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The strong interactions among nucleons have an approximate spin-isospin exchange symmetry that
arises from the properties of quantum chromodynamics in the limit of many colors,Nc. However this large-
Nc symmetry is well hidden and reveals itself only when averaging over intrinsic spin orientations.
Furthermore, the symmetry is obscured unless the momentum resolution scale is close to an optimal scale
that we call Λlarge-Nc

. We show that the large-Nc derivation requires a momentum resolution scale of
Λlarge−Nc

∼ 500 MeV. We derive a set of spin-isospin exchange sum rules and discuss implications for the

spectrum of 30P and applications to nuclear forces, nuclear structure calculations, and three-nucleon
interactions.

DOI: 10.1103/PhysRevLett.127.062501

Quantum chromodynamics is the fundamental theory of
the strong interactions. While the physical universe has
Nc ¼ 3 colors, it is useful to consider how nuclear physics
might appear when Nc is large [1–7]. In the large-Nc
picture, Kaplan, Savage, and Manohar [8,9] found that the
leading nucleon-nucleon (NN) interaction between two
nucleons can be written in the form

V2N
large-Nc

¼VCþ  σ1 ·  σ2  τ1 ·  τ2WSþS12  τ1 ·  τ2WTþ…; ð1Þ

where the ellipses refer to terms subleading in the large-Nc
expansion,  σ1;2 represent the Pauli matrices for intrinsic
spins,  τ1;2 are the Pauli matrices for isospin, and S12 is the
tensor operator 3r̂ ·  σ1r̂ ·  σ2 −  σ1 ·  σ2. Each of the scalar
functions VC, WS, and WT are local interactions, meaning
that they depend only on the separation vector between the
two nucleons and not their velocities. The strength of these
leading interactions scales linearly with Nc, while all other
terms scale as 1=Nc or smaller. The relative 1=N2

c sup-
pression of the subleading terms is fairly strong even
for Nc ¼ 3.
In the literature, the large-Nc limit is often linked with

Wigner’s approximate SU(4) spin-isospin symmetry [10]

where the four spin and isospin nucleon components
transform as an SU(4) quartet. See for example,
Refs. [8,11–16]. In the low-energy limit, nucleon-nucleon
scattering is dominated by the two S-wave channels.
Therefore, if one reduces Eq. (1) to only the S-wave
channels, then the tensor interaction vanishes and we
can replace  σ1 ·  σ2  τ1 ·  τ2 by −3. We therefore seem to
derive the result that the low-energy S-wave interactions
satisfy Wigner’s SU(4) symmetry. On the other hand, the
deuteron is bound by 2.22 MeV while the spin-singlet
channel is unbound. The discrepancy seems larger than the
predicted 1=N2

c relative error of the large-Nc expansion.
As we will show in the following derivation, Eq. (1) is

only valid when the momentum resolution scale is not too
high or too low (where the precise meaning of high and low
will become clear later). At the proper resolution scale we
find that the large-Nc limit predicts a spin-isospin exchange
symmetry that is satisfied at the 1=N2

c level and provides a
valuable guide for understanding nuclear interactions and
nuclear structure.
The derivation of Eq. (1) can be sketched as follows. Let

us assume that Nc is a large odd integer, Nc ¼ 2kþ 1. The
nucleon wave function in its rest frame has a fairly simple
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structure in the limit of nonrelativistic quarks [2,17]. The
Nc quarks are completely antisymmetric with respect to
color, and the spatial wave function is a simple Hartree
product state. The spin and isospin content can be under-
stood by dividing the quarks into two partitions of size
kþ 1 and k. The partition with kþ 1 quarks has isospin
ðkþ 1Þ=2 and spin ðkþ 1Þ=2. The partition with k quarks
has isospin k=2 and spin k=2. These maximal values for
isospin and spin mean that the wave functions for each
partition are symmetric in both isospin and spin indices.
The two partitions are combined together to have total
isospin 1=2 and total spin 1=2, and we symmetrize over all
ways to divide the quarks into the two partitions. The
nucleon wave function has a spin-isospin exchange sym-
metry, which we can define at the quark level as the
exchange of spin-up down quarks d↑ with spin-down up
quarks u↓. At the nucleon level, the spin-isospin exchange
symmetry corresponds with the exchange of spin-up
neutrons n↑ with spin-down protons p↓.
If we now relax the condition that the quarks are

