Z(si,6,P) = {{ng(,ip)},{RIw URcob,.. iR co UR o U---UR o 1},

i(1) i(2) i(1) i(2) ik;)



Figure 1: An ellipse centered at centroid s, rotated with angle ¢, with minor axis a and major axis b. The
minor axis a is shown in orange, the major axis b is shown in magenta, the rotation angle ¢ is shown in cyan,
and the origin s is indicated by the black dot.

where k; denotes the last index such that the population constraints are satisfied. Note that we intentionally
suppress the dependence of k; on ¢ and ¢ for simplicity, as k2; may differ for each combination of ¢ and ¢, and
multiple combinations are generally considered. Kulldorff et al. [18] recommended that the set of candidate
zones in Z be comprised of the zones obtained from considering many combinations of ¢ and ¢ and that for a
fixed ¢, a sequence of angles should be chosen so that at least 70% of each ellipse overlaps the ellipse associated
with the next angle. Let ~ denote the set of shapes to consider and ®. denote the set of angles considered for
shape ¢. The set of zones considered by the elliptic scan test is

N
Z=UU U ZGi,c, ).

i=1¢eX ped,

When the shape is large, the ellipse is long and narrow, and regions in a zone may not be neighboring.
To prevent this eccentric tendency, Kulldorff etl al. [T8] recommended a penalized version of the Poisson test
statistic in Equation (8):

4¢ A
Toqj = su TP(—) :
“dJ z€§{ 2+ 12

where A = 0 is a penalty parameter. In the circular case, when ¢ =1, T4; is the same as the original Poisson
test statistic since there is no need to fix the eccentricity. Otherwise, (¢ + 1)? = 4¢ for all values of ¢ = 1, thus
the penalty is stronger when increasing A with a fixed ¢ > 1. Moreover, when A = 0, no penalty is applied to
the test statistic, and when A — oo, the penalty is so strong that only circular clusters are considered [T18].

2.3 The upper level set (ULS) scan test

The circular and elliptic scan methods impose an artificial restriction on the shape of zones evaluated for
increased risk. Each zone under consideration must conform to the geometric restrictions of the underlying
search methodology, so for the circular and elliptic scan methods, the clusters discovered would be either
circular or elliptical, respectively.

Patil and Taillie[T9] proposed the ULS scan method for detecting arbitrarily-shaped clusters based on
the underlying spatial connectivity of the study area A, combined with a population-scaled response value
to determine a reduced parameter space over which an exhaustive search can be completed. We define the
population-scaled response values as

Gi =yi/ni, 1= 1,2,...,N,

with G :={G1,Go9,...,GN}. We define the distinct values of G to be the values r{ >r9>--->rj, where M <N.
Additionally, for each value of ; we define index sets

I;={ie{l,2,...,N}: G;=r;}, j=1,...,.M.



From each I;, we may define an Upper Level Set U; for j=1,...,M by

UjZIlulgu---UIj
={iel,2,...,N:G; =r;}.

The Upper Level Set U; corresponding to the distinct population-scaled response value r; can be interpreted
as the set of regional indices that have a population-scaled response value at least as large as r;. This inter-
pretation means that for any given j=1,...,M, the set U, contains only those regions with the highest values
of population-scaled response values.

Special consideration is given to each of the contiguous subsets within U;. Let

Cj:{Cj(l),Cj(g),...,Cj(kj)}, j=12,....M,

be the set of connected components of U;, where a “connected component” C ) is simply a contiguous set of
regions in U;. The components are constructed to be as large as possible, but with no overlap between any
two components, i.e., C;i,)NCjq,) = @ when I1 # la. According to this definition, we know that 1 <k; < |Uj|,
where |Uj| is the number of regions in U;. The defining properties of U; imply that each connected component
C ) has elevated population-scaled response values in comparison to those regions not included in U;. This
property, along with the contiguity of each C (), qualifies the connected components as candidates for the most
likely cluster. We therefore define the new reduced parameter space for the ULS test as

ol
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1

Cxr

Il
—
~

I

J

Patil and Taillie [T9] and Patil et al. [28] provided helpful examples and graphics to aid in understanding the
structure of the candidate zones.

2.4 The flexibly-shaped scan test

Tango and Takahashi [20] proposed the flexibly-shaped scan method, which allows for non-circular clusters by
searching among all connected subsets of regions under certain constraints.

Let Z¢ and ZF denote the set of all zones that need to be scanned by the circular and flexibly-shaped scan
methods, respectively. Let 4% (R;) denote the & nearest neighbors of region R;, including the region itself. A
k-nearest neighbors version of Z is obtained by determining the union of the zones created when sequentially
adding each of the & nearest neighbors (in order of distance) to each starting region R;. This union results in a
maximum of Nk candidate zones in Z¢. In addition to the circular candidate zones in Z¢, the flexibly-shaped
scan method also considers any candidate zone Z* € A%(R;) in which there is a connected path between all
regions in Z*. Consequently, Z¢o < Zr and Zr has substantially more candidate zones than Zy. Tango and
Takahashi [20] described a computationally efficient approach for constructing Zg.

