
Understanding How Programmers Can Use Annotations on
Documentation

Amber Horvath
ahorvath@cs.cmu.edu

Human-Computer Interaction
Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Michael Xieyang Liu
xieyangl@cs.cmu.edu

Human-Computer Interaction
Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

River Hendriksen
hendriksenriver@gmail.com
University of Pittsburgh

Pittsburgh, Pennsylvania, USA

Connor Shannon
connorsh@cs.cmu.edu

Human-Computer Interaction
Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Emma Paterson
emma.paterson@tufts.edu

Tufts University
Medford, Massachusetts, USA

Kazi Jawad
kjawad@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Andrew Macvean
amacvean@google.com

Google
Seattle, Washington, USA

Brad A. Myers
bam@cs.cmu.edu

Human-Computer Interaction
Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

ABSTRACT
Modern software development requires developers to fnd and efec-
tively utilize new APIs and their documentation, but documentation
has many well-known issues. Despite this, developers eventually
overcome these issues but have no way of sharing what they learned.
We investigate sharing this documentation-specifc information
through annotations, which have advantages over developer forums
as the information is contextualized, not disruptive, and is short,
thus easy to author. Developers can also author annotations to sup-
port their own comprehension. In order to support the documenta-
tion usage behaviors we found, we built the Adamite annotation
tool, which provides features such as multiple anchors, annotation
types, and pinning. In our user study, we found that developers are
able to create annotations that are useful to themselves and are able
to utilize annotations created by other developers when learning a
new API, with readers of the annotations completing 67% more of
the task, on average, than the baseline.

CCS CONCEPTS
• Software and its engineering → Documentation Human-
centered computing → Social tagging systems.

; •

KEYWORDS
Annotations, software engineering, application programming in-
terfaces (APIs), documentation, note taking

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9157-3/22/04.
https://doi.org/10.1145/3491102.3502095

ACM Reference Format:
Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shannon,
Emma Paterson, Kazi Jawad, Andrew Macvean, and Brad A. Myers. 2022.
Understanding How Programmers Can Use Annotations on Documentation.
In CHI Conference on Human Factors in Computing Systems (CHI ’22), April
29-May 5, 2022, New Orleans, LA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3491102.3502095

1 INTRODUCTION
Application programming interfaces (APIs), including libraries,
frameworks, toolkits, and software development kits (SDKs) are
used by virtually all code [42]. Programmers at all levels must con-
tinually learn and use new APIs in order to complete any project
of signifcant size or complexity [19]. In learning APIs, developers
depend upon the documentation, including tutorials, reference doc-
umentation, and code examples, along with question-and-answer
sites like Stack Overfow [35]. However, there is signifcant evi-
dence that APIs are often difcult to use [19, 42, 50], which can
cause APIs to be used incorrectly, resulting in bugs and sometimes
signifcant security problems [22, 58]. Despite years of research,
users still complain about documentation’s poor quality, such as the
documentation containing ambiguous and incomplete information
[1, 55], which can severely block users [51, 52, 55].

In order to compensate for some of these shortcomings of docu-
mentation, we are investigating how annotations can be leveraged to
help developers more easily learn how to use an API when using its
documentation. Annotations are commonly defned as meta-level
notes that are anchored to a specifc piece of text (like Microsoft
Word comments, which are anchored to a point in the document). In
a series of studies grounded in developer usage of annotation tools,
we investigated ways in which annotations are uniquely poised to
address some of documentations’ shortcomings while ftting into

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3491102.3502095
https://doi.org/10.1145/3491102.3502095
mailto:bam@cs.cmu.edu
mailto:amacvean@google.com

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Horvath et al.

developers’ natural documentation usage and note taking strate-
gies. Using this knowledge, we developed an annotation system that
extends the state-of-the-art with documentation-specifc features.

The existence of Stack Overfow and other social question and
answer sites shows that developers are willing and able to provide
content that is helpful to others. Further, Microsoft’s Open Pub-
lishing model provides evidence that developers will do work to
help improve documentation [53]. However, there are known issues
with question and answer sites. In a study of what causes Stack
Overfow questions to go unanswered, one of the largest factors
was a lack of clarity in the question due to lack of context [4].

In contrast, annotations provide a tight coupling between the
original source of information and the commentary on it, so the
context is inherent in where the annotation is anchored. Further,
we have identifed a collection of new kinds of information which
are useful to developers as annotations, but which would not be
appropriate on a forum such as Stack Overfow due to being highly
location-specifc and concise. Considering the overhead that goes
into writing a question-answer forum post (e.g., [25]), annotations
are a promising avenue for creating and sharing in-context notes
that do not require a large amount efort to author.

As discussed in Robillard and DeLine’s feld study of API learning
obstacles [51], developers have many questions about the documen-
tation itself that are not easily answered, and annotations can serve
as a way of facilitating dialogue among users of the API. Our anno-
tations, especially the “issue” type which identifes problems with
the documentation or API, can form useful communication between
users and key stakeholders, such as documentation writers, who
need concise feedback about their documentation [48, 51]. There
is already evidence that developers take notes on what they have
learned [38] and fnd these notes helpful [39], so we aim to explore
what aspects of these notes, given context by where the annotation
is anchored on the documentation, are useful to the developers
themselves, as well as to other developers.

To explore the concept of annotations as a way of supporting
short notes on documentation that are useful both for the author
and for later readers, we started with a preliminary lab study that
explored the concept of annotations on documentation using an
of-the-shelf Chrome extension, Hypothesis [31], and then we per-
formed a corpus analysis of annotations on documentation created
using Hypothesis. Given what we learned from these preliminary
analyses, we developed our own documentation-specifc annota-
tion tool, Adamite1. Next, we ran a two-pass user study where we
explored the kinds of annotations developers authored when learn-
ing a new API and then had another set of developers read those
annotations while attempting to complete the same API learning
task using Adamite. We compared these participants to a control
condition which had no annotations. From these studies, we pro-
vide evidence that annotations are useful in helping developers
overcome documentation-related issues.

The contributions of this paper are:
• Identifying that developers’ note-taking of behaviors, hy-
potheses, issues, and reminders about the API while using
documentation can be facilitated with annotations.

1Adamite stands for Annotated Documentation Allows for More Information Transfer
across ngineers and is a green mineral. E

• Identifying that useful information for developers, such as
explanations of code, notes about the behavior of the API,
and issues in the documentation, can be provided in the form
of short notes as annotations on documentation, where the
one or more anchors provide the needed context (Sections 3,

 4, and 6).
•
annotation types used to categorize information, pinning to
keep track of information, and multiple anchor points for
connecting fragmented information, that make annotation
authoring and reading more efective when using documen-
tation (Section 5).

A collection of features integrated into Adamite, including

•
are particularly well-poised to address, including fragmented,
ambiguous, incomplete, and incorrect information (Sections
5 and 6).

Identifying prevalent documentation issues that annotations

•
that beneft themselves through externalizing thoughts and
hypotheses about the documentation (Section 6).

A study that demonstrates that developers can take notes

•
that are benefcial to future readers of the documentation
(Section 6).

A study that demonstrates that developers can take notes

•
explanations, answered questions, and notes on the behavior
of the API, but that hypotheses about the documentation,
unanswered questions, and notes that do not build upon the
documentation are not benefcial to other developers when
learning a new API (Sections 6 and 7).

Identifying what kinds of notes are benefcial, including code

2 RELATED WORK
Our work builds of three areas of study: programmers learning and
usage of API documentation, programmers’ note taking behaviors,
and annotation systems.

2.1 Studies of Documentation
Documentation, specifcally API documentation, has been the sub-
ject of many research projects, often attempting to understand the
particular pain-points of modern software documentation while
learning a new API [1, 21, 35, 41, 44, 51, 52, 55], especially consid-
ering that API documentation is cited as one of the most impor-
tant resources but also one of the most signifcant obstacles when
learning a new API [9, 50, 52]. In one survey of 323 professional
developers [55], incomplete information was the most frequently
cited issue with documentation that was a signifcant blocker to
developers. Other highly mentioned blockers included “ambiguous
information”, “unexplained examples”, and “incorrect information”.
We show that annotations can help with these issues by supporting
notes that explain ambiguous information and code examples, while
also identifying incorrect information. Another study reported that
issues with documentation led developers to explore other infor-
mation sources, such as question-answer sites like Stack Overfow,
blog posts, and bug reports, which can contain rich information
that may be used to supplement the original API documentation [9].
We support annotating these other sources and connecting these
sources to the original documentation using multi-anchoring, such
that this supplemental information can be easier to fnd.

Understanding How Programmers Can Use Annotations on Documentation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

2.2 Studies of Programmers Learning in
General

There are many studies of programmers learning unfamiliar code
[17, 33, 39, 52, 57], some of which are relevant to annotating docu-
mentation [16, 19, 25, 34, 43, 49, 54]. LaToza et al. [34] discussed that
programmers need to learn many facts while understanding code,
and would beneft from a way to record what they learned, which
was one inspiration for providing annotations as a mechanism for
keeping track of information. Another study by Duala-Ekoko et
al. found that developers have many questions that they ask when
learning unfamiliar APIs that are not trivial to answer by merely
reading the API documentation [19]. When developers have these
questions, there is no easy way of attaching an answer to the point
that inspired their question – a problem that our system attempts
to address.

Codepourri [26] and code.chats [45] are annotation-like systems
that are designed specifcally to try and help with comprehension
and discussion around code, with both systems showing that in-
context discussion of code is efective, further motivating our need
to have a similar system for discussing documentation.