nonrelativistic, the generalization to the relativistic mean-
field picture becomes more complicated. However, the
phenomenological success of the nonrelativistic quark
model in predicting the large isovector part of the nucleon
anomalous magnetic moment and nearly vanishing iso-
scalar part [18,19] suggests that the quantitative features of
this description of the nucleon wave function remain valid.
We note that there have been lattice QCD studies of baryon
magnetic moments [20,21] and spin-flavor symmetries
[22,23].
The expectation value of the quark bilinear operator q̄q

for the nucleon will scale linearly with the number quarks
in the nucleon and thus linearly with Nc. Similarly an
operator such as q̄σaτbq will also scale linearly with Nc.
However, since the spin of the nucleon is 1=2 and the
isospin is 1=2, the expectation values of q̄  σ q and q̄  τ q do
not grow with Nc. This argument no longer holds for q̄  σ q
if the nucleon is moving with speed, v > 0. In that case the
Pauli-Lubanski pseudovector Wμ will have a nonzero time
component that scales as v times Nc.
Let us now consider two nucleons with relative velocities

low enough so that we have an approximate Galilean
invariance for the nucleon wave functions. Following
Ref. [9], we can apply a multipole expansion to the
effective nucleon-nucleon interactions that we can build
from the leading quark operators q̄q and q̄σaτbq. That
process leads to an effective Hamiltonian where the leading
terms in the large-Nc limit are given in Eq. (1). This
construction yields local interactions, and the connection
with meson exchange interactions has been studied [24,25]
as well as predictions for scattering observables [26].
We note that Eq. (1) is not renormalization group

invariant, and we are somehow implicitly setting a pre-
ferred momentum resolution scale. How this happens can
be understood as follows. Our simple description of the

nucleon wave function has corrections proportional to the
square of the nucleon velocity, v2. We must control these
high-energy modes in our effective theory in order for the
derivation of Eq. (1) to hold with errors of size 1=N2

c. In
order to restrict v2 so that it is of size 1=N2

c or smaller, we
require that the momentum resolution scale Λ is propor-
tional to the nucleon mass times a factor of 1=Nc. Since the
nucleon mass is proportional to Nc, the upper bound on Λ
remains a constant independent of Nc. This is consistent
with the discussion of nucleon momenta in Ref. [24]. We
discuss the relevant energy and momentum scales further in
the Supplemental Material[27].
While there are no problems with nucleon-nucleon

scattering at low energies, the form of Eq. (1) will no
longer hold if we also choose to lower the momentum
resolution scale Λ so much that the distinction between the
orbital angular momentum and intrinsic spin of the nucleon
is not fully resolved. In that case the nucleon intrinsic spin
should be viewed as an effective spin composed of both
intrinsic spin and orbital angular momentum. In order to
suppress these effects, it suffices that 1=Λ is comparable to
the size of the nucleon or smaller. Since the size of the
nucleon is independent of Nc, the resulting lower bound on
Λ is also a constant independent of Nc.
We note that a similar phenomenon of hidden symmetry

at low energies can also be seen in nucleon-nucleon
scattering within the Kaplan-Savage-Wise (KSW) scheme
introduced in Ref. [34,35]. In that case the difference
between the two S-wave spin channels is magnified at low
energies due to the different scattering lengths, one large
and positive and the other large and negative.
The renormalization group dependence of the large-Nc

approximation was first studied in Refs. [36–38]. The
authors noticed that there was a momentum resolution
scale at which the large-Nc constraints are satisfied far
better than at other scales and speculated that it might be a
numerical accident. The renormalization group analysis for
pionless effective field theory was also considered in
Ref. [39]. See also Ref. [40] for a discussion of emergent
symmetries as arising from entanglement suppression. In
this Letter we make the stronger statement that the
leading large-Nc reduction of the nuclear interaction
has error corrections of size 1=N2

c only when the
momentum resolution scale is near an optimal resolution
scale that we call Λlarge-Nc

. As we will see in the
examples below, the optimal momentum resolution scale
is Λlarge-Nc