The flexibly-shaped scan method considers all circular and irregularly-shaped zones up to a maximum
neighborhood size, allowing the flexibly-shaped method to detect non-circular clusters. However, the computa-
tion time need to construct Zr increases exponentially as & gets larger. This may require a researcher to use a
relatively small value of & in order to apply the method in a reasonable amount of time, limiting the method’s
ability to detect larger clusters. Moreover, in situations where the true cluster is circular, the flexibly-shaped
method tends to detect clusters larger than the true cluster.

2.5 The restricted flexible scan test

Tango [29] proposed a restricted version of the flexibly-shaped scan method. The restricted method was fur-
ther studied by Tango and Takahashi [21]. This restricted method is more computationally friendly than the
original flexibly-shaped scan method while simultaneously allowing for larger clusters to be detected. Tango
[29] also noted that the flexibly-shaped scan method tends to detect much larger clusters than the true clus-
ter because the method allows for candidate zones to include regions with non-elevated risk. The restricted
method eliminates these regions from the candidate zones.



Tango [29] and Tango and Takahashi [21] adjusted Equations (8) and (H) to create the restricted likelihood
spatial scan statistic,

sup{T§ I1 I(pi<a1)}, (8)

ZeZ i:R;jeZ

where p; is the middle p-value given by
1
pi=P(Yi2yi+1)+§P(Yi=yi), 9

a1 is a pre-specified significance level, and Y; ~ Poisson(e;), where e; is the expected number of cases in region
R; under the null hypothesis. Based on Equations (B) and (H), the restricted flexible scan method only considers
candidate zones where all included regions have elevated risk. Otherwise, I(p; < @1) becomes zero and the
entire candidate zone is insignificant. Excluding candidate zones from consideration that have regions with
non-elevated risk reduces the search space of the method, making the computational load lighter than the
original method, while still retaining much of its flexibility. One down side of the restricted version of the test
is that the candidate zones are data-driven, meaning that the candidate zones must be determined for the
original data set and each data set simulated under the null hypothesis. Additionally, this method tends to
“disconnect” different areas of a cluster if an important connecting region has large p;, making it more difficult
to detect large clusters.

2.6 Minimum spanning trees

To address the limitations of the circular scan method for detecting non-circular clusters, another set of tech-
niques for identifying irregularly shaped clusters are classified as minimum spanning trees and introduced
by Assuncéo et al. [2Z]. Their goal was to efficiently scan a subset of candidate zones without needing an
arbitrarily selected tuning parameter (as seen in other methods). We briefly describe the intuition for the
approach as well as the construction of candidate zones.

The key focus of this method is determining the candidate zones that should be included within the subset
to be scanned. Assuncio et al. [27] suggested representing the data as a weighted graph, ¢ = (V,E,W), where
V is the set of region centroids, E is the set of edges linking regions that share a border, and W is the set of
edge weights. Since the sets V and E are fixed, the goal is to determine edge weights so that they provide
information about likely clusters. Without loss of generality, we specify large weights to indicate regions
that should be clustered together (i.e., they have similar disease risk) and small weights to indicate regions
that should not be clustered together (i.e., their disease rates are dissimilar). A good candidate zone for the
true cluster can be represented by connected regions with a large overall weight. Therefore, constructing a
minimum spanning tree of ¢ identifies a small subset of zones to be considered for analysis.

Assuncéo et al. [22] developed two methods to accomplish the above goal. Costa et al. [B0] proposed
three modifications to the construction of minimum spanning trees in an attempt to resolve weaknesses in the
previous methods. We introduce one method from Assuncéo et al. [2Z] and the three methods from Costa et
al. [B0] in the following subsections.

2.6.1 The dynamic minimum spanning tree scan test

Assuncéo et al. [27] developed the dynamic minimum spanning tree (dAMST) method as an initial implemen-
tation of minimum spanning trees for cluster detection. The dMST method employs a greedy algorithm to
construct candidate zones by augmenting a current candidate zone with the connected region that most in-
creases the likelihood ratio scan statistic. The algorithm for constructing the candidate zones of the dMST
scan method is as follows:

1. Select an initial region R; as a candidate zone Z.
2. Compute the statistic TZD for the candidate zone.

3. Identify all regions connected with the current candidate zone Z. Let Az be the set of regions connected
with Z.



4. For each Rje A7:

(2) Let Z, =R, UZ.
(b) Compute the statistic TZ,.

J
5. Based on the previous step, update the candidate zone as Z = argmax Tg,.
Jgj

6. Repeat steps 3, 4, and 5 until a stopping criterion is met.

7. Repeat steps 1-6 fori =1,2,...,N.

The most likely cluster is the zone Z with the largest Tg computed in the algorithm above.

Assuncédo et al. [2Z] noted that the dMST scan method tends to favor large, sprawling clusters, which
they call the “octopus effect”. The dMST scan method typically has longer execution times than the methods
previously discussed, as candidate zones must be uniquely determined for the observed data set and each
simulated data set.

2.6.2 The early stopping dynamic minimum spanning tree scan test

Costa et al. [B0] proposed the early stopping dynamic minimum spanning tree (edMST) scan test to improve on
the original dMST method by adding an early-stopping criterion. In step 4 of the algorithm in Section 261, a
new region will be added to the current candidate zone only if the addition increases TIZ). This effectively stops
the algorithm from branching off into long-reaching clusters, a common issue with the dMST scan test. As a
consequence of this modification, the cluster of interest for each starting region is simply the candidate zone
that is present when the algorithm terminates. This efficiently reduces the computational time and complexity
of the dMST test.