2.3 Studies of Programmers’ Note-Taking
Behaviors

Prior work has found that developers write short notes, typically
as a way to keep track of and externalize important information
[38, 39] and to jot down what they are working on when they are
interrupted [46]. One study [39] found that 40% of respondents in
a survey of 1,477 professional developers used notes as a primary
method of comprehending code, and developers that preferred to
take notes also typically used their notes when sharing information
with other developers. One comprehensive study of developers’
note-taking patterns found that developers take diferent types of
notes when comprehending and developing code [13]. Our work
extends prior work through a more in-depth analysis of the types
of notes that developers make when learning a new API, a process
that combines documentation reading with program generation and
comprehension, and ofers direct tooling support for developers’
note-taking needs on documentation.

2.4 Previous Research on Annotations and
Annotation Systems

A prior literature review [2] found that the fexible nature of anno-
tations allows them to serve a variety of purposes, including sup-
porting in-context commenting and creating connections among
parts of text. Other work noted that annotations may be seen as a
conversational tool among the document users, as well as with the
document creators [24, 27] – a property that is useful for documen-
tation writers who need feedback [48, 51].

Other systems that support annotating on the web helped inspire
and inform our design. Chilana et al.’s system LemonAid allows
users to select web page elements such as buttons and menu items
and crowd-source questions about the element’s intended usage
and answers about each element [12]. Zyto et al. developed an
annotation system called NB which was successful in math and sci-
ence classrooms [60]. Other systems [23, 28, 56] have used sharing

of annotated materials to assist in learning online materials, but
none of these systems were focused around specifcally trying to im-
prove the underlying annotated document or assist programmers. A
commonly-used annotation system is Hypothesis, a browser exten-
sion that supports annotating text on web pages [31]. We utilized
Hypothesis for our preliminary evaluations of using annotations
in documentation.

3 PRELIMINARY STUDY
To explore the efcacy of annotations as a useful learning device
for API learning tasks, we ran a preliminary study where people
learned an unfamiliar API while using Hypothesis [31]. In summary,
we found that developers are able to author annotations in the ways
we envisioned, but that annotation authoring and reading could be
improved for developers by adding additional tooling features.

3.1 Hypothesis
Hypothesis [31] is a browser extension that supports annotation
creation and reading using a sidebar that is fxed to the side of the
browser window. Users can create an annotation by highlighting
text on the page, which will cause a pop-up to appear – users may
choose to either add an annotation with text or simply highlight the
selected text. When choosing to create an annotation with text, the
sidebar will update with a rich text editor. Users may publish their
annotations publicly, privately, or to a group. Once an annotation
has been published, the text on the web page will be highlighted
in a light yellow color. Users may reply to annotations that have
been created, share an annotation using a hyperlink, or fag an
annotation for moderator review if the content is deemed ofensive.

3.2 Design
The preliminary study had two distinct phases: the frst phase was
focused on understanding how developers author annotations dur-
ing an API learning task, while the second phase focused on how
developers read annotations that are already attached to documen-
tation, even when there are many irrelevant annotations.

Participants were instructed to complete some Python code using
Apache Beam (an API learning task adapted from a previous study
[29]), while foraging through Beam’s documentation for the req-
uisite information. This task was chosen because it is difcult and
requires understanding the documentation which has previously-
reported short-comings [30]. All participants were recruited from
the authors’ social circles, had 45 minutes for the task, and had
some experience with Python – 4 participants were recruited for
the frst phase, and 5 participants were recruited for the second
phase. Task instructions for each condition and the starting code
can be found in the Supplementary Materials.

In the authoring condition, participants were given the Beam
documentation with no annotations, and instructed to add anno-
tations when they learned anything useful, had questions about
the content in the documentation, or had any other thoughts about
the documentation. Participants could also annotate other websites,
such as Stack Overfow, with annotations related to the task.

In the reading condition, participants were given the same Beam
documentation, but with annotations added. We provided all the
annotations, which were of two types — annotations authored by

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Horvath et al.

the frst author that were designed to be helpful for this task given
what developers were confused about in a previous study [29],
and other annotations that were designed to be “distracting” to
simulate the more realistic case where not all annotations would
be relevant. We consider these annotations “distracting” in that
they are not related to the task the participant is trying to complete.
We collected our “distractor” annotations from a number of Stack
Overfow posts that were related to Apache Beam and chose a
subset of 44 question-answer pairs that were in Python and were
relatively concise and understandable. These question-answer pair
annotations were anchored to Beam’s documentation on words
or phrases that matched the text in the original question. In total,
we had 23 “helpful” annotations and 44 “distractor” annotations,
totalling 67 unique annotations.

3.3 Preliminary Study Results and Discussion
In the authoring condition, the 4 participants together authored a
total of 19 unique annotations. Each participant, on average, au-
thored 4.75 annotations, with annotations averaging 4.41 words.
Hypothesis also allows users to simply highlight a piece of text on
a web page without adding any text content to the anchor (here-
after referred to as “highlight” annotations) — out of the 19 unique
annotations authored, 5 were these simple highlight annotations.

Many of the annotations that participants created showed a part
of the documentation that illustrated how to achieve some part of
their current task. Other annotations served as task reminders or
open questions the author had about the documentation content.

Annotations adapted from Stack Overfow were not particularly
helpful, as evidenced by their distracting nature deterring partic-
ipants from reading other annotations. This was caused in part
because the distractor annotations were too long, thus participants
struggled to determine their relevance. The length also made it dif-
cult to determine why the annotation was anchored in its particular
location and what it had to do with the documentation’s content.
These results suggest that annotations in documentation must be
shorter in length and have information that is highly relevant and
focused around the anchor content.

In our analyses, we also found that participants had many ques-
tions about the documentation (on average, 10.8 questions per
participant) which were not annotated. While trying to answer
these questions, participants routinely encountered more confus-
ing information, resulting in them losing track of their original
questions. Given this confusion, participants struggled to answer
their questions, with only 29% of questions defnitely answered. No-
tably, Hypothesis does not have any way of marking or following
up on a question.

From this initial preliminary study, we found evidence that an-
notations may enhance the original text. Additionally, we found
support for diferent types of information needs that are not di-
rectly supported by Hypothesis, such as keeping track of open
questions. We also learned that annotations need to be easy to
skim and relatively short in length. Since participants had trouble
fnding annotations that met their needs, we also found a need for
better flter and search support, along with a need to anchor anno-
tations in multiple places so that developers can more efectively
fnd annotations when reading documentation.

4 CORPUS ANALYSIS OF HYPOTHESIS
ANNOTATIONS

In order to supplement our preliminary study, we queried Hypoth-
esis’s API to get a list of public annotations which developers have
already made on ofcial API documentation including public APIs
from Google, Microsoft, Oracle, and Mozilla, along with other de-
veloper learning resources including Stack Overfow, W3Schools,
and GitHub.

Across these sites, we found 1,995 public annotations2. Of the
1,995 annotations, 196 were questions about the content of the
documentation, and 995 were highlight type annotations. An ad-
ditional 16 annotations expressed confusion without specifcally
being a question (e.g., “I don’t understand this”). Of the 1,000 an-
notations with content, 16 of the annotations were to-do items the
author wanted to follow up on, 43 pointed out problematic aspects
of and potential improvements to the documentation, and 79 were
created to specifcally call out important or useful parts of the docu-
mentation3. These annotations were authored by 298 unique users
(average = 6.694 annotations per user, minimum = 1, maximum
= 677) across 1,143 unique web pages. The authored annotations
were, on average, 8.79 words long and were anchored to text that
averaged 12.35 words.

We believe many of the 1,995 annotations that contained content
could beneft other developers with additional tooling support. For
example, a Hypothesis user annotated the text “you can pass the
path to the serve account key in code” and asked how they can do
that. This user then later annotated a code example showing how
to achieve this behavior at a diferent point in the documentation
and said “fnally found it”. While these two annotations depend
upon one another in order to make sense and point to diferent
parts of the documentation, Hypothesis does not allow for these
annotations to reference one another, suggesting a need for better
tooling support for multiple anchors for annotations and keeping
track of open questions.

These annotations provide support for our claim that some devel-
opers are willing to write annotations and attach them to documen-
tation, as they are already doing this. Moreover, the annotations we
found follow some of the patterns we identifed in our preliminary
study, such as open questions and issues. However, Hypothesis’s
general-purpose annotation system does not have enough support
to efectively utilize these annotations.

5 OVERVIEW OF ADAMITE
We designed Adamite, a browser extension, specifcally to help
developers keep track of important information, organize their
learning, and share their insights with one another. We intention-
ally designed Adamite to not only support features that can address
known documentation issues, but also to support the developer
who is making the annotations (see Table 1). To create an anno-
tation, a developer, who we call the annotation “author” simply
needs to open the Adamite sidebar, highlight some text on the web

2This count does not include private annotations, so this count is most likely only a
subset of all of the annotations made on these sites.
3These counts were generated by counting instances of phrases like “incorrect” and
“todo” in the annotation content, then manually reviewing all of the annotations that
contained those phrases to determine if they were actually referencing an issue, helpful
part of the document, or todo item.

Understanding How Programmers Can Use Annotations on Documentation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 1: Adamite’s sidebar (on the right) open on an already-annotated web page in the browser. (1) shows the pop-up for
when a user selects some text – at this point they can begin creating a new annotation by selecting an annotation type. (2)
shows the menu of question annotation prompts users can choose from. (3) shows a published normal annotation with two
anchors. (4) shows how the annotated text appears on the web page. (5) shows Adamite’s search and flter pane. (6) shows the
pinned annotation list button.

page (called the “anchor”), select the type of annotation, add text
to a rich text editor that appears in the sidebar, and click on the
publish button. Once published, the text that the user annotated
will be highlighted on the web page and the annotation will ap-
pear in the Adamite sidebar – see Figure 1. Users may also add
tags and additional anchors to the annotation. Annotations can be
published publicly, privately, or to a group of Adamite users. Once
an annotation has been published, it may be replied to by others,
and edited or deleted by the original author. Clicking on the anchor
icon on the annotation will scroll to the part of the web page the
annotation is anchored to (or will open a new tab if the anchor is
on a diferent page) – conversely, clicking on the highlighted text
on the web page will scroll to the corresponding annotation in the
sidebar.