∼ 500 MeV, consistent with the momentum
scale found in Ref. [36]. We posit that any effective field
theory description of the nuclear interactions at momentum
resolution scale Λlarge-Nc

with local interactions will satisfy
Eq. (1) with corrections of size 1=N2

c. For interactions with
a small amount of velocity dependence and therefore
nonlocality, there will also be small corrections arising
from the velocity dependence of the interactions. For some
explicit examples demonstrating this behavior, see Fig. 1 of
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Ref. [41] for local chiral potentials at N2LO and Figs. 6,7 of
Ref. [42] for the long-range part of chiral potentials up
to N4LO.
As an example, in Table I we show the S-wave short-

range interaction coefficients in lattice units (l.u.) for lattice
chiral effective field theory with lattice spacing
a ¼ 1.32 fm. This corresponds to a momentum cutoff of
π=a ¼ 471 MeV. Each of these terms are central inter-
actions, meaning that the spin components form rotational
invariants through contractions with themselves. We note
the very good agreement between the S ¼ 0, T ¼ 1 and
S ¼ 1, T ¼ 0 channels, where S is intrinsic spin and T is
isospin. The error bars indicate uncertainties in the fit to
empirical data. The full next-to-next-to-next-to-leading-
order (N3LO) chiral interaction includes these short-range
interactions together with a leading-order (LO) interaction
composed of an SU(4) symmetric interaction and one-pion
exchange potential that together have the form described in
Eq. (1). Full details are given in the Supplemental Materials
[27]. In the last row of Table I we show the D-wave short-
range interaction coefficients in lattice units. In this case the
interactions are not purely central, and so we average over
all possible total angular momentum channels J for the
spin-triplet channels to remove contributions from the
tensor force and spin-orbit interactions, and this is denoted
as 3Dall. This averaging over J was also used in Ref. [14].
We see again very good agreement between the S ¼ 0, T ¼
1 channel and the average over the S ¼ 1, T ¼ 0 channels.

Let us now consider the matrix element between any
two-nucleon states A and B, both with total intrinsic spin S
and total isospin T. Let H be the isospin-invariant part of
the nucleon-nucleon Hamiltonian. We define the matrix
element MðS; TÞ as

1

2Sþ 1

XS

Sz¼−S
hA;S; Sz;T; TzjHjB; S; Sz;T; Tzi: ð2Þ

The statement of spin-isospin exchange symmetry is the
constraint MðS; TÞ ¼ MðT; SÞ.
As an example, let us consider the structure of 30P. In a

minimal shell model description, 30P has one proton and
one neutron in the 1s1=2 orbitals. The actual wave function
is considerably more complicated than this, but we can
make the rough approximation that the spatial wave

functions for the two lowest-lying states of 30P are the
same. If true, then the prediction of spin-isospin exchange
symmetry is that the S ¼ 0, T ¼ 1 and S ¼ 1, T ¼ 0 states
are degenerate. The actual data is that the 1þ ground state is
lower than the 0þ state by about 0.677 MeV. This is a fairly
good agreement, far better than the splitting between
the deuteron and the spin-singlet proton-neutron pair in
vacuum. In that case the tensor force significantly modifies
the deuteron wave function. Our analysis here suggests that
the interactions of the proton-neutron pair with the 28Si core
are suppressing spatial correlations of the 1þ wave function
caused by the tensor interaction.
We can also look at the two-body matrix elements for the

proton-neutron pair in the 1s1=2 orbitals. For the following
calculations we use a harmonic oscillator frequency of
13.92 MeV. Starting from the AV18 potential [43] and
using a renormalization group flow to construct the
corresponding effective interaction V lowk [44] at momen-
tum scale Λ ¼ 2.5 fm−1 ¼ 490 MeV, we get two-body
matrix elements of −2.54 MeV for the 1þ state and
−2.37 MeV for the 0þ state, respectively, showing a
relative error consistent with the expected 1=N2

c size.
Using the same V lowk renormalization group flow for the
chiral N3LO interaction [45] at Λ ¼ 2.5 fm−1, we get
similar results of −2.48 MeV for the 1þ state and
−2.36 MeV for the 0þ state. However, the spin-isospin
exchange symmetry is obscured at other resolution scales.
For AV18 at Λ ¼ 6.0 fm−1 we find 1.58 MeV for
the 1þ state and 0.19 MeV for the 0þ state, which is a
violation larger than the expected 1=N2

c size. This lends
support to our argument that the large-Nc derivation is
only valid for momentum resolution scales in the range
Λlarge-Nc