2.6.3 The double connection scan test

Costa et al. [B0] also proposed a “double connection” (DC) scan method. Similar to the edMST scan method, the
DC scan test includes the same early-stopping criterion mentioned in Section EZ62. To increase the compact-
ness of the candidate zones, the DC scan test adds an additional restriction: when constructing the candidate
zones, new connecting regions will be considered for addition only if they share a border with at least two
regions in the current candidate zone (or a single region if the candidate zone consists of only a single region).
The belief is that this additional constraint will force the candidate zones to maintain a more plausible shape
throughout construction. As before, the early stopping criterion significantly reduces the computational time
required to complete the algorithm. Additionally, the DC restriction reduces the number of candidate regions
considered at each step of the algorithm

2.6.4 The maximum linkage scan test

Costa et al. [B0O] also proposed the maximum linkage (m-link) method in an attempt to remove the octopus
effect without using an early stopping criterion. Suppose we are constructing the set of candidate zones as
described for the dMST method in Section 6 1. The m-link scan test will seek to add a region not currently
in the candidate zone only if it shares the maximum number of connections (i.e., borders) with the candidate
zone among all regions bordering the current candidate zone. If two or more regions share the maximum
number of connections, then the region that most increases Tg is selected. A stopping criterion is required
(typically a population upperbound or maximum number of regions, but not the early stopping criterion used
by the edMST and DC scan tests) to determine when the algorithm for constructing candidate zones should be
terminated. This method is similar in computational complexity to the dMST method as a similar number of
calculations are made in both methods.



2.7 The fast subset scan test

While methods such as the elliptic or flexibly-shaped scan tests have high power to detect disease clusters by
searching a large set of candidate zones, they tend to suffer from long computation times, with the number of
potential clusters increasing rapidly as the size of the study area increases. Neill [23] proposed a fast subset
scan, which seeks the maximum scan statistic over a considerably smaller set of potential clusters, doing so in
linear time.

In the fast subset scan, each region R; € A is assigned a priority based on a pre-specified priority function
G(i), and the regions are sorted according to priority. Let R(j be the region with the j** highest priority.
Neill defines a statistic TP and associated priority function G to have the linear time subset scanning (LTSS)
property if and only if

max{Tg} = max {T{% U UR, s }}.
ZeZ j=1,..N ® 5

In other words, if the maximum over all statistics occurs on a subset of the first j regions ordered by priority,
then that statistic 7P and priority function G have the LTSS property, and the global maximum of TP can
be found in linear time. Neill proves that Kulldorff’s scan statistic as defined by Equation (&) has the LTSS
property when accompanied by the priority function G(i) = y;/e;.

Neill [23] implements the unrestricted fast subset scan method as follows:

1. Calculate the expected counts e; fori =1,2,...,N.
2. Calculate the priority score G(i) = y;/e; for i =1,2,...,N.
3. Sort the regions in descending priority order. This can be done in O(NlogN) time.

4. Calculate T2,

Ry RepmRiy) for j=1,2,...,N, for a total of N statistics.

5. Take the maximum over the N statistics.

As only N statistics need to be calculated, the maximum scan statistic can be computed in O(V) time.

Neill’s fast subset scan is similar to the ULS method in that both order the regions by priority and consider
subsets based on the ordering. However, the fast subset scan does not impose any connectivity constraints.
This means that the unrestricted fast scan often returns a set of disconnected regions as the "most likely
cluster" due to those regions having the highest priority scores.

Neill [23] proposed two variants of the fast subset scan that impose proximity constraints, forcing the fast
subset scan to return a set of spatially close regions as the most likely cluster, though the regions may still
be disconnected. The fixed £ neighborhood forms local neighborhoods using each R; and its k£ — 1 nearest
neighbors. The fast subset scan is performed on each of the N local neighborhoods, and the maximum taken
over all the statistics. The fixed » method is similar in execution, but the local neighborhoods are defined by
all regions within a fixed distance r of region R;. Both the fixed £ and the fixed r local subset scans can be
repeated with multiple values of £ and r, which Neill names the multiscan £ and multiscan r methods. Once
each set of scans has been performed, a Pareto set of the scan statistics is created containing all potential
clusters Z of size kz or rz, such that no other cluster Z' of size kz or Z’ has the following properties:

TIZ), >T1Z) and ky <kzorry <rg,

TIZ), = Tg and ky <kzorryz <rz.

The most likely cluster is then selected from those in the Pareto set by computing Tg —Ly, or Tg -L,, for
some constant L and taking the maximum. Larger values of L penalize larger clusters and result in smaller
clusters, while values of L at or near zero penalize size less and result in larger clusters. The multiscan £ and
multiscan r approaches take considerably more time to compute than the unrestricted fast scan, as instead of
searching N potential clusters, the multiscan % searches EN? potential clusters for each value of , and the
multiscan r searches EN? potential clusters for each value of r, where % is the average neighborhood size for
that r.



2.8 Other methods

Other scan-related methods have been proposed that we have not considered. We briefly mention several of
them.