One goal of Adamite is helping developers structure and share
what they learn in the documentation in a way that is useful both to
themselves and for later developers. To achieve this, we developed
annotation types. In addition to the typical “normal” (with a user-
written comment) and “highlight” (just the anchor and no comment)
annotations, Adamite supports question, issue, and to-do annota-
tions. We chose these three annotation types to assist developers in
keeping track of their questions, to point out and possibly attempt
to rectify issues found in the documentation, and to help them keep

track of their tasks. Issue annotations have a button intended to
alert key stakeholders, such as the documentation writers, of the
described problem with the documentation. Question annotations
are stateful, meaning unanswered annotations will stay available
until the developer either marks the question as “answered” (at
which point the answer will be appended to the original question),
or marks the question as “no longer relevant”. To-do annotations
are also always available until they are marked as complete.

Question and to-do annotations are always available using Adamite’s
“pinning” mechanism. Most annotation systems only show annota-
tions that are on the user’s current web page. However, considering
that documentation may be spread across many pages and devel-
opers may visit many web pages when attempting to complete a
programming task, we added in the ability to pin an annotation,
such that is always available in a list at the top of the sidebar. To-do
and question annotations are pinned by default, since the developer
is unlikely to fnd their answer or fnish their task while they are
on the same web page.

Given that a common documentation problem is fragmented
information, we found a need to support multiple anchors for a
single annotation. This feature can be used to connect parts of the
documentation that the user feels should be presented together, or
to better contextualize their annotation. Developers may also use

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Horvath et al.

anchors as a way of collecting multiple parts of the documentation
that they feel are related to one another given the developer’s task
and their evolving understanding of the API.

For later users of the annotated documentation (who we call
annotation “readers,” but can be the same person as the annotation
authors), it is likely that not all of the annotations are relevant to
what the developer is trying to do. To help readers fnd the most
relevant annotations, we support search (using Elasticsearch [20])
and flters (see Figure 1-5). Readers can search across a web page,
website, or across all of Adamite’s annotations and readers can flter
on the annotation type, when the annotation was created, and what
tags the author has tagged the annotation with. Readers may also
sort the annotations by their location on the page or by the time at
which the annotation was authored.

5.1 Implementation
Adamite is a Chrome extension built using React 16.13, and Webpack
4, with annotations and user profle data stored in Firestore [18].
Upon every page load, the extension makes a request to the Firestore
database for that web page’s annotations that the user has access to.
The annotations are continually updated on that web page using
Firestore’s onSnapshot event listener which listens for any change
to the annotations that were received through the query, in case
other users add annotations to the open web page. For search, we
utilize ElasticSearch [20] as Firestore does not natively support
text-based searching.

For anchoring, Adamite goes through the annotations that are
on the current page and uses the annotation’s stored XPath to fnd
the part of the web page to highlight. We generate the XPath using
a recursive XPath building function that converts each nested DOM
element into an XPath. We additionally store a copy of the text that
the user annotated, along with the starting ofset and ending ofset
which are the character counts from the beginning of the element
and the end of the element to the text, respectively. If the page’s
content changes and the text that the XPath fnds does not match
the text that is saved, our algorithm traverses up the DOM to try
to fnd a matching string close by, and if not, then we mark the
anchor as broken and allow the user to fx it (but see Future Work).

6 LAB STUDY
In order to understand the role that annotations play in developers’
documentation usage while learning a new API, we ran a lab study
with three conditions to understand how developers create and use
annotations. Participants in one condition authored annotations
while completing an API learning task, and participants in the sec-
ond condition read these participant-authored annotations. The
third condition was a control condition where participants com-
pleted the same API learning task using just the documentation.
The lab study consisted of a training task, a programming task, and
a survey to assess the participant’s background – all study mate-
rials, including the fles necessary for the programming task, are
available in the Supplemental Materials. The study was approved
by our institution’s Institutional Review Board.

6.1 Method
6.1.1 Training. Each condition included a training exercise using
Tippy, a React library for making tooltips, and its documentation
to either familiarize the participants with Adamite and its func-
tionality (Adamite conditions) or to familiarize them with thinking
aloud while reading through documentation (control). Participants
in the Adamite conditions learned how to create an annotation of
each type, reply to an annotation, add an additional anchor to an
existing annotation, search, flter, edit and delete an annotation and
practiced thinking aloud while performing these tasks. The con-
trol condition practiced thinking aloud when they had a question,
found an answer to their question, and identifed an issue in the
documentation.

6.1.2 Task. For the task, participants were asked to complete an
image aggregation and organization task using Piling.js (hereafter
referred to as “Piling”), a JavaScript library for handling visual-
izations [47]. Piling was chosen as it is a relatively small library,
meaning the participants would have adequate time to gain a high-
level understanding of the library and its functionalities during
a lab study. Further, Piling is a relatively unknown library, thus
the documentation is particularly important as it is one of the few
sources of information on the library.

The task was to use Piling to take a set of four provided images
and render and sort the images (see Figure 2 for the output and de-
tailed steps). The task was chosen as, despite its apparent simplicity,
it requires the participant to learn some of Piling’s core concepts
including how Piling’s rendering works, how to set properties in
Piling, and how to structure and refer to data that is passed into
Piling. Participants were objectively graded upon how many of the
4 steps they were able to complete correctly. To start, participants
were given a JavaScript fle containing comments stating the goal
of each step.

In addition to completing the programming task, participants
were asked think aloud and to pretend as though they were in
a small team learning Piling. Dependent upon the condition, fur-
ther instructions difered slightly. Control condition participants
were told that they needed to relay what they had learned to their
teammates in whatever way they would normally do so, whether
that be through notes or some other mechanism. Adamite author-
ing participants were instructed to create annotations with any
questions or thoughts they had about the documentation, issues
they found in the documentation, and thoughts they wanted to
follow up on and that these annotations would be shared with their
future teammates. Each authoring participant started with an un-
annotated version of the documentation. In the Adamite reading
condition, participants were given annotated documentation and
were told to pretend that the annotations were created by a team-
mate who had already learned Piling and were instructed to speak
aloud when an annotation was helpful or unhelpful. Participants
in the reading condition were not required (but were allowed) to
create annotations or interact with the annotations present in the
documentation.

6.1.3 Annotation Selection. In choosing annotations to include in
the reading condition, two researchers separately coded each an-
notation created during the authoring condition for whether or

https://Piling.js

Understanding How Programmers Can Use Annotations on Documentation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Feature What problem/behavior is this addressing?

Annotating Developers sometimes take notes on what they have learned [36, 38, 39, 46]
Question Annotation Developers have many questions about unfamiliar APIs and their documentation ([19, 54],

Sections 3.3 and 4)
Issue Annotation Identify documentation issues including obsoleteness [1, 55], incorrectness ([1, 55], Section 4),

incompleteness [1, 10, 15, 50, 51, 55, 59] and ambiguities [1, 50, 51, 55]
To-do Annotation Developers take notes on open tasks that they must work on, especially when interrupted [46],

and occasionally take notes on tasks they must complete that are related to parts of the
documentation they are reading (Section 4)

Multi-Anchoring Developers need to build up a mental representation of an API [30, 32, 36] and connect related
resources [1, 15, 55]

Search and Filter Developers, especially selective [6] and opportunistic [5] learners, want to quickly fnd
information that is relevant to them ([41], Section 3.3)

Table 1: Adamite’s feature set and how it relates to previously-reported developer needs.

Figure 2: The correct output for the task. Each number refers
to the step number. (1) creates and renders the 4 images. (2)
puts the images in 2 rows. (3) arranges images by a user-
defned property using the arrangeBy method. (4) requires
the user to set a label on their data, such that elements with
the same label will have a matching stripe along the bottom
of the picture.

not to include it. Inclusion criteria included identifying matching
annotations across participants to select which one was the clear-
est, most appropriately anchored, and concise – qualities informed
by our preliminary study and others [2]. Notably, the chief cause
for the majority of annotations to be removed was redundancy –
participants commonly annotated information related to the frst

Figure 3: The number of annotations removed for each rea-
son, along with the annotations kept, out of the 91 total an-
notations. 2 highlight annotations were retained as the users
edited them to add text, making them semantically identical
to normal annotations.

two steps of the task (see Figure 3)4. We also excluded annota-
tions that the participant later stated were incorrect or that the
participant deleted, and annotations that lacked sufcient context
(including all highlight annotations). Finally, we omitted to-do an-
notations, as they are designed only for the original author’s usage.
The researchers had a 71% agreement — in the cases where the
researchers disagreed, they had a discussion until agreement was
reached. Through this process, we were left with 31 annotations.
One additional annotation was added by the frst author to assist
with the fnal step of the task, as no participant in either the au-
thoring condition or control condition got to that point of the task.
After this process, we had 32 annotations, with 18 normal type
annotations, 10 issue type annotations, and 4 question annotations,

4Note that this is due to being a lab study – in a realistic situation, people would likely
read an existing annotation and not create a redundant one.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Horvath et al.

3 of which were answered5. We did not omit any annotations due to
relevance or correctness, since we wanted to leave in anything that
at least one participant wanted to comment on to be more realistic.