∼ 500 MeV. We note that the chiral N3LO
interaction has some nonlocality while the AV18 is a
local interaction. In the Supplemental Materials [27] we
consider several other interactions and check for spin-
isospin exchange symmetry as measured by scattering
phase shifts.
Our test of spin-isospin exchange symmetry is sensitive

to the effective resolution scale of the nuclear interactions.
We can therefore use spin-isospin exchange symmetry
as a tool for estimating the effective resolution scale Λ
of any nuclear interaction which might use one of many
possible methods for regulating high-energy behavior. For
Λ < Λlarge-Nc

the ðS; TÞ ¼ ð1; 0Þ central interaction is more
attractive, and for Λ > Λlarge-Nc

the ðS; TÞ ¼ ð0; 1Þ central
interaction is more attractive. We can understand this as
follows. As we lower Λ, the effect of the tensor coupling
between the S and D partial waves becomes weaker. In
order to compensate for the loss of tensor attraction, the
ðS; TÞ ¼ ð1; 0Þ central interaction must be more attractive
than the ðS; TÞ ¼ ð0; 1Þ central interaction. As we increase
Λ, the tensor attraction becomes stronger and the reverse
effect occurs.

TABLE I. Lattice chiral effective field theory coefficients of
short-range interactions for the spin-singlet and spin-triplet S-
wave and D-wave channels at lattice spacing a ¼ 1.32 fm.

Channel, order Coupling (l.u.) Channel, order Coupling (l.u.)
1S0; Q0 1.45(5) 3S1; Q0 1.56(3)
1S0; Q2 −0.47ð3Þ 3S1; Q2 −0.53ð1Þ
1S0; Q4 0.129(13) 3S1; Q4 0.115(4)
1D2; Q4 −0.088ð1Þ 3Dall; Q4 −0.070ð2Þ
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We can now test spin-isospin exchange for general two-
body matrix elements in the 1s-0d shell. For this analysis
we use the spin-tensor analysis developed in Refs. [46–48].
We consider seven two-body matrix elements for ðS; TÞ ¼
ð1; 0Þ and ðS; TÞ ¼ ð0; 1Þ. The seven matrix elements are
listed in Table II. L3 and L4 are the orbital angular momenta
of the incoming orbitals corresponding to state B in Eq. (2),
and L34 is the total orbital angular momentum. L1 and L2

are the orbital angular momenta of the outgoing orbitals
corresponding to state A in Eq. (2), and L12 is the total
orbital angular momentum. Matrix element 7 is defined by
the 1s1=2 orbitals that we have discussed above. In addition
to performing the average over Sz in Eq. (2), we also set
Lz ¼ ðL12Þz ¼ ðL34Þz and average over Lz as well. The
results for AV18 and the chiral N3LO interaction [45] at
Λ ¼ 2.0; 2.5; 3.0; 3.5 fm−1 are shown in Fig. 1. We see that
the ðS; TÞ ¼ ð1; 0Þ and ðS; TÞ ¼ ð0; 1Þ results are nearly

equal at Λ ¼ 2.5 fm−1 for both AV18 and the N3LO
interaction, with a relative error of size 1=N2

c. We also
confirm that for Λ < Λlarge-Nc

the ðS; TÞ ¼ ð1; 0Þ channel is
more attractive, and for Λ > Λlarge-Nc

the ðS; TÞ ¼ ð0; 1Þ
channel is more attractive. We should point out that the
chiral N3LO interaction is defined with a momentum cutoff
scale that is comparable to Λ ∼ 2.5 fm−1, and so any
renormalization scale dependence above this momentum
value is relatively minor. A detailed summary of the
methods used in these shell model calculations can be
found in Ref. [48], and a description of the V lowk effective
shell model interactions can be found in Ref. [44].
The large-Nc analysis can also be applied to three-

nucleon interactions [49,50]. In the large-Nc limit, the
leading central three-nucleon interactions will have the
form