Duczmal and Assuncéo [27] used a simulated annealing algorithm to select good candidate zones. Duczmal
et al. [B1] used a (mono-objective) genetic algorithm to select quality candidate zones, while Duczmal et al.
[B2] used a multi-objective genetic algorithm to identify candidate zones. In each case, tuning parameters
must be specified to implement the algorithms. Additionally, the implementation of these methods is arguably
more complicated than those of the previously discussed methods.

Assuncéo et al. [22] also proposed a static minimum spanning tree, but it was shown to be substantially
less effective than the dMST method.

Patil et al. [28] proposed a Progressive upper-level set (PULSE) method intended to improve on the ULS
method [19], but the algorithm for choosing candidate sets becomes much more complicated and no implemen-
tation of the algorithm is currently available.

Murray et al. [33] proposed a method for identifying promising candidate zones in such a way that the
statistic Tg is maximized under certain conditions. The method is similar in spirit to the fast subset scan
method of Neill [23], but makes different assumptions. The original implementation of this method required
proprietary software that may not be readily available to many researchers.

There are certainly other scan-based cluster detection methods that we have not mentioned due to the
sheer scope of scan-based methods. However, we have tried to highlight the ones most popular in the academic
literature.

3 Benchmark evaluations

3.1 Background

We now benchmark the methods described in Section B using publicly-available benchmark data sets con-
structed by Kulldorff et al. [25] and Duczmal et al. [26]. The data sets are inspired by breast cancer mortality
data from the northeastern United States during the years 1988-1992. The data were previously studied by
Kulldorff et al. [34]. The original breast cancer data set included mortality counts for 245 regions spread
throughout Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New
York, Pennsylvania, Rhode Island, Vermont, and the District of Columbia. The population in each region
corresponds to the number of women recorded in the 1990 United States Census. A centroid coordinate is
associated with each region. At the time of this writing, the data constructed by Kulldorff et al. [P5] are
available at https://www.satscan.org/datasets/nebenchmark/index.htmll, while the data con-
structed by Duzmal et al. [26] are available at http://www.est .ufmg.br/~duczmal/databases/.

Kulldorff et al. [25] provided data sets based on 70 different cluster models. Kulldorff et al. [25] simulated
clusters centered around three area types: a rural area (Grand Isle County in Vermont), a “mixed” area
(Allegheny County in Pennsylvania), and an urban area (New York City). Clusters with 1, 2, 4, 8, and 16
regions were simulated for each area type. For each of the cluster models, the risk within the cluster was
greater than the risk outside the cluster. In addition, Kulldorff et al. [P5] created additional scenarios by
combining the clusters previously described. Specifically, there were scenarios where rural and urban, rural
and mixed, mixed and urban, and rural, mixed, and urban clusters occurred simultaneously, each occurring
with the same number of regions in each cluster. For each cluster model, data sets were simulated with both
600 and 6000 cases. The cases were distributed across the regions in proportion to population, except in the
clusters, which had a greater risk.

All 70 cluster models used by Kulldorff et al. [25] were circular in shape. Duczmal et al. [26] generated
irregularly-shaped clusters (referred to as a, b, ..., k) using 11 different models. To have a more extensive
comparison and avoid biasing the results in favor of the circular scan method, we generated 45 additional
irregularly-shaped clustering models. Three different sets of irregularly-shaped clustering models, irural,
imixed, and iurban (i.e., irregularly-shaped urban clustering model) are generated. Each clustering model
irural, imixed, and iurban contains 2-16 regions (counties). For the irregularly-shaped clusters, the number of
cases observed across the study area was fixed at 600 for each data set. For each of the 126 different cluster
models, 10,000 data sets were generated. In Figure B, the top-left panel displays the clusters simulated by
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Kulldorff et al. [28] that have circular shapes. The differing shades of color for the mixed, urban, and rural
regions are intended to help delineate the clusters consisting of 1, 2, 4, 8, or 16 regions. Other panels in Figure
P display irregularly-shaped clusters “a”-“k” simulated by Duczmal et al. [26]. Figure Billustrates the regions
associated with six different irregularly shaped clusters for the new irural, imixed, and iurban benchmark
data. Plots of the complete set of regions associated with the 45 irregularly-shaped clustering models are
provided in the Supplementary Information.

The null model for the data (conditional on the total number of cases), is the same for every cluster model.
In order to have a consistent null distribution across the benchmark data, Kulldorff et al. [25] simulated 99,999
data sets under the constant risk hypothesis, which assumes the risk of disease is the same in all regions. The
total number of cases observed across the entire study area, y4, was fixed at either 600 or 6000 cases for
each simulation, depending on the cluster model. The simulated null data sets were simulated according to a
multinomial distribution with y4 trials (cases) and the probability of observing a case in region i being n;/ng4.

The relative risk (RR) of each cluster was chosen so that the null hypothesis (of no cluster) would be rejected
with probability 0.999 using a standard binomial test assuming the cluster regions were known ahead of time.
The mean associated with each cluster under the null and alternative hypotheses, as well as the associated
relative risk under the alternative hypothesis, are provided in Tables 0 and .

Table 1: Properties of the benchmark data sets under the null and alternative hypotheses for circular clusters.
The number of cases in the cluster is denoted by y;y,.