6.1.4 Participants. We recruited 31 participants using departmen-
tal mailing lists at our university, the authors’ social circles, and
advertisements about the study on Twitter and a Reddit forum for
JavaScript developers. One participant could not fnish the study
due to technical difculties, so we only report on the 30 who com-
pleted the whole study. Each condition included 10 participants
and were randomly assigned between the authoring and control
condition – the reading condition occurred after the other two con-
ditions so all remaining participants who signed up were assigned
to that condition.

All of the participants were required to have some amount of
experience using JavaScript, not to have used Piling before, and to
have been programming for at least 1 year (actual minimum: 1 year,
maximum: 20 years, average: 7.98 years). The participants’ profes-
sions included graduate students in computer science-related felds,
user experience researchers with a computer science background,
and professional programmers. The gender breakdown of our study
consisted of 19 men, 9 women, and 1 non-binary person. Partic-
ipants across each condition had a similar amount of JavaScript
experience and years of programming experience.

All study sessions were completed remotely using video con-
ferencing software. Participants were audio and video recorded,
and each participant’s session took approximately 90 minutes, with
45 minutes of that time allotted for the programming task. Each
participant was given access to the Piling documentation and a
CodeSandbox.io [7] project which had JavaScipt, HTML, and CSS
fles with Piling installed and a photo of the output, along with
written-out steps for the task. Participants were compensated $25
for their time, save for 2 participants who elected not to be com-
pensated.

6.1.5 Analysis Methods. Across all of the conditions, we objectively
graded participants on whether or not they succeeded in completing
each of the 4 steps outlined in the task instructions. In the Adamite
conditions, we analyzed the video recordings and log data to count
how many annotations participants authored, and how often they
fltered, searched, clicked on anchors, pinned, replied to, edited,
read, revisited, or deleted their annotations in order to understand
how developers integrated annotating into their workfow. Reading
and revisiting an annotation was coded objectively by only counting
an annotation as read or revisited if they expanded the annotation6

or read aloud its content. Creating an annotation was not counted
as reading or revisiting so some annotations have counts of 0.

We qualitatively coded the annotations developers made in order
to characterize developers’ annotating strategies. Using an open
coding method, two authors coded the normal type annotations
by independently coding each annotation and refning categories

5We included one unanswered question to account for the realistic situation that
not all questions would be answered and because the question asked was a common
question among participants – notably, answering this question was not necessary for
succeeding in the task.
6Annotations were collapsed by default, meaning only a preview of the content was
visible and expanding the annotation required clicking on the annotation – we took
this as an indication that the participant was interested in its content.

based upon their individual codes. For issue and question type an-
notations, we coded the annotations dependent upon what issue in
a list of commonly defned issues was identifed in the annotation
(issue type) or what issue caused the participant’s confusion (ques-
tion type, see Table 2). Two of the authors independently coded
the annotations and reached 75% agreement when coding the is-
sue annotations and 73% for the question annotations – remaining
annotations were discussed until agreement was achieved.

In the annotation reading condition, we analyzed how often
participants said that an annotation was helpful or unhelpful in
order to better understand what annotations succeeded in helping
participants. We objectively coded this through only marking an
annotation as helpful or unhelpful if a participant explicitly stated
this during the think-aloud. We calculated average helpfulness
by how many participants said an annotation was helpful and
dividing by how many participants encountered the annotation.
We ranked annotations from most helpful to least helpful by how
many participants said the annotation was helpful subtracted by
how many said 7 it was unhelpful .

In the control condition, we kept track of whether and how the
participant chose to relay their information to their teammates. We
also referenced the auto-generated transcripts to fnd and count
whenever a participant stated a question.

Figure 4: The diference between reading and each of the
other two conditions is statistically signifcant, but the dif-
ference between control and authoring is not. The boxes rep-
resent the range of steps completed between the frst and
third quartiles per condition, and the lines represent the
minimum and maximum number of steps completed per
condition. The average number of steps completed is in the
center of each box.

6.2 Results
On average, participants in the control completed 1.5 of the 4 steps,
authoring participants completed 1.4 steps, and the reading condi-
tion completed 2.5 steps (see Figure 4). Participants in the reading
7We chose to rank annotations this way such that we could account for the impact of
an annotation – if an annotation helped 7 people and did not help 1 person (i.e., 7/8 =
87% helpfulness), we did not want that to be seen as “less helpful” than an annotation
that helped the only participant to encounter it (i.e., 1/1 = 100% helpfulness).

https://CodeSandbox.io

Understanding How Programmers Can Use Annotations on Documentation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Documentation
Issue

Incompleteness
Fragmentation

Incorrectness
Poor Code Example

Ambiguity

Issue
Annos.

Question
Annos.
About
Issue

Percent
Questions
Answered

3 6 50%

4 3 33%

4 2 0%

10 7 43%

2 12 33%
Table 2: Counts of each issue and question annotation that
identifed or was caused by an issue discussed in [55]. Note
that two code examples did not work because they sufered
from a fragmentation issue, so they are coded both as a poor
code example and a fragmentation issue. Similarly, all frag-
mentation questions were caused by fragmented code exam-
ples, so they are also coded as both a fragmentation question
and code example question.

condition performed signifcantly better than participants in the
control and authoring conditions (paired T-test versus control, p <
.01, paired T-test versus authoring, p < .01). In the control condition,
1 participant chose to take notes in a Google Doc and 1 participant
made comments in their code as notes for their future teammates. 2
participants spoke aloud when they had a thought that they would
want to share as a note to their teammates, but did not actually
write any notes down. The remaining 6 control participants did
not take notes or verbally indicate the intent to take notes at any
point during the study. This suggests that without a mechanism for
externalizing their thoughts, these 6 participants may not have been
able to actually share what they learned and only 2 participants
had any artifact to share with their future teammates.

The 10 participants in the annotation authoring condition created
91 annotations across all fve of the annotation types (see Figures
5 and 6). On average, each participant authored 9.1 annotations
(median = 8, standard deviation = 4.094, minimum = 5, maximum =
18), with the most used annotation type being the normal-type at
32 authored annotations (35.1%). 2 participants in the annotation
reading condition created 6 annotations (3 normal, 2 highlights,
and 1 question), resulting in 97 annotations across all conditions.
The rest of the analyses just look at the 91 annotations from the
authoring condition.

6.2.1 Notes Developers Take When Learning a New API. Consider-
ing the large amount of normal type annotations and how normal
annotations can contain nearly any type of information, we sought
to characterize the content of these annotations. Through open
coding, two coders defned 5 categories – “note to self” in which
the participant made a note about the documentation’s content that
was primarily for themselves, “explanation of code” in which the
participant tried to better explain what a particular code example
was doing, “hypothesis” in which the participant guesses about how
some part of Piling works, “important to task” in which the partici-
pant highlights a particular part of the documentation as critical

Annotation
Category

Num.
Annos.

Avg.
Times
Revis-
ited

Num.
Retained
for
Reading
Condition

Note to Self 12 1.8 6

Explanation of
Code

10 0.3 7

Hypothesis 7 0.66 3

Important to Task 2 0.0 2

Other 1 4 0
Table 3: Counts of each coded normal annotation, how
many of each type were retained for the reading condition,
and how often the 10 annotation authors revisited their an-
notations. Some annotations were revisited more than once.

Figure 5: The proportions for each type of the annotations
made in the authoring condition (out of 91), with the ex-
act count for each type above the bar and the proportion in
parentheses.

for one of the steps of the task, and “other” for any annotations that
did not ft into the previous categories. With this categorization,
we had 12 “note to self” annotations, 10 “explanations of code”, 7
“hypotheses”, 2 “important to task” annotations, and 1 “other” an-
notation (see Table 3). The 1 “other” annotation was an annotation
with no content that was created purely as a navigational aid.

The “note to self” annotations typically served as reminders
to the author to externalize an important detail about the API or
a code example. For example, one participant annotated a call to
document.getElementById(’demo’) with “remember to change
the ID” as a reminder to themselves, as they were in the process of
adapting the example. This note could also beneft future users of
the documentation as a note that the code example will not work
without some modifcations.

Unexplained or poorly explained code examples are a frequent
problem in documentation [1, 55] and Piling was no exception, so

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Horvath et al.

our participants attempted to explain some of the code examples
and, sometimes, contextualize them to the goals of the task. The
most helpful and second most helpful annotations are both explana-
tions of code with the most helpful explaining how to use Piling’s
row property to create columns, and the second most helpful an-
notation explaining how the code example for piling.arrangeBy
works and how to adapt the code example to work using a callback
function – both necessary steps for completing the task.

Participants also hypothesized about parts of Piling, including
how the library worked and whether the various constructs were
relevant to the task. One participant annotated a code example that
used an undefned parameter and said “I think that k is equal to the
number of photos in the data set. I could be wrong though - TBD”.
Another participant was trying to determine what function to use
to sort their images and annotated piling.groupBy with the text
“This might be helpful”, but, upon fnding piling.arrangeBy, an-
notated that method with “Actually, maybe this”. These hypotheses
along with “note to self” annotations demonstrate how annotat-
ing can be a lightweight technique for jotting down thoughts as a
developer is gaining familiarity with an unfamiliar library.

Annotations that marked parts of the API that were important to
the task often called out a particular part of the documentation that
had necessary information. For example, one participant annotated
the text “Properties”, a heading in the documentation, and said
“This is a table of properties” – whereas this seems redundant with
the content, it served as a prominent navigation aide.

Considering roughly half of the authored normal annotations
are primarily benefcial to the original author (i.e., notes to self
and hypotheses) and every participant made a personal annotation
(i.e., notes to self, hypotheses, to-do’s, and highlights), we fnd
evidence that annotating is an efective mechanism for externalizing
information and helpful for the author. We also included 6 notes to
self and 3 hypotheses in the reading condition to see whether these
thoughts could beneft other developers. Notes to self, in particular,
were the most revisited type of annotation by their authors, and
participants, on average, revisited these notes 1.8 more times – more
than any other annotation type or coded normal annotation types.