V3N
large-Nc

¼ V3N
C þ ½ð  σ1 ×  σ2Þ ·  σ3�½ð  τ1 ×  τ2Þ ·  τ3�W3N

123

þ  σ1 ·  σ2  τ1 ·  τ2W3N
12 þ  σ2 ·  σ3  τ2 ·  τ3W3N

23

þ  σ3 ·  σ1  τ3 ·  τ1W3N
31 þ…; ð3Þ

provided that the momentum resolution scale is close to
Λlarge-Nc

. In this case the subleading central three-nucleon
interactions are of size 1=Nc due to terms such as  σ1 ·
 σ2½ð  τ1 ×  τ2Þ ·  τ3� and ½ð  σ1 ×  σ2Þ ·  σ3�  τ1 ·  τ2 [49]. This sim-
plification should be helpful in constraining the many
short-range three-nucleon interactions that appear at higher
orders in chiral effective field theory. The spin-isospin
exchange symmetry of the leading interactions also
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FIG. 1. Two-body matrix elements for the 1s-0d shell. Panels (a)–(d): results for AV18 for ðS; TÞ ¼ ð1; 0Þ with red dots and ðS; TÞ ¼
ð0; 1Þ with blue lines at Λ ¼ 2.0 fm−1, 2.5 fm−1, 3.0 fm−1, and 3.5 fm−1, respectively. Panels (e)–(h): results for the chiral N3LO
interaction for ðS; TÞ ¼ ð1; 0Þ with red dots and ðS; TÞ ¼ ð0; 1Þ with blue lines at Λ ¼ 2.0 fm−1, 2.5 fm−1, 3.0 fm−1, and 3.5 fm−1,
respectively.

TABLE II. Selected two-body matrix elements for the 1s − 0d
shell.

Matrix element L1 L2 L3 L4 L12 L34

1 2 2 2 2 0 0
2 2 2 2 2 2 2
3 2 2 2 2 4 4
4 2 2 2 0 2 2
5 2 2 0 0 0 0
6 2 0 2 0 2 2
7 0 0 0 0 0 0
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severely limits the isospin-dependent contributions of the
three-nucleon interactions to the nuclear equation of state.
This fact is relevant for calculations of the nuclear sym-
metry energy and its density dependence in dense nuclear
matter.
Spin-isospin exchange symmetry is also useful for

constraining calculations that use local regularization to
produce a nonzero interaction range for the three-nucleon
contact interaction at N2LO. Local regularization produces
local interactions with some strength in higher partial
waves, and it has been observed that different isospin-
dependent structures for the three-nucleon contact inter-
action produce different behaviors in many-body calcula-
tions [51,52]. The results of our analysis here suggest that
such many-body calculations may be more reliable if one
imposes spin-isospin exchange symmetry on the three-
nucleon contact interaction for calculations with a momen-
tum cutoff of Λlarge-Nc

.
In this work we have confirmed that the strong inter-

actions have an approximate spin-isospin exchange sym-
metry that can be derived in the limit of many colors, Nc.
The derivation is valid with relative error 1=N2

c only if the
momentum resolution scale is near Λlarge-Nc

∼ 500 MeV.
While our work relies on the conceptual foundations
provided by others, our findings may provide new insights
into the empirical fact that chiral effective field theory is
most effective for momentum cutoff scales near this value.
We believe that our findings provide new motivation for
investigating and applying the constraints of the large-Nc
limit in future nuclear structure calculations.
We have derived a set of spin-isospin exchange sum rules

and discussed applications to the spectrum of 30P and as
well as applications to nuclear forces, nuclear structure
calculations, and constraining three-nucleon interactions.
Our results using modern forces and methods are never-
theless entirely consistent with the results presented in
Fig. 3 of Ref. [9], which shows the dominance of meson
exchange coupling terms in the Nijmegen NN potential
that respect spin-isospin exchange symmetry. In the
Supplemental Material [27] we present evidence for
spin-isospin exchange symmetry as seen from the
nucleon-nucleon scattering phase shifts as well as further
information about the lattice interactions.
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