600 cases 6000 cases

Model Regions Population | E(y;,|Ho) E(yinlHg) RR | E(yin|Hy) E(yinlHg) RR
mixed 1 710196 14.43 39.33 2.85 144.27 207.53 1.45
2 817050 16.60 42.66 2.69 165.98 233.14 1.42

4 1108440 22.52 51.35 2.40 225.18 301.70 1.36

8 1352284 27.47 58.32 2.24 274.71 358.05 1.32

16 1684327 34.22 67.47 2.10 342.17 433.70 1.29

rural 1 2675 0.05 10.24 191.75 0.54 12.80 23.60
2 22911 0.47 12.32 27.01 4.65 22.99 4.95

4 132343 2.69 18.45 7.05 26.89 59.02 2.21

8 204829 4.16 21.61 5.35 41.61 79.56 1.92

16 360275 7.32 27.60 3.90 73.19 120.80 1.66

urban 1 786178 15.97 41.71 2.73 159.71 225.77 1.43
2 1072181 21.78 50.29 2.43 217.81 293.25 1.36

4 2953077 59.99 100.32 1.81 599.91 715.71 1.22

8 5018909 101.96 149.86 1.63 1019.58 1162.02 1.17

16 7627173 154.94 208.63 1.53 1549.44 1713.33 1.15

3.2 Implementation

The text files associated with the 81 cluster models created by Kulldorff et al. [25] and Duczmal et al. [26]
were downloaded from the webpages indicated in Section BT, imported into R, and converted to a matrix. The
regions included in each cluster were determined by considering the estimated risk for each region across all
10,000 simulated data sets. The cluster regions associated with each model were then verified numerically
and graphically. The relevant null and cluster data sets are included in the neastbenchmark R package,
which can be installed from https://github.com/jfrench/neastbenchmark. The neastbenchmark
package [35] also includes several utility functions to automate the benchmarking process.

A spatial adjacency matrix must be specified for many of the methods previously discussed. Neither Kull-
dorff et al. [25] nor Duczmal et al. [26] provided a spatial adjacency matrix. Consequently, the spdep R
package [B6] was used to automatically construct a spatial adjacency matrix for the regions, where two re-
gions were said to be connected if they shared a border. Additionally, manual connections were added between
islands (e.g., Nantucket and Manhattan) and other regions based on seasonal ferry traffic or public transporta-
tion between the island and other regions. These traffic patterns may change over time, but this ensured that
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Figure 2: Maps indicating the different regions associated with the various cluster models. The differing
shades of color for the mixed, urban, and rural regions are intended to help delineate the clusters comprised
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Figure 3: Maps indicating the different regions associated with the cluster models imixed, iurban, and irural
comprised of 2, 4, 8, 12, 14, or 16 regions. Maps of all 45 clustering models can be found in Supplementary
Information.

13



Table 2: Properties of the benchmark data sets under the null and alternative hypotheses for irregularly
shaped clusters. The number of cases in the cluster is denoted by ;.

600 cases 600 cases
Model Regions Population E(y;,|Ho) E(yinlHg) RR | Model Regions Population E(y;,|Hg) E(yinlHg) RR
imixed 2 903972 18.36 45.30 2.59 | iurban 2 983454 19.98 47.68 2.51
3 795354 16.16 41.99 2.72 3 2460200 49.98 87.87 1.89
4 816964 16.60 42.66 2.69 4 1613284 32.77 65.54 2.12
5 1075997 21.86 50.41 2.43 5 2842777 57.75 97.56 1.82
6 1046467 21.26 49.54 2.45 6 3535465 71.82 11466 1.74
7 1129617 22.95 51.97 2.38 7 4989864 101.37 149.18 1.63
8 1088254 22.11 50.76 2.42 8 3943710 80.12 124.52 1.70
9 1192320 24.22 53.77 2.34 9 3957900 80.40 124.86 1.70
10 1266637 25.73 55.90 2.29 10 4572707 92.89 139.44 1.65
11 1249970 25.39 55.42 2.30 11 4725740 96.00 143.02 1.64
12 1397049 28.38 59.57 2.22 12 5919393 120.25 170.52 1.58
13 1426188 28.97 60.38 2.21 13 5343254 108.55 157.35 1.61
14 1462539 29.71 61.39 2.19 14 5861993 119.08 169.22 1.59
15 1435427 29.16 60.64 2.20 15 5642446 114.62 164.21 1.60
16 1461010 29.68 61.35 2.19 16 5878543 119.42 169.59 1.59
irural 2 70417 1.43 15.34 1098 | a 14 1057407 21.48 49.86 2.44
3 112107 2.28 17.49 7.88 | b 16 1672387 33.97 67.15 2.10
4 94514 1.92 16.62 8.87 | ¢ 7 709519 14.41 39.31 2.85
5 196116 3.98 21.25 549 | d 15 1119235 22.74 51.66 2.39
6 169279 3.44 20.10 6.01 | e 21 1483995 30.15 6199 2.18
7 164819 3.35 19.91 6.12 | f 23 3198049 64.97 106.40 1.78
8 119472 2.43 17.84 755 | g 26 2477365 50.33 88.31 1.89
9 238759 4.85 22.99 489 | h 29 3112721 63.23 104.29 1.79
10 248617 5.05 23.38 478 | i 23 2185043 44.39 80.77 1.95
11 322359 6.55 26.20 4.14 | j 55 5590086 113.56 163.02 1.60
12 339849 6.90 26.85 4.02 | k 78 7775129 157.95 211.87 1.53
13 367925 7.47 27.88 3.86
14 595522 12.10 35.66 3.07
15 437551 8.89 30.34 3.54
16 637030 12.94 37.00 2.98

no region was isolated from all other regions. A connectivity map of the regions is shown in Figure A. The
associated connectivity matrix is neastw in the neastbenchmark R package.