Some of these normal type annotations were used in conjunction
with Adamite’s other novel features, resulting in the annotations
being more useful. 4 of the normal type annotations contained mul-
tiple anchors, and 4 others were pinned by participants, resulting
in 8 of the 32 (25%) normal annotations utilizing one of Adamite’s
novel features for annotating. The most commonly revisited anno-
tation, a note to self, had 5 anchors with each anchor describing a
necessary step in order to properly instantiate the piling object.
The participant pinned this annotation such that they could ref-
erence the anchor steps in their CodeSandbox project (which was
open in a separate Chrome tab) – this annotation was also useful
in the annotation reading condition with one participant replying
to thank the author. This shows that Adamite’s features not only
support the creation of lightweight notes but also allow developers
to utilize their and other people’s notes in context.

6.2.2 Qestions and Issues Developers Annotate. All authoring con-
dition participants created at least one question annotation and 7
out of 10 authoring participants created at least 1 issue annotation.
3 participants used question type annotations more than any other

type, and 2 participants used issue type annotations more than any
other type, suggesting the inclusion of these types was helpful (see
Figure 6).

Issue-type and question-type annotations accounted for roughly
half of all the authored annotations. Nearly all issue annotations
succeeded in identifying at least one of the issues identifed in [55]
(see Table 2), save for one issue annotation that stated that a partic-
ular part of Piling is “super high maintenance for a simple use case”,
which is not an issue with the documentation, but with the library
itself. Notably, this issue annotation was the third most helpful
annotation in the reading condition with participants appreciating
that it warned them about a part of the library they were think-
ing of using, suggesting that issue annotations are useful beyond
identifying documentation problems.

Poor code examples were the most frequently identifed issues
(Table 2). These code examples typically did not work either be-
cause a variable in the example was undefned and thus the code
could not be just copy-pasted (7/10) or because the documentation
did not show an output of what the code example actually did
(3/10). Some of the undefned variable issues occurred because the
variable was defned in a diferent part of the documentation (2/7)
– a documentation fragmentation issue as well as a code example
issue. One participant was able to use multiple anchors to suggest
where the defnition for the variable should be moved to in order
to make the code example work.

Participants succeeded in answering 10 of their 26 question an-
notations, resulting in 38% of questions being answered (average
= 49% of questions answered across participants, median = 36%).
Considering the task is difcult and the documentation has many
issues, the relatively small amount of questions answered is unsur-
prising. However, 4 participants were able to answer all of their
question annotations, providing evidence that participants can an-
swer their open questions when they are annotated with tooling
support, such as that the annotation remains pinned as a reminder
to revisit it. Sure enough, participants revisited their question an-
notations fairly often, on average revisiting 1.23 times, suggesting
that, when a developer had a question, they made an attempt to
follow-up on it.

Developers also had many questions that relate to documenta-
tion issues reported by prior studies [1, 55]. Ambiguity and poor
code examples were the source of the majority of developers’ ques-
tions, which matches the fndings reported in [55], with ambiguity,
in particular, standing out as a common and severe blocker for
developers. Ambiguity and fragmentation issues also resulted in
questions that were difcult for annotation authors to answer, with
only 33% of questions caused by ambiguity and 33% of questions
caused by fragmentation being answered. Considering some par-
ticipants were able to solve fragmentation issues using multiple
anchors with Adamite, this suggests these developers’ questions
may have been answered if they had been presented with these
annotations. In fact, in the Adamite reading condition, 2 partici-
pants had their issue of aggregateColorMap not compiling solved
by an annotation that used multiple anchors to link to the part of
the documentation that defnes aggregateColorMap.

6.2.3 Developers’ Annotating Behaviors. The annotations that par-
ticipants authored were, on average, relatively short in length at

Understanding How Programmers Can Use Annotations on Documentation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 6: The breakdown of which participants made what types of annotations. A1 through A10 refer to the 10 authoring
condition participants. R1 and R2 are the two reading condition participants who created annotations.

9.31 words (minimum = 0, maximum = 34, median = 8). The short
length of annotations makes them relatively easy to author. The
annotations included in the reading study averaged 11.94 words
and the 10 most helpful annotations were, on average, 13 words
long. These results suggest that short notes are able to help future
users of documentation, while not requiring a large amount of ef
fort on the author’s part to create. These annotation lengths are
also consistent with the annotations authored using Hypothesis in
our corpus analysis, suggesting these annotations are similar to the
types of annotations authored in the wild.

Considering annotating may be costly in terms of time and efort,
we were interested in understanding the beneft the annotations
have for the authors themselves. We assessed usefulness for the
author through counting how often participants revisited an an
notation, pinned an annotation, and how often they clicked the
anchors on the annotation as a way to navigate the documenta
tion (see Table 4). As shown in the table, the authors were able to
utilize their annotations in the ways we intended. All participants
revisited at least one of their annotations at least once (min = 1,
max = 36, average = 10.225 revisits per participant), with question
and normal type annotations revisited most often. These results
suggest authors were able to utilize their annotations for their own
beneft.

In terms of task completion, participants in the annotation au
thoring condition on average completed 1.4 steps out of the 4 steps
required to complete the task (standard deviation = 0.69, minimum =
1, maximum = 3, median = 1) (see Figure 4). There is no statistically

-

-

-

-

signifcant diference between the control condition completion
rate of 1.5 and the 1.4 in the authoring condition (two-tailed T-test,
p = 0.78), suggesting that annotating the documentation, while not
increasing their performance, also did not require so much over-
head that participants were unable to complete the task in the same
amount of time as if they had not been annotating. Moreover, con-
sidering how often developers’ revisited their notes, specifcally
their “notes to self”, this suggests authors were able to successfully
use annotations as an externalization of their thoughts.

Participants
in the reading condition read, on average, 23.7 annotations (in-
cluding revisiting annotations they had already read, with 72% of
annotations read more than once), and read, on average, 15.6 unique
annotations. Participants found 45% of the annotations that they
encountered helpful, and only 8% not helpful. The top-performing
6 participants in the reading condition also reported the highest
proportion of helpful annotations, suggesting that their success
may be attributed to the successful use of the annotations.

Of the 32 annotations included in the reading condition, the most
helpful type of annotation for readers of the documentation was an-
swered question annotations, with, on average, 54% of participants
who encountered them stating they were helpful. Normal-type an-
notations were the second-most helpful type of annotation (avg.
47% helpful) and issue type annotations helped on average 35% of
the time. Some issue type annotations were more helpful than other
issue annotations including annotations that identifed poor code

6.2.4 How Developers Use Annotated Documentation.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Horvath et al.

Normal Highlight To-Do Question Issue Total

Times Revisited 36 5 4 32 12 89
Times Edited 5 3 0 4 1 13
Times Pinned 5 0 n/a n/a 0 5
Anchor Clicks 10 0 0 8 5 23

Table 4: Counts of how often the 10 annotation authors interacted with their annotations by type. Some annotations were
revisited more than once. Question and to-do annotations are pinned by default, so we do not count how many times they are
pinned.

examples, which were helpful, on average, 45% of the time. Even
though these issue annotations did not necessarily suggest a solu-
tion, they did work in confrming the participant’s suspicions that
the documentation itself was incorrect and not the participant’s
implementation. Sometimes, participants found useful annotations
through search – participants searched a total of 78 times and 11 of
these searches returned an annotation that the user immediately
found useful.

Participants especially appreciated the normal type annotations
that were explanations of code, with participants fnding them
helpful 63% of the time. Code explanations typically elucidated
what a code example was illustrating or explained how to adapt a
particular code example for the purposes of the task. “Notes to self”
were also surprisingly useful, with participants fnding them helpful
53% of the time – given that the notes to self typically represented
a thought or reminder the developer had about the documentation
while completing the task, these results suggest that the participants
in the reading study had similar thoughts about the documentation.
Conversely, hypotheses were not very helpful, with only 16% of
participants fnding them helpful – given the uncertainty of these
annotations, participants may have found them less trustworthy.
These results suggest that explanations of code and developers’
personal notes can be useful if they are framed in a knowledgeable
fashion, while hypotheses are more useful for the original author.

Two participants in the reading condition chose to annotate, cre-
ating a total of 6 new annotations. One participant, who completed
3 steps in the task, was working on the last step of the task and made
2 “note to self” and 2 highlight annotations to keep track of and navi-
gate to important parts of the documentation. The other participant
made a new annotation, a “hypothesis”, about what argument was
needed for Piling’s arrangeBy method. These annotations suggest
that, even when using already-annotated documentation, personal
annotations may still be useful.

Three reading participants chose to reply to and pin annotations
in the documentation. Participants replied to thank authors, build
upon the annotation with more specifc information, ask for clarif-
cation, and confrm that the annotated issue in the documentation
is a problem, suggesting users of documentation are able to improve
annotations. Pinned annotations were used to keep track of useful
annotations other users had left with one participant using their
pinned annotation as a quick link to an important part of the docu-
mentation, suggesting pinning is not only useful for the original
author, but also for later users.

7 DISCUSSION
Our results suggest that annotated documentation is useful for
documentation readers in overcoming some of the known barriers
of documentation and that the act of annotating when learning
a new API can help developers keep track of their thoughts and
open questions. Creating annotations was also useful to the author
as a form of self-explanation, which has been shown to be useful
for learning in prior studies [8, 11], and these self-explanations, or
“notes to self”, were useful to others. The novel features of Adamite,
especially types, multiple anchors, and pinning, helped annotation
authors better structure and contextualize their information and
helped annotation readers fnd relevant information.