The methods implemented in this paper are available in the smerc R package [24] (version 1.0 or higher).
When possible (e.g., the circular, elliptic, flexible, and restricted flexible scan methods) the R implementations
were compared with author-constructed reference implementations [I7, B7] to ensure correctness of the im-
plemented algorithms. Per the authors of the other benchmarked methods (dMST, double connection, m-link,
ULS, fast subset), no available reference implementations currently exist.

All benchmark results utilized the Poisson version of the likelihood ratio statistic in Equation ().

3.3 Power-related measures

There are numerous power-related measures that can be used in a cluster detection context. We discuss
several that are relevant for the 10,000 benchmark data sets associated with each cluster model.

The most basic measure of power estimates the probability of rejecting Hy when H,, is true, i.e., the prob-
ability of detecting a cluster when a cluster is present. Thus,

10,000

—_— Z I(a significant result was detected in benchmark data set i),
10,000 =

power =
where I(-) is the indicator function and a significant result occurs for benchmark data set i when the associated
Monte Carlo p-value is less than a pre-specified threshold level a. The weakness of this measure is that it
does not quantify whether the detected cluster overlaps the true cluster. The detected cluster could have no
overlap with the true cluster and the basic power would be unaffected.
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Figure 4: A connectivity map for the northeastern United States benchmark regions.

Another power-related measure is sensitivity. Let Z; denote the detected cluster for benchmark data set i
and C denote the actual cluster. Define n(X) to be the population size of a zone X. Furthermore, define p® to
be the Monte Carlo p-value for the largest test statistic (cf. Equations (H) and (B)) associated with benchmark
data set i . The sensitivity is defined as the proportion of the true cluster captured by the detected cluster,
averaged over all 10,000 simulations. More formally,

1 1000 ,Z.nC ,
sensitivity = 10000 Y n(nZC) )I(p(l) <a). (10)
; i=1

The weakness of this measure is that sensitivity tends to increase with the size of the detected cluster, so
methods that suffer from the octopus effect will have high sensitivity. We note that the sensitivity of a test
for which a cluster is not detected is 0 since none of the true cluster was detected. Costa et al. [B0] computed
sensitivity (and other related measures) for a subset of the benchmark data for several tests, but did not
consider whether Z; was a significant cluster. Their calculation of sensitivity did not include the indicator
function in Equation (I).

The positive predictive value (PPV) captures the proportion of the detected cluster that overlaps with the
true cluster, averaged over all 10,000 simulations. Thus,

1 10000 ,Z.nC)

PPV = 10,000 >

" I(p® < a).
-1 nZ)

A potential weakness of this measure is that a method with high PPV might detect only a small portion of the
true cluster.
Lastly, we define the accuracy of a method as the proportion of the total population correctly categorized
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by the method, averaged over all 10,000 simulations. The accuracy can be computed as

1 10000n(Z;nC)+n(Z;nC)
10,000 = na

. ce .
167 < )+ 219 = o).
na

accuracy =

Note that the accuracy requires two cases depending on whether a cluster is detected. If a cluster is not
detected, then all of the non-cluster population (n(C¢)) is detected accurately.

3.4 Benchmark results

We now discuss the results of the benchmark tests in terms of the power-related measures.

All tests were conducted using significance levels of @ = 0.05 and 0.01. Since neither significance level
produced qualitatively different results, the results for a = 0.05 are discussed below, while the results for
a =0.01 are provided in Supplementary Information. No detected cluster was allowed to contain more than
50% of the at-risk population. The elliptic tests used the default values in SatScan [[177], which considers shapes
¢=1,1.5,2,3,4, and 5. The number of angles associated with each shape was 1, 4, 6, 9, 12, and 15, respectively.
Elliptic tests were run with penalties of 1 =0,0.5, and 1. To make computation feasible, the flexibly-shaped
scan method was only run with 2 = 15 nearest neighbors. For the restricted flexible scan method, the middle
p-value filtering level was set to @1 = 0.2. Additionally, to further facilitate computation, the restricted flexible
scan method runs with 2 = 90. Since the largest clustering model includes 78 regions, £ = 90 is reasonably
large.

In the plots below, method labels are obvious except that ellipticO refers to the elliptic test with penalty
A =0, ellipticH refers to the elliptic test with penalty A = 0.5, and ellipticl refers to the elliptic test with
penalty A = 1. The label dc refers to the double connection test. All plots below use a significance level of
a = 0.05 when assessing the significance of a detected cluster.

Figure H displays violin plots of the average power for each method across all 126 cluster models, along
with the jittered power value associated with each model. The circular, elliptic, flexible, double connection,
and m-link methods all have similar power, with the restricted flexible scan method having slightly lower
power. The dMST, edMST, fast subset, and ULS methods all have noticeably lower power.