Participants particularly enjoyed that the annotations had types,
and also envisioned future enhancements. 7 participants in the
authoring condition noted that they enjoyed the question-type an-
notations, with 2 specifcally mentioning the two built-in question
menu items, suggesting that assisting in annotation authoring may
be a fruitful avenue for future annotation systems. One partici-
pant made an issue type annotation, but wanted the issue to only
be shared with documentation writers, while 2 other annotators
wanted the “issue” type annotation to be less “confrontational” and
instead frame the annotation as a “suggestion” to the documenta-
tion maintainers.

Having types for annotations also resulted in two completely
separate classes of annotations users made. As demonstrated in
our qualitative coding, the kinds of information developers noted
in their normal annotations (i.e., notes to self, important to task,
hypotheses, and explanations of code) is very diferent from the
information that developers noted in their issue and question an-
notations, which were primarily documentation-focused. This sug-
gests that annotation typing is an efective way to elicit information
through annotations that may not otherwise be noted.

The most helpful annotation was anchored to the text “columns”
and simply states “Use this to create rows” — a short, 5 word annota-
tion that explains how this property can achieve an efect required
by the second step of the task that is not immediately clear when
reading the documentation. The second most helpful annotation
also succeeded in elucidating how to use part of the API that is
relevant to the task through using multiple anchors and clarifying
a code example for arrangeBy – a method necessary for the third
step. In the reading condition, participants were more successful in
completing these two challenging steps, with 9 participants able
to complete step 2 and 4 participants able to complete step 3. This
increase in performance suggests that participants were able to

Understanding How Programmers Can Use Annotations on Documentation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

utilize what the annotation authoring condition learned in order to
more efectively complete their task.

Annotations that were not as immediately relevant to the task
could also be helpful. Two issue type annotations were the third and
fourth most helpful annotations, each warning participants about
unhelpful and incorrect parts of the documentation. For example,
the fourth most helpful annotation, which helped 4 participants,
stated that a code example in the documentation throws an error
that a variable is not declared — participants found this annotation
useful as it deterred them from using that code example or, if they
did use it, reassured them that they were not doing something
wrong, since another user had the same problem.

Conversely, the least useful annotations were the ones that
lacked enough context to be reusable. For example, an unhelp-
ful annotation was an annotation anchored to the text “columns
10”, stating that the default value of column is 10, which is redun-
dant with the text of the anchor. The original author annotated
this as the reason their 4 images showed up in a single row since
the column parameter needs to change to make 2 rows, however,
the annotation is missing this full context. Future annotation sys-
tems designed to help programmers should explore automatically
inferring additional context to make the annotation more compre-
hensible to later users — if Adamite were to be integrated with the
developer’s integrated development environment (IDE), we may
be able to capture the code and its output before and after the user
created the annotation to better explain why they made the an-
notation and what they were trying to achieve. Communicating
additional context about the frst user’s behaviors and goals to later
users who are completing a programming task has been shown to
be an efective approach [37].

In the creation and evaluation of Adamite, we sought to ex-
plore to what extent annotations may help annotation authors and
readers in overcoming previously-reported shortcomings of docu-
mentation. Through this exploration, we have evidence developers
are able to identify documentation issues using annotations and
are able to answer some of their documentation questions. Specif-
cally, our participants were able to identify “incompleteness” and
“ambiguity” issues, two of the largest blockers when using docu-
mentation [55]. Other developers can make use of these answered
questions and issue annotations, with answered questions as the
most helpful annotation type and explained code examples also
helping annotation readers. However, annotations cannot solve
every documentation issue. If the API and its documentation are
updated, the annotations may go out of date, at which point they
may be more harmful than helpful. While our algorithm attempts
to reattach the annotation to its anchor point, the annotation con-
tent will not change to refect that reattachment, at which point
the content may be incorrect. Future versions of Adamite should
investigate how documentation writers and the original annotation
authors should manage their annotations if they go out of date with
an API update and notify annotation authors when this occurs.

Notably, Adamite and annotations in general are not appropriate
in every developer learning situation. Annotations are generally
short in length – prior literature found private annotations averaged
2 to 10 words and public annotations averaged 30 to 150 words [40]
– for longer form information, such as a tutorial explaining how
to use the API, annotations may not be appropriate. Annotations

also are contextualized to their web page and anchor point – they
are meant to be discovered in-context, so, if they are anchored to
text that is rarely encountered, they may be less useful as they are
unlikely to be discovered. To assist in discovery, we can imagine
extending Adamite’s search capabilities to be smarter by querying
on metadata such as automatically-added tags dependent upon the
annotation or documentation’s content.

Adamite’s feature set and annotations, as a whole, may be ap-
propriate in other domains. When learning a new API, a developer
must forage for information while forming a mental model of the
API and how it relates to their task, with much of the information
they encounter potentially being irrelevant. Other tasks, such as
planning a trip or fguring out what type of camera to buy, follow
similar patterns where the user must try and ascertain what is rele-
vant to them and learn what is or is not important when attempting
to make a decision [32]. Annotating may be a useful mechanism for
keeping track of important information with the annotation serving
as rationale for why this information was thought to be important
and the anchor can serve as a link back to the original web page and
its content that the user found to be relevant. Some of Adamite’s
features may be efective for these tasks, such as using multiple
anchors to link together multiple pieces of related information that
serve as rationale for the user’s ultimate decision. However, some
features of Adamite may need to be modifed – for example, par-
ticipants liked the feature to add system-provided questions, but
some of Adamite’s current automated questions such as “how do I
use this” may make less sense in non-programming contexts.

8 LIMITATIONS
Given Piling’s complex documentation, Adamite may not be as
helpful when the documentation is simpler or clearer, so the study
cannot necessarily be said to apply to those situations. Our lab study
was also constrained to a single forty-fve minute session, so it is
unclear how developers’ API learning and annotation authoring
and reading behavior would change over a longer period of time.
Piling also has a small user-base, so we have less evidence that
Adamite would be useful for APIs with better documentation or
APIs with a large user-base that can provide useful crowd-sourced
information on Stack Overfow or mailing lists. Future work should
see how developers use Adamite in the wild with more popular
APIs over a longer period of time.

Considering we selected the annotations to be included in the
reading condition, there is an additional limitation that this cu-
rating process would not happen in the wild, and, since the last
annotation added was created by a researcher, we cannot say that
every annotation was participant-authored. The most common
reason for removing an annotation was due to the annotation’s
content being redundant with another annotation which would
be less likely to occur in the real world where users can see other
users annotations and will most likely be performing diferent tasks.
While annotations unrelated to the user’s task may be distracting,
some annotations, such as issue annotations, may be useful to any
developer using the construct(s) the annotation references. Further,
Adamite supports tagging and fltering which could be used to flter
out annotations that are unrelated to what the user is working
on. Annotations could also be curated in order to ensure higher

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Horvath et al.

quality annotations are more commonly seen using crowd-sourcing
methods (e.g., supporting voting and editing other users’ contents
[3]) which could be added to Adamite.

Adamite as a tool is also limited by its inability to work on dy-
namic web pages such as Google Docs since dynamic web pages
do not have stable anchor points for our highlighting algorithm
and the content on these web pages often changes, causing the
annotation to lose its original context. Considering developer docu-
mentation is relatively static, Adamite works well in this situation,
but we do not claim that Adamite will work on more volatile pages.
Adamite also does not work on PDFs, despite some documenta-
tion existing in the form of a PDF. API documentation is a good
use case for Adamite, though, since there are many well-known
issues with documentation that annotations can address and API
documentation is commonly presented on a website.

9 FUTURE WORK
We are interested in further understanding annotations’ role in the
software learning process. Currently our annotations are localized
to the web browser, but a large part of software learning occurs in
the IDE as programmers are exploring and understanding unfamil-
iar libraries. We plan to extend Adamite’s annotating capabilities
to an IDE such that developers can provide code examples straight
from the IDE and annotate their own code to more directly and
contextually support the note taking needs found in our study and
prior work [38, 39, 46] while improving code understanding [8].
One motivation for annotating code is that prior work has found
that developers have many hypotheses about what the code does
[34] — in these situations, question type annotations may be a
useful mechanism for keeping track of those parts of the learning
task and their eventual answers may be useful to other developers.
Cook et al. [13] also found that developers take notes on program
behavior, such as tracing variable value changes during debugging,
which an annotation tool may assist with.

One limitation of Adamite being a browser plugin is that devel-
opers cannot revisit or follow up on their annotations if they are in
situations where they do not have access to a desktop web browser,
such as on a phone. Further, some operations that act on annota-
tions as a batch which we hypothesize may be useful, such as mass
deleting or mass tagging, would be more efective through a web
site. Batch operations can assist in the often cumbersome task of
“clean-up” when a user has created a lot of notes, with only some of
the notes still being useful. We have developed a prototype version
of this website, which may be seen in the supplementary video,
but work remains in order to make it more useful. We also plan
to improve Adamite’s anchoring algorithm using fuzzy anchoring
[14] such that more annotations remain viable for longer as the
annotation attempts to re-anchor itself when the page changes, thus
lowering the amount of annotations that need to be “cleaned-up”.

Lastly, our work is limited by the fact that it was completed in a
lab study, which can not fully encapsulate real-world usage of an
annotation tool for developers, such as how a developer’s usage
of Adamite may change as they gain more familiarity with an API
and attempt to complete diferent tasks with it. We are planning
on addressing this limitation through running a feld study where
small teams may use Adamite for a longer period of time.

10 CONCLUSION
Poor API documentation is a known barrier when attempting to
learn a new API. Our preliminary study, development of Adamite,
and the user study together provide evidence that annotations can
be benefcial for helping to mitigate some of the well-known short-
comings of API documentation, while also providing additional
benefts such as helping developers keep track of their thoughts
and questions through short, in-context notes. When using Adamite
to author annotations, developers were able to answer their open
questions, point out problematic aspects of the documentation with
suggestions for improvement, and create annotations that are use-
ful to themselves and were later also useful to other developers. In
particular, Adamite’s annotation types and multiple anchors helped
developers better contextualize their information, even when the
annotation content was short. When reading annotations, devel-
opers were able to use these annotations while learning difcult
concepts in order to more efciently complete a programming task.

ACKNOWLEDGMENTS
This research was funded in part by the NSF under grant CCF-
2007482 and by gifts from Google. Any opinions, fndings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily refect those of the
sponsors. In addition, we would like to thank Aniket Kittur, Imtiaz
Rahman, Lai Wei, our participants, and our reviewers for their
thoughtful feedback.

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,

Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software Docu-
mentation Issues Unveiled. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, Montreal, QC, Canada, 1199–1210. https:
//doi.org/10.1109/ICSE.2019.00122

[2] Maristella Agosti, Giorgetta Bonfglio-Dosio, and Nicola Ferro. 2007. A historical
and contemporary study on annotations to derive key features for systems
design. International Journal on Digital Libraries 8 (Feb. 2007), 1–19. https:
//doi.org/10.1007/s00799-007-0010-0

[3] Mohammad Allahbakhsh, Boualem Benatallah, Aleksandar Ignjatovic,
Hamid Reza Motahari-Nezhad, Elisa Bertino, and Schahram Dustdar. 2013.
Quality Control in Crowdsourcing Systems: Issues and Directions. IEEE Internet
Computing 17 (2013), 76–81. Issue 2. https://doi.org/10.1109/MIC.2013.20

[4] Muhammad Asaduzzaman, Ahmed Shah Mashiyat, Chanchal K. Roy, and Kevin A.
Schneider. 2013. Answering Questions about Unanswered Questions of Stack
Overfow. In MSR 2013. IEEE, San Francisco, CA, USA, 97–100. https://doi.org/
10.1109/MSR.2013.6624015

[5] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
2009. Two Studies of Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In CHI ’09 (Boston, MA, USA) (CHI ’09). Association
for Computing Machinery, New York, NY, USA, 1589–1598. https://doi.org/10.
1145/1518701.1518944

[6] Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura Beck-
with, Irwin Kwan, Anicia Peters, and William Jernigan. 2016. GenderMag: A
Method for Evaluating Software’s Gender Inclusiveness. Interacting with Com-
puters 28, 6 (Nov. 2016), 27 pages. https://doi.org/10.1145/3134737

[7] CodeSandbox BV. 2021. CodeSandbox: Online Code Editor and IDE for Rapid
Web Development. CodeSandbox BV. Retrieved September 3, 2021 from https:
//codesandbox.io/

[8] Paul Chandler and John Sweller. 1991. Cognitive load theory and the format of
instruction. Cognition and instruction 8, 4 (1991), 293–332.

[9] Preetha Chatterjee, Manziba Akanda Nishi, Kostadin Damevski, Vinay Augustine,
Lori Pollock, and Nicholas A. Kraft. 2017. What information about code snippets
is available in diferent software-related documents? An exploratory study. In
SANER 2017. IEEE, New York City, NY, USA, 382–386.

[10] J. C. Chen and S. J. Huang. 2009. An empirical analysis of the impact of software
development problem factors on software maintainability. Journal of Systems
and Software 82, 6 (2009), 11 pages.

https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1007/s00799-007-0010-0
https://doi.org/10.1007/s00799-007-0010-0
https://doi.org/10.1109/MIC.2013.20
https://doi.org/10.1109/MSR.2013.6624015
https://doi.org/10.1109/MSR.2013.6624015
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/3134737
https://codesandbox.io/
https://codesandbox.io/

Understanding How Programmers Can Use Annotations on Documentation CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[11] Michelene TH Chi, Miriam Bassok, Matthew W Lewis, Peter Reimann, and Robert
Glaser. 1989. Self-explanations: How students study and use examples in learning
to solve problems. Cognitive science 13, 2 (1989), 145–182.

[12] Parmit K. Chilana, Amy Ko, and James O. Wobbrock. 2012. LemonAid: selection-
based crowdsourced contextual help for web applications. In CHI 2012. ACM,
New York City, NY, USA, 1549–1558. https://doi.org/10.1145/2207676.2208620

[13] C.R. Cook, J.C. Scholtz, and J.C. Spohrer. 1993. Empirical Studies of Programmers:
Fifth Workshop : Papers Presented at the Fifth Workshop on Empirical Studies of
Programmers, December 3-5, 1993, Palo Alto, CA. Ablex Publishing Corporation,
Norwood, NJ, USA. https://books.google.com/books?id=rMmxq8q0CGYC

[14] csillag. 2013. Fuzzy Anchoring. Hypothes.is. Retrieved December 26, 2021 from
https://web.hypothes.is/blog/fuzzy-anchoring/

[15] Alex Cummaudo, Rajesh Vasa, John Grundy, and Mohamed Abdelrazek. 2020.
Requirements of API Documentation: A Case Study Into Computer Vision
Services. IEEE Transactions on Software Engineering Early Access (2020), 1–1.
https://doi.org/10.1109/TSE.2020.3047088

[16] Uri Dekel and James D. Herbsleb. 2009. Reading the documentation of invoked API
functions in program comprehension. In 2009 IEEE 17th International Conference
on Program Comprehension. IEEE, New York City, NY, USA, 168–177. https:
//doi.org/10.1109/ICPC.2009.5090040

[17] Robert Deline, Mary Czerwinski, and George Robertson. 2005. Easing program
comprehension by sharing navigation data. In VLHCC 2005. IEEE, New York City,
NY, USA, 241–248. https://doi.org/10.1109/VLHCC.2005.32

[18] Google Developers. 2021. Cloud Firestore: Store and sync app data at global scale.
Google LLC. Retrieved September 3, 2021 from https://frebase.google.com/
products/frestore

[19] Ekwa Duala-Ekoko and Martin P. Robillard. 2012. Asking and answering ques-
tions about unfamiliar APIs: An exploratory study. In ICSE 2012. IEEE, New York
City, NY, USA, 266–276.

[20] Elastic. 2021. Free and Open Search: Elasticsearch. Elastic. Retrieved September
3, 2021 from https://www.elastic.co/

[21] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefk. 2014.
How do API documentation and static typing afect API usability?. In ICSE 2014.
ACM, New York City, NY, USA, 632–642. https://doi.org/10.1145/2568225.2568299

[22] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew Smith.
2013. Rethinking SSL Development in an Appifed World. In Proceedings of the
2013 AC SIGSAC Conference on Computer and Communications Security (CCS ’13).
ACM, New York City, NY, USA, 49–60. https://doi.org/10.1145/2508859.2516655

[23] Jingchao Fang, Yanhao Wang, Chi-Lan Yang, and Hao-Chuan Wang. 2021. Note-
CoStruct: Powering Online Learners with Socially Scafolded Note Taking and Shar-
ing. Association for Computing Machinery, New York, NY, USA, Chapter Ex-
tended Abstracts of the 2021 CHI Conference on Human Factors in Computing
Systems, 1–5. https://doi.org/10.1145/3411763.3451694

[24] Daniela Fogli, Giuseppe Fresta, and Piero Mussio. 2004. On electronic annotation
and its implementation. In AVI 2004. ACM, New York, NY, USA, 98–102. https:
//doi.org/10.1145/989863.989877

[25] Adam Fourney and Meredith Ringel Morris. 2013. Enhancing Technical Q&A
Forums with CiteHistory. In ICWSM 2013. AAAI, Palo Alto, CA, USA, 1–10.

[26] Mitchell Gordon and Philip J. Guo. 2015. Codepourri: Creating visual coding
tutorials using a volunteer crowd of learners. In 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, New York, NY, USA,
13–21. https://doi.org/10.1109/VLHCC.2015.7357193

[27] Mark Guzdial and Jennifer Turns. 2000. Efective Discussion Through a Computer
Mediated Anchored Forum. The Journal of the Learning Sciences 9 (2000), 437–469.
Issue 4. https://doi.org/10.1207/S15327809JLS0904_3

[28] Lichan Hong and Ed H Chi. 2009. Annotate once, appear anywhere: collective
foraging for snippets of interest using paragraph fngerprinting. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New
York, NY, USA, 1791–1794.

[29] Amber Horvath, Sachin Grover, Sihan Dong, Emily Zhou, Finn Voichick,
Mary Beth Kery, Shwetha Shinju, Daye Nam, Mariann Nagy, and Brad Myers.
2019. The Long Tail: Understanding the Discoverability of API Functionality.
In VLHCC 2019. IEEE, New York, NY, USA, 157–161. https://doi.org/10.1109/
VLHCC.2019.8818681

[30] Amber Horvath, Mariann Nagy, Finn Voichick, Mary Beth Kery, and Brad A
Myers. 2019. Methods for investigating mental models for learners of APIs. In
CHI LBW ’19. ACM, New York, NY, USA, 1–6.

[31] Hypothes.is. 2012. Hypothes.is: Annotate the web, with anyone, anywhere. Hy-
pothes.is. Retrieved September 3, 2021 from https://web.hypothes.is/

[32] Aniket Kittur, Andrew M. Peters, Abdigani Diriye, Trupti Telang, and Michael R.
Bove. 2013. Costs and benefts of structured information foraging. In CHI 2013.
ACM, New York, NY, USA, 2989–2998.