Figure B displays violin plots of the average sensitivity for each method across all 126 cluster models,
along with the jittered sensitivity value associated with each model. The sensitivity values vary considerably
depending on the cluster model, with no clear winners. The circular, double connection, elliptic (1 =0, 0.5, or
1), flexiblly-shaped, m-link, and restricted flexible methods all have similar sensitivities. The dMST, edMST,
fast subset, and ULS methods have somewhat lower sensitivity.

The patterns for PPV and accuracy are qualitatively similar to those in Figure B. These plots are provided
in the Supplementary Information.

Overall, the circular, double connection, elliptic, flexible, m-link, and restricted flexible methods appear
to perform better than their competitors, but it is difficult from Figures B and B to assess exactly how well
they compare to each other. To better assess the differences, Figure @ displays density plots of the average
of the power-related measures for 6 of the methods (elliptic with A = 1 was chosen to represent the elliptic
scan method). From this figure, the circular and elliptic scan methods seem to have relatively the best overall
performance. However, it must be noted that 70 of the 126 cluster models were designed for compatibility
with the circular scan method (which is a special case of the elliptic scan method). Arguably, due to the high
proportion of circular cluster models in the available benchmark data, those methods have the scales tipped
in their favor.

To help mitigate this fact, we computed the power-related measures for the irregularly-shaped clusters
alone (cluster models irural, imixed, iurban, a, b, ..., k), then averaged the values for measure for each of the
56 cluster models. Similar to before, the circular, double connection, elliptic, flexible, m-link, and restricted
flexible methods appear to perform better than their competitors. We display the results for the better per-
forming methods in Figure B, which displays boxplots of the 56 average values overlaid with a jitter plot of the
actual values. Based on the available information in Figure B, it appears that the circular, elliptic and m-link
methods may have better sensitivity. On the other hand, the double connection and flexible scan methods have
relatively better PPV. Additionally, all methods seem to yield similar results in terms of accuracy. We do not
consider the average power to be a useful metric of method performance as it does not measure in any way
how accurately the true cluster is detected.
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3.5 Benchmark timing

Computational efficiency can be an important consideration when deciding which scan method to apply to
a data set. Each of the methods was applied to the original northeastern United States breast cancer data
10 times, with 99 data sets simulated under the null hypothesis. Table B displays the relative timings of
each method in comparison to the smallest timing for the minimum execution time, the 0.25 quantile of the
execution times, the average execution time, the median execution time, the 0.75 quantile of the execution
times, and the maximum execution time. The fast subset scan is easily the fastest method. The circular scan

Table 3: Relative execution time statistics of each method when applied to the northeastern United States
cancer data 10 times using 99 simulated null data sets. 1q stands for the 0.25 quantile of the timings, while uq
stands for the 0.75 quantile of the timings.

method min Iq mean median uq max
fast 1.0 1.0 1.0 1.0 1.0 1.0
circular 30.7 31.0 31.2 31.1 32.0 30.8
uls 146.4 148.5 148.8 148.1 151.5 148.3
rflex 188.9 217.8 283.2 268.7 351.3 381.2

de 329.5 332.0 332.8 328.4 330.6 353.3
edmst  1090.7 1093.5 1106.3 1113.7 1119.0 1099.8
ellipticO 1541.4 1589.1 1585.3 1574.0 1619.2 1618.4
ellipticl 1799.6 1869.5 1876.8 1906.2 1908.7 1833.4
ellipticH 2130.7 2136.6 21684 2163.9 2210.3 2160.2
mlink 18181.0 18482.2 18226.1 18230.3 18245.1 17738.2
flex15 18423.4 18553.0 18289.0 18278.4 18285.1 17545.5
dmst 26560.8 26739.0 26964.4 27304.3 27294.6 26071.0

method, the second fastest method, is approximately 30 times slower. The restricted flexible scan method is
approximately 190 times slower than the fast subset scan method, while the double connection scan method
is approximately 330 times slower. The maximum linkage and flexible scan method (with & = 15) take nearly
18,000 times as long as the fast subset scan method, while the dynamic minimum spanning tree method takes
over 26,000 times as long. On a Windows 10 laptop with an Intel i7-7500U CPU running at 2.70GHz and 16
GB of RAM, the fast subset scan method results were returned instantaneously, the circular scan executed in
less than a second, the elliptic scan method (any variant) took slightly under a minute to execute, while the
dynamic minimum spanning tree method took a little over 7 minutes to execute.

We note that the timings above could change dramatically depending on the number of null data sets
simulated. e.g., the restricted flexible scan method is typically quite fast, but an unusual “null" data set can
increase its execution time by orders of magnitude. Additionally, methods that use a fixed set of candidate
zones (specifically the circular, elliptic, and flexibly-shaped scan methods) scale better with a larger number
of simulated null data sets because the construction of the candidate zones is a fixed cost independent of the
number of simulated data sets. The execution time of the other methods is greatly impacted by the number of
simulated null data sets because the candidate zones must be constructed independently for each simulated
data set.

4 Discussion

We have performed extensive benchmark analysis on 10 different scan-based cluster detection methods: the
circular, elliptic, flexibly-shaped, restricted flexible, dynamic minimum spanning tree, early-stopping dynamic
minimum spanning tree, double connection, maximum linkage, fast subset, and upper level set. Each method
was applied to 10,000 benchmark data sets from 126 different cluster models.

The circular, elliptic, flexible, restricted flexible, double connection, and maximum linkage methods per-
formed noticeably better than the competing methods. No one method performed universally better than the
other methods, but these methods distinguished themselves among the competitors.
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The original circular scan method has relatively the best overall performance among the considered meth-
ods. It is very fast to execute and performed well in all performance-related measures. When considering only
the irregularly-shaped clusters, the circular method still performed well. The main weakness of the circular
scan method is that it may perform very poorly if the true cluster has a highly non-circular shape.

When looking at the performance of each method for both circular and irregularly-shaped clusters, the
elliptic scan method seems to strike the best balance between sensitivity (the detected proportion of the true
cluster) and positive predictive value (the proportion of the detected cluster that is part of the true cluster).
Additionally, because the elliptic method has a fixed set of scanning windows, the elliptic scan method tends
to scale well. The value chosen for the penalty parameter 1 did not seem to have a substantial impact on
performance. While the elliptic scan method has the potential to perform better than the circular scan method
for irregularly-shaped clusters, it may not perform well if the true cluster has a highly non-elliptical shape.

In comparison to the elliptic method, the flexible and the double connection method provide better PPV.
However, using only £ = 15 regions for the flexible method may lead to a higher PPV while it might be reduced
by larger & values. Additionally, the set of candidate zones for the double connection method is structured
in such a way that more compact clusters are detected, which may result in higher PPV. However, when the
elliptic, double connection, and flexible methods are compared both for PPV and sensitivity, a better overall
performance is obtained by the elliptic scan method. Generally speaking, the double connection scan method
performs similarly to the flexible scan method, and is arguably better in overall performance. We note that, in
practice, it often executes more quickly than the flexible and restricted flexible scan method, especially if the
restricted flexible scan method encounters a troublesome null data set. A weakness of the double connection
method is that the double connection constraint has no mathematical basis. Philosophically, it makes sense
that regions in the true cluster would be highly connected (i.e., share multiple borders) with other regions
in the cluster, but there is no mathematical reason for this to occur. The double connection scan method can
be expected to perform poorly when many regions in the true cluster have only a single connection to other
regions in the true cluster.

The restricted flexible scan method had high overall accuracy for both the complete set of benchmark data
and when focusing on the irregularly-shaped clusters. It also has a fairly fast execution time (in general). Its
greatest strength is also its greatest weakness. By pre-filtering regions from the potential candidate zones
with the a; tuning parameter, the method is able to improve the execution time by reducing the search space
of the candidate zones while still retaining high performance. However, if certain connecting regions in a true
cluster are pre-filtered, the method will perform poorly because those regions will not be considered in any
candidate zone.

The effectiveness of the flexibly-shaped scan method is difficult to evaluate because of its high execution
time. The method was evaluated with candidate zones containing no more than 15 total regions, which is much
smaller than the true number of regions in many of the cluster models. In light of that, the method performed
quite well. FlexScan [B7], the reference implementation of the flexibly-shaped scan method, is substantially
faster than the R implementation used in our analysis. However, that implementation was not suitable for
use in this benchmark study because of the required user intervention and the output format of the results.
The rflexscan [B8] package implements the FlexScan algorithm in C++ with a convenient wrapper for data
analysis in R. For a single data set, it is likely the flexibly-shaped scan method can be applied in a suitable
amount of time. However, the execution time of the algorithm increases exponentially with the number of
nearest neighbors. For £ = 15 nearest neighbors, there are 1,158,378 candidate zones for the benchmark data.
Increasing the number of nearest neighbors to £ = 20 results in 26,665,183 candidate zones, more than a 20-
fold increase in the number of candidate zones for only a small increase in the size of the candidate zones.
Increasing the value of k& for the flexibly-shaped scan method would provide it with a accurate measure of
performance compared to competing methods.

The maximum linkage method had a strong overall performance. Similar to the double connection method,
the maximum linkage connectivity constraint has no mathematical basis. Additionally, it takes substantially
longer to execute than the other high-performing methods.

We generated 45 additional irregularly-shaped benchmark data sets irural, imixed, and iurban to make a
fairer comparison and avoid biasing the results in favor of the circular scan method. Our overall conclusions
are that the circular, elliptic, flexible, restricted flexible, double connection, and maximum linkage methods
are strong choices for cluster detection. Due to their speed and performance, the circular and elliptic methods
can be excellent first choices. They also have fast reference implementations available in SatScan [T7]. If
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adequate time is available, it may be wise to apply all six of these methods and compare their results to get
a “preponderance of evidence” in assessing where a cluster may be located. In theory, one could combine the
candidate zones from all methods simultaneously to get a “super test" for identifying the most likely cluster.
However, this would dramatically increase execution time and it is not clear that the performance would
improve (and may in fact be worse).

There are ways that this benchmark study could be improved, time allowing. Firstly, some of the tuning
parameters were chosen to be smaller than desired in order for the benchmarking to be done in a suitable
amount of time. A future study could increase these values. e.g., the number of nearest neighbors considered
by the flexibly-shaped scan method should be increased, and the filtering parameter a; for the restricted
flexible scan method should be increased.

All methods considered in this paper are implemented in the smere R package [24], and the benchmark
data are available in the neastbenchmark R package [B5]. Script files to produce the simulation results are
supplied as Supporting Information. The complete benchmark results are available as Supporting Information
in a series of tables.
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