[33] Amy Ko and Bob Uttl. 2003. Individual diferences in program comprehension
strategies in unfamiliar programming systems. In 11th Annual Workshop on
Program Comprehension. IEEE, New York, NY, USA, 175–184. https://doi.org/10.
1109/WPC.2003.1199201

[34] Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. 2007.
Program comprehension as fact fnding. In ESEC-FSE 2007. ACM, New York, NY,

USA, 361–270.
[35] Timothy C. Lethbirdge, Janice Singer, and Andrew Forward. 2003. How software

engineers use documentation: the state of the practice. IEEE Software 20 (Nov.
2003), 35–39. Issue 6. https://doi.org/10.1109/MS.2003.1241364

[36] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng,
Shaun Burley, Cynthia Taylor, Aniket Kittur, and Brad A. Myers. 2019. Unakite:
Scafolding Developers’ Decision-Making Using the Web. In UIST 2019. ACM,
New York, NY, USA, 67–80.

[37] Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2021. To Reuse or Not
To Reuse? A Framework and System for Evaluating Summarized Knowledge.
Proc. ACM Hum.-Comput. Interact. 5, CSCW1, Article 166 (apr 2021), 35 pages.
https://doi.org/10.1145/3449240

[38] Walid Maalej and Hans-Jorg Happel. 2009. From work to word: How do software
developers describe their work?. In MSR 2009. IEEE, New York, NY, USA, 121–130.
https://doi.org/10.1109/MSR.2009.5069490

[39] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On the
Comprehension of Program Comprehension. Transactions on Software Engineer-
ing 23 (2014), 1–37. Issue 4. https://doi.org/10.1145/2622669

[40] Catherine C. Marshall and A. J. Bernheim Brush. 2004. Exploring the relationship
between personal and public annotations. In JCDL 2004. ACM, New York, NY,
USA, 349–357. https://doi.org/10.1145/3173574.3174182

[41] Michael Meng, Stephanie M Steinhard, and Andreas Schubert. 2019. How de-
velopers use API documentation: an observation study. Communication Design
Quarterly 7 (2019), 40–49. Issue 2. https://doi.org/10.1145/3358931.3358937

[42] Brad A. Myers and Jefrey Stylos. 2016. Improving API Usability. Commun. ACM
59, 6 (2016), 62–69. https://doi.org/10.1145/2896587

[43] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What
makes a good code example?: A study of programming Q&A in StackOverfow.
In ICSM 2012. IEEE, New York, NY, USA, 25–34.

[44] Janet Nykaza, Rhonda Messinger, Fran Boehme, Cherie L. Norman, Matthew
Mace, and Manuel Gordon. 2002. What programmers really want: results of a
needs assessment for SDK documentation. In SIGDOC 2002. ACM, New York, NY,
USA, 133–141. https://doi.org/10.1145/584955.584976

[45] Steve Oney, Christopher Brooks, and Paul Resnick. 2018. Creating Guided Code
Explanations with Chat.Codes. Proc. ACM Hum.-Comput. Interact. 2, CSCW,
Article 131 (Nov. 2018), 20 pages. https://doi.org/10.1145/3274400

[46] Chris Parnin and Robert DeLine. 2010. Evaluating Cues for Resuming Interrupted
Programming Tasks. Association for Computing Machinery, New York, NY, USA,
93–102. https://doi.org/10.1145/1753326.1753342

[47] Piling.js. 2021. The Piling.js Docs. Piling.js. Retrieved September 3, 2021 from
https://piling.js.org/docs/

[48] Christi-Anne Postava-Davignon, Candice Kamachi, Cory Clarke, Gregory Kush-
merek, Mary Beth Rettger, Pete Monchamp, and Rich Ellis. 2004. Incorporating
Usability Testing into the Documentation Process. Technical Communication 51
(Feb. 2004), 36–44. Issue 1.

[49] Mohammad Masudur Rahman, Chanchal K. Roy, and Iman Keivanloo. 2015. Rec-
ommending insightful comments for source code using crowdsourced knowledge.
In 2015 IEEE 15th International Working Conference on Source Code Analysis and
Manipulation. IEEE, New York, NY, USA, 81–90. https://doi.org/10.1109/SCAM.
2015.7335404

[50] Martin P. Robillard. 2009. What Makes APIs Hard to Learn? Answers from
Developers. IEEE Software 26 (Oct. 2009), 27–34. Issue 6. https://doi.org/10.1109/
MS.2009.193

[51] Martin P. Robillard and Robert DeLine. 2011. A feld study of API learning
obstacles. Empirical Software Engineering 16 (2011), 703–732. Issue 6.

[52] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How do
API documentation and static typing afect API usability?. In ICSE 2012. ACM,
New York, NY, USA, 632–542. https://doi.org/10.1109/ICSE.2012.6227188

[53] Jef Sandquist. 2016. Recognizing Our Top Community Contributors - Summer 2016.
Microsoft. Retrieved September 3, 2021 from https://docs.microsoft.com/en-
us/teamblog/recognizing-top-documentation-contributors-summer-2016

[54] Jonathan Sillito and Gail C. Murphy. 2008. Asking and Answering Questions
during a Programming Change Task. IEEE Transactions on Software Engineering
34 (2008), 434–451. Issue 4. https://doi.org/10.1109/TSE.2008.26

[55] Gias Uddin and Martin P. Robillard. 2015. How API Documentation Fails. IEEE
Software 32 (Aug. 2015), 68–75. Issue 4. https://doi.org/10.1109/MS.2014.80

[56] Laton Vermette, Shruti Dembla, April Y. Wang, Joanna McGrenere, and Parmit K.
Chilana. 2017. Social CheatSheet: An Interactive Community-Curated Informa-
tion Overlay for Web Applications. Proc. ACM Hum.-Comput. Interact. 1, CSCW,
Article 102 (Dec. 2017), 19 pages. https://doi.org/10.1145/3134737

[57] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shan-
ping Li. 2018. Measuring Program Comprehension: A Large-Scale Field Study
with Professionals. IEEE Transactions on Software Engineering 44 (2018), 951–976.
Issue 10. https://doi.org/10.1109/TSE.2017.2734091

[58] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. 2018. Are Code Examples on an Online Q&A Forum Reliable? A
Study of API Misuse on Stack Overfow. In ICSE 2018. ACM, New York, NY, USA,
886–896.

https://doi.org/10.1145/2207676.2208620
https://books.google.com/books?id=rMmxq8q0CGYC
https://web.hypothes.is/blog/fuzzy-anchoring/
https://doi.org/10.1109/TSE.2020.3047088
https://doi.org/10.1109/ICPC.2009.5090040
https://doi.org/10.1109/ICPC.2009.5090040
https://doi.org/10.1109/VLHCC.2005.32
https://firebase.google.com/products/firestore
https://firebase.google.com/products/firestore
https://www.elastic.co/
https://doi.org/10.1145/2568225.2568299
https://doi.org/10.1145/2508859.2516655
https://doi.org/10.1145/3411763.3451694
https://doi.org/10.1145/989863.989877
https://doi.org/10.1145/989863.989877
https://doi.org/10.1109/VLHCC.2015.7357193
https://doi.org/10.1207/S15327809JLS0904_3
https://doi.org/10.1109/VLHCC.2019.8818681
https://doi.org/10.1109/VLHCC.2019.8818681
https://web.hypothes.is/
https://doi.org/10.1109/WPC.2003.1199201
https://doi.org/10.1109/WPC.2003.1199201
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1145/3449240
https://doi.org/10.1109/MSR.2009.5069490
https://doi.org/10.1145/2622669
https://doi.org/10.1145/3173574.3174182
https://doi.org/10.1145/3358931.3358937
https://doi.org/10.1145/2896587
https://doi.org/10.1145/584955.584976
https://doi.org/10.1145/3274400
https://doi.org/10.1145/1753326.1753342
https://piling.js.org/docs/
https://doi.org/10.1109/SCAM.2015.7335404
https://doi.org/10.1109/SCAM.2015.7335404
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1109/ICSE.2012.6227188
https://docs.microsoft.com/en-us/teamblog/recognizing-top-documentation-contributors-summer-2016
https://docs.microsoft.com/en-us/teamblog/recognizing-top-documentation-contributors-summer-2016
https://doi.org/10.1109/TSE.2008.26
https://doi.org/10.1109/MS.2014.80
https://doi.org/10.1145/3134737
https://doi.org/10.1109/TSE.2017.2734091
https://Piling.js
https://pothes.is
https://Hypothes.is
https://Hypothes.is

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Horvath et al.

[59] J. Zhi, V. Garousi-Yusifoglu, B. Sun, G. Garousi, S. Shahnewaz, and G. Ruhe. 2015. [60] Sacha Zyto, David Karger, Mark Ackerman, and Sanjoy Mahajan. 2012. Successful
Cost benefts and quality of software development documentation: a systematic classroom deployment of a social document annotation system. In CHI 2012. ACM,
mapping. Journal of Systems and Software 99 (2015), 23 pages. New York, NY, USA, 1883–1892. https://doi.org/10.1145/2207676.2208326

https://doi.org/10.1145/2207676.2208326

	Abstract
	1 Introduction
	2 Related Work
	2.1 Studies of Documentation
	2.2 Studies of Programmers Learning in General
	2.3 Studies of Programmers' Note-Taking Behaviors
	2.4 Previous Research on Annotations and Annotation Systems

	3 Preliminary Study
	3.1 Hypothesis
	3.2 Design
	3.3 Preliminary Study Results and Discussion

	4 Corpus Analysis of Hypothesis Annotations
	5 Overview of Adamite
	5.1 Implementation

	6 Lab Study
	6.1 Method
	6.2 Results

	7 Discussion
	8 Limitations
	9 Future Work
	10 Conclusion
	Acknowledgments
	